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Abstract Most classification approaches aim at achieving high prediction accuracy on a
given dataset. However, in most practical cases, some action such as mailing an offer or
treating a patient is to be taken on the classified objects, and we should model not the class
probabilities themselves, but instead, the change in class probabilities caused by the action.
The action should then be performed on those objects for which it will be most profitable. This
problem is known as uplift modeling, differential response analysis, or true lift modeling, but
has received very little attention in machine learning literature. An important modification
of the problem involves several possible actions, when for each object, the model must also
decide which action should be used in order to maximize profit. In this paper, we present tree-
based classifiers designed for uplift modeling in both single and multiple treatment cases.
To this end, we design new splitting criteria and pruning methods. The experiments confirm
the usefulness of the proposed approaches and show significant improvement over previous
uplift modeling techniques.

Keywords Uplift modeling · Decision trees · Randomized controlled trial ·
Information theory

1 Introduction and notation

In most practical problems involving classification, the aim of building models is to later use
them to select subsets of cases to which some action is to be applied. A typical example is
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training a classifier, after a pilot campaign, to predict which customers are most likely to buy
after a marketing action. The offer is then targeted to the customers which, according to the
model’s predictions, are the most likely buyers. Unfortunately, this is not what the marketers
want. They want to target people who will buy because they received the offer.

These two aims are clearly not equivalent, and certain customers may buy the product
even if they have not been targeted by a campaign. Targeting them at best incurs additional
cost. At worst, excessive marketing may annoy them and prevent any future purchases. It is
in fact well known in the advertising community that campaigns do put off some percentage
of customers and there are however no easy means of identifying them. See [12,28,25,27,29]
for more information.

Similar problems arise very frequently in medicine. In a typical clinical trial, a random
subgroup of patients is assigned treatment A and the other, treatment B or placebo.
A statistical test is then performed to assess the overall difference between the two groups.
If, however, treatment A only works for a subgroup of people (e.g., people with some genetic
traits) and not for others, such a fact might go undetected. In some cases, the analysis is carried
out separately in several subgroups, but there is no systematic methodology for automatic
detection of such subgroups or modeling differences in response directly.

Despite its ubiquity and importance, the problem has received scarce attention in
literature [12,28,26,29], where it is known as uplift modeling, differential response anal-
ysis, incremental value modeling, or true lift modeling. Typically, a random sample of the
population is selected and subjected to the action being analyzed (a medical treatment or a
marketing campaign). This sample is called the treatment dataset. Another, disjoint, random
sample is also selected, to which the action is not applied. This is the control dataset, which
serves as the background against which the results of the action will be evaluated. The task
now is to build a model predicting not the probability of objects belonging to a given class,
but the difference between such probabilities on the two sets of data: treatment and control.

An important modification to the problem is the case when several treatments are available
to us, and we need to decide not only whether an action should be applied or not, but also which
action is most profitable in a given case. The multitreatment version of the problem requires,
apart from the control training data, a separate training set for each possible action. The
differences from the control class probabilities now need to be modeled for each treatment,
such that for each new case, the best action can be decided.

If the assignment of cases to the control and (possibly several) treatment groups is
completely random, uplift modeling has another advantage: it allows for modeling the effect
caused by the action. Objects are often subject to other actions (such as competitor’s mar-
keting campaigns) which are beyond our control and the influence of which cannot be taken
into account directly. By selecting random treatment and control groups, we automatically
factor out all such effects, as they apply equally to those groups. A more thorough motivation
for uplift modeling can be found in [28].

While decision trees are no longer an active research area, they are still widely used in the
industry (included in practically all commercial analytical products) and, as a historically first
machine learning approach, are a natural first candidate to adapt to the uplift methodology.
Adapting other models will be a topic of future research.

We now describe the contribution of our paper. While approaches to uplift decision tree
learning are already present in the literature [6,12,28], they are typically quite basic and use
simple splitting criteria which maximize class differences directly. Also, no specific pruning
methodology is described ([29] being an exception). The uplift decision trees we propose
are more in the style of modern algorithms [4,22,24], which use splitting criteria based on
information theory. Unlike [12], which only allows two class problems and binary splits, our
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algorithm can handle arbitrary number of classes and multiway splits. In contrast to other
approaches, we also consider the case of multiple treatments.

Moreover, all steps of the proposed methods are carefully designed such that they are
direct generalizations of standard decision trees used in classification, by which we specif-
ically mean the CART [4] and C4.5 [24] approaches. That is, when the control group and
all but one treatment groups are empty, they behave identically to decision trees known in
the literature. The advantages of this approach are twofold: first, when no control data are
present (this can frequently happen at lower levels of the tree), it is natural to just try to predict
the class, even though we are no longer able to perform uplift modeling; second, the fact
that, as a special case, the methods reduce to well known, well justified, and well researched
approaches, corroborates the intuitions behind them and the design principles used.

The rest of the paper is organized as follows: the following three sections deal with the case
of single treatment, while Sect. 5 describes the case of multiple treatments. The remaining part
of this section introduces the notation, Sect. 2 gives an overview of the related work, Sect. 3
describes uplift decision tree construction for the single treatment case, Sect. 4 presents the
experimental evaluation, and finally, Sect. 6 concludes. Proofs of the theorems are given in
the Appendix.

1.1 Notation

Let us now introduce the notation used when describing uplift modeling for the single
treatment case. Section 5 extends the notation to the case of multiple treatments.

Recall that nonleaf nodes of decision trees are labeled with tests [24]. A test may have
a finite number of outcomes. We create a single test for each categorical attribute, and the
outcomes of this test are all attribute’s values, as is done for example in C4.5. For each
numerical attribute X , we create several tests of the form X < v, where v is a real number.
A test is created for each v being a midpoint between two consecutive different values of the
attribute X present in data (treatment and control datasets are concatenated for this purpose).
We omit further details as they can be found in any book on decision trees [4,24].

Tests will be denoted with uppercase letter A. The distinguished class attribute will be
denoted with the letter Y . The class attribute is assumed to have a finite domain, and all tests
are assumed to have finite numbers of outcomes, so all probability distributions involved
are discrete. Values from the domains of attributes and test outcomes will be denoted by
corresponding lowercase letters, e.g., a will denote an outcome of a test A, and y one of the
classes. Similarly,

∑
a is the sum over all outcomes of a test A, and

∑
y is the sum over all

classes.
The situation considered here is different from the standard machine learning setting in

that we now have two datasets (samples): treatment and control. This presence of double
datasets necessitates a special notation. The probabilities estimated based on the treatment
dataset will be denoted by PT and those based on the control dataset by PC . PT (Y ) will
denote the probability distribution of the attribute Y estimated on the treatment sample, and
PT (y) the corresponding estimate of the probability of the event Y = y; notation for tests and
the control sample is analogous. Conditional probabilities are denoted in the usual manner,
for example, PC (Y |a) is the class probability distribution conditional on the test outcome
A = a estimated from the control sample.

We will always use Laplace correction while estimating the probabilities PT and PC .
Additionally, let N T and N C denote the number of records in the treatment and control

samples, respectively, and N T (a) and N C (a), the number of records in which the outcome
of a test A is a. Finally, let N = N T + N C and N (a) = N T (a) + N C (a).
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2 Related work

Despite its practical importance, the problem of uplift modeling has received surprisingly
little attention in literature. Below, we discuss the handful of available research papers.

There are two overall approaches to uplift modeling. The obvious approach is to build
two separate classifiers, one on the treatment and the other on the control dataset. For each
classified object, we then subtract the class probabilities predicted by the control group
classifier from those predicted by the treatment group model. This approach suffers from a
major drawback: the pattern of differences between probabilities can be quite different than
the pattern of the probabilities themselves, so predicting treatment and control probabilities
separately can result in poor model performance [6,12,19,29]. In case of decision trees, it
does not necessarily favor splits which lead to different responses in treatment and control
groups, just splits which lead to predictable outcomes in each of the groups separately. This
brings us to the second class of methods, which attempt to directly model the difference
between treatment and control probabilities.

The first paper explicitly discussing uplift modeling was [28]. It presents a thorough
motivation including several use cases. A modified decision tree learning algorithm is also
proposed, albeit with very few details given. Recently, a thorough description of the approach
has been published [29]: the decision trees have been specially adapted to the uplift case using
a splitting criterion based on statistical tests of the differences between treatment and control
probabilities introduced by the split. There is also a variance based pruning technique. See [29]
for more details.

Hansotia and Rukstales [12] offer a detailed description of their uplift approach. They
describe two ideas, one based on logistic regression and the other on decision trees. The
decision tree part of [12] again describes two approaches. The first is based on building two
separate trees for treatment and control groups with cross-validation used to improve the
accuracy of probability estimates. The second approach, most relevant to this work, builds a
single tree which explicitly models the difference between responses in treatment and control
groups.

The algorithm uses a splitting criterion called ��P , which selects tests maximizing the
difference between the differences between treatment and control probabilities in the left and
right subtrees. Suppose we have a test A with outcomes a0 and a1. The splitting criterion
used in [12] is defined as

��P(A) =
∣
∣
∣
(

PT (y0|a0) − PC (y0|a0)
)

−
(

PT (y0|a1) − PC (y0|a1)
)∣
∣
∣,

where y0 is a selected class. The criterion is based on maximizing the desired difference
directly, while our approach follows the more modern criteria based on information theory.
Our experiments demonstrate that this results in significant performance improvements.
Moreover, ��P works only for binary trees and two-class problems, while our approach
works for multiway splits and with an arbitrary number of classes (in Sect. 4 we generalize
the ��P measure to multiway splits).

In [6], the authors propose a decision tree building method for uplift modeling. The tree
is modified such that every path ends with a split on whether a given person has been treated
(mailed an offer) or not. Otherwise, the algorithm is a standard decision tree construction
procedure from [5], so all remaining splits are selected such that the class is well predicted,
while our approach selects splits that lead to large differences between treatment and control
distributions. In [18], logistic regression has been applied, along with a simple approach
based on building two separate Naive Bayes classifiers. Recently, Larsen [16] proposed a
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method based on so called net weight of evidence to train naive Bayes and so called bifurcated
regression models.

The problem has been more popular in medical literature where the use of treatment
and control groups is common. Several approaches have been proposed for modeling the
difference between treatment and control responses based on regression analysis. One
example are nested mean models [10,31,32] similar to regression models proposed in [18].
An overview with a list of related literature can be found in [3]. The purpose of those meth-
ods is different from the problem discussed here, as the main goal of those approaches is to
demonstrate that the treatment works after taking into account confounding factors, while
our goal is to find subgroups in which the treatment works best. Also, only linear models are
used, and typically, the problem of regression, not classification is addressed.

In [1], the authors set themselves an ambitions goal of modeling long-term influence of
various advertising channels on the customer. Our approach can be seen as a small part of
such a process that only deals with a single campaign. Otherwise, the approach is completely
different from ours.

Action rules discovery [2,9,13,30] is concerned with finding actions which should be
taken to achieve a specific goal. This is different from our approach as we are trying to
identify groups on which a predetermined action will have the desired effect.

Methods for measuring the performance of uplift models are discussed in [6,12,26]; these
include analogs of ROC and lift curves. See Sect. 4 for more details.

A preliminary version of this paper [33] was presented at the ICDM conference in 2010.
This paper contains several important extensions. Primarily, the problem of uplift modeling
in the presence of multiple treatments has been analyzed. Extensions to uplift decision tree
construction allowing for multiple treatments are presented in Sect. 5. Additionally, splitting
criterion based on chi-squared divergence is introduced and analyzed. Several parts of the
text have also been clarified and extended.

3 Decision trees for uplift modeling: the single treatment case

In this section, we describe each step of uplift decision tree construction and application in
the case of a single treatment.

3.1 Splitting criterion

A key part of a decision tree learning algorithm is the criterion used to select tests in nonleaf
nodes of the tree. In this section, we present two splitting criteria designed especially for the
uplift modeling problem.

While previous approaches [12] used directly the difference between response proba-
bilities, i.e., the predicted quantity, we follow an approach more typical to decision trees,
which is modeling the amount of information that a test gives about this difference.

We will now describe several postulates that a splitting criterion should satisfy, and later,
we will prove that our criteria do indeed satisfy those postulates.

1. The value of the splitting criterion should be minimum if and only if the class distributions
in the treatment and control groups are the same in all branches. More formally this
happens when for all outcomes of a test A we have

PT (Y |a) = PC (Y |a).
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2. If A is statistically independent of Y in both treatment and control groups then the value
of the splitting criterion should be zero.

3. If the control group is empty, the criterion should reduce to one of the classical splitting
criteria used for decision tree learning.

Postulate 1 is motivated by the fact that we want to achieve as high a difference between
class distributions in the treatment and control groups as possible. Postulate 2 says that tests
statistically independent of the class should not be used for splitting, just as in standard deci-
sion trees. Note, however, that the analogy in this case is not perfect. It is in fact possible for
the treatment and control class distributions after the split to be more similar than before, so
the splitting criterion can take negative values. This means that an independent split is not
necessarily the worst. Theorem 3.2 and the discussion below further clarify the situation.

3.2 Splitting criteria based on distribution divergences

As we want to maximize the differences between class distributions in treatment and control
sets, it is natural that the splitting criteria we propose are based on distribution divergences [7,
11,15,17]. A distribution divergence is a measure of how much two probability distributions
differ. We will only require that the divergence of two discrete distributions be nonnegative
and equal to zero if and only if the two distributions are identical.

We will use three distribution divergence measures, the Kullback-Leibler divergence
[7,11], the squared Euclidean distance [17], and the chi-squared divergence [7,15]. Those
divergences, from a distribution Q = (q1, . . . , qn) to a distribution P = (p1, . . . , pn), are
defined, respectively, as

K L(P : Q) =
∑

i

pi log
pi

qi
,

E(P : Q) =
∑

i

(pi − qi )
2,

χ2(P : Q) =
∑

i

(pi − qi )
2

qi
.

The Kullback-Leibler divergence is a well-known and widely used information theoretic
measure. The squared Euclidean distance is less frequently applied to compare distributions,
but has been used in literature [17,34], and applied for example to Schema Matching [14].
Chi-squared divergence has been used, e.g., to measure interestingness of rules [15].

We will argue that the squared Euclidean distance has some important advantages that
make it an attractive alternative to the Kullback-Leibler and chi-squared measures. First, it
is symmetric, which will have consequences for tree learning when only control data are
present. We note, however, that the asymmetry of Kullback-Leibler and chi-squared diver-
gences is not necessarily a problem in our application, as the control dataset is a natural
background from which the treatment set is supposed to differ.

A second, more subtle advantage of squared Euclidean distance is its higher stability. The
KL and chi-squared divergences tend to infinity if one of the qi probabilities tends to zero,
while the corresponding pi remains nonzero. This makes estimates of its value extremely
uncertain in such cases. Moreover, it is enough for just one of control group probabilities in
one of the tree branches to have a small value for the divergence to be extremely large, which
may result in selection of a wrong attribute.
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The proposed splitting criterion for a test A is defined for any divergence measure D as

Dgain(A) = D
(

PT (Y ) : PC (Y )|A
)

− D
(

PT (Y ) : PC (Y )
)
,

where D
(
PT (Y ) : PC (Y )|A)

is the conditional divergence defined below. Substituting for
D the KL-divergence, squared Euclidean distance, and the chi-squared divergence, we obtain
our three proposed splitting criteria K Lgain , Egain , and χ2

gain .
The intuition behind the definition is as follows: we want to build the tree such that

the distributions in the treatment and control groups differ as much as possible. The first
part of the expression picks a test which leads to most divergent class distributions in each
branch. We subtract the divergence between class distributions on the whole dataset in order
to obtain the increase or gain of the divergence resulting from splitting with test A. This is
completely analogous to how entropy gain [24] and Gini gain [4] are defined for standard
decision trees. In fact, we will show that the analogy goes deeper, and when the control set
is missing, K Lgain reduces to entropy gain, and Egain and χ2

gain reduce to Gini gain. Addi-
tionally, Egain reduces to Gini gain also when the treatment set is missing. Recall that we
use Laplace correction while estimating PC and PT , so that absent datasets lead to uniform
class probability distributions.

The key problem is the definition of conditional divergence. Conditional KL-divergences
have been used in literature [11] but the definition is not directly applicable to our case. The
difficulty stems from the fact that the probability distributions of the test A may differ in
the treatment and control groups. We have thus chosen the following definition (recall that
N = N T + N C and N (a) = N T (a) + N C (a)):

D(PT (Y ) : PC (Y )|A) =
∑

a

N (a)

N
D

(
PT (Y |a) : PC (Y |a)

)
, (1)

where the relative influence of each test value is proportional to the total number of training
examples falling into its branch in both treatment and control groups. Notice that when
treatment and control distributions of A are identical, the definition reduces to conditional
divergence as defined in [11].

The theorem below shows that the proposed splitting criteria do indeed satisfy our
postulates.

Theorem 3.1 The K Lgain, Egain and χ2
gain test selection criteria satisfy postulates 1–3.

Moreover, if the control group is empty, K Lgain reduces to entropy gain [22] and Egain and
χ2

gain reduce to Gini gain [4]. Additionally when the treatment set is empty Egain also reduces
to Gini gain.

The proof can be found in the Appendix. More properties of divergences can be found
in [7,11]. The ��P splitting criterion used in [12] only satisfies the first two postulates.

Notice that the value of K Lgain , χ2
gain , and Egain can be negative. Splitting a dataset can

indeed lead to more similar treatment and control distributions in all leaves as can be seen in
the following example.

Example 3.1 Suppose the class Y and the test A, both take values in {0, 1}. Assume now that
PT (A = 0) = 0.3 and PC (A = 0) = 0.9 and that after splitting the data according to A
we have in the left branch of the tree PT (Y = 1|A = 0) = 0.7, PC (Y = 1|A = 0) = 0.9
and in the right branch PT (Y = 1|A = 1) = 0.1, PC (Y = 1|A = 1) = 0.4. It is easy to
calculate PT (Y = 1) = PT (Y = 1|A = 0)PT (A = 0) + PT (Y = 1|A = 1)PT (A = 1) =
0.7 · 0.3 + 0.1 · 0.7 = 0.28 and similarly PC (Y = 1) = 0.85. It is immediately clear that
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control and treatment probabilities in both leaves are more similar than in the root. Indeed,
K L(PT (Y ) : PC (Y )) = 1.1808 and, assuming N T = N C , K L(PT (Y ) : PC (Y )|A) =
0.2636 giving K Lgain = −0.9172.

Notice, however, the strong dependence of the test A on the split between the treatment
and control datasets. The negative value of the gain is in fact a variant of the well-known
Simpson’s paradox [21]. In practice, it is usually desirable that the assignment of cases to
treatment and control groups be independent from all attributes in the data. For example in
clinical trials, great care is taken to ensure that this assumption does indeed hold. We then have
the following theorem, which ensures that in such a case, all three gains stay nonnegative,
just as is the case with entropy and Gini gains for classification trees.

Theorem 3.2 If outcomes of a test A are independent of the assignment to treatment and con-
trol groups, i.e., PC (A)= PT (A) then K Lgain(A), Egain(A) and χ2

gain(A) are nonnegative.

The proof can be found in the Appendix. Recall that in this case, K Lgain becomes the
conditional divergence known in the literature [11].

3.3 Normalization: correcting for tests with large number of splits and imbalanced
treatment and control splits

In order to prevent bias toward tests with high number of outcomes, standard decision tree
learning algorithms normalize the information gain dividing it by the information value
(usually measured by entropy) of the test itself [24]. In our case, the normalization factor
is more complicated, as the information value can be different in the control and treatment
groups.

Moreover, we would like to punish tests that split the control and treatment groups in
different proportions since such splits indicate that the test is not independent from the
assignment of cases between the treatment and control groups. Apart from violating the
assumptions of randomized trials, such splits lead to problems with probability estimation.
As an extreme example, consider a test that puts all treatment group records in one subtree
and all control records in another; the tree construction will proceed based on only one data-
set, as in classification tree learning (except for K Lgain and χ2

gain in case of empty treatment
dataset, when they do not reduce to standard splitting criteria), but the ability to detect uplift
will be completely lost.

Additionally, the normalizing factor makes our splitting criterion sensitive to relative
population sizes after the split, contrary to what is claimed in [29].

The proposed normalization value for a test A is given by (recall again that N = N T + N C

is the total number of records in both treatment and control datasets)

I (A) = H

(
N T

N
,

N C

N

)

K L(PT (A) : PC (A))

+ N T

N
H(PT (A)) + N C

N
H(PC (A)) + 1

2
(2)

for the K Lgain criterion, and

J (A) = Gini

(
N T

N
,

N C

N

)

D(PT (A) : PC (A))

+ N T

N
Gini(PT (A)) + N C

N
Gini(PC (A)) + 1

2
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for the Egain and χ2
gain criteria (D denotes, respectively, the E or χ2 divergence). For the sake

of symmetry, we use entropy related measures for K Lgain and Gini index-related measures
for Egain and χ2

gain , although one can also imagine combining different types of gain and
normalization factors.

The first term is responsible for penalizing uneven splits. The unevenness of splitting
proportions is measured using the divergence between the distributions of the test outcomes
in treatment and control datasets. Tests that are strongly dependent on group assignment will
thus be strongly penalized (note that the value of I (A) can be arbitrarily close to infinity).
However, penalizing uneven splits only makes sense if there is enough data in both treatment

and control groups. The K L(PT (A) : PC (A)) term is thus multiplied by H
(

N T

N , N C

N

)
which

is close to zero when there is a large imbalance between the number of data in treatment and
control groups (analogous Gini-based measures are used for Egain and χ2

gain). The result is
that when only treatment or only control data are available, the first term in the expression is
zero, as penalizing uneven splits no longer makes sense.

The following two terms penalize tests with large number of outcomes [24]. Additionally,
those terms allow the criterion to take into account relative sample sizes after the split. We
use the sum of entropies (Gini indices) of the test outcomes in treatment and control groups
weighted by the number of records in those groups.

One problem we encountered was that small values of the normalizing factor can give
high preference to some tests despite their low information gain. Solutions described in
literature [38] involve selecting a test only if its information gain is greater or equal to the
average gain of all remaining attributes and other heuristics. We found however that just
adding 1

2 to the value of I or J gives much better results. Since the value is always at least
1
2 , it cannot inflate too much the information value of a test.

Notice that when N C = 0, the criterion reduces to H(PT (A)) + 1
2 which is identical to

normalization used in standard decision tree learning (except for the extra 1
2 ). After taking

the normalizing factors into account, the final splitting criteria become

K Lgain(A)

I (A)
,

Egain(A)

J (A)
and

χ2
gain(A)

J (A)
.

The key step of tree pruning will be discussed after the next section which describes
assigning scores and actions to leaves of the tree.

3.4 Application of the tree

Once the tree has been built, its leaves will contain subgroups of objects for which the treat-
ment class distribution differs from control class distribution. The question now is how to
apply the tree to score new data and make decisions on whether the action (treatment) should
be applied to objects falling into a given leaf. In general, the action should be applied only
if it is expected to be profitable. We thus annotate each leaf with an expected profit, which
will also be used for scoring new data.

We assign profits to leaves using an approach similar to [6,12] generalized to more than
two classes. Each class y is assigned a profit vy , that is, the expected gain if a given object
(whether treated or not) falls into this class. There is also a fixed cost c of performing a
given action (treatment) on a single object. Let PT (Y |l) and PC (Y |l) denote treatment and
control class distributions in a leaf l. If each object in a leaf is treated, the expected profit (per
object) is equal to −c + ∑

y PT (y|l)vy . If no object in the leaf is treated, the expected profit
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is
∑

y PC (y|l)vy . So the expected gain from treating each object falling into that leaf is

− c +
∑

y

vy

(
PT (y|l) − PC (y|l)

)
. (3)

Objects falling into l should be treated only if this value is greater than zero. The value itself
is used for scoring new data.

It might be beneficial to include costs directly in the uplift tree construction process. An
example of such an approach can be found in [37,40], where several types of costs such as
misclassification costs and costs associated with tests in the tree nodes are directly taken into
account.

3.5 Pruning

Decision tree pruning is a step which has decisive influence on the generalization performance
of the model. There are several pruning methods, based on statistical tests, minimum descrip-
tion length principle, and so on. Full discussion is beyond the scope of this paper, see [20,
23,24,38] for details.

We chose the simplest, but nevertheless effective pruning method based on using a separate
validation set [20,23]. For the classification problem, after the full tree has been built on the
training set, the method works by traversing the tree bottom up and testing for each node,
whether replacing the subtree rooted at that node with a single leaf would improve accuracy
on the validation set. If this is the case, the subtree is replaced and the process continues.

In the case of uplift modeling, obtaining an analog of accuracy is not easy. One option
is assigning costs/profits to each class (see the previous section) and pruning subtrees based
on the total increase in profits obtained by replacing a subtree with a leaf. Unfortunately,
this method is ineffective. The total expected profit obtained in the leaves is identical to
that obtained in the root of a subtree. To see this sum (3) over all leaves weighting by the
probability of ending up in each leaf.

We have thus devised another measure of improvement, the maximum class probability
difference which can be viewed as a generalization of classification accuracy to the uplift
case. The idea is to look at the differences between treatment and control probabilities in
the root of the subtree and in its leaves, and prune if, overall, the differences in leaves are
not greater than the difference in the root. In each node, we only look at the class for which
the difference was largest on the training set, and in addition, remember the sign of that
difference such that only differences that have the same sign in the training and validation
sets contribute to the increase in our analog of accuracy. This procedure is consistent with
the goal of maximizing the difference between treatment and control probabilities.

More precisely, while building the tree on the training set, for each node t , we remember
the class y∗(t) for which the difference

∣
∣PT (y∗|t) − PC (y∗|t)∣∣ is maximal 0and also remem-

ber the sign of this difference s∗(t) = sgn(PT (y∗|t) − PC (y∗|t)). During the pruning step,
suppose we are examining a subtree with root r and leaves l1, . . . , lk . We calculate the
following quantities with the stored values of y∗ and s∗ and all probabilities computed on
the validation set:

d1(r) =
k∑

i=1

N (li )

N (r)
s∗(li )

(
PT (y∗(li )|li ) − PC (y∗(li )|li )

)
,

d2(r) = s∗(r)
(

PT (y∗(r)|r) − PC (y∗(r)|r)
)
,
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where N (li ) is the number of validation examples (both treatment and control) falling into
leaf li . The first quantity is the maximum class probability difference of the unpruned sub-
tree, and the second is the maximum class probability difference we would obtain on the
validation set if the subtree was pruned and replaced with a single leaf. The subtree is pruned
if d1(r) ≤ d2(r).

The class y∗ is an analog of the predicted class in standard classification trees. In case
either the treatment or the control dataset is absent, the missing probabilities are set to zero
(we do not use Laplace correction in this step). It is then easy to see that, as long as the same
sets are missing in the training and validation data, d1 and d2 reduce to standard classification
accuracies of the unpruned and pruned subtree (note, that when the treatment set is missing,
the value of s∗ will be negative guaranteeing that both d1 and d2 are nonnegative).

4 Experimental evaluation

In this section, we present the results of experimental evaluation of the proposed models. We
compare four models: uplift decision trees based on Egain and K Lgain , the method of [12]
based on the ��P criterion, and an approach which builds separate decision trees for the
treatment and control groups. Throughout this section, we will refer to those models, respec-
tively, as “Euclid”, “KL”, “DeltaDeltaP”, and “DoubleTree”. In order to improve clarity,
we do not include the χ2

gain in the main experiments. Instead, at the end of the section, we
compare it with Egain and K Lgain .

In order to be able to compare against the DeltaDeltaP method [12], we had to modify the
��P criterion to work for tests with more than two outcomes. The modification is

��P(A) = max
a,a′

[(
PT (y0|a) − PC (y0|a)

)
−

(
PT (y0|a′) − PC (y0|a′)

)]
,

where a and a′ vary over all outcomes of the test A, and y0 is a selected class (say the first).
In other words, we take the maximum difference between any two branches, which reduces
to the standard ��P criterion for binary tests.

For the DoubleTree classifier, we used our own implementation of decision trees, identical
in all possible respects to the uplift based models. This decision was made in order to avoid
biasing the comparison by different procedures used during tree construction, such as differ-
ent details of the pruning strategy or the use of Laplace corrections.

4.1 Methods of evaluating uplift classifiers

Discussions on assessing the quality of uplift models can be found in [12,26]. In most
classifier testing schemes, some amount of data is set aside before training and is later used
to assess performance. Using this approach with an uplift classifier is more difficult. We now
have two test sets, one containing treated and the other control objects. The test set for the
treatment group is scored using the model, and the scores can be used to calculate profits and
draw lift curves. However, in order to assess the gain in profit, we need to take into account
the behavior on the control group. This is not easy, as records in the treatment group do not
have natural counterparts in the control group.

To select appropriate background data, the control dataset is scored using the same model.
The gain in profits resulting from performing the action on p percent of the highest scored
objects is estimated by subtracting the profit on the p percent highest scored objects from
the control set from the profit on the highest scored p percent of objects from the treatment
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Fig. 1 The uplift curve for the splice dataset

dataset. This solution is not ideal as there is no guarantee that the highest scoring examples
in the treatment and control groups are similar, but it works well in practice. All approaches
in literature use this method [12,26].

Note that when the sizes of treatment and control datasets differ, profits calculated on the
control group should be weighted to compensate for the difference.

From an equivalent point of view, this approach consists of drawing two separate lift curves
for treatment and control groups using the same model and then subtracting the curves. The
result of such a subtraction will be called an uplift curve. In this work, we will use those
curves to assess model performance. To obtain comparable numerical values, we computed
Areas Under the Uplift Curves (AUUC) and the heights of the curve at the 40th percentile.

Notice that, contrary to lift curves, uplift curves can achieve negative values (the results
of an action can be worse than doing nothing), and the area under an uplift curve can also be
negative. Figure 1 shows the uplift curves for the four analyzed classifiers on the splice
dataset.

4.2 Dataset preparation

The biggest problem we faced was the lack of suitable data to test uplift models. While the
problem itself has wide applicability, for example, in clinical trials or marketing, there seems
to be very little publicly available data involving treatment and control groups. This has been
noted in other papers, such as [1], where simulated data were used in experiments.

We resorted to another approach: using publicly available datasets from the UCI repository
and splitting them artificially into treatment and control groups. Table 1 shows the datasets
used in our study, as well as the condition used for splitting each dataset. For example, the
hepatitis dataset was split into a treatment dataset containing records for which the
condition steroid = “YES” holds and a control dataset containing the remaining records.
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Table 1 Datasets used in the experiments

Dataset Treatment/control split condition # Removed attrs/total

acute-inflammation a3 = ‘YES’ 2/6

australian a1 = ‘1’ 2/14

breast-cancer menopause = ‘PREMENO’ 2/9

credit-a a7 �= ‘V’ 3/15

dermatology exocytosis ≤ 1 16/34

diabetes insu > 79.8 2/8

heart-c sex = ‘MALE’ 2/13

hepatitis steroid = ‘YES’ 1/19

hypothyroid on_thyroxine = ‘T’ 2/29

labor education-allowance =‘YES’ 4/16

liver-disorders drinks < 2 2/6

nursery children ∈ {‘3’, ‘MORE’} 1/8

primary-tumor sex =‘MALE’ 2/17

splice attribute1∈ {‘A’, ‘G’} 2/61

winequal-red sulfur dioxide < 46.47 2/11

winequal-white sulfur dioxide < 138.36 3/11

Overall, the group assignment condition was chosen using the following rules:

1. If there is an attribute related to an action being taken, pick it (for example the steroid
attribute in the hepatitis data).

2. Otherwise, pick the first attribute which gives a reasonably balanced split between the
treatment and control groups.

We note that the selection of the splitting conditions was done before any experiments were
carried out in order to avoid biasing the results.

A further preprocessing step was necessary in order to remove attributes that are too
correlated with the splitting condition. The presence of such attributes would bias the results,
since the KL and Euclid methods use the normalization factors I and J which penalize the
use of such attributes, while other methods do not. A simple heuristic was used:

1. A numerical attribute was removed if its averages in the treatment and control datasets
differed by more than 25%.

2. A categorical attribute was removed if the probabilities of one of its values differed
between treatment and control datasets by more than 0.25.

Again, we note that the decision to remove such attributes has been made and the thresholds
selected, before any experiments have been performed. The number of removed attributes
(vs. the total number of attributes) is shown in Table 1.

Class profits were set to 1 for the most frequent class and 0 for the remaining classes. The
cost of applying an action was set to 0. This way, the profits reflect the difference between
the probabilities of the most frequent class.

4.3 Experimental results

To test the significance of differences between classifiers, we use the statistical testing
methodology described in [8]. First, all classifiers are compared using Friedman’s test, a
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Table 2 Area under the uplift curve (AUUC) for various models and datasets

Dataset DeltaDeltaP DoubleTree Euclid KL

acute-inflammation −46.86 −53.34 −46.36 −47.76

australian 0.22 6.02 11.20 12.96

breast-cancer 26.28 28.00 36.49 25.90

credit-a 32.47 39.32 43.41 42.36

dermatology 270.90 280.20 305.33 275.10

diabetes 88.69 82.27 113.65 103.71

heart-c 149.39 145.37 156.91 162.92

hepatitis 10.45 20.10 22.80 12.90

hypothyroid −43.66 −26.85 −17.78 −11.21

labor 2.00 4.52 4.22 4.14

liver-disorders 40.69 27.96 51.05 43.56

nursery −5.00 −6.00 −3.90 −2.70

primary-tumor 75.89 87.65 64.04 62.38

splice 253.12 211.65 309.35 289.06

winequal-red 713.19 626.10 708.70 658.34

winequal-white 1747.58 1351.32 1647.79 1765.41

Best performing method has been marked in bold

Fig. 2 Comparison of all classifiers using the Nemenyi test at p = 0.01. Results for area under uplift curve

nonparametric analog of ANOVA. If the test shows significant differences, a post hoc Nem-
enyi test is used to assess which of the models are significantly different.

All algorithm parameters have been tuned on artificial data, not on the datasets shown in
Table 1.

Table 2 shows the results of applying the classifiers to the datasets in Table 1. Each cell
contains the AUUC (Area Under the Uplift Curve) obtained by 2 × 5 cross-validation. The
best classifier for each dataset is marked in bold. It can be seen that the model based on the
squared Euclidean distance had a clear advantage. We now proceed to quantify these results
using statistical tests.

We first applied the Friedman’s test to check whether there are significant differences
between the classifiers. The test result was that the models are significantly different with
the p value of 0.0029. We thus proceeded with the post hoc Nemenyi test in order to assess
the differences between specific classifiers. Figure 2 displays the results graphically. The
scale marks the average rank of each model over all datasets; lower rank means a better
model. For example, the model based on the squared Euclidean distance criterion had an
average rank of 1.625, while the DoubleTree-based approach, an average rank of 3.06. The
horizontal line in the upper part of the chart shows the critical difference at the significance
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Fig. 3 Comparison of all classifiers using the Nemenyi test at p = 0.01 and p = 0.05. Results for the height
of the uplift curve at the 40th percentile

level of 0.01, i.e., the minimum difference between the average ranks of classifiers, which is
deemed significant. The thick lines connect models which are not statistically distinguishable.

It can be seen that Euclid is a clear winner. It is significantly better than both the Double-
Tree and DeltaDeltaP approaches. The two methods we propose in this paper, KL and Euclid
are not significantly different, but the Euclidean distance-based version did perform better.
Also, the KL algorithm is not significantly better than other approaches.

We conclude that methods designed specifically for uplift modeling (Euclid) are indeed
better than building two separate classifiers. Moreover, this approach significantly outper-
forms the DeltaDeltaP criterion [12,28]. In fact, there was no significant difference between
DeltaDeltaP and DoubleTree. We suspect that the KL method also outperforms the Delta-
DeltaP and DoubleTree approaches, but more experiments are needed to demonstrate this
rigorously.

We also compared the results for the height of the uplift curve at the 40th percentile. Fried-
man’s test showed significant differences (with the p value of 5.4 × 10−5), so we proceeded
with the Nemenyi test to further investigate the differences. We only show the results graph-
ically in Fig. 3. The conclusions are confirmed also in this case, although sometimes only at
the significance level of 0.05.

We have also ran tests to compare the χ2
gain against the two other proposed uplift attribute

selection measures. The χ2
gain came out better than the K Lgain but worse than Egain . The

results were not statistically significant: the p value of the Friedman’s test was equal to 0.06
which was above the 0.05 threshold we assumed; moreover, Nemenyi test showed that the
most significant difference was between the K Lgain and Egain . We are however convinced
that the same ordering would become significant with more datasets.

5 The multiple treatments case

We now move to the case when more than one treatment is possible. The problem now is to
chose, for each object, not only whether it should be treated or not, but also to pick, out of
several treatments, the one which is likely to give the best result. A typical example here is a
marketing campaign where more than one communication channel is possible or an e-mail
campaign with several possible messages advertising the same product. Another example is
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choosing an appropriate treatment for a given patient or, indeed, choosing not to treat her at
all (for example because side effects of all possible treatments are too severe).

In this section, it is assumed that there are k different possible treatments T1, . . . , Tk as
well as the option of not treating an object at all. We want to built a model predicting which
action is likely to give the highest gain for a given object described by an attribute vector x ,
i.e., pick i∗, which maximizes the quantity

− ci +
∑

y

vy

(
PTi (y|x) − PC (y|x)

)
, (4)

where ci is the cost of applying the i th treatment and PTi (Y |x) is the population class
distribution resulting from the application of the i th treatment to an object with character-
istics x . If, for i = i∗, the value is positive, treatment Ti∗ should be used, otherwise no
treatment should be applied.

Let us now introduce notation needed to describe tree construction with multiple treat-
ments, which is a direct extension of the notation introduced in Sect. 1.1. We now have k + 1
training datasets, one for each treatment and one for the control group. Of course, we also
need k + 1 validation and test datasets. Let N Ti be the number of samples in the training set
containing objects subjected to the treatment Ti . Define the sample sizes N T = ∑k

i=1 N Ti ,
N = N C + N T and, for an outcome a of a test A, N T (a) = ∑k

i=1 N Ti (a) and N (a) =
N C (a) + N T (a) analogously to the definition in Sect. 1.1. Additionally, let PT (A) denote
the probability distribution of the test A in the data obtained by combining datasets for all

treatments PT (A = a) = N T (a)

N T .
We are now ready to describe all the stages of uplift decision tree construction in the case

of multiple treatments.

Splitting criteria. Splitting criteria in the presence of multiple treatments require simul-
taneous comparison of several probability distributions. A few information theoretical
divergence measures that involve more than two distributions have been proposed in the
literature. In [36], a generalization of the so called J -divergence to multiple distributions has
been proposed. Let P1, . . . , Pk be probability distributions. Their J -divergence is defined as

J (P1, . . . , Pk) = 1

k2

k∑

i=1

k∑

j=1

K L(Pi : Pj ).

Notice that the K L-divergence in the above formula can be replaced with any other divergence
measure. A few other measures, together with parametric generalizations can be found in [35].

Unfortunately, there is no single divergence measure for multiple distributions which
is satisfactory in all cases. We will now introduce the proposed measure of divergence of
multiple distributions which can be tuned using several parameters. This measure takes into
account the special role of the control distribution and is thus more suited to the problem at
hand. Define

D(PT1(Y ), . . . , PTk (Y ) : PC (Y ))

= α

k∑

i=1

λi D(PTi (Y ) : PC (Y )) + (1 − α)

k∑

i=1

k∑

j=1

γi j D(PTi (Y ) : PTj (Y )), (5)
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where D is an arbitrary divergence between two distributions; α ∈ [0, 1], λi ≥ 0, and
γi j ≥ 0 are constants such that

∑k
i=1 λi = 1 and

∑k
i=1

∑k
j=1 γi j = 1. We will now discuss

the influence of the constants on the divergence and some guidelines regarding their choice.
The first term in the definition measures the divergence between all treatments and the

control group. It does not measure whether the treatments differ between themselves, all that
matters is that treatments should be different from the control. The second term measures
the difference between treatments themselves. By changing the parameter α, the relative
importance of those two terms can be changed. For α = 1, only the difference between the
treatments and the control is important and the differences between treatments themselves are
ignored. This is justified if the costs of all treatments are similar and we have no preference
as to which one to use. If, on the other hand, the value of α is significantly smaller than one,
differences between the treatments will play an important role in choosing the splits. This is
useful when the costs of treatments differ, and we would prefer to treat at least some of the
objects with cheaper treatments.

For example, when we need to choose between several text messages that should be sent
to a customer, it is reasonable to set α = 1. The costs of sending each message are identical,
and we have no a-priori preference toward any of them. If, on the other hand, the choice is
between doing nothing, sending a text message and mailing a brochure, then the cost of the
second treatment is significantly higher, and we would want to separate out the customers
for whom it works best. Setting α = 1

2 is more appropriate.
The weights λi and γi j decide on the relative importance of specific treatments. Setting

λi = 1
k and γi j = 1

k2 gives all treatments equal weights. Another choice is λi = N Ti

N T ,

γi j = N Ti N Tj

(N T )2 , which has the advantage that when data on one of the treatments are missing
(e.g., at lower levels during the tree construction), the divergence is identical to the diver-
gence for the remaining treatments. Also, when data for only one treatment are present, the
criterion reduces to that for uplift decision trees discussed in the preceding parts of this paper.
This is not necessarily the case for other choices of λi and γi j . There are of course other
possibilities, like setting the weights proportionally to the cost of each treatment.

We now proceed to define conditional divergence between multiple probability
distributions and the corresponding gain. Conditional multiple divergence is defined as

D(PT1(Y ), . . . , PTk (Y ) : PC (Y )|A)

=
∑

a

N (a)

N
D

(
PT1(Y |a), . . . , PTk (Y |a) : PC (Y |a)

)
, (6)

where D is the multiple divergence defined in Eq. 5. Of course, the conditional divergence
depends on all the parameters present in (5), which are omitted from the formula. The gain
is defined as

Dgain(A) = D(PT1(Y ), . . . , PTk (Y ) : PC (Y )|A)

− D(PT1(Y ), . . . , PTk (Y ) : PC (Y )). (7)

We now give a theorem which shows that the desired properties of the gain continue to
hold in the case of multiple treatments.

Theorem 5.1 The following statements hold

1. The value of Dgain(A) is minimum if and only if the class distributions in all treatment
datasets and the control dataset are the same for all outcomes of the test A.
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2. If A is statistically independent of Y in all treatment datasets and in the control dataset,
then Dgain(A) = 0.

3. If λi = N Ti

N T and γi j = N Ti N Tj

(N T )2 then, when only one treatment dataset is nonempty, the
criterion reduces to Dgain(A) discussed in the single treatment case.

4. If the outcomes of the test A are independent of the assignment to treatment and control
groups, i.e., for all 1 ≤ i ≤ k, PTi (A) = PC (A) then K Lgain, Egain and χ2

gain are
nonnegative in the case of multiple treatments.

Normalization. We also need to derive a normalization factor correcting the bias toward
tests with large number of values and discouraging splits which result in imbalanced sizes of
treatment and control training data. The equation below gives the normalizing factor based
on entropy and Kullback-Leibler divergence

I (A) = αH

(
N T

N
,

N C

N

)

K L(PT (A) : PC (A))

+ (1 − α)

k∑

i=1

H

(
N Ti

N Ti + N C
,

N C

N Ti + N C

)

K L(PTi (A) : PC (A))

+
k∑

i=1

N Ti

N
H(PTi (A)) + N C

N
H(PC (A)) + 1

2
,

where PT (A) is the distribution of A in all treatment datasets combined. The formula is a
direct extension of (2). Analogous equation can be given for the Gini index and the squared
Euclidean distance or chi-squared divergence.

The first term measures the imbalance of the split between all the treatments combined
and the control set. The second term measures the imbalance of the split for each treatment
separately. The parameter α allows for setting the relative importance of those terms. This is
in complete analogy to the α parameter in the definition of multidistribution divergence (5);
α = 1 means that we are only interested in the data being evenly distributed between treat-
ment and control without differentiating between the treatments. When α = 0, we require
the test to split the data in a similar fashion for all the treatments. The following two terms
penalize attributes with large numbers of values by summing the test entropy over all the
treatment and control datasets.

Scoring. For each leaf, we compute the expected profit (4) for each treatment and pick the
treatment for which the profit is maximized. Those values are stored in the leaf. The expected
profit is used for scoring, and the stored treatment will be suggested for all new cases falling
into that leaf.

Pruning. In order to prune uplift decision trees with multiple treatments, we will update
the maximum class probability difference approach introduced for the single treatment case
in Sect. 3.5.

For each node t , we examine the difference
∣
∣PTi (y|t) − PC (y|t)∣∣ and remember the class

y∗(t) and treatment i∗(t) for which it was maximized

i∗(t), y∗(t) = arg max
i,y

∣
∣
∣PTi (y|t) − PC (y|t)

∣
∣
∣.
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Additionally, we remember the sign of this difference s∗(t) = sgn(PTi∗ (y∗|t) − PC (y∗|t)).
In the pruning step, suppose we are examining a subtree with root r and leaves l1, . . . , lm . We
calculate the following quantities with the stored values of y∗ and s∗, with all probabilities
computed on the validation set:

d1(r) =
m∑

i=1

N Ti∗ (li ) + N C (li )

N Ti∗ (r) + N C (r)
s∗(li )

(
PTi∗ (y∗(li )|li ) − PC (y∗(li )|li )

)
,

d2(r) = s∗(r)
(

PTi∗ (y∗(r)|r) − PC (y∗(r)|r)
)
,

where N Ti∗ (li ) is the number of validation examples in treatment Ti∗ falling into the leaf
li . The first quantity is the maximum class probability difference of the unpruned subtree,
and the second is the maximum class probability difference we would obtain on the valida-
tion set if the subtree was pruned and replaced with a single leaf. The subtree is pruned if
d1(r) ≤ d2(r).

Testing. After a model has been built, its performance should be assessed on test data.
Testing in the presence of multiple treatments proves more difficult than for uplift decision
trees discussed above. For each case in the test set, the model gives not only the score but
also the treatment which should be used. Unfortunately, each test case has had a specific
treatment applied, not necessarily the one predicted by the model.

We have decided to retain only those records in the test set for which the treatment
suggested by the model matches the one actually applied; all other cases are discarded.
While this approach may lead to significant data loss, it ensures correct interpretation of the
results. The control group is treated in exactly the same manner as for the single treatment
case described in Sect. 4.

An example. We now present an application of the multiple treatment uplift decision trees
to the splice dataset. The dataset has been artificially split into the control and two treat-
ment sets based on attribute1. Records with attribute1 = “A” were assumed to
have received treatment T1 and records for which attribute1 = ‘G’ treatment T2. The
remaining cases were assigned to the control group. As in the previous section, the choice
was made before the experiment was performed.

While building a two-treatment uplift decision tree, we used the squared Euclidean distance

based divergence with α = 1
2 , λi set to N Ti

N T , and γi j to N Ti N Tj

(N T )2 . All other aspects of the meth-
odology, such as the use of 2 × 5 cross-validation, were identical to Sect. 4.

Figure 4 shows the resulting uplift curve. For comparison, we also include the curve from
Fig. 1, where only a single treatment was used. This single treatment can be viewed as an
“average” between T1 and T2. In order to make the results comparable, the curves have been
renormalized by the number of examples used to compute them (recall that parts of the test set
are discarded in the case of multiple treatments, as some records do not match the prescribed
treatment). The costs of both treatments were identical.

It can be seen that using two different treatments and applying them alternatively according
to model suggestions gave better results than using a single “average” treatment.

6 Conclusions

The paper presents a method for decision tree construction for uplift modeling. The case when
several possible treatments are available has also been considered and analyzed. Splitting
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Fig. 4 Uplift curve for the splice dataset with two treatments

criteria and a tree pruning method have been designed specifically for the uplift modeling
case and demonstrated experimentally to significantly outperform previous approaches. The
methods are more in style of modern decision tree learning and in fact reduce to standard
decision trees if the control dataset is missing. We are also planing on applying our informa-
tion measures to recommender systems [39].
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Appendix

Proof (of Theorem 3.1). Recall that N = N T + N C and N (a) = N T (a) + N C (a). It is a
well-known property of Kullback-Leibler, χ2, and E divergences that they are zero if and
only if their arguments are identical distributions and are greater than zero otherwise. Com-
bined with the fact that the unconditional terms in the definitions of K Lgain , χ2

gain , and Egain

do not depend on the test this proves postulate 1.
To prove postulate 2 notice that when the test A is independent from Y then PT (Y |a) =

PT (Y ) and PC (Y |a) = PC (Y ) for all a. Thus, for any divergence D,

D(PT (Y ) : PC (Y )|A) =
∑

a

N (a)

N
D

(
PT (Y |a) : PC (Y |a)

)

=
∑

a

N (a)

N
D

(
PT (Y ) : PC (Y )

)
= D

(
PT (Y ) : PC (Y )

)
,
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giving

Dgain(A) = D
(

PT (Y ) : PC (Y )|A
)

− D
(

PT (Y ) : PC (Y )
)

= D
(

PT (Y ) : PC (Y )
)

− D
(

PT (Y ) : PC (Y )
)

= 0. (8)

To prove 3, let n be the number of classes and U the uniform distribution over all classes.
It is easy to check that

K L
(

PT (Y ) : U
)

= log n − H
(

PT (Y )
)

,

E
(

PT (Y ) : U
)

= n − 1

n
− Gini

(
PT

)
,

χ2
(

PT (Y ) : U
)

= nE
(

PT (Y ) : U
)
.

Now, if PC (Y ) = U and, for all a, PC (Y |a) = U (recall the use of Laplace correction while
estimating the probabilities), and since N C = 0, we have N = N T , and N (a) = N T (a). It
follows that

K Lgain(A) = K L
(

PT (Y ) : U |A
)

− K L
(

PT (Y ) : U
)

= − log n + H
(

PT (Y )
)

+
∑

a

N (a)

N

(
log n − H

(
PT (Y |a)

))

= H
(

PT (Y )
)

−
∑

a

N T (a)

N T
H

(
PT (Y |a)

)
.

Similarly

Egain(A) = E
(

PT (Y ) : U |A
)

− E
(

PT (Y ) : U
)

= Gini
(

PT (Y )
)

− n − 1

n
+

∑

a

N (a)

N

(
n − 1

n
− Gini

(
PT (Y |a)

))

= Gini
(

PT (Y )
)

−
∑

a

N T (a)

N T
Gini

(
PT (Y |a)

)
.

Due to (8)

χ2
gain(A) = nEgain(A) = n

(

Gini
(

PT (Y )
)

−
∑

a

N T (a)

N T
Gini

(
PT (Y |a)

)
)

.

Since multiplying by the constant n will not affect the choice of tests, the criterion is again
equivalent to the Gini gain. The symmetry of E implies that when the treatment dataset is
empty, Egain(A) is equal to the Gini gain of A on the control sample. �	

Proof (of Theorem 3.2). From the independence assumption it follows that PT (a) =
PC (a) = P(a), which will be used several times in the proof. Notice that K L(PT (Y ) :
PC (Y )) can be written as

∑
y PC (y) f

(
PT (y)

PC (y)

)
with f (z) equal to z log z; f is strictly
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convex. For every class y we have

f

(
PT (y)

PC (y)

)

= f

(
∑

a

PT (y, a)

PC (y)

)

= f

(
∑

a

PC (y, a)

PC (y)
· PT (y, a)

PC (y, a)

)

≤
∑

a

PC (y, a)

PC (y)
f

(
PT (y, a)

PC (y, a)

)

=
∑

a

PC (y, a)

PC (y)
f

(
PT (y|a)P(a)

PC (y|a)P(a)

)

=
∑

a

PC (y, a)

PC (y)
f

(
PT (y|a)

PC (y|a)

)

,

where the inequality follows from Jensen’s inequality and the convexity of f . The desired
result follows:

KL
(

PT (Y ) : PC (Y )
)

=
∑

y

PC (y) f

(
PT (y)

PC (y)

)

≤
∑

a

P(a)
∑

y

PC (y|a) f

(
PT (y|a)

PC (y|a)

)

= K L
(

PT (Y ) : PC (Y )|A
)
.

A similar proof can be found in [7]. The proof for the chi-squared based criterion is identical,
except that f (z) = (z −1)2 needs to be used. For the squared Euclidean distance, notice that
for every class y

(
PT (y) − PC (y)

)2 =
(

∑

a

P(a)
(

PT (y|a) − PC (y|a)
)
)2

≤
∑

a

P(a)
(

PT (y|a) − PC (y|a)
)2

,

where the inequality follows from Jensen’s inequality and the convexity of z2. We now have

E(PT (Y ) : PC (Y )) =
∑

y

(
PT (y) − PC (y)

)2

≤
∑

a

P(a)
∑

y

(
PT (y|a) − PC (y|a)

)2 = E
(

PT (Y ) : PC (Y )|A
)

.

�	

Proof (of Theorem 5.1). Notice that if for all a and all 1 ≤ i ≤ k, PTi (Y |a) = PC (Y |a),
then also PTi (Y |a) = PTj (Y |a) for all 1 ≤ i, j ≤ k, and, consequently, for all 1 ≤ i ≤ k,
D(PTi (Y |a) : PC (Y |a)) = 0 and for all 1 ≤ i, j ≤ k, D(PTi (Y |a) : PTj (Y |a)) = 0.
Therefore, Dgain = 0 and parts 1 and 2 follow. For part 3, notice that λi and γi j have been
chosen such that if data for one of the treatments is absent, all terms involving this treatment
become zero.

Suppose now that for all 1 ≤ i ≤ k, PTi (A) = PC (A). This obviously means that
for all 1 ≤ i, j ≤ k, PTi (A) = PTj (A). Notice that Dgain can be written as (denoting
N (a)/N = P(a))
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Dgain(A) = −D(PT1(Y ), . . . , PTk (Y ) : PC (Y ))

+
∑

a

N (a)

N
D

(
PT1(Y |a), . . . , PTk (Y |a) : PC (Y |a)

)

= α

k∑

i=1

λi

[

−D(PTi (Y ) : PC (Y )) +
∑

a

P(a)D(PTi (Y |a) : PC (Y |a))

]

+ (1 − α)

k∑

i=1

k∑

j=1

γi j

[

− D(PTi (Y ) : PTj (Y ))

+
∑

a

P(a)D(PTi (Y |a) : PTj (Y |a))

]

.

Each term of the above two sums is nonnegative by nonnegativity of gain for two distributions
(see proof of Theorem 3.2). �	
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30. Raś Z, Wyrzykowska E, Tsay L-S (2009) Action rules mining. In: Encyclopedia of Data Warehousing
and Mining, vol 1, pp 1–5. IGI Global

31. Robins J (1994) Correcting for non-compliance in randomized trials using structural nested mean models.
Commun Stat Theory Methods 23(8):2379–2412

32. Robins J, Rotnitzky A (2004) Estimation of treatment effects in randomised trials with non-compliance
and a dichotomous outcome using structural mean models. Biometrika 91(4):763–783

33. Rzepakowski P, Jaroszewicz S (2010) Decision trees for uplift modeling. In: Proceedings of the 10th
IEEE international conference on data mining (ICDM-2010), Sydney, Australia, pp 441–450

34. Salicrú M (1992) Divergence measures: invariance under admissible reference measure changes.
Soochow J Math 18(1):35–45

35. Taneja IJ (2001) Generalized information measures and their applications. http://www.mtm.ufsc.br/
~taneja/book/book.html (on-line book)

36. Toussaint GT (1978) Probability of error, expected divergence, and the affinity of several distributions.
IEEE Trans Syst Man Cybern (SMC) 8:482–485

37. Wang T, Qin Z, Jin Z, Zhang S (2010) Handling over-fitting in test cost-sensitive decision tree learning
by feature selection, smoothing and pruning. J Syst Softw 83(7):1137–1147

38. Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan
Kaufmann, Los Altos

39. Zhang R, Tran T (2011) An information gain-based approach for recommending useful product reviews.
Knowl Inf Syst 26(3):419–434

40. Zhang S (2010) Cost-sensitive classification with respect to waiting cost. Knowl Based Syst 23(5):
369–378

Author Biographies

Piotr Rzepakowski received his M.Sc. degree in computer science
from Warsaw University of Technology, Poland, in 2003. Currently, he
is a Ph.D. student at the Faculty of Electronics and Information Tech-
nology at Warsaw University of Technology and a research assistant
at the National Institute of Telecommunications in Warsaw, Poland.
His research interests include data mining, data analysis, and decision
support. He has 10 years of experience in leading industrial projects
related to data warehousing and data analysis mostly in the area of
telecommunications.

123

http://www.mtm.ufsc.br/~taneja/book/book.html
http://www.mtm.ufsc.br/~taneja/book/book.html


Decision trees for uplift modeling with single and multiple treatments 327

Szymon Jaroszewicz is currently an Associate Professor at the
National Institute of Telecommunications, Warsaw, Poland and at the
Institute of Computer Science of the Polish Academy of Sciences.
Szymon received his Master’s degree in Computer Science at the
Department of Computer Science at the Szczecin University of Tech-
nology in 1998 and his Ph.D. at the University of Massachusetts
Boston in 2003, where in 1998 and 1999, he was a Fulbright scholar.
In 2010, he received his D.Sc. degree at the Institute of Computer Sci-
ence, Polish Academy of Sciences. His research interests include data
analysis, data mining, and probabilistic modeling; he is the author of
several publications in those fields. He has served as a program com-
mittee member for major data mining conferences and is a member of
the editorial board of Data Mining and Knowledge Discovery journal.

123


	Decision trees for uplift modeling with single and multiple treatments
	Abstract
	1 Introduction and notation
	1.1 Notation

	2 Related work
	3 Decision trees for uplift modeling: the single treatment case
	3.1 Splitting criterion
	3.2 Splitting criteria based on distribution divergences
	3.3 Normalization: correcting for tests with large number of splits and imbalanced treatment and control splits
	3.4 Application of the tree
	3.5 Pruning

	4 Experimental evaluation
	4.1 Methods of evaluating uplift classifiers
	4.2 Dataset preparation
	4.3 Experimental results

	5 The multiple treatments case
	6 Conclusions
	Acknowledgments
	Appendix
	References


