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Abstract 

Background: In many studies, it is of interest to identify population subgroups that are relatively homogeneous 

with respect to an outcome. The nature of these subgroups can provide insight into effect mechanisms and suggest 

targets for tailored interventions. However, identifying relevant subgroups can be challenging with standard statistical 

methods.

Main text: We review the literature on decision trees, a family of techniques for partitioning the population, on the 

basis of covariates, into distinct subgroups who share similar values of an outcome variable. We compare two decision 

tree methods, the popular Classification and Regression tree (CART) technique and the newer Conditional Inference 

tree (CTree) technique, assessing their performance in a simulation study and using data from the Box Lunch Study, 

a randomized controlled trial of a portion size intervention. Both CART and CTree identify homogeneous population 

subgroups and offer improved prediction accuracy relative to regression-based approaches when subgroups are 

truly present in the data. An important distinction between CART and CTree is that the latter uses a formal statistical 

hypothesis testing framework in building decision trees, which simplifies the process of identifying and interpreting 

the final tree model. We also introduce a novel way to visualize the subgroups defined by decision trees. Our novel 

graphical visualization provides a more scientifically meaningful characterization of the subgroups identified by deci-

sion trees.

Conclusions: Decision trees are a useful tool for identifying homogeneous subgroups defined by combinations of 

individual characteristics. While all decision tree techniques generate subgroups, we advocate the use of the newer 

CTree technique due to its simplicity and ease of interpretation.
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Background
�e framing of medical research hypotheses and devel-

opment of public health interventions often involve the 

identification of high-risk groups and the effects of indi-

vidual factors on the relevant outcome [1, 2]. For exam-

ple, the prevalence of obesity in the United States has 

more than doubled in the past 30  years [3, 4] and this 

trend can be associated with a complex combination 

of factors in the data. However, excessive calorie con-

sumption and inadequate physical activity are not solely 

responsible for this problem; numerous other factors 

such as socio-economic differences, demographic char-

acteristics, physical environment, genetics, eating behav-

iors, etc. also influence the energy intake balance and 

weight status.

While individual effects can be measured efficiently, 

characterizing these factors in relation to an outcome of 

interest can be challenging. Effects of continuous vari-

ables (e.g., age) may be non-linear, and vary with other 

continuous (e.g., years of education) and categorical 

(e.g., sex) variables. Regression models have long been 

utilized for prediction and to examine the relationships 

between covariates and responses of interest. However, 

their ability to identify interactions between covariates 
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and relevant population subgroups is restricted by the 

data analyst’s decision about how covariates are defined 

and included in the model. For example, even in the very 

simple case of partitioning the population into two maxi-

mally distinct groups on the basis of a single continu-

ous predictor X, one would need to fit separate models 

with categorical predictors indicating that X exceeded 

a particular threshold value, for many different thresh-

old values. Since many candidate models may have to 

be investigated in this somewhat ad hoc manner, Type I 

error may be inflated.

�e main goal of this paper is to introduce and 

describe the family of statistical methods known as 

decision trees, a family which is particularly well-

suited to exploring potentially non-linear relation-

ships between variables and identifying population 

subgroups who are homogeneous with respect to out-

comes. Decision trees have been utilized to identify 

joint effects of air pollutants [5], generate a realistic 

research hypothesis for tuberculosis diagnosis [6], and 

recognize high-risk subgroups to aid tobacco control 

[7]. After providing a brief overview of decision trees, 

we introduce a novel data visualization technique for 

summarizing the subgroups identified by the trees. 

Next, we explore the differences between a commonly 

used technique for building decision trees, CART, and 

the conditional inference tree (CTree) approach which 

has not been widely used in epidemiological applica-

tions. Based on simulation results and analyses of real 

data, we discuss the relative strengths and weaknesses 

of these two approaches and the resulting implications 

for data analysis.

Application: the Box Lunch Study

�roughout this paper, we present examples and analy-

ses based on variables collected in the Box Lunch Study 

(BLS), a randomized controlled trial designed to evaluate 

the effect of portion size availability on caloric intake and 

weight gain in a free living sample of working adults. �e 

main randomized comparisons of the BLS (along with 

details of ethics approval and consent information) have 

been reported elsewhere [8, 9]. However, the data also 

provides the opportunity to explore associations between 

outcomes and individual characteristics. Available covar-

iates include demographic (e.g. age, gender, race, height, 

education), lifestyle (e.g. smoking status, physical activ-

ity levels), and psycho-social measures (e.g. frequency of 

self-weighing, degree of satisfaction with current weight). 

Responses to the �ree Factor Eating Questionnaire 

(TFEQ) [10] quantifying the constructs of hunger, disin-

hibtion, and restraint were also recorded. �e BLS also 

collected data on some novel, laboratory-based psycho-

social measures that had not previously been measured 

in a randomized trial setting such as the relative rein-

forcement of food (rrvf ), liking and wanting.

Software availability

�e analyses, simulations, and visualizations presented 

in this paper were all produced using the freely-availa-

ble statistical software R [11–14]. External packages and 

functions used are referenced in the text. Code for our 

novel visualization is available at  https://github.com/

AshwiniKV/visTree and for reproducing our example 

trees and our simulation study at https://github.com/

AshwiniKV/obesity_decision_trees.

Methods
A brief introduction to decision trees

A decision tree is a statistical model for predicting an 

outcome on the basis of covariates. �e model implies a 

prediction rule defining disjoint subsets of the data, i.e., 

population subgroups that are defined hierarchically via a 

sequence of binary partitions of the data. �e set of hier-

archical binary partitions can be represented as a tree, 

hence the name. �e predicted outcome in each subset is 

determined by averaging the outcomes of the individuals 

in the subset. �e goal is to create a prediction rule (i.e., 

a tree) which minimizes a loss function that measures the 

discrepancy between the predicted and true values.

Decision trees have several components, as illustrated 

in Fig. 1 which summarizes the association between the 

outcome of daily caloric intake and hunger, dis-inhibi-

tion, restrained eating, relative reinforcement, liking, and 

wanting. Nodes contain subsets of the observations; the 

root node of a tree (labeled with a ‘1’ in Fig. 1) contains 

all observations (n = 226 in the Box Lunch Study). �e 

key step in algorithms for constructing decision trees is 

the splitting step, where the decision is made on how to 

partition the sample (or sub-sample, for nodes below the 

root) into two disjoint subsets according to covariate val-

ues. �e splits below a node are represented as branches 

in the tree. Splitting continues recursively down each 

branch until a stopping rule is triggered. A node where 

the stopping rule is satisfied is referred to as a leaf or a 

terminal node. Taken together, the terminal nodes define 

a disjoint partition of the original sample; each observa-

tion belongs to exactly one terminal node, depending on 

its covariates. A prediction for a new observation’s out-

come is made by determining (based on that observa-

tion’s covariates) which leaf it belongs to, then combining 

the outcomes of the existing observations within that leaf 

to get a predicted value.

In Fig.  1, both the outcome and predictors are stand-

ardized column-wise to have mean zero and variance 

equal to one. Standardization puts all the predictors on 

the same scale, which may be helpful when, as here, some 
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of the predictors (e.g., rrvf, liking, and wanting) are meas-

ures that do not have universally agreed-upon units or 

methods of measurement1. For example, in Fig.  1, the 

root node with a label ‘1’ as node ID partitions the popu-

lation into two groups: (1) subjects whose hunger meas-

urement is less than or equal to 1.69 standard deviations 

above the mean hunger, and (2) subjects whose hunger is 

greater than 1.69 standard deviations above the mean. 

Standardizing the outcome allows for a similar interpre-

tation of the leaf nodes: the leaf with node ID = 6 has a 

value of 0.26, indicating that the mean 24-h energy intake 

for the subjects contained in this node (i.e., those with 

hunger ≤1.69, liking > − 0.28, and rrvf > − 1.26) is 0.26 

standard deviations above the overall mean of 24-h 

energy intake. A mean of 0.26 standard deviations of 24-h 

energy intake corresponds to a value of 2190 

kilo-calories2.

1 Some studies record participant’s self-reported level of wanting and lik-
ing using quantitative scales (e.g., [15]), while other studies measure this via 
brain activity during a motivational state (e.g., [16, 17]).
2 �is standardized value of 0.26 is calculated from (2190 − 2012)/685.55, 
where 2012 is the mean energy intake and 685.55 is its standard deviation.

Adjusting for covariates

Often, factors such as age, sex, and education level may 

influence the outcome of interest and be associated with 

other predictors (i.e., they are confounders), but their 

effects are not of primary interest. In linear regression, it 

is common practice to adjust for such variables by includ-

ing them in the regression model.

In decision trees, an analogue to covariate adjustment 

involves building the tree using adjusted residuals, i.e., 

residuals from a regression model containing the con-

founders. To be precise, suppose that one wished to 

assess the effects of the predictors described in the previ-

ous sections, adjusting for age, sex, and BMI. Letting Y 

denote 24-h energy intake, one would first fit the model

Given coefficient estimates β̂0, β̂1, β̂2, and β̂3, the age-, 

sex, and BMI-adjusted residuals for 24-h energy intake, 

Y
∗, are

�e residuals Y ∗ can then be used as the outcome in a 

regression tree including the predictors of interest. �is 

(1)Y = β0 + β1 Age + β2 Sex + β3 BMI + ǫ

(2)Y
∗

= Y − β̂0 − β̂1 Age − β̂2 Sex − β̂3 BMI

Fig. 1 Decision tree showing the association between daily caloric intake (in kcal/day) and hunger, dis-inhibition, restrained eating, relative rein-

forcement, liking, and wanting. All measures are obtained at baseline in the Box Lunch Study
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adjusted residuals technique can be easily applied using 

standard software.

Visualizing subgroups in decision trees

One of the most attractive features of decision trees is 

that they partition a population sample into subgroups 

with distinct means. However, the typical display of a 

decision tree (e.g., Figs.  1 and 2) does not always allow 

researchers to easily characterize these subgroups. 

�e problem is particularly acute if some of the predic-

tor variables do not have an interpretable scale built 

on established norms: the relative reinforcing value of 

food and degree of liking/wanting measured in the Box 

Lunch Study are novel and have not yet been widely 

used, so a standard unit of measurement has not yet been 

established.

To address this limitation, we developed a software 

tool for visualizing the composition of subgroups defined 

by decision trees. �e visualization consists of a grid of 

plots, one corresponding to each terminal node (i.e., 

population subgroup). In Fig.  3, each plot in this grid 

of plots corresponds to one of the four terminal nodes 

(population subgroups) in Fig. 1, i.e. nodes 3, 5, 6, and 7. 

In the background of each plot is a histogram summariz-

ing the distribution of the outcome variable (here, 24-h 

energy intake) for the individuals in the terminal node/

subgroup. For example, the top left plot in Fig. 3 shows a 

distribution of (standardized) 24-h energy intake that is 

right-skewed. �e numbers along the x-axis are the aver-

age 24-h energy intake within each individual bin of the 

histogram. �e mean of the values contained in the bins 

of the histogram are presented for each individual bin. 

�e vertical line shows the overall mean of the subgroup; 

the mean and subgroup size are shown in the plot title. 

Overlaid on the background are colored bars; the length 

and position of the bars represent the set of predictor val-

ues, on the percentile scale, which define the subgroup. 

Fig. 2 Regression tree showing the association between Energy kcal/

day and hunger, dis-inhibition, restrained eating, relative reinforce-

ment of food, liking, and wanting

Fig. 3 Graphical visualization of the conditional inference tree in Fig. 1, where the visualization consists of a grid of plots and each plot corresponds 

to a terminal node
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�e subgroup corresponding to the top left plot of Fig. 3 

is defined by liking values below −0.28, which represents 

the 39th population percentile and hunger values that are 

below 1.69, which represents the 91st percentile.

�is visualization summarizes, at a glance, the charac-

teristics of the groups determined by the regression tree. 

For instance, in Fig. 3, the four groups could be charac-

terized as:

Group 1 (N = 86): Moderate to low liking, all but very 

high hunger. �is group has below-average energy 

intake (standardized mean = −0.46).

Group 2  (N = 22): Moderate to high liking, very low 

relative reinforcing value of food, all but very high 

hunger. �is group has moderate to low energy intake.

Group 3  (N = 104): Moderate to high liking, all but 

very low relative reinforcing value of food, all but very 

high hunger. �is group has moderate to high energy 

intake.

Group 4  (N = 14): Very high hunger. �is group has 

very high energy intake.

�e prediction rules defining these subgroups provide 

insight into the individual characteristics that can affect 

the outcome, and can be used to define categorical vari-

ables that could yield more meaningful and interpretable 

comparisons in future analyses.

Methods for building decision trees

Classi�cation and regression trees (CART)

�e most popular method for constructing decision 

trees, known as CART (Classification and Regression 

Trees) was introduced by Breiman [18]. In a CART (e.g., 

Fig. 2), a split is sought to minimize the relative sum of 

squared errors in the two partitions resulting from the 

split. �e search for splits in CART takes place across 

two dimensions simultaneously: the covariate to split on 

and splitting point within that covariate. In other words, 

the splitting step in CART is greedy: the best split is 

sought across all covariates and candidate split points for 

those covariates. For binary and categorical covariates, all 

possible values are considered as possible split points; for 

continuous covariates, an equally-spaced grid covering 

the range of possible values is usually considered.

Because it searches over all possible splits on all covari-

ates, CART is vulnerable to the so-called biased variable 

selection problem; there are more potential “good” splits 

on a continuous-valued covariate (or one with a large 

number of distinct values) than on a binary covariate. 

�is tendency of CART to favor variables with many pos-

sible splits has been described in [18–20] and [21].

Furthermore, the nature of the splitting process makes 

it difficult to describe the statistical properties of any 

particular split. For instance, CART is not concerned 

with the notion of Type I error since it does not control 

the rate at which a regression tree identifies population 

subgroups when there is truly no heterogeneity in the 

mean of the outcome.

Conditional inference trees (CTree)

As an alternative to CART, Hothorn et al. [22] proposed 

the conditional inference tree (CTree). Unlike CART, 

CTree (e.g., Fig.  1) separates the splitting process into 

two distinct steps. �e first step is to determine the varia-

ble to split on based on a measure of association between 

each covariate and the outcome of interest. �en, after 

the splitting variable has been determined, the best split 

point for that variable is calculated.

In contrast to CART, CTree follows formal statistical 

inference procedures in each splitting step. �e associa-

tion between each covariate and the outcome is quanti-

fied using the coefficient in a regression model (linear 

regression for continuous outcomes and other suitable 

regression models for other outcome types), and a node 

is only chosen to be split if there is sufficient evidence to 

reject the global null hypothesis, i.e., the hypothesis that 

none of the covariates has a univariate association with 

the outcome. If the global null hypothesis is rejected, 

then the covariate that displays the strongest association 

with the outcome of interest is selected as a candidate for 

splitting. If the minimum p-value is larger than the multi-

plicity adjusted significance threshold, then no variable is 

selected for splitting and the node is declared a terminal 

node. Note that, despite its name, CTree bases splitting 

decisions on marginal (i.e., univariate) regression mod-

els; the “conditional” refers to the fact that, following the 

initial split, subsequent inference takes place within sub-

groups, i.e., conditional on subgroup membership.

Stopping rules

In both CART and CTree, splitting continues until a stop-

ping rule triggers. In CART, splitting stops when the rela-

tive reduction in error resulting from the best split falls 

below a pre-specified threshold known as the complex-

ity parameter. Typical values of this parameter are in the 

range of 0.001–0.05. To prevent overfitting, it is common 

practice to construct trees for a sequence of values of this 

parameter, and select the final value by minimizing pre-

diction error estimated by cross-validation or on an inde-

pendent test set. �is process is referred to as pruning 

[23, 24]. A slightly more conservative stopping rule sets 

the final complexity parameter to the value which yields 

a prediction error one standard deviation larger than the 

minimum estimated by cross-validation or on an inde-

pendent test set. �is is known as the 1-SE rule. As noted 

above, CTree’s stopping rule is simple: splitting stops if 
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the global null hypothesis is not rejected at the pre-deter-

mined, multiplicity adjusted level of significance.

Comparing CART and CTree: a simulation study

In this section, we describe simulated and real data and 

develop scenarios within a simulation study to highlight 

distinctions between CART and CTree. We also compare 

their predictive performance to standard regression mod-

els in a variety of settings and perform simulations utiliz-

ing the R statistical software package, version 3.3.0  [11]. 

�e results of this study are presented in “Results” section. 

�e CART algorithm was implemented using the rpart 

package  [13], while the CTree was implemented via the 

partykit package  [12]. We considered a variety of 

scenarios where we varied the data-generating function, 

covariate type (categorical vs. continuous), the sparsity 

(proportion of variables predicting the outcome), the total 

sample size, and the complexity parameter for CART.

For all scenarios other than the one where sample size 

was varied, the sample size was fixed at 250 and in all sce-

narios trees were constructed using six covariates. Continu-

ous outcomes were generated as independent N (η, 1) with 

linear predictor η varying across scenarios as described 

below. Continuous covariates were generated from inde-

pendent Normal distributions with mean zero and unit 

variance; binary covariates were generated as independ-

ent Bernoulli(p = 0.5). Pruning for CART was carried out 

using both the minimum and the 1-SE rule, with the 1-SE 

rule being implemented using the DMwR package [14]. �e 

tree-generating functions rpart (for CART) and ctree 

(for CTrees) were applied with arguments specifying a 

minimum of 20 observations for a node to be considered 

for splitting and a minimum of 7 observations in a terminal 

node. �e complexity parameter for CART was held at the 

default value of 0.01. �e level of significance in the CTree 

was held at the default value of α = 0.05.

For each scenario, 10,000 simulations were performed, 

where in each simulation a training dataset was simulated 

and used to construct the trees, and tree performance 

was evaluated on an independently generated test data-

set. Prediction error and tree complexity were summa-

rized respectively via the mean squared error (MSE) and 

the number of terminal nodes (equal to the total number 

of splits in the tree, plus one).

E�ect of the data generating process

Decision trees perform well in  situations where the 

underlying population is partitioned into a relatively 

small number of subgroups with distinct means. How-

ever, they are less suited to scenarios in which the out-

come varies continuously with covariate values.

We started by generating independent normally distrib-

uted outcomes according to a pre-specified tree structure, 

i.e., set of splits to seven terminal nodes with mean values 

(−1.88, −0.30, −0.31, 0.25, −0.09, 2.23, 1.35), and unit 

variance. �e candidate covariates for this tree included 

six continuous covariates (X1, . . . ,X6), mimicking the six 

covariates considered in the introductory examples above. 

�is CTree is grown to consist of seven terminal nodes 

with splits at hunger, liking, rrvf, and disinhibition.

In a different scenario, continuous responses are gen-

erated from N (η, 1) where η follows a regression model 

defined as

and X1 . . .X6 are simulated as independent normally 

distributed continuous covariates. We also generated a 

hybrid model from normally distributed data with unit 

variance according to N (η, 1) with

where X1,X2, and X3 are simulated as independent nor-

mally distributed continuous covariates and are utilized 

to form distinct subgroups represented by three differ-

ent indicator functions, indicated by 1. �is hybrid model 

includes main effects of three continuous covariates 

along with interaction terms and subgroup indicators 

constructed from these covariates.

Type I error

We also evaluated the Type I error rate of the different 

tree-building algorithms. For a tree, we say that a Type I 

error occurs if a tree splits on a variable that has no asso-

ciation with the outcome. To evaluate Type I error, we 

generated six independent and normally distributed con-

tinuous covariates and a response with mean zero and 

unit variance, unrelated to the covariates.

E�ect of sample size

Figure  4 summarize the predictive performance of 

tree types as sample size changes. For each sample size 

n = 30, 250, 500, 1000, 3000, and 5000 we generated six 

covariates and continuous responses were generated 

from a N(η, 1) with η following a linear regression model:

Results
Comparing CART and CTree: a simulation study

E�ect of the data generating process

�e set of Tree results for the model that generates data 

from a tree structure in the first five rows of Table 1 sum-

marizes the estimated prediction error (MSE) and tree 

complexity (mean, 20th, and 80th percentile number of 

terminal nodes) of CTree on the generated data with a 

η = 1.5X1 + 1.25X2 + 1X3 + 0.85X4 + 0.75X5 + 0X6

η = 0.5X1 + 0.45X2 + 0.3X3 + 1.51(X1 ≤ 0,X2 > 0,X3 ≤ 0)

+ 0.251(X1 ≤ 0,X3 > 0) + 0.141(X1 > 0,X2 > 0),

η = 1.5X1 + 1.25X2 + 1X3 + 0.85X4 + 0.75X5 + 0X6.
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comparison to three other tree algorithms: the unpruned 

CART, CART with two types of pruning, and with the 

results from a linear regression model. As expected, all 

the tree-based techniques have lower MSE than linear 

regression. In this case, CTree produces trees with a sim-

ilar number of terminal nodes to the CART pruned with 

the 1-SE rule but lower number of nodes when compared 

to the regular pruned CART. �e CTree and both types 

of pruned CARTs have results for decision trees with 3–4 

terminal nodes, in contrast to the generated tree struc-

ture with seven terminal nodes. �is is likely due to the 

fact that our simulated tree data contained several nodes 

with very similar means.

�e second set of results in Table 1 (Regression) sum-

marize performance for all four model types. �e (cor-

rectly specified) linear regression model has far better 

predictive performance than the tree models. Interest-

ingly, CTree has better predictive accuracy than the 

pruned versions of CART, a result which agrees with the 

findings of Schaffer [25] that pruning does not necessar-

ily improve predictive accuracy, particularly when there 

are many (here, infinitely many) subgroups.

For the hybrid scenario when data is generated from 

the defined hybrid model, we compare the performance 

of the trees to a partially misspecified linear regression 

model containing only the main effect terms for the con-

tinuous covariates and the results in Table  1 show that 

predictive accuracies are relatively similar.

Type I error

�e results are presented in Table 2. We found that the 

unpruned CART algorithm continues to split and grow 

unlike the pruned CARTs and CTree. CARTs pruned 

using a 1-SE rule are rather conservative with a very low 

Type I error while the pruned CART and CTree have 

Type I errors that are closer to 0.05. As noted below, 

explicit control of the Type I error rate is an advantage of 

the CTree approach.

E�ect of sample size

We observe in Fig. 4 that as sample size increases, the 

MSE of CTree continues to improve while that of the 

CART variants levels off beyond n = 500. �e rea-

son for this behavior is that CART’s stopping rules are 

based on a complexity parameter, which sets a lower 

bound for improvement in model fit which is insensi-

tive to sample size. In the rpart package, the default 

complexity parameter value is 0.01, so splitting stops if 

no split improves model fit by at least 1%. In this set-

ting, the covariates have continuous linear effects, 

which implies an infinite number of population sub-

groups. Hence, most splits will yield small improve-

ments in model fit, and CART variants will “stop too 

soon” and have poor predictive performance. In con-

trast, the stopping criterion for the CTree is based on 

p values, and maintaining a fixed p value threshold with 

increasing sample size allows splits associated with 
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Fig. 4 Prediction error and tree size for different sample sizes in log-scale (n = 30, 250, 500, 1000, 3000, 5000) when data is generated from a linear 

regression model with continuous covariates
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smaller and smaller effect sizes to be represented in the 

tree.

Application

We illustrate the application of decision trees to the Box 

Lunch Study by comparing a linear regression model and 

decision tree that seek to predict 24-h energy intake (in 

kcal/day) using a set of 25 covariates measured at base-

line. �ese prediction models were built on the covari-

ates introduced in “Application: the Box Lunch Study” 

section such as restrained eating, rrvf, liking as well as 

other covariates that record demographic characteristics 

including age, sex, and BMI. Other covariates included 

were psycho-social measures such as “Influence of weight 

on ability to judge personal self”, “Ability to limit food 

intake to control weight (days/month)”, and “Frequency 

of weighing oneself”.

To provide a baseline for comparison, we present 

results from a linear regression model in Table  3. �e 

covariates listed are those selected using backward elimi-

nation with the AIC. While there are many significant 

covariates in Table 3, this linear regression does not pro-

vide any information about potential interactions nor 

does it identify particular population subgroups that 

share similar values of the outcome.

Figure  5 shows a conditional inference tree to predict 

total energy intake, adjusted for age, sex, and BMI, from 

22 baseline covariates. �e corresponding CART regres-

sion tree is provided in Additional file 1. �e overall 

structure and splitting of the CART and CTree are simi-

lar, though CART has more splits than CTree. �e pre-

diction mean-squared error (using scaled energy intake 

values) for the conditional inference tree in Fig. 5 is 0.67 

compared to 0.48 for the linear regression in Table  3. 

While the mean squared error is lower for linear regres-

sion, it may provide only limited scientific insight into 

the complex mechanisms underlying energy intake. Only 

the decision tree enables the identification of meaning-

ful population subgroups and allows for formal inference 

about the defined groupings. For example, at the top level 

of the tree, the variable most strongly associated with 

(adjusted) total energy intake is snack calories (skcal, 

p < 0.001). Splitting the population according to snack 

calories ≤798.22 versus >798.22 produces two subgroups. 

Within the first group (following the left branch in Fig. 5), 

snack calories remain the most significant predictor of 

total energy intake (p < 0.001), while in the second group 

(the right branch of Fig. 5) none of the covariates are sig-

nificantly associated with the outcome. �e first group 

(skcal ≤798.22) again splits into two groups: snacking 

Table 2 Aggregated results of  simulations that  evaluate 

Type I error of di�erent tree building algorithms

Type MSE Type I error

Mean SD Mean

CART 0.65 0.07 1

Pruned CART 0.99 0.091 0.0559

Pruned CART (1-SE) 1 0.089 0.0003

CTree 0.99 0.089 0.0513

Linear regression 0.97 0.088

Table 1 Aggregated simulation results that describe the e�ect of multiple types of data generating processes

These sources of data include a tree structure, a regression model and a hybrid model that combines the two structures

True model Type MSE Terminal nodes

Mean SD Mean 20th 80th

Tree CART 1.26 0.151 7.01 6 8

Pruned CART 1.22 0.137 4.27 3 5

Pruned CART (1-SE) 1.25 0.139 3.31 3 4

CTree 1.27 0.154 3.72 3 4

Linear regression 2.04 0.179

Regression CART 4.12 0.413 15.24 14 16

Pruned CART 4.19 0.442 13.97 12 16

Pruned CART (1-SE) 4.55 0.509 8.66 6 11

CTree 4.14 0.409 13.96 13 15

Linear regression 1.03 0.093

Hybrid CART 1.39 0.138 13.1 11 15

Pruned CART 1.37 0.131 5.96 3 9

Pruned CART (1-SE) 1.39 0.133 2.69 2 3

CTree 1.34 0.126 5.42 4 6

Linear regression 1.17 0.106
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Table 3 Linear regression output for modeling 24-h energy intake using a “suitable” set of predictors

This “suitable” set of predictors is chosen using a backward elimination process, such that the AIC for the relevant model is minimized

Estimate SE t value Pr(>|t|)

(Intercept) 1279.36 211.78 6.04 <0.001***

Sex: male 378.03 66.30 5.70 <0.001***

Body mass index 16.68 6.96 2.40 0.017*

Snack-energy kcal/day 1.29 0.12 10.76 <0.001***

Fruit/vegetable svg/day 38.84 14.94 2.60 0.010**

Sugar-sweetened beverage svg/day 114.20 30.3234 3.77 <0.001***

Contour drawing rating scale-body dissatisfaction [1–9] −48.44 26.2195 −1.85 0.066

Frequency of self-weigh

 Never (Ref )

 About once a year or less −405.34 145.47 −2.79 0.006**

 Every couple of months −247.32 137.55 −1.80 0.074

 Every month −374.43 147.96 −2.53 0.012*

 Every week −414.77 138.67 −2.99 0.003**

 Every day −450.17 166.89 −2.70 0.008**

Fast food frequency

 Never (Ref )

 1–3 times last month 14.13 77.01 0.18 0.855

 1–2 times per week 35.63 95.42 0.37 0.709

 3–4 times per week −187.55 204.63 −0.92 0.360

 5–6 times per week −235.81 237.61 −0.99 0.322

 7 or more times per week 738.04 238.35 3.10 0.002**

Hunger 32.52 10.15 3.20 0.002**

Wanting 2.88 0.85 3.40 <0.001***
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p < 0.001

1

≤ 798.22 > 798.22
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p < 0.001

2

≤ 339.79 > 339.79
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Fig. 5 Conditional inference tree representing the relationship between adjusted residuals for daily energy intake (adjusted for age, sex, and BMI) 

and 22 baseline covariates. Added Node ID labels in the terminal node. This is consistent with the titles for each subplot in Fig. 3 and the CTree in 

Fig. 1
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calories ≤339.79 and >339.79 (but ≤798.22). In the for-

mer, “low snacking” group, the covariate most strongly 

associated with total energy intake is servings of sugar-

sweetened beverages (srvgssb, p = 0.01 ), which defines 

subgroups according to whether individuals consumed ≤ 

or >0.53 SSBs per day. In the latter, the strongest asso-

ciation is with hunger (p = 0.01), which splits into sub-

groups according to hunger ≤7 or >7. �e lower hunger 

group splits one more time on snack calories. Within the 

former “low snacking” group that splits to define a sub-

group that consumes ≤0.53 SSBs per day, the covariate 

most strongly associated with energy intake is servings of 

fruits and vegetables (srvgfv0, p = 0.044), which defines 

subgroups according to whether individuals consumed ≤ 

or >2.04 servings per day.

In general, decision trees are typically used to describe 

the associations between a set of covariates and an out-

come, and thereby identify population subgroups with 

different outcome values. In our setup, there is no one par-

ticular exposure or treatment variable of interest, so there 

is not one focal variable whose effect may be modified by 

others. However, recursive partitioning does identify rel-

evant interactions between covariates, i.e., combinations 

of covariate values which result in different (mean) values 

of the outcome. Hence, if the term “effect modification” 

is identified with “interaction”, then decision trees can be 

viewed as a tool for exploring effect modification.

Figure 6 is composed of 7 sub-plots that represent each 

of the terminal nodes (i.e., subgroups) in Fig. 5. �e top 

left sub-plot in Fig. 6 corresponds to node #5 (n = 23) in 

Fig. 5. �e mean of adjusted residuals is −702.94, indicat-

ing that on average, individuals in this node have a daily 

energy intake 702.94 kcal lower than the age-, sex-, and 

BMI-adjusted population mean. In the top left sub-plot 

in Fig. 6, colored horizontal bars describe the population 

subgroup of node #5: individuals with low to moderate 

servings per day of sugar-sweetened beverages (≤0.53 

servings per day, i.e., below the 60th population percen-

tile), low servings per day of fruits and vegetables (≤2.04 

servings per day, i.e., below the 25th population percen-

tile) and low to moderate snack calories (≤339.79 kcal per 

day, below the 50th population percentile).

�e bottom row of plots corresponds to the three nodes 

which had the highest adjusted average caloric intake 

(+455.47, +486.66, and +1210.44  kcal/day relative to 

the adjusted population mean, respectively). �ese nodes 

defined three distinct subgroups: (1) low to moderate 

hunger (≤7, below the 80th percentile) and relatively high 

snacking (627–798 kcal/day, between the 89th and 92nd 

percentiles); (2) high hunger (>7, above the 80th percen-

tile) and moderate snacking (340–798 kcal/day, between 

the 58th and 92nd percentiles); and (3) very high snack-

ing calories (≥ 798 kcal/day, above the 92nd percentile). 

�e fact that the first two of these groups have relatively 

similar adjusted mean daily caloric intake while being 

defined by distinct combinations of hunger and snacking 

levels (low hunger, moderate to high snacking in the first 

group vs. high hunger, moderate snacking in the second) 

Fig. 6 Graphical visualization to display the composition of the 7 subgroups defined by the tree in Fig. 5



Page 11 of 12Venkatasubramaniam et al. Emerg Themes Epidemiol  (2017) 14:11 

suggests that there are multiple pathways which lead to 

similar levels of consumption of excess calories. �ese 

distinct pathways may require different intervention 

strategies: for example, the low hunger but moderate to 

high snacking group might be effectively targeted by an 

approach which sought to reduce snacking opportunities, 

under the logic that due to their relatively low hunger 

level they are more likely to be snacking out of conveni-

ence than to satisfy a craving. �e high hunger but more 

moderate snacking group, on the other hand, might be 

more responsive to an approach aimed at managing crav-

ings. Yet another approach might be required to opti-

mize outcomes for the third group whose extremely high 

adjusted daily caloric intake (+1210.44 kcal/day relative 

to the population) was associated with extremely high 

snacking but not hunger.

Conclusions
Decision trees can be a powerful tool in a researcher’s 

data analysis toolbox, providing a way to identify relevant 

population subgroups which may provide insight into 

associations and effect mechanisms, and suggest strat-

egies for tailoring interventions. In this paper, we com-

pared two techniques for constructing decision trees, 

CART and CTree, and introduced a novel graphical 

visualization technique for decision trees which allows 

a researcher to see and compare the characteristics of 

these subgroups. Our focus was on describing relation-

ships between a relatively small number of continuous 

or binary covariates and continuous outcomes in stud-

ies with moderate sample sizes, but decision trees can 

easily be extended to problems with larger sample sizes 

[26, 27], greater number of covariates, and for modeling 

other covariate and outcome types [28, 29]. �e CTree 

approach in particular accommodates a wide variety of 

data types, including categorical and time-to-event out-

comes, within the same statistical framework.

While the data we used to illustrate the application of 

decision trees arose from a randomized controlled trial, 

we performed cross-sectional analyses on baseline data 

and hence did not use information on treatment assign-

ment. As with any technique based on identifying statis-

tical associations, decision tree methods do not estimate 

causal effects of individual characteristics or exposures 

in such cross-section analyses. �e adjustment proce-

dure we describe above allows the researcher to account 

for measured variables that are thought to be confound-

ers, but the additional flexibility provided by decision 

tree models cannot correct for bias due to unmeasured 

confounding. Hence, conclusions based on decision tree 

analysis should be viewed as exploratory. In ongoing 

work, we are extending the decision tree framework to 

characterize (causal) treatment effect heterogeneity (i.e., 

causal effect modification) in the context of randomized 

intervention studies.

�e two decision tree fitting techniques we compared 

in this paper, CART and CTree have different strengths 

and weaknesses. CART has the advantage of availability: 

it is widely implemented in standard statistical software 

packages, while to our knowledge, conditional inference 

trees are currently only implemented in R. In our experi-

ments, CART often had slightly higher predictive accu-

racy than CTree due to its additional flexibility. However, 

CTree offers several advantages over CART. First, CTree 

yields a simpler tree building process as compared to 

CART, since in CTree a single overall Type I error rate 

parameter (α) controls the size of the tree and removes 

the need for pruning. �e α value can be set independ-

ent of the outcome type (e.g., continuous, binary, time 

to event, etc.), unlike for CART where the complexity 

parameter depends on the splitting criterion which may 

differ depending on the outcome type. By using formal 

inferential techniques incorporating multiplicity adjust-

ments to select splits, CTree provides statistical guaran-

tees and valid p values at each split. Hence, the researcher 

deciding which technique to use must consider the rela-

tive value of giving up a small amount of model flexibility 

and predictive accuracy to simplify modeling and gain 

the ability to make formal statistical statements based on 

the results from the fitted tree.
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