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Abstract

Some important research questions require the ability to find evidence for two conditions

being practically equivalent. This is impossible to accomplish within the traditional

frequentist null hypothesis significance testing framework; hence, other methodologies must

be utilized. We explain and illustrate three approaches for finding evidence for equivalence:

The frequentist two one-sided tests procedure, the Bayesian highest density interval region

of practical equivalence procedure, and the Bayes factor interval null procedure. We

compare the classification performances of these three approaches for various plausible

scenarios. The results indicate that the Bayes factor interval null approach compares

favorably to the other two approaches in terms of statistical power. Critically, compared to

the Bayes factor interval null procedure, the two one-sided tests and the highest density

interval region of practical equivalence procedures have limited discrimination capabilities

when the sample size is relatively small: specifically, in order to be practically useful, these

two methods generally require over 250 cases within each condition when rather large

equivalence margins of approximately 0.2 or 0.3 are used; for smaller equivalence margins

even more cases are required. Because of these results, we recommend that researchers rely

more on the Bayes factor interval null approach for quantifying evidence for equivalence,

especially for studies that are constrained on sample size.

Keywords: equivalence testing, two one-sided tests, highest density interval, region

of practical equivalence, interval Bayes factor
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Decisions About Equivalence: A Comparison of TOST, HDI-ROPE, and the

Bayes Factor

Introduction

Most research aims to demonstrate the presence of an effect. For instance, a study

might investigate whether a certain drug is more effective than a placebo. At other times,

however, the goal is to find evidence for the equivalence of two conditions. Quantifying

evidence that there is no effect can be useful in various applied and theoretical domains

(Gallistel, 2009; Rouder, Speckman, Sun, Morey, & Iverson, 2009). For example, providing

evidence that internet-delivered psychotherapies are equally effective as standard

face-to-face psychotherapy would benefit patients and clinicians because internet-delivered

psychotherapies are comparatively cheap and immediately accessible at any time (see, e.g.,

Cuijpers, Van Straten, & Andersson, 2008, for a review). Alternatively, having evidence for

the absence of an effect might be useful to refute a certain aspect of a theory, thereby

advancing and refining that theory. Borrowing an example from Rouder et al. (2009), if the

Weber-Fechner law (Fechner, 1860/1966, i.e., people’s ability to detect a briefly presented

stimulus is a function of the ratio of the intensity of the stimulus and the background

intensity) holds, people’s ability to detect the stimulus should not change when the two

quantities of the ratio are multiplied by the same value.

The statistical framework that is typically employed for statistical inference, null

hypothesis significance testing (NHST), merely enables researchers to find evidence against

but not in favor of the null hypothesis (e.g., Gallistel, 2009; Goodman, 2008; van

Ravenzwaaij, Monden, Tendeiro, & Ioannidis, 2019; Wagenmakers, 2007; Wagenmakers

et al., 2018). Fortunately, there are alternatives to traditional NHST that allow researchers

to quantify evidence in favor of the absence of an effect, which is the topic of this

manuscript.

In frequentist statistical hypothesis testing, a decision is made about whether to

reject or not to reject the null hypothesis for a given set of null and alternative hypotheses
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(i.e., H0 and H1, respectively) and a given decision threshold. Depending on the decision

and the true state of the hypotheses, four scenarios are possible: (1) Not rejecting H0 when

H0 is in fact true, which is a correct decision and is called a true negative; (2) rejecting H0

when H0 is in fact true, which is an incorrect decision and is called a Type I error or a false

positive; (3) not rejecting H0 when H1 is in fact true, which is an incorrect decision and is

called a Type II error or a false negative; (4) rejecting H0 when H1 is in fact true, which is

a correct decision and is called power or a true positive. Thus, two types of errors are

possible. Under traditional NHST, the Type I error rate can be controlled by specifying

the significance level (α) and the type II error rate (β) can be minimized by increasing

power because they are complements of each other (power = 1− β).

Traditionally, there has been a strong focus on controlling the Type I error rate.

This is relatively easy because one can set the desired α. In contrast, pre-determining

power is not straightforward because many factors must be considered. For example, when

comparing two conditions, power depends on the sample size, α, and the unknown

population effect size (Cohen, 1988). Power considerations have been mostly neglected.

Many studies in the behavioral, social, and medical sciences are under-powered (see, e.g.,

Button et al., 2013; Halpern, Karlawish, & Berlin, 2002; Ioannidis, 2005; Maxwell, 2004;

Sedlmeier & Gigerenzer, 1989; Vankov, Bowers, & Munafò, 2014). In general, it is

important to evaluate statistical testing approaches based on both types of errors.

In this article, we first describe and subsequently compare three approaches for

finding evidence for equivalence between two groups or, in other words, for finding evidence

towards the absence of an effect: the frequentist two one-sided tests procedure (Hodges &

Lehmann, 1954; Schuirmann, 1987; Westlake, 1976; see also Lakens, 2017; Lakens, Scheel,

& Isager, 2018), the Bayesian highest density interval region of practical equivalence

procedure (Kruschke, 2010, 2011, 2013, 2015, 2018; Kruschke, Aguinis, & Joo, 2012;

Kruschke & Liddell, 2018a, 2018b), and the Bayes factor interval null procedure (Morey &

Rouder, 2011; van Ravenzwaaij et al., 2019; see also Linde & van Ravenzwaaij, 2019a).
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Henceforth, we refer to these three procedures as the TOST, HDI-ROPE, and BF

procedures, respectively. In the remainder of this article, we will first describe and

illustrate each of these procedures with the aid of summary statistics from an existing

study by Steiner et al. (2015), an example borrowed from van Ravenzwaaij et al. (2019).

Subsequently, we compare each of the three metrics in terms of their probability of

concluding equivalence under conditions where the population means of two groups are

practically equivalent (power) and under conditions where the population means of two

groups are non-equivalent (Type I error rate). We end with a discussion of the implications

of our findings and with practical recommendations for researchers.

Running Example

In order to illustrate the three approaches for finding evidence towards equivalence,

we utilize summary statistics from a study by Steiner et al. (2015); this example is

borrowed from van Ravenzwaaij et al. (2019). The goal of this study was to examine

whether or not storing red-cells for a long duration, in comparison to a short duration, is

harmful for patients who receive a transfusion. A comparison was made between red-cells

that are stored for either < 10 days or > 21 days. The dependent variable was the Multiple

Organ Dysfunction Score (MODS), which was measured in patients 7 days after

transfusion. The relevant summary statistics are provided in Table 2 of Steiner et al.

(2015); more precise values are presented in van Ravenzwaaij et al. (2019). The < 10-day

group (control, c) consisted of nc = 538 cases, had a mean of x̄c = 8.516, and a standard

deviation of sc = 3.6. The > 21-day group (experimental, e) consisted of ne = 560 cases,

had a mean of x̄e = 8.683, and a standard deviation of se = 3.6.

Frequentist Equivalence Testing

The TOST approach (Hodges & Lehmann, 1954; Schuirmann, 1987; Westlake, 1976;

see also Lakens, 2017; Lakens, Scheel, & Isager, 2018) tests whether or not the control and

experimental conditions are practically equivalent on some measure (see, e.g., Christensen,

2007; Lesaffre, 2008; Meyners, 2012; Walker & Nowacki, 2011, for an overview). An
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equivalence interval must be defined independent of the data (Meyners, 2012), which should

include all values that are deemed small enough to be practically equivalent to no effect

and, thus, constitute no meaningful effect (e.g., Meyners, 2012; Walker & Nowacki, 2011).

The equivalence interval can be symmetric around 0 (e.g., (−0.1, 0.1)) or asymmetric

around 0 (e.g., (−0.2, 0.1)). Furthermore, the equivalence interval can be expressed in

standardized or unstandardized units. Henceforth and for all three approaches for finding

evidence for equivalence, we will assume that the equivalence interval is symmetric around

0 with a standardized equivalence margin denoted by m, which is defined as the distance

from the null value to the lower or upper boundary of the equivalence interval.

TOST entails conducting two one-sided tests (we refer the interested reader to

Appendix A for a more detailed and mathematical description of TOST). H0 and H1 of the

two one-sided tests combined are:

H0: δ ≤ −m OR δ ≥ m H1: δ > −m AND δ < m, (1)

where δ is the population effect size between both groups. In words, we test whether δ is

significantly larger than −m and we test whether δ is significantly smaller than m. If and

only if both tests are statistically significant, we reject H0 that the two conditions are

non-equivalent (see, e.g., Meyners, 2012; Walker & Nowacki, 2011).

A perhaps more intuitive way to think of the TOST procedure is by means of a

confidence interval (CI; cf. Meyners, 2012; Schuirmann, 1987). We reject H0 at significance

level α if the (1− 2α) 100% CI of δ fully lies within the equivalence interval. So, for the

typical α = .05, the 90% CI needs to be fully contained within the equivalence interval.

Note that it is not required for the CI to overlap with 0 for purposes of deciding in favor of

equivalence (see van Ravenzwaaij et al., 2019, for an illustration).

We can use the TOST procedure to analyze the data from our running example

(Steiner et al., 2015; van Ravenzwaaij et al., 2019). We use a significance level of α = .05

for this analysis. Panel A in Figure 1 shows the 90% CI of δ. An equivalence margin of

m = 0.2 is chosen. It is clearly visible that the 90% CI is fully contained within the
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90% CI = [−0.15, 0.05]

t−m(1096) = 2.55; p−m = .006
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Figure 1

Illustration of (A) the frequentist TOST procedure; (B) the Bayesian HDI-ROPE

procedure; and (C) the Bayesian BF procedure, using summary statistics provided in

Table 2 of Steiner et al. (2015). See text for details.

equivalence interval. The lower boundary of the 90% CI is higher than the lower boundary

of the equivalence interval and the upper boundary of the 90% CI is lower than the upper

boundary of the equivalence interval. Calculating the two one-sided t-tests results in

p-values of p−m = .006 and pm < .001. Because both p−m and pm are smaller than α = .05,

we reject H0 of non-equivalence. The conclusion depends on the chosen equivalence

margin. For example, with m = 0.1 we could not reject H0 of non-equivalence.

Bayesian Techniques for Quantifying Evidence Towards Equivalence

Bayesian Inference

Bayesian inference is an alternative to the frequentist school. It provides a

framework for coherently updating beliefs about parameters and hypotheses based on new

data (Kruschke, 2015). Our exposition of Bayesian inference will be kept to a minimum; we

refer the reader to other sources for more detailed and technical introductions to Bayesian
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inference (see, e.g., Dienes & Mclatchie, 2018; Etz, Gronau, Dablander, Edelsbrunner, &

Baribault, 2018; Etz & Vandekerckhove, 2018; Gelman et al., 2013; Kass & Raftery, 1995;

Kruschke, 2015; Kruschke & Liddell, 2018a, 2018b; O’Hagan & Forster, 2004; Rouder,

Haaf, & Vandekerckhove, 2018; Rouder et al., 2009; Wagenmakers et al., 2018) and

Bayesian approaches for quantifying evidence for equivalence specifically (see, e.g.,

Kruschke, 2011, 2018; Morey & Rouder, 2011; van Ravenzwaaij et al., 2019; see also Linde

& van Ravenzwaaij, 2019a).

We can distinguish between two approaches to Bayesian inference: parameter

estimation (e.g., reporting the posterior distributions for regression coefficients) and model

comparison (e.g., comparing the relative likelihoods of the data under H0 and H1). At the

heart of both of these approaches to Bayesian inference is Bayes’ rule, which stipulates how

relevant data y refine beliefs about a parameter δ under hypothesis Hi. Bayes’ rule is:

p (δ | y, Hi)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
p (y | δ, Hi)
p (y | Hi)︸ ︷︷ ︸

Evidence

× p (δ | Hi)︸ ︷︷ ︸
Prior

, (2)

meaning that the posterior is equal to the product of the prior and an updating factor,

which is the ratio of the likelihood and the evidence. We will now explain the individual

factors in Bayes’ rule (Equation 2) and how they combine to update probabilities in the

context of equivalence designs.

Before we see any data y, we have beliefs about the plausibility of certain parameter

values for δ.1 These beliefs can be expressed by placing a prior on δ, p (δ | Hi). For

example, if δ is an effect size parameter and we expect a very small effect size, we can

restrict the prior to very small values for δ; alternatively, if only relatively large effect sizes

matter and are therefore of interest, we can place a higher emphasis on larger values for δ.

The likelihood is a conditional probability of the data y, given a specific value of δ,

1 The full model of equivalence designs for t-tests actually includes two parameters, δ and σ2 (common

population variance), but for purposes of this demonstration a consideration of δ alone suffices.
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p (y | δ, Hi). The posterior, p (δ | y, Hi), represents a compromise between the plausibility

of parameter realizations before taking into account the observed data, the prior, and what

the data tell us about the plausibility of parameter realizations, the likelihood. The

evidence, p (y | Hi), is the probability of the data. It serves as a normalization constant,

ensuring that the posterior is a proper probability density function. However, removing the

evidence from Equation 2 would not alter the shape of the posterior. Therefore, in that

case the posterior would be proportional to the product of the prior and the likelihood.

Choosing a Prior. The posterior is more influenced by the prior when data are

sparse or when the prior is peaked and local; it is more influenced by the likelihood when

data are abundant or when the prior is spread out and global (see, e.g., Kruschke, 2015).

As such, the shape of the posterior heavily depends on our prior beliefs. There is an

ongoing debate about whether data analysts should use ‘subjective’ or ‘objective’ priors.

Proponents of the former advocate that subjective beliefs should be reflected in the prior,

as this is exactly what Bayesianism is all about (Goldstein, 2006; Morey, Romeijn, &

Rouder, 2016; Vanpaemel, 2010). In contrast, proponents of the latter suggest that

Bayesian analyses should be as objective as possible by using objective priors (also called

default priors) and that their use is sometimes inevitable when prior information is lacking

(Bayarri, Berger, Forte, & García-Donato, 2012; Berger, 2006; Consonni, Fouskakis, Liseo,

& Ntzoufras, 2018; Jeffreys, 1961; Rouder et al., 2009). We refer the readers to other

sources for discussions on this topic (e.g., Berger, 2006; Berger & Berry, 1988; Consonni

et al., 2018; Gelman & Hennig, 2017; Goldstein, 2006; Tendeiro & Kiers, 2019; Vanpaemel,

2010).

For all our Bayesian analyses described in this manuscript, we employ objective

priors as described in Rouder et al. (2009), Gronau, Ly, and Wagenmakers (2020), and

Morey and Rouder (2011). Specifically, we use a Cauchy prior centered on 0 and with a

variable scale parameter r for δ.2 A Cauchy distribution is a t distribution with 1 degree of

2 We place a Jeffreys’ prior (also called right Haar prior) on σ2, p
(
σ2) ∝ (σ2)−1.
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freedom; it resembles a Normal distribution but it has less mass at the center and more

mass at the tails (see Liang, Paulo, Molina, Clyde, & Berger, 2008; Rouder et al., 2009).

The scale parameter r defines the width of the Cauchy distribution; that is, half of the

mass lies between −r and r. Note that we use the same prior for the HDI-ROPE and the

BF approaches to allow for a direct and unbiased comparison. We decided to use a Cauchy

prior because it has several desirable mathematical properties in the context of calculating

Bayes factors, which are described elsewhere (see, e.g., Bayarri et al., 2012; Consonni et al.,

2018), and because it allows for a closed-form solution to calculate the HDI within the

HDI-ROPE approach and the Bayes factor within the BF approach (see Gronau et al.,

2020; Rouder et al., 2009).

The HDI-ROPE Approach

The HDI-ROPE approach (e.g., Kruschke, 2011, 2018) is one approach for making

decisions about equivalence within the Bayesian paradigm that falls under the rubric of

parameter estimation. As a first step, a region of practical equivalence (ROPE) is defined,

whose values are deemed practically equivalent to the null value (Kruschke, 2015, 2018).

We use Bayes’ theorem (see Equation 2 and the previous section) to obtain the posterior

distribution for δ. Next, we estimate the 95% (or any other desired percentage) highest

density interval (HDI) of this posterior. The probability mass of that interval is .95, given

our prior and model, and the density at each point within the interval is higher than the

density at any point outside the interval.

Having defined the ROPE and having calculated the 95% HDI for δ, a decision can

be made about whether the two conditions are equivalent. The HDI-ROPE decision rule

results in one of three decisions (see Figure 1 in Kruschke, 2018, for an illustration): (1) If

the HDI lies completely outside of the ROPE, we reject the null value and conclude there is

no equivalence; (2) if the HDI lies completely within the ROPE, we accept the null value

and conclude there is equivalence; (3) if the HDI overlaps with at least one of the

boundaries of the ROPE, we can neither accept nor reject the null value and conclude
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nothing. Note that the decision does not concern all the parameter values within the

ROPE, but just the null value, which is the center of the ROPE (Kruschke, 2018). The

ROPE defines an interval of parameter values that are considered practically equivalent to

the null value. The analyst should reject the null value when the most credible values (i.e.,

HDI) are sufficiently far away (outside the ROPE) from the null value; the analyst should

accept the null value when the most credible values (i.e., HDI) are sufficiently close (inside

the ROPE) to the null value (Kruschke, 2018). The second scenario described above has a

configuration which seems counter-intuitive at first glance. If the HDI fully lies within the

ROPE but does not overlap with the null value, we still accept the null value for practical

purposes (Kruschke, 2018).

The HDI-ROPE procedure can be used to analyze the data from our running

example. Panel B in Figure 1 shows the prior (dotted line) and the posterior (solid line) for

δ. The two vertical dashed lines represent the standardized ROPE (i.e., the standardized

equivalence interval, (−0.2, 0.2)). The 95% HDI of the posterior of δ is (−0.16, 0.07). This

can be interpreted as a probability of .95 that the population effect size δ is somewhere

between −0.16 and 0.07, conditional on the model and prior used in the estimation process.

The HDI is fully contained inside the ROPE. Therefore, we decide that the two conditions

are practically equivalent. Here again, the decision depends on the equivalence margin.

Had we used m = 0.1, we could not make any decision because the HDI would be neither

fully inside nor outside the equivalence interval. In practice, the obtained boundaries of the

HDI will often be very similar to those of the frequentist confidence interval (see, e.g.,

Albers, Kiers, & van Ravenzwaaij, 2018). Hence, the HDI-ROPE approach with objective

priors could be considered the Bayesian equivalent of the TOST approach.

The BF Approach

The Bayes factor (e.g., Jeffreys, 1939, 1948, 1961; Kass & Raftery, 1995) is used to

compare two competing models or hypotheses. Hence, it falls under the category of model

comparison approaches. Like the HDI in the HDI-ROPE approach, a Bayes factor is based
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on Bayes’ rule (see Equation 2). However, for the calculation of Bayes factors involving

interval hypotheses, Bayes’ rule is utilized in a hierarchical structure and, thus, needs to be

adapted. If we replace parameter δ in Equation 2 with model H1 or model H0 and divide

the expressions for both models by one another, we obtain:

p (H1 | y)
p (H0 | y)︸ ︷︷ ︸

Posterior Odds

= p (y | H1)
p (y | H0)︸ ︷︷ ︸

Bayes Factor, BF10

× p (H1)
p (H0)︸ ︷︷ ︸

Prior Odds

. (3)

After taking into account the data y, the Bayes factor is the factor by which we update the

prior odds to obtain the posterior odds. For example, if H1 was 3 times more probable

than H0 a priori and the Bayes factor is BF10 = 7 (the subscript indicates that H1 is in the

numerator and H0 in the denominator), the posterior odds would be 3× 7 = 21. In this

example, we can conclude that the data are seven times more likely under H1 compared to

H0. If the prior odds is 1, the Bayes factor is equal to the posterior odds. Given a specific

Bayes factor (e.g., reported in an article), researchers can specify their own prior odds and

use the Bayes factor to arrive at their own posterior odds.

The Bayes factor that we use here for equivalence designs corresponds to the

non-overlapping hypotheses (NOH) Bayes factor approach, as described in Morey and

Rouder (2011). Importantly, the Cauchy prior for δ is split into two parts: The first part

consists of all the values of the prior as defined by H1, where δ lies between −m and m; the

second part consists of all the values of the prior as defined by H0, where δ does not lie

between −m and m (see Panel C of Figure 1). When we know the prior and posterior

odds, we can rearrange Equation 3 to obtain the Bayes factor:

BF10 = p (H1 | y)
p (H0 | y)

/
p (H1)
p (H0) . (4)

In words, we obtain the posterior odds as the area of the posterior inside the equivalence

interval over the area of the posterior outside the equivalence interval. Similarly, we obtain

the prior odds as the area of the prior inside the equivalence interval over the area of the

prior outside the equivalence interval. Finally, we divide the posterior odds by the prior

odds to obtain the Bayes factor.
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The BF approach can be used to analyze the data from our running example.

Panel C of Figure 1 shows the prior (dotted line) and the posterior (solid line) for δ. The

two vertical dashed lines represent the standardized equivalence interval (−0.2, 0.2).

Panel C of Figure 1 can be interpreted as a visualization of Equation 4 because all four

factors of this equation are present in the figure. The posterior probability of H1,

p (H1 | y) ≈ 0.99, is colored in purple; the posterior probability of H0, p (H0 | y) ≈ 0.01, is

the remaining area of the posterior. The prior probability of H1, p (H1) ≈ 0.18, is shown in

blue, whereas the prior probability of H0, p (H0) ≈ 0.82, is the remaining area of the prior.

Using Equation 4 to combine the just described areas, we obtain a Bayes factor of

BF10 = 921.20. According to heuristic evidence thresholds suggested by Jeffreys (1961),

with updated labels provided by Lee and Wagenmakers (2013), we obtained extreme

evidence in favor of H1, stating that the control and experimental conditions are

practically equivalent. If we would have used an equivalence margin of m = 0.1, we would

obtain a Bayes factor of BF10 = 43.32; thus, the conclusion would remain unchanged.

In the next section, we compare the TOST, the HDI-ROPE, and the BF procedures

in terms of their classification rates of equivalence, both in situations where the two

population group means are practically equivalent and in situations where they are not. In

order to be able to compare the performances of the three approaches, it is necessary to

adopt a binary decision-making system. The reason is that the TOST approach can only

make one of two decisions (“equivalence” or “not enough evidence for equivalence”). Since

the HDI-ROPE approach has a tertiary decision-making system by nature (“equivalence”,

“non-equivalence”, or “undecided”) and is thus incompatible with the decision-making

system of the TOST approach, we adopt a binary decision-making system for the

HDI-ROPE approach (“equivalence” or “non-equivalence/undecided”). The Bayes factor

quantifies evidence in a continuous fashion. By imposing two thresholds against which the

obtained evidence is evaluated, a tertiary decision-making system could be established

(“equivalence”, “non-equivalence”, or “undecided”). Just as for HDI-ROPE, we have to
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adopt a binary decision-making system to have results comparable to those of the TOST

approach; hence, for purposes of this study the decision categories “non-equivalence” and

“undecided” are combined (i.e., “equivalence” or “non-equivalence/undecided”).

Methods

We estimated the proportions of equivalence decisions for the TOST, the

HDI-ROPE, and the BF approaches for different plausible scenarios (the R code can be

accessed at https://osf.io/xur3t/). These decisions could be either correct or incorrect,

depending on the specific scenario at hand. A decision in favor of equivalence for truly

equivalent conditions is a correct decision, whereas a decision in favor of equivalence for

truly non-equivalent conditions is a false decision. More specifically, for the scenario where

the population effect size lies within the equivalence interval, the proportion of equivalence

decisions is the same as the true positive rate (power); in contrast, for the scenario where

the population effect size lies outside of the equivalence interval, the proportion of

equivalence decisions corresponds to the false positive rate (Type I error rate). Our

scenarios were intended to mimic balanced independent-conditions two-sample experiments

with a continuous outcome measure, a common variance in both conditions, and Normal

distributed residuals within conditions. As will be explained shortly, the proportion of

equivalence decisions can be obtained numerically in the case of the TOST procedure (see

Appendix A) but must be estimated through simulations for the HDI-ROPE and the BF

procedures. The global parameters, which determine the different scenarios, apply to both

the analytical and simulated solutions.

Global Parameters

We varied three parameters which were fully crossed, thus, establishing different

scenarios. Those parameters were the population effect size δ, the sample size within each

condition n, and the margin m (i.e., the distance from the null value to the lower or upper

bound of the equivalence interval) of a symmetric equivalence interval on the same

standardized scale as δ:

https://osf.io/xur3t/
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• δ = {0, 0.01, 0.02, ..., 0.5}

• n = {50, 100, 250, 500}

• m = {0.1, 0.2, 0.3} .

We decided to use an almost continuous representation of δ in order to have a high

resolution of the proportion of equivalence predictions as a function of δ. Note that we only

used values for δ in the interval [0, ∞); results should be the same (within random

fluctuations) for the negative counterparts of δ (i.e., within (−∞, 0]). Moreover, the choice

of our standardized equivalence margins rests on rules of thumb for judging the magnitudes

of effect sizes, developed by Cohen (1988). According to his rules of thumb, an effect size of

δ = 0.2 is considered small. We also examined equivalence margins of 0.1 lower and higher

(i.e., 0.1 and 0.3). Equivalence margins larger than this come close to what Cohen labeled

medium-sized effects and are in most contexts unreasonably large to demarcate equivalence.

Numerical Approach for TOST

We calculated the power for TOST for each combination of the global parameters δ,

n, and m. For this we made use of code, written in R (R Core Team, 2019), provided by

Shieh (2016), where an exact solution is offered based on numerical integration. We

adapted and improved upon this code in two ways: (1) We applied more accurate

numerical integration; (2) We made the code more readable and eliminated defined but

unused variables.3 All power calculations for TOST were conducted with α = .05.

Simulation Approach for HDI-ROPE and BF

A numerical or even analytical approach for the calculation of power for the

HDI-ROPE and the BF procedures is not straightforward, so we conducted analyses on

simulated data instead. We generated 1, 000 data sets for each individual combination of

3 The interested reader is referred to Appendix A for a detailed treatment and derivation of power for

TOST and for the corresponding R code used here; this and other code is also available at

https://osf.io/f9dw2/.

https://osf.io/f9dw2/
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the global parameters δ, n, and m. Each data set was analyzed using the HDI-ROPE and

BF approaches. Both approaches were applied three times for each data set because we

employed three different priors. We used a Cauchy prior centered at 0 and with scale

parameters of r =
{

0.5/
√

2 ≈ 0.354, 1/
√

2 ≈ 0.707, 2/
√

2 ≈ 1.414
}
. The use of different

priors allowed us to examine the variation of outcomes and serves here as a coarse

sensitivity analysis (Berger et al., 1994; Du, Edwards, & Zhang, 2019; Kass & Raftery,

1995; Lee & Wagenmakers, 2013). For each set of 1, 000 data sets, we calculated the

proportions of equivalence predictions for both the HDI-ROPE and the BF procedures.

We used a 95% HDI for the HDI-ROPE procedure. The calculation of the

boundaries of the 95% HDI of the posterior was achieved using functions developed by

Gronau et al. (2020, available at https://osf.io/bsp6z/), which are available for R (R Core

Team, 2019). Bayes factors were obtained using the baymedr software (Linde & van

Ravenzwaaij, 2019b) written in R (R Core Team, 2019). These Bayes factors were

compared to two thresholds, BFthr = {3, 10}, which follow approximate thresholds for

judging the magnitude of the evidence: 1 < BF < 3 for ‘anecdotal evidence’; 3 < BF < 10

for ‘moderate evidence’; 10 < BF < 30 for ‘strong evidence’; 30 < BF < 100 for ‘very strong

evidence’; BF > 100 for ‘extreme evidence’ (cf. Jeffreys, 1961; see also Lee & Wagenmakers,

2013). Importantly, the Bayes factor that was obtained quantifies evidence in favor of H1

of equivalence. Thus, BF10 > BFthr constitutes evidence in favor of equivalence.

Results

The results of the comparison between the TOST, HDI-ROPE, and BF approaches

for equivalence margins of m = 0.1, m = 0.2, and m = 0.3 are shown in Figures 2, 3, and 4,

respectively. Within each figure, the different panels show the results for the various

sample sizes (n) within conditions. The different colors represent the approaches for finding

evidence towards equivalence, and for the BF approach the two different evidence

thresholds. Different line types represent the three Cauchy prior scales (r) for δ within the

two Bayesian approaches.

https://osf.io/bsp6z/
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Figure 2

Proportion of equivalence predictions with a standardized equivalence margin of m = 0.1

(vertical dashed line). Panels contain results for different sample sizes. Colors denote

different inferential approaches (and different decision thresholds within the BF approach).

Line types denote different priors (for Bayesian metrics). Predictions of equivalence are

correct if the population effect size (δ) lies within the equivalence interval (power), whereas

predictions of equivalence are incorrect if δ lies outside the equivalence interval (Type I

error rate). Note that TOST and HDI-ROPE uniformly produce a proportion predicted

equivalence of 0 and are thus not independently visible.

We defined three criteria by which we judged the performance of the classifiers;

these criteria are based on signal detection theory (see, e.g., Green & Swets, 1966;
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Figure 3

Proportion of equivalence predictions with a standardized equivalence margin of m = 0.2

(vertical dashed line). Panels contain results for different sample sizes. Colors denote

different inferential approaches (and different decision thresholds within the BF approach).

Line types denote different priors (for Bayesian metrics). Predictions of equivalence are

correct if the population effect size (δ) lies within the equivalence interval (power), whereas

predictions of equivalence are incorrect if δ lies outside the equivalence interval (Type I

error rate). Note that TOST and HDI-ROPE for n = 50 and n = 100 uniformly produce a

proportion predicted equivalence of 0 and are thus not independently visible.

Macmillan & Creelman, 1990, 2005; Stanislaw & Todorov, 1999, for an overview): First, a

higher proportion of equivalence decisions when conditions are truly equivalent (i.e.,
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Figure 4

Proportion of equivalence predictions with a standardized equivalence margin of m = 0.3

(vertical dashed line). Panels contain results for different sample sizes. Colors denote

different inferential approaches (and different decision thresholds within the BF approach).

Line types denote different priors (for Bayesian metrics). Predictions of equivalence are

correct if the population effect size (δ) lies within the equivalence interval (power), whereas

predictions of equivalence are incorrect if δ lies outside the equivalence interval (Type I

error rate). Note that TOST and HDI-ROPE for n = 50 uniformly produce a proportion

predicted equivalence of 0 and are thus not independently visible.

|δ| < m) and a lower proportion of equivalence decisions when conditions are truly

non-equivalent (i.e., |δ| > m), with a maximum of equivalence decisions when δ is zero (i.e.,
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exactly in the middle of the equivalence margins) and a minimum of equivalence decisions

when δ is large (i.e., δ = 0.5). In other words, the farther away δ is from m, the clearer

should be the decision.

Second, a steeper slope of the curves. A steep slope is desirable, because it indicates

that there is only a small region of δ for which the decision is ambiguous.

Third, a proportion of equivalence decisions close to 0.5 when δ = m because this

indicates that the classifier is unbiased. In more detail, if the proportion of equivalence

decisions would be smaller than 0.5 at δ = m, the curve would be shifted to the left and

would thus decide for non-equivalence more often than equivalence (a conservative

classifier); if the proportion of equivalence decisions would be higher than 0.5 at δ = m, the

curve would be shifted to the right and would thus decide for equivalence more often than

non-equivalence (a liberal classifier); if the proportion of equivalence decisions would be 0.5

at δ = m, the curve would decide for equivalence and non-equivalence equally often (an

unbiased classifier). Ignoring potential diverging costs for deciding for equivalence or

non-equivalence, an unbiased classifier maximizes accuracy (see Hahn & Harris, 2014; and

chapter 2 in Macmillan & Creelman, 1990) for thorough treatments.

In light of these criteria, it is useful to consider optimal performance in terms of

statistical inference, which helps interpreting the results. Ideally, the proportion of

equivalence decisions should be 1 if conditions are truly equivalent (i.e., |δ| < m) and 0 if

conditions are truly non-equivalent (i.e., |δ| > m). The proportion of equivalence decisions

should switch from 1 to 0 at m. A classifier with this behavior could perfectly discriminate

between truly non-equivalent and equivalent conditions. In contrast, a classifier that would

always decide for non-equivalence does not have discriminatory power and is said to be

maximally conservative. Further, a classifier that would always decide for equivalence is

also lacking any discriminatory power and is said to be maximally liberal.

In general, it is expected that the average decision approaches the ideal decision as

the distance of δ to −m and m grows (first criterion). That is, δ = 0 should yield the
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highest proportions of equivalence decisions because it is at the center of our two selected

symmetric equivalence intervals. On the other hand, a population effect size of δ →∞

should result in the lowest proportions of equivalence decisions. These general predictions

are reflected in the results: For all approaches and scenarios, the proportion of equivalence

decisions is highest when δ = 0 and lowest when δ = 0.5. Moreover, the results indicate

that across all approaches, decision performances, as defined by the first and second

criteria, improve as n increases. Exceptions are the TOST and HDI-ROPE approaches

when m = 0.1; with our choices of sample sizes, decisions remain maximally conservative.

Although the classification performances of all three approaches were quite similar

for very large n and for m = 0.2 or m = 0.3 according to the first and second criteria, the

third criterion of equal proportions of equivalence and non-equivalence decisions around the

equivalence margins is not fulfilled by the TOST and the HDI-ROPE procedures. That is,

these two approaches are biased towards making non-equivalence decisions. In the most

extreme cases, when m = 0.1, when m = 0.2 and n = 50 or n = 100, and when m = 0.3

and n = 50, these two approaches always decide for non-equivalence. Hence, for these

scenarios, the two approaches are maximally conservative and do not possess any

discriminatory capabilities.

TOST and HDI-ROPE have no discriminatory power for m = 0.1 for our chosen

sample sizes. When m = 0.2 or m = 0.3 the TOST and HDI-ROPE approaches remain

conservative, but their performance improves as n increases. That is, the proportion of

equivalence decisions is close to 0 when δ is large or close to m; at the same time, high

proportions of equivalence decisions are only obtained for very large n and when δ is close

to 0. In addition, given a specific value for δ, the proportion of equivalence decisions

increases as m increases. This shows that the TOST and HDI-ROPE procedures require a

large sample size or a wide equivalence margin in order to have any discriminatory power

between equivalence and non-equivalence. Even in the scenario with highest m and n,

TOST and HDI-ROPE are biased towards non-equivalence.
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In comparison, the BF approach is more liberal and fulfills the third criterion more

than the other two approaches. Although there is considerable fluctuation for the

proportion of equivalence decisions around δ = m, depending on the Cauchy prior scale r

and the Bayes factor threshold, the proportion of equivalence decisions is closer to 0.5

compared to the other two approaches. This can be seen in Figures 2, 3, and 4 by the fact

that the curves for the BF approach are shifted towards the right. Specifically, the BF

approach features higher true positive rates when conditions are truly equivalent but also

higher false positive rates when conditions are truly non-equivalent. Within the BF

approach, more conservative results are obtained for higher Bayes factor thresholds and

smaller Cauchy prior scales r. Therefore, in theory the BF approach can be made

arbitrarily conservative when higher Bayes factor thresholds and smaller Cauchy prior

scales are chosen (see also Lindley, 1957) but in practice the latter approach is not advised

because an extremely narrow or wide prior compromises objectivity, does not necessarily

represent the knowledge at hand, and lowers the diagnosticity of the test. Contrary to the

other two approaches, the BF approach displays at least some limited discriminatory

capabilities for situations with small n, as evident from the presence of a slope.

Discussion

Quantifying evidence that two conditions are practically equivalent on some

outcome measure of interest is important for various areas of research. The traditional

t-test cannot be used to answer this question because it only allows quantification of

evidence against but not in favor of equivalence (e.g., Bakan, 1966; van Ravenzwaaij et al.,

2019). However, there are alternative procedures that can be utilized to quantify evidence

in favor of equivalence, most prominently the frequentist TOST (Hodges & Lehmann, 1954;

Schuirmann, 1987; Westlake, 1976; see also Lakens, 2017; Lakens, Scheel, & Isager, 2018)

and the Bayesian HDI-ROPE (Kruschke, 2010, 2011, 2013, 2015, 2018; Kruschke et al.,

2012; Kruschke & Liddell, 2018a, 2018b) and BF (Morey & Rouder, 2011; van Ravenzwaaij

et al., 2019; see also Linde & van Ravenzwaaij, 2019a) procedures.
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We compared true and false positive rates for each of these three approaches in the

context of finding evidence towards equivalence for different scenarios that varied the

sample size, the equivalence margin, and the population effect size. The TOST and the

HDI-ROPE approaches behaved quite similarly. Both approaches did not discriminate

between truly equivalent and truly non-equivalent conditions when the sample size or the

equivalence margin were relatively small. In these situations, maximally conservative

behavior was observed, which was evident by the absence of equivalence decisions. As the

sample size or the equivalence margin increased, classifications improved but both

approaches remained comparatively conservative in terms of deciding for equivalence.

Although far from perfect, the BF approach exhibited some discriminatory capabilities

even for small sample sizes and equivalence margins. Decisions improved as the sample size

or the equivalence margin increased. In contrast to the TOST and HDI-ROPE approaches,

the BF approach was comparatively liberal in terms of deciding for equivalence. This

implies that the BF approach elicits more true positives but also more false positives

compared to the other two approaches.

Although our results suggest that the TOST and HDI-ROPE approaches are

conservative and the BF approach comparatively liberal, it should be noted that

theoretically all three approaches can be made arbitrarily conservative (or liberal). The BF

approach can be made more conservative by setting higher evidence thresholds and by

using smaller Cauchy prior scales (or local priors around 0 in general). For the HDI-ROPE

approach, we can also change the prior and adjust the probability of the HDI to control the

degree of conservativeness. Lastly, for the TOST procedure the significance level α could

be increased or decreased to make it more liberal or conservative, respectively. Practically,

however, it is undesirable to decrease the probability of the HDI and to increase α for

TOST. Decreasing the probability of the HDI implies lower certainty, which is undesirable.

Similar concerns exist for increasing α for TOST: Many have argued that the default

significance level of α = .05 is already too liberal and should even be lowered in order to
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avoid a high rate of false positive findings (e.g., Benjamin et al., 2018; Greenwald,

Gonzalez, Harris, & Guthrie, 1996; but see, e.g., De Ruiter, 2019; Lakens, Adolfi, et al.,

2018). Given these practical considerations, we conclude that the TOST and the

HDI-ROPE approaches are not suitable for research with small sample sizes.

The TOST and HDI-ROPE approaches might be suitable options when the research

problem allows sampling of a large number of cases. We argue that for relatively small

sample sizes and narrow equivalence intervals, these two approaches should be avoided

because they do not possess any or only very limited discriminatory capabilities (see

Figures 2, 3, and 4). At the most extreme, using the TOST or HDI-ROPE approaches on

samples with a few hundred cases and a reasonable equivalence interval results in a

foregone decision for non-equivalence, making them poor choices for practical settings. In

general, making decisions based on studies with small samples should be avoided. However,

if larger sample sizes are impossible to achieve (e.g., neuropsychological studies on very

rare disorders; or studies on infant speech development where the participants lose

attention after a few trials), we prefer the use of Bayes factors to test for equivalence, since

the BF approach could at least discriminate between truly equivalent and truly

non-equivalent conditions to some extent in situations with sparse data. Furthermore, only

the BF approach collapses into a regular point hypothesis test as the equivalence margin

approaches 0; the TOST and the HDI-ROPE approaches fail to work in this situation (see

Meyners, 2012, for an explanation).

As a result, we recommend the use of Bayes factors for quantifying evidence towards

equivalence. Bayes factors for equivalence designs can easily be calculated with the

baymedr (Linde & van Ravenzwaaij, 2019b) or the BayesFactor (Morey & Rouder, 2018)

packages written in R (R Core Team, 2019) or with JASP (JASP Team, 2020).

Conclusions

Quantifying evidence that two groups are equivalent on some outcome measure is an

important tool for various areas of science. Unfortunately, traditional NHST cannot be
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utilized for this because a non-significant p-value could indicate that H0 of no effect is true

or that there was not enough power to detect an effect; it is impossible to disentangle the

two possibilities (e.g., Bakan, 1966; van Ravenzwaaij et al., 2019). The frequentist TOST,

the Bayesian HDI-ROPE, and the interval BF approaches allow for quantifying evidence

for equivalence. We compared the classification performances of these approaches for

various scenarios and found that the BF approach is particularly useful for research with

small sample sizes, although obtaining more data should always be preferred. With small

samples, the TOST and HDI-ROPE approaches have no discriminatory power and result in

a foregone decision for non-equivalence. For large sample sizes the three approaches all

have near-perfect classification when the population effect size is close to zero or very large,

but the BF approach outperforms both other approaches for population effect sizes near

the edge of the equivalence interval. Taking all of this together, we recommend the use of

interval Bayes factors for gathering evidence for equivalence.
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Appendix

TOST and Its Statistical Power

For the TOST procedure (Hodges & Lehmann, 1954; Schuirmann, 1987; Westlake, 1976;

see also Lakens, 2017; Lakens, Scheel, & Isager, 2018) we assume here that we have two

independent samples that are drawn from Normal distributions: xij ∼ Normal (µi, σ) for

i ∈ {c, e} and j ∈ {1, . . . , ni}. Sample means and standard deviations are denoted x̄i and

si, respectively, and the pooled standard deviation is

s =
√

((nc − 1) s2
c + (ne − 1) s2

e) / (nc + ne − 2). We use a symmetric unstandardized

equivalence interval (−λ, λ). The difference in population means of the two groups is

θ = µe − µc.

TOST consists of conducting two one-sided tests. The first one is concerned with

the lower boundary −λ of the equivalence interval

H0−λ: θ ≤ −λ H1−λ: θ > −λ (A.1)

and the second one with the upper boundary λ of the equivalence interval

H0λ: θ ≥ λ H1λ: θ < λ. (A.2)

The null and alternative hypotheses of the two one-sided tests in Equations A.1 and A.2

can be compressed as

H0: θ ≤ −λ OR θ ≥ λ H1: θ > −λ AND θ < λ. (A.3)

We conduct two one-sided t-tests. Assuming equal variances of the two conditions in the

population, the standard error is se = s
√

1/nc + 1/ne with df = nc + ne − 2 degrees of

freedom. H0 of non-equivalence is rejected with a Type I error rate of α if

t−λ = x̄e − x̄c − (−λ)
se

> t1−α, df AND tλ = x̄e − x̄c − λ
se

< −t1−α, df , (A.4)

where t1−α, df is the critical t-value at the 1− α quantile and with df degrees of freedom.
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Equation A.4 is equivalent to

−λ < (x̄e − x̄c)− t1−α, df × se AND (x̄e − x̄c) + t1−α, df × se < λ. (A.5)

Observe that

((x̄e − x̄c)− t1−α, df × se, (x̄e − x̄c) + t1−α, df × se) (A.6)

is the (1− 2α) 100% CI for x̄e − x̄c. So, rejecting H0 of TOST at significance level α is

equivalent to having the (1− 2α) 100% CI for (x̄e − x̄c) completely inside the equivalence

region (−λ, λ).

This observation lets us define the rejection region (RR) of TOST (e.g., Tsai,

Huang, & Liu, 2014); from Equation A.6 it follows that

RR = {−λ+ t1−α, df × se < x̄e − x̄c < λ− t1−α, df × se} . (A.7)

Values to the left of the RR pertain to non-significance of t−λ while values to the right of

the RR pertain to non-significance of tλ. The RR can be visualized by plotting x̄e − x̄c on

the x-axis and se on the y-axis, which yields an isosceles triangle with two vertices at

x̄e − x̄c = −λ and x̄e − x̄c = λ, with se = 0, and one vertex at x̄e − x̄c = 0, with se reaching

a maximum (cf. Meyners, 2012; Schuirmann, 1987). Importantly, the RR is only defined if

se < λ/t1−α, df (Shieh, 2016).

The power function is the probability associated with the RR (see Equation A.7):

1− β = p (−λ+ t1−α, df × se < x̄e − x̄c < λ− t1−α, df × se) . (A.8)

Suppose that the true difference in means, θ, lies under H1 (i.e., −λ < θ < λ). In this case,

we have that x̄e − x̄c ∼ Normal
(
θ, σ

√
1/nc + 1/ne

)
and can therefore rewrite
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Equation A.8:

1− β = p


−λ− θ + t1−α, df × se

σ

√
1
nc

+ 1
ne

<

︷ ︸︸ ︷
(x̄e − x̄c)− θ

σ

√
1
nc

+ 1
ne︸ ︷︷ ︸

∼Normal(0, 1)

<
λ− θ − t1−α, df × se

σ

√
1
nc

+ 1
ne



= Φ

λ− θ − t1−α, df × se
σ

√
1
nc

+ 1
ne

− Φ

−λ− θ + t1−α, df × se

σ

√
1
nc

+ 1
ne



= Φ

 λ− θ

σ

√
1
nc

+ 1
ne

− t1−α, df
s

σ

− Φ

 −λ− θ

σ

√
1
nc

+ 1
ne

+ t1−α, df
s

σ

 ,

(A.9)

where Φ (·) denotes the cumulative distribution function of the standard Normal

distribution. As a consequence of Cochran’s theorem (Cochran, 1934), we have

V = df (s2/σ2) ∼ χ2 (df). Rewriting s/σ as
√
V/df , Equation A.9 becomes

1− β =Φ

 λ− θ

σ

√
1
nc

+ 1
ne

− t1−α, df
√
V

df



− Φ

 −λ− θ

σ

√
1
nc

+ 1
ne

+ t1−α, df

√
V

df

 .

(A.10)

The power function is thus rewritten as a function of the χ2-distributed random variable

V . As a result, s was removed and instead its uncertainty was incorporated through the χ2

distribution.



DECISIONS ABOUT EQUIVALENCE 38

We can express the power through an integral:

1− β =
∫ ∞

0

Φ

 λ− θ

σ

√
1
nc

+ 1
ne

− t1−α, df
√
v

df



−Φ

 −λ− θ

σ

√
1
nc

+ 1
ne

+ t1−α, df

√
v

df


ϕdf (v) dv,

(A.11)

where ϕdf (·) is the density of the χ2 distribution with df degrees of freedom. The limits of

the integral reflect the support of a typical χ2 distribution, which is in the interval (0, ∞).

However, in our case these limits of the integral cannot apply because the RR is only

defined if se < λ/t1−α, df (Shieh, 2016). This implies that

V = df
s2

σ2 <
dfλ2

σ2t21−α, df

( 1
nc

+ 1
ne

) := V ∗. (A.12)

We must therefore constrain the integration interval to (0, V ∗):

1− β =
∫ V ∗

0

Φ

 λ− θ

σ

√
1
nc

+ 1
ne

− t1−α, df
√
v

df



− Φ

 −λ− θ

σ

√
1
nc

+ 1
ne

+ t1−α, df

√
v

df


ϕdf (v) dv.

(A.13)

Function to Compute Power for TOST

Shieh (2016) provided a function, written in R (R Core Team, 2019), that

numerically solves the integral in Equation A.13. We adapted and improved this function

by applying more accurate numerical integration and by improving readability of the code

and eliminating defined but unused variables (this and other code can be accessed at

https://osf.io/f9dw2/):

tost <- function(

https://osf.io/f9dw2/
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n1, #sample size 1st group

n2, #sample size 2nd group

alpha, #type 1 error rate

margin, #equivalence margin (unstandardized)

es, #effect size

sd #population standard deviation

) {

sd_sq <- sd^2

num_int <- 100000

df <- n1 + n2 - 2

t_crit <- qt(1 - alpha, df)

n_fac <- 1 / n1 + 1 / n2

var <- sd_sq * n_fac

std <- sqrt(var)

cu <- (df * margin^2) / (var * t_crit^2)

cvec <- seq(0, cu, length.out = num_int)

st <- sqrt(cvec / df) * t_crit

int_arg <- (pnorm((margin - es) / std - st) -

pnorm((-margin - es) / std + st)) *

dchisq(cvec, df)

width <- cvec[2] - cvec[1]

epower <- sum(width * int_arg)

return(epower)

}

The code above relates to our formulas in the following way:

• sd_sq = σ2



DECISIONS ABOUT EQUIVALENCE 40

• num_int is the number of integration points

• df = df

• t_crit = t1−α, df

• n_fac = 1/n1 + 1/n2

• var = σ2 (1/n1 + 1/n2)

• std = σ
√

1/n1 + 1/n2

• cu = V ∗

• cvec is a vector of equally spaced integration points of length num_int in the interval

[0, V ∗]

• epower solves Equation A.13 through numerical integration.

Power for TOST with Non-central t Distributions

Power for TOST can also be approached with the non-central t distribution. First,

we can rewrite the t−λ and tλ test statistics as follows (see, e.g., Phillips, 1990,

Equation 5):

t−λ = x̄e − x̄c − (−λ)

s

√
1
nc

+ 1
ne

= (x̄e − x̄c − θ) + (θ + λ)

s

√
1
nc

+ 1
ne

=

x̄e − x̄c − θ

σ

√
1
nc

+ 1
ne

+ θ + λ

σ

√
1
nc

+ 1
ne

s

√
1
nc

+ 1
ne

σ

√
1
nc

+ 1
ne

=

N (0, 1)︷ ︸︸ ︷
x̄e − x̄c − θ

σ

√
1
nc

+ 1
ne

+

NCP−λ︷ ︸︸ ︷
θ + λ

σ

√
1
nc

+ 1
ne√√√√√√√

(
s2

σ2/df

)
︸ ︷︷ ︸

χ2
df

/df

∼ tdf (NCP−λ) ,

(A.14)
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where tdf is the probability density function of the non-central t distribution with df degrees

of freedom and the given non-centrality parameter NCP. The result is similar for tλ:

tλ = x̄e − x̄c − λ

s

√
1
nc

+ 1
ne

∼ tdf (NCPλ) , NCPλ = θ − λ

σ

√
1
nc

+ 1
ne

. (A.15)

Then, we rewrite Equation A.8:

1− β =1− p
(
x̄e − x̄c < −λ+ t1−α, df × s

√
1
nc

+ 1
ne

)

− p
(
λ− t1−α, df × s

√
1
nc

+ 1
ne

< x̄e − x̄c
)

=1− p

 x̄e − x̄c + λ

s

√
1
nc

+ 1
ne

< t1−α, df

− p
 x̄e − x̄c − λ
s

√
1
nc

+ 1
ne

> −t1−α, df

 (A.16)

=1− Tdf

t1−α, df
∣∣∣∣∣∣ θ + λ

σ

√
1
nc

+ 1
ne

− 1 + Tdf

−t1−α, df
∣∣∣∣∣∣ θ − λ

σ

√
1
nc

+ 1
ne



=Tdf

−t1−α, df
∣∣∣∣∣∣ θ − λ

σ

√
1
nc

+ 1
ne

− Tdf
t1−α, df

∣∣∣∣∣∣ θ + λ

σ

√
1
nc

+ 1
ne

 , (A.17)

where Tdf (· | NCP) is the cumulative distribution function for the non-central t distribution

with df degrees of freedom and non-centrality parameter NCP. In the last equality of

Equations A.16 and A.17, a property of function Tdf (· | NCP) is used, namely that

Tdf (−x | NCP) = 1− Tdf (x | −NCP). Equation A.17 is the power formula in Chow, Shao,

and Wang (2002, p. 451, formula 2) and also Shieh (2016, formula A4 in supplement S1).

Equation A.17 gives another formula to compute power. Importantly, however,

Equation A.17 is an approximation and is only exact under the constraint that

s
√

1/nc + 1/ne < λ/t1−α, df (cf. Shieh, 2016, p. 2 in supplement S1). Shieh (2016) argues

that this constraint is inconsequential in most situations (see also Siqueira, Whitehead,

Todd, & Lucini, 2005; Wang & Chow, 2002). The probability that the constraint is not
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met is:

p

(
s

√
1
nc

+ 1
ne

>
λ

t1−α, df

)
= 1− p

s < λ

t1−α, df

√
1
nc

+ 1
ne



= 1− p


√
df
s

σ
<

√
dfλ

σt1−α, df

√
1
nc

+ 1
ne



= 1−Fχ2
df

 dfλ2

σ2t21−α, df

( 1
nc

+ 1
ne

)


= 1−Fχ2
df

(V ∗) .

(A.18)

Here Fχ2
df

(·) is the distribution function of the χ2 distribution with df degrees of freedom.

So, the approximation given by Equation A.17 (see also Shieh, 2016, Equation A4 in

supplement 1) is not good once V ∗ becomes small. For instance, when the equivalence

interval is tight around 0 (i.e., λ is small). Expressed differently, we get into problems when

χ2 (df) has a lot of mass above V ∗ (see Equation A.13).
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