
Matteo Baldoni, Tran Cao Son
M. Birna van Riemsdijk, Michael Winikoff (eds.)

Declarative Agent Languages
and Technologies

Fifth International Workshop, DALT 2007
Honolulu, Hawai’i, May 14th, 2007

Workshop Notes

DALT 2007 Home Page:
http://www.di.unito.it/~baldoni/DALT-2007/

Preface

The workshop on Declarative Agent Languages and Technologies (DALT), in its
fifth edition this year, is a well-established forum for researchers interested in
sharing their experiences in combining declarative and formal approaches with
engineering and technology aspects of agents and multiagent systems. Building
complex agent systems calls for models and technologies that ensure predictabil-
ity, allow for the verification of properties, and guarantee flexibility. Developing
technologies that can satisfy these requirements still poses an important and
difficult challenge. Here, declarative approaches have the potential of offering
solutions that satisfy the needs for both specifying and developing multiagent
systems. Moreover, they are gaining more and more attention in important ap-
plication areas such as the semantic web, web services, security, and electronic
contracting.

DALT 2007 is being held as a satellite workshop of AAMAS 2007, the 6th
International Joint Conference on Autonomous Agents and Multiagent Systems,
in Honolulu, Hawai’i. Following the success of DALT 2003 in Melbourne (LNAI
2990), DALT 2004 in New York (LNAI 3476), DALT 2005 in Utrecht (LNAI
3904), and DALT 2006 in Hakodate (LNAI 4327), DALT will again aim at provid-
ing a discussion forum to both (i) support the transfer of declarative paradigms
and techniques to the broader community of agent researchers and practitioners,
and (ii) to bring the issue of designing complex agent systems to the attention
of researchers working on declarative languages and technologies.

This volume containts the eleven papers that have been selected by the Pro-
gramme Committee for presentation at the workshop. Each paper received at
least three reviews in order to supply the authors with a rich feedback that could
stimulate the research as well as foster the discussion.

We would like to thank all authors for their contributions, the members of the
Steering Committee for the precious suggestions and support, and the members
of the Programme Committee for the excellent work during the reviewing phase.

March 26th, 2007

Matteo Baldoni
Tran Cao Son

M. Birna van Riemsdijk
Michael Winikoff

VI

Workshop Organisers

Matteo Baldoni University of Torino, Italy
Tran Cao Son New Mexico State University, USA
M. Birna van Riemsdijk Ludwig-Maximilians-Universitaet Muenchen, Ger-

many
Michael Winikoff RMIT University, Australia

Programme Committee

Marco Alberti University of Ferrara, Italy
Natasha Alechina University of Nottingham, UK
Grigoris Antoniou University of Crete, Greece
Matteo Baldoni University of Torino, Italy, Co-chair

Cristina Baroglio University of Torino, Italy
Rafael Bordini University of Durham, UK
Keith Clark Imperial College London, UK
Ulle Endriss University of Amsterdam, The Netherlands
Benjamin Hirsch Technical University Berlin, Germany
Shinichi Honiden National Institute of Informatics, Japan
John Lloyd Australian National University, Australia
Viviana Mascardi University of Genova, Italy
John-Jules Ch. Meyer Utrecht University, The Netherlands
Enrico Pontelli New Mexico State University, USA
Birna van Riemsdijk Ludwig-Maximilians-Universitaet Muenchen, Ger-

many, Co-chair

Munindar Singh North Carolina State University, USA
Tran Cao Son New Mexico State University, USA, Co-chair

Chiaki Sakama Wakayama University, Japan
Wamberto Vasconcelos University of Aberdeen, UK
Mirko Viroli University of Bologna, Italy
Michael Winikoff RMIT University, Melbourne, Australia, Co-chair

Steering Committee

João Leite New University of Lisbon, Portugal
Andrea Omicini University of Bologna-Cesena, Italy
Leon Sterling University of Melbourne, Australia
Paolo Torroni University of Bologna, Italy
Pınar Yolum Bogazici University, Turkey

Additional Reviewers

Sebastian Sardina
Berndt Farwer

Martin Caminada Nirmit Desai
Yasuyuki Tahara

VII

Sponsoring Institutions

Matteo Baldoni has partially been funded by the European Commission and by
the Swiss Federal Office for Education and Science within the 6th Framework
Programme project REWERSE number 506779 (cf. http://rewerse.net), and it
has also been supported by MIUR PRIN 2005 “Specification and verification of
agent interaction protocols” national project.

M. Birna van Riemsdijk has partially supported by the project SENSORIA,
IST-2005-016004.

Table of Contents

Integrating Agent Models and Dynamical Systems . 1
Tibor Bosse, Alexei Sharpanskykh, Jan Treur

On the Complexity Monotonicity Thesis for Environment, Behaviour
and Cognition . 17
Tibor Bosse, Alexei Sharpanskykh, Jan Treur

Component-Based Standardisation of Agent Communication 33
Frank Guerin, Wamberto Vasconcelos

Satisfying Maintenance Goals . 49
Koen V. Hindriks, M. Birna van Riemsdijk

Conflict Resolution in Norm-Regulated Environments via Unification
and Constraints . 67
Martin J. Kollingbaum, Wamberto Vasconcelos, Andres Garcia-Camino,

Timothy J. Norman

Structured Argumentation for Mediator in Online Dispute Resolution . . . 83
Ioan Alfred Letia, Adrian Groza

Reflections on Agent Beliefs . 99
John W. Lloyd, Kee Siong Ng

Composing high-level plans for declarative agent programming 115
Felipe Meneguzzi, Michael Luck

Modelling Agents Choices in Temporal Linear Logic 131
Duc Quang Pham, James Harland, Michael Winikoff

Extending Propositional Logic with Concrete Domains in Multi-issue
Bilateral Negotiation . 148
Azzurra Ragone, Tommaso Di Noia, Eugenio Di Sciascio, Francesco

M. Donini

Towards Alternative Approaches to Reasoning about Goals 164
Patricia Shaw, Rafael H. Bordini

Author Index . 182

Integrating Agent Models and Dynamical Systems

Tibor Bosse, Alexei Sharpanskykh, and Jan Treur

Vrije Universiteit Amsterdam, Department of Artificial Intelligence,

De Boelelaan 1081a, 1081 HV, The Netherlands
{tbosse, sharp, treur}@cs.vu.nl

http://www.cs.vu.nl/~{tbosse, sharp, treur}

Abstract. Agent-based modelling approaches are usually based on logical
languages, whereas in many areas dynamical system models based on
differential equations are used. This paper shows how to model complex agent
systems, integrating quantitative, numerical and qualitative, logical aspects, and
how to combine logical and mathematical analysis methods.

1 Introduction

Existing models for complex systems are often based on quantitative, numerical
methods such as Dynamical Systems Theory (DST) [23], and more in particular,
differential equations. Such approaches often use numerical variables to describe
global aspects of the system and how they affect each other over time; for example,
how the number of predators affects the number of preys. An advantage of such
numerical approaches is that numerical approximation methods and software
environments are available for simulation.

The relatively new agent-based modelling approaches to complex systems take into
account the local perspective of a possibly large number of separate agents and their
specific behaviours in a system; for example, the different individual predator agents
and prey agents. These approaches are usually based on qualitative, logical languages.
An advantage of such logical approaches is that they allow (automated) logical
analysis of the relationships between different parts of a model, for example
relationships between global properties of the (multi-agent) system as a whole and
local properties of the basic mechanisms within (agents of) the system. Moreover, by
means of logic-based approaches, declarative models of complex systems can be
specified using knowledge representation languages that are close to the natural
language. An advantage of such declarative models is that they can be considered and
analysed at a high abstract level. Furthermore, automated support (e.g., programming
tools) is provided for manipulation and redesign of models.

Complex systems, for example organisms in biology or organisations in the socio-
economic area, often involve both qualitative aspects and quantitative aspects. In
particular, in the area of Cognitive Science, the lower-level cognitive processes of
agents (e.g., sensory or motor processing) are often modelled using DST-based
approaches. Furthermore, at the global level the dynamics of the environment, in
which agents are situated, is often described by continuous models (i.e., models based

1

on differential equations); e.g., dynamic models of markets, or natural environmental
oscillations. Yet agent-based (logical) languages are often used for describing high-
level cognitive processes of agents (e.g., processes related to reasoning) and agent
interaction with the environment (e.g., agent actions, execution of tasks).

It is not easy to integrate both types of approaches in one modelling method. On
the one hand, it is difficult to incorporate logical aspects in differential equations. For
example, qualitative behaviour of an agent that depends on whether the value of a
variable is below or above a threshold is difficult to describe by differential equations.
On the other hand, quantitative methods based on differential equations are not usable
in the context of most logical, agent-based modelling languages, as these languages
are not able to handle real numbers and calculations.

This paper shows an integrative approach to simulate and analyse complex
systems, integrating quantitative, numerical and qualitative, logical aspects within one
expressive temporal specification language. Some initial ideas behind the simulation
approach proposed in this paper were described in [6]. The current paper elaborates
upon these ideas by proposing more extensive means to design precise, stable, and
computationally effective simulation models for hybrid systems (i.e., comprising both
quantitative and qualitative aspects). Furthermore, it proposes techniques for analysis
of hybrid systems, which were not previously considered elsewhere. The developed
simulation and analysis techniques are supported by dedicated tools.

In Section 2, this language (called LEADSTO) is described in detail, and is applied
to solve an example differential equation. In Section 3, it is shown how LEADSTO
can solve a system of differential equations (for the case of the classical Predator-Prey
model), and how it can combine quantitative and qualitative aspects within the same
model. Section 4 demonstrates how existing methods for approximation (such as the
Runge-Kutta methods) can be incorporated into LEADSTO, and Section 5 shows how
existing methods for simulation with dynamic step size can be incorporated. Section 6
demonstrates how interlevel relationships can be established between dynamics of
basic mechanisms (described in LEADSTO) and global dynamics of a process
(described in a super-language of LEADSTO). Finally, Section 7 is a discussion.

2 Modelling Dynamics in LEADSTO

Dynamics can be modelled in different forms. Based on the area within Mathematics
called calculus, the Dynamical Systems Theory [23] advocates to model dynamics by
continuous state variables and changes of their values over time, which is also
assumed continuous. In particular, systems of differential or difference equations are
used. This may work well in applications where the world states are modelled in a
quantitative manner by real-valued state variables. The world’s dynamics in such
application show continuous changes in these state variables that can be modelled by
mathematical relationships between real-valued variables. However, not for all
applications dynamics can be modelled in a quantitative manner as required for DST.
Sometimes qualitative changes form an essential aspect of the dynamics of a process.
For example, to model the dynamics of reasoning processes usually a quantitative
approach will not work. In such processes states are characterised by qualitative state

2

properties, and changes by transitions between such states. For such applications often
qualitative, discrete modelling approaches are advocated, such as variants of modal
temporal logic, e.g. [20]. However, using such non-quantitative methods, the more
precise timing relations are lost too. For the LEADSTO language described in this
paper, the choice has been made to consider the timeline as continuous, described by
real values, but for state properties both quantitative and qualitative variants can be
used. The approach subsumes approaches based on simulation of differential or
difference equations, and discrete qualitative modelling approaches. In addition, the
approach makes it possible to combines both types of modelling within one model.
For example, it is possible to model the exact (real-valued) time interval for which
some qualitative property holds. Moreover, the relationships between states over time
are described by either logical or mathematical means, or a combination thereof. This
will be explained in more detail in Section 2.1. As an illustration, in Section 2.2 it will
be shown how the logistic model for population growth in resource-bounded
environments [4] can be modelled and simulated in LEADSTO.

2.1 The LEADSTO Language

Dynamics is considered as evolution of states over time. The notion of state as used
here is characterised on the basis of an ontology defining a set of properties that do or
do not hold at a certain point in time. For a given (order-sorted predicate logic)
ontology Ont, the propositional language signature consisting of all state ground atoms
(or atomic state properties) based on Ont is denoted by APROP(Ont). The state
properties based on a certain ontology Ont are formalised by the propositions that can
be made (using conjunction, negation, disjunction, implication) from the ground
atoms. A state S is an indication of which atomic state properties are true and which
are false, i.e., a mapping S: APROP(Ont) → {true, false}.

To specify simulation models a temporal language has been developed. This
language (the LEADSTO language [7]) enables to model direct temporal
dependencies between two state properties in successive states, also called dynamic
properties. A specification of dynamic properties in LEADSTO format has as
advantages that it is executable and that it can often easily be depicted graphically.
The format is defined as follows. Let α and β be state properties of the form
‘conjunction of atoms or negations of atoms’, and e, f, g, h non-negative real numbers.
In the LEADSTO language the notation α →→e, f, g, h β (also see Fig. 1), means:

If state property α holds for a certain
time interval with duration g, then
after some delay (between e and f)
state property β will hold for a
certain time interval of length h.

Fig. 1. Timing relationships for LEADSTO expressions.

An example dynamic property that uses the LEADSTO format defined above is
the following: “observes(agent_A, food_present) →→ 2, 3, 1, 1.5 beliefs(agent_A, food_present)”.

α
β

t1

e

g h

t2

time

f
t0

3

Informally, this example expresses the fact that, if agent A observes that food is
present during 1 time unit, then after a delay between 2 and 3 time units, agent A will
belief that food is present during 1.5 time units. In addition, within the LEADSTO
language it is possible to use sorts, variables over sorts, real numbers, and
mathematical operations, such as in “has_value(x, v) →→ e, f, g, h has_value(x, v*0.25)”. Next,
a trace or trajectory γ over a state ontology Ont is a time-indexed sequence of states
over Ont (where the time frame is formalised by the real numbers). A LEADSTO
expression α →→e, f, g, h β, holds for a trace γ if:
∀ t1 [∀ t [t1–g ≤ t < t1 � α holds in γ at time t] � ∃ d [e ≤ d ≤ f & ∀ t' [t1+d ≤ t' < t1+d+h � β holds in γ at time t']

To specify the fact that a certain event (i.e., a state property) holds at every state
(time point) within a certain time interval a predicate holds_during_interval(event, t1, t2)
is introduced. Here event is some state property, t1 is the beginning of the interval and
t2 is the end of the interval.

An important use of the LEADSTO language is as a specification language for
simulation models. As indicated above, on the one hand LEADSTO expressions can
be considered as logical expressions with a declarative, temporal semantics, showing
what it means that they hold in a given trace. On the other hand they can be used to
specify basic mechanisms of a process and to generate traces, similar to Executable
Temporal Logic [3]. More details on the semantics of the LEADSTO language can be
found in [7].

2.2 Solving the Initial Value Problem in LEADSTO: Euler’s method

Often behavioural models in the Dynamical Systems Theory are specified by systems
of differential equations with given initial conditions for continuous variables and
functions. A problem of finding solutions to such equations is known as an initial
value problem in the mathematical analysis. One of the approaches for solving this
problem is based on discretisation, i.e., replacing a continuous problem by a discrete
one, whose solution is known to approximate that of the continuous problem. For this
methods of numerical analysis are usually used [22]. The simplest approach for
finding approximations of functional solutions for ordinary differential equations is
provided by Euler’s method. Euler’s method for solving a differential equation of the
form dy/dt = f(y) with the initial condition y(t0)=y0 comprises the difference equation
derived from a Taylor series:

y(t) = n

n

n

tt
n

ty
)(*

!
)(

0
0

0
)(

−�
∞

=

,

where only the first member is taken into account: yi+1=yi+h* f(yi), where i≥0 is the step
number and h>0 is the integration step size. This equation can be modelled in the
LEADSTO language in the following way:

• Each integration step corresponds to a state, in which an intermediate value of y
is calculated.

• The difference equation is modelled by a transition rule to the successive state in
the LEADSTO format.

• The duration of an interval between states is defined by a step size h.
Thus, for the considered case the LEADSTO simulation model comprises the rule:

4

has_value(y, v1) →→ 0, 0, h, h has_value(y, v1+h* f(v1))

The initial value for the function y is specified by the following LEADSTO rule:

holds_during_interval(has_value(y, y0), 0, h)

By performing a simulation of the obtained model in the LEADSTO environment
an approximate functional solution to the differential equation can be found.

To illustrate the proposed simulation-based approach based on Euler’s method in
LEADSTO, the logistic growth model or the Verhulst model [4] which is often used
to describe the population growth in resource-bounded environments, is considered:
dP/dt = r*P(1-P/K), where P is the population size at time point t; r and K are some
constants. This model corresponds to the following LEADSTO simulation model:
has_value(y, v1) →→ 0, 0, h, h has_value(y, v1+ h*r* v1*(1-v1/K)).

Fig. 2. Logistic growth function modelled in LEADSTO with parameters r=0.5, K=10, P(0)=1.

3 Modelling the Predator-Prey Model in LEADSTO

The proposed simulation-based approach can be applied for solving a system of
ordinary differential equations. In order to illustrate this, the classical Lotka-Volterra
model (also known as a Predator-Prey model) [21] is considered. The Lotka-Volterra
model describes interactions between two species in an ecosystem, a predator and a
prey. The model consists of two equations: the first one describes how the prey
population changes and the second one describes how the predator population
changes. If x(t) and y(t) represent the number of preys and predators respectively, that
are alive in the system at time t, then the Lotka-Volterra model is defined by: dx/dt =
a*x - b*x*y ; dy/dt = c*b*x*y - e*y where the parameters are defined by: a is the per
capita birth rate of the prey, b is a per capita attack rate, c is the conversion efficiency
of consumed prey into new predators, and e is the rate at which predators die in the
absence of prey. To solve this system, numerical methods derived from a Taylor
series up to some order can be used. In the following section it will be shown how
Euler’s (first-order rough) method can be used for creating a LEADSTO simulation
model for finding the approximate solutions for the Predator-Prey problem. After that,
in Section 3.2 it will be demonstrated how the generated LEADSTO simulation model
can be extended by introducing qualitative behavioural aspects in the standard
predator-prey model.

The result of simulation
of this model in the
LEADSTO environment
with the parameters
r=0.5 and K=10 and the
initial value P(0)=1 is
given in Figure 2.

5

3.1 The LEADSTO language

Using the technique described in Section 2.2, the Lotka-Volterra model is translated
into a LEADSTO simulation model as follows:

has_value(x, v1) ∧ has_value(y, v2) →→ 0, 0, h, h has_value(x, v1+h*(a*v1-b*v1*v2))
has_value(x, v1) ∧ has_value(y, v2) →→ 0, 0, h, h has_value(y, v2+h*(c*b*v1*v2-e*v2))

The initial values for variables and functions are specified as for the general case.
Although Euler’s method offers a stable solution to a stable initial value problem, a
choice of initial values can significantly influence the model’s behaviour. More
specifically, the population size of both species will oscillate if perturbed away from
the equilibrium. The amplitude of the oscillation depends on how far the initial values
of x and y depart from the equilibrium point. The equilibrium point for the considered
model is defined by the values x=e/(c*b) and y=a/b. For example, for the parameter
settings a=1.5, b=0.2, c=0.1 and e=0.5 the equilibrium is defined by x=25 and y=7.5. Yet
a slight deviation from the equilibrium point in the initial values (x0=25, y0=8) results
in the oscillated (limit cycle) behaviour.

3.2 Extending the Standard Predator-Prey Model with Qualitative Aspects

In this section, an extension of the standard predator-prey model is considered, with
some qualitative aspects of behaviour. Assume that the population size of both
predators and preys within a certain eco-system is externally monitored and controlled
by humans. Furthermore, both prey and predator species in this eco-system are also
consumed by humans. A control policy comprises a number of intervention rules that
ensure the viability of both species. Among such rules could be following:
- in order to keep a prey species from extinction, a number of predators should be

controlled to stay within a certain range (defined by pred_min and pred_max);
- if a number of a prey species falls below a fixed minimum (prey_min), a number of

predators should be also enforced to the prescribed minimum (pred_min);
- if the size of the prey population is greater than a certain prescribed bound

(prey_max), then the size of the prey species can be reduced by a certain number
prey_quota (cf. a quota for fish catch).
These qualitative rules can be encoded into the LEADSTO simulation model for

the standard predator-prey case by adding new dynamic properties and changing the
existing ones in the following way:

has_value(x, v1) ∧ has_value(y, v2) ∧ v1< prey_max →→ 0, 0, h, h has_value(x, v1+h*(a*v1-b*v1*v2))
has_value(x, v1) ∧ has_value(y, v2) ∧ v1 ≥ prey_max →→ 0, 0, h, h

has_value(x, v1+h*(a*v1-b*v1*v2) - prey_quota)
has_value(x, v1) ∧ has_value(y, v2) ∧ v1 ≥ prey_min ∧ v2 < pred_max →→ 0, 0, h, h

has_value(y, v2+h* (c*b*v1*v2-e*v2))
has_value(x, v1) ∧ has_value(y, v2) ∧ v2 ≥ pred_max →→ 0, 0, h, h has_value(y, pred_min)
has_value(x, v1) ∧ has_value(y, v2) ∧ v1 < prey_min →→ 0, 0, h, h has_value(y, pred_min)

The result of simulation of this model using Euler’s method with the parameter
settings: a=4; b=0.2, c=0.1, e=8, pred_min=10, pred_max=30, prey_min=40, prey_max=100,
prey_quota=20, x0=90, y0=10 is given in Fig. 3. More examples of the LEADSTO
simulation models combining quantitative and qualitative aspects of behaviour can be

6

found in [5] and [6]. In [6], a LEADSTO model for classical conditioning is
presented, based on Machado’s differential equation model [18]. This model
integrates quantitative aspects such as levels of preparation with qualitative aspects
such as the occurrences of certain stimuli. In [5], a LEADSTO model for eating
regulation disorders is presented. This model integrates quantitative aspects such as a
person’s weight with qualitative aspects such as the decision to eat.

Fig. 3. Simulation results for the Lotka-Volterra model combined some qualitative aspects.

4 Simulating the Predator-Prey Model by the Runge-Kutta Method

As shown in [22], within Euler’s method the local error at each step (of size h) is
O(h2), while the accumulated error is O(h). However, the accumulated error grows
exponentially as the integration step size increases. Therefore, in situations in which
precision of a solution is required, high order numerical methods are used. For the
purpose of illustration of high-order numerical approaches the fourth-order Runge-
Kutta method is considered. This method is derived from a Taylor expansion up to the
fourth order. It is known to be very accurate (the accumulated error is O(h4)) and
stable for a wide range of problems. The Runge-Kutta method for solving a
differential equation of the form dx/dt = f(t, x) is described by the following formulae:

xi+1 = xi + h/6 *(k1 + 2*k2 + 2*k3 + k4),

where i≥0 is the step number, h>0 is the integration step size, and
k1 = f(ti, xi), k2 = f(ti + h/2, xi + h/2 *k1), k3 = f(ti + h/2, xi + h/2 *k2), k4 = f(ti + h, xi + h* k3).

Now, using the Runge-Kutta method, the classical Lotka-Volterra model
considered in the previous section is described in the LEADSTO format as follows:

has_value(x, v1) ∧ has_value(y, v2) →→ 0, 0, h, h has_value(x, v1 + h/6 *(k11 + 2*k12 + 2*k13 + k14))
has_value(x, v1) ∧ has_value(y, v2) →→ 0, 0, h, h has_value(y, v2 + h/6 *(k21 + 2*k22 + 2*k23 + k24)),

where:
k11 = a*v1-b*v1*v2, k21 = c*b*v1*v2 - e*v2, k12 = a*(v1 + h/2 *k11) - b*(v1 + h/2 *k11)*(v2 + h/2 *k21), k22 = c*b*(v1
+ h/2 *k11)*(v2 + h/2 *k21) - e*(v2 + h/2 *k21), k13 = a*(v1 + h/2 *k12) - b*(v1 + h/2 *k12)*(v2 + h/2 *k22), k23 =
c*b*(v1 + h/2 *k12)*(v2 + h/2 *k22) - e*(v2 + h/2 *k22), k14 = a*(v1 + h *k13) - b*(v1 + h *k13)*(v2 + h *k23), k24 =
c*b*(v1 + h *k13)*(v2 + h *k23) - e*(v2 + h *k23).

7

5 Simulation with Dynamic Step Size

Although for most cases the Runge-Kutta method with a small step size provides
accurate approximations of required functions, this method can still be
computationally expensive and, in some cases, inaccurate. In order to achieve a higher
accuracy together with minimum computational efforts, methods that allow the
dynamic (adaptive) regulation of an integration step size are used. This section shows
how such methods can be incorporated in LEADSTO.

To illustrate the use of methods for dynamic step size control, the biochemical
model of [13], summarised in Table 1, is considered.

Table. 1. Glycolysis model by [13].

Variables
W: Fructose 6-phosphate
X : phosphoenolpyruvate
Y : pyruvate
N1 : ATP; N2 : ADP; N3 : AMP

Differential equations
X'[t] == 2*Vpfk - Vxy
Y'[t] == Vxy - Vpdc
N1'[t] == Vxy + Vak - Vatpase
N2'[t] == -Vxy - 2*Vak + Vatpase

Moiety conservation
N1[t] + N2[t] + N3 = 20

Initial conditions
N1[0] == 10
N2[0] == 9
Y[0] == 0
X[0] == 0

Fixed metabolites
W = 0.0001; Z = 0

Rate equations
Vxy = 343*N2[t]*X[t]/((0.17 +
 N2[t])*(0.2 + X[t]))
Vak = -(432.9*N3*N1[t] -
 133*N2[t]^2)
Vatpase = 3.2076*N1[t]
Vpdc = 53.1328*Y[t]/(0.3 + Y[t])
 (*10.0*Y[t]*)
Vpfk = 45.4327*W^2/(0.021*(1 +
 0.15*N1[t]^2/N3^2 + W^2))

This model describes the process of glycolysis in Saccharomyces cerevisiae, a

specific species of yeast. This model is interesting to study, because the
concentrations of some of the substances involved (in particular ATP and ADP) are
changing at a variable rate: sometimes these concentrations change rapidly, and
sometimes they change very slowly. Using the technique described in Section 2.2
(based on Euler’s method), this model can be translated to the following LEADSTO
simulation model:

has_value(x, v1) ∧ has_value(y, v2) ∧ has_value(n1, v3) ∧ has_value(n2, v4) →→ 0, 0, h, h
has_value(x, v1+ (2* (45.4327*w^2/ (0.021* (1+0.15*v3^2/ (20-v3-v4)^2+w^2)))-343*v4*v1/
((0.17+v4)* (0.2+v1)))*h)

has_value(x, v1) ∧ has_value(y, v2) ∧ has_value(n1, v3) ∧ has_value(n2, v4) →→ 0, 0, h, h
has_value(y, v2+ (343*v4*v1/ ((0.17+v4)* (0.2+v1))-53.1328*v2/ (0.3+v2))*h)

has_value(x, v1) ∧ has_value(y, v2) ∧ has_value(n1, v3) ∧ has_value(n2, v4) →→ 0, 0, h, h
has_value(n1, v3+ (343*v4*v1/ ((0.17+v4)* (0.2+v1))+ (- (432.9* (20-v3-v4)*v3-133*v4^2))-
3.2076*v3)*h)

has_value(x, v1) ∧ has_value(y, v2) ∧ has_value(n1, v3) ∧ has_value(n2, v4) →→ 0, 0, h, h
has_value(n2, v4+ (-343*v4*v1/ ((0.17+v4)* (0.2+v1))-2*
(- (432.9* (20-v3-v4)*v3-133*v4^2))+3.2076*v3)*h)

The simulation results of this model (with a static step size of 0.00001) are shown
in Fig. 4. Here the curves for N1 and N2 are initially very steep, but become flat after
a while. As demonstrated by Figure 4, for the first part of the simulation, it is
necessary to pick a small step size in order to obtain accurate results. However, to
reduce computational efforts, for the second part a bigger step size is desirable. To
this end, a number of methods exist that allow the dynamic adaptation of the step size
in a simulation. Generally, these approaches are based on the fact that the algorithm

8

signals information about its own truncation error. The most straightforward (and
most often used) technique for this is step doubling and step halving, see, e.g. [Gear
1971]. The idea of step doubling is that, whenever a new simulation step should be
performed, the algorithm compares the result of applying the current step twice with
the result of applying the double step (i.e., the current step * 2) once. If the difference
between both solutions is smaller than a certain threshold � , then the double step is
selected. Otherwise, the algorithm determines whether step halving can be applied: it
compares the result of applying the current step once with the result of applying the
half step (i.e., the current step * 0.5) twice. If the difference between both solutions is
smaller than � , then the current step is selected. Otherwise, the half step is selected.

Fig. 4. Simulation results of applying Euler’s method to [13]’s glycolysis model.

Since its format allows the modeller to include qualitative aspects, it is not
difficult to incorporate step doubling and step halving into LEADSTO. To illustrate
this, consider the general LEADSTO rule shown in Section 2.2 for solving a
differential equation of the form dy/dt = f(y) using Euler’s method:

has_value(y, v1) →→ 0, 0, h, h has_value(y, v1+h* f(v1))

Adding step doubling and step halving to this rule yields the following three rules:

step(h) ∧ has_value(y, v1) ∧ |(v1+2h* f(v1)) - ((v1+h* f(v1))+h* f(v1+h* f(v1)))| ≤ ε
→→ 0, 0, 2h, 2h has_value(y, v1+2h* f(v1)) ∧ step(2h)

step(h) ∧ has_value(y, v1) ∧ |(v1+2h* f(v1)) - ((v1+h* f(v1))+h* f(v1+h* f(v1)))| > ε ∧
|(v1+h* f(v1)) - ((v1+0.5h* f(v1))+0.5h* f(v1+0.5h* f(v1)))| ≤ ε

→→ 0, 0, h, h has_value(y, v1+h* f(v1)) ∧ step(h)

step(h) ∧ has_value(y, v1) ∧ |(v1+h* f(v1)) - ((v1+0.5h* f(v1))+0.5h* f(v1+0.5h* f(v1)))| ≤ ε
→→ 0, 0, 0.5h, 0.5h has_value(y, v1+0.5h* f(v1)) ∧ step(0.5h)

Besides step doubling, many other techniques exist in the literature for dynamically
controlling the step size in quantitative simulations. Among these are several

9

techniques that are especially aimed at the Runge-Kutta methods, see, e.g., [24],
Chapter 16 for an overview. Although it is possible to incorporate such techniques
into LEADSTO, they are not addressed here because of space limitations.

6 Analysis In Terms of Local-Global Relations

Within the area of agent-based modelling, one of the means to address complexity is
by modelling processes at different levels, from the global level of the process as a
whole, to the local level of basic elements and their mechanisms. At each of these
levels dynamic properties can be specified, and by interlevel relations they can be
logically related to each other; e.g., [14], [27]. These relationships can provide an
explanation of properties of a process as a whole in terms of properties of its local
elements and mechanisms. Such analyses can be done by hand, but also software tools
are available to automatically verify the dynamic properties and their interlevel
relations. To specify the dynamic properties at different levels and their interlevel
relations, a more expressive language is needed than simulation languages based on
causal relationships, such as LEADSTO. The reason for this is that, although the latter
types of languages are well suited to express the basic mechanisms of a process, for
specifying global properties of a process it is often necessary to formulate complex
relationships between states at different time points. To this end, the formal language
TTL has been introduced as a super-language of LEADSTO; cf. [8]. It is based on
order-sorted predicate logic and, therefore, inherits the standard semantics of this
variant of predicate logic. That is, the semantics of TTL is defined in a standard way,
by interpretation of sorts, constants, functions and predicates, and variable
assignments. Furthermore, TTL allows representing numbers and arithmetical
functions. Therefore, most methods used in Calculus are expressible in TTL,
including methods based on derivatives and differential equations. In this section, first
(in Section 6.1) it is shown how to incorporate differential equations in the predicate-
logical language TTL that is used for analysis. Next, in Section 6.2 a number of
global dynamic properties are identified, and it is shown how they can be expressed in
TTL. In Section 6.3 a number of local dynamic properties are identified and expressed
in TTL. Finally, Section 6.4 discusses how the global properties can be logically
related to local properties such that a local property implies the global property.

6.1 The LEADSTO language

As mentioned earlier, traditionally, analysis of dynamical systems is often performed
using mathematical techniques such as the Dynamical Systems Theory. The question
may arise whether or not such modelling techniques can be expressed in the Temporal
Trace Language TTL. In this section it is shown how modelling techniques used in
the Dynamical Systems approach, such as difference and differential equations, can
be represented in TTL. First the discrete case is considered. As an example consider
again the logistic growth model: dP/dt = r*P(1-P/K). This equation can be expressed in
TTL on the basis of a discrete time frame (e.g., the natural numbers) in a
straightforward manner:

10

∀ t ∀ v state(γ , t) |== has_value(P, v) � state(γ , t+1) |== has_value(P, v + h • r • v • (1 - v/K))

The traces γ satisfying the above dynamic property are the solutions of the difference
equation. However, it is also possible to use the dense time frame of the real numbers,
and to express the differential equation directly. To this end, the following relation is
introduced, expressing that x = dy/dt:

is_diff_of(γ, x, y) :
∀ t,w ∀ε >0 ∃δ >0 ∀ t',v,v' [0 < dist(t',t) < δ & state(γ, t) |== has_value(x, w) &
state(γ, t) |== has_value(y, v) & state(γ, t') |== has_value(y, v') � dist((v'-v)/(t'-t),w) < ε]

where γ is the trace that describes the change of values of x and y over time, dist(u,v) is
defined as the absolute value of the difference, i.e. u-v if this is � 0, and v-u otherwise.
Using this, the differential equation can be expressed by is_diff_of(γ , r • P (1 - P/K), P).

The traces γ for which this statement is true are (or include) solutions for the
differential equation. Models consisting of combinations of difference or differential
equations can be expressed in a similar manner. This shows how modelling constructs
often used in DST can be expressed in TTL. Thus, TTL on the one hand subsumes
modelling languages based on differential equations, but on the other hand enables the
modeller to express more qualitative, logical concepts as well.

6.2 Mathematical Analysis in TTL: Global Dynamic Properties

Within Dynamical Systems Theory and Calculus, also for global properties of a
process more specific analysis methods are known. Examples of such analysis
methods include mathematical methods to determine equilibrium points, the
behaviour around equilibrium points, and the existence of limit cycles [10]. Suppose a
set of differential equations is given, for example a predator prey model: dx/dt = f(x, y)
; dy/dt = g(x, y), where f(x, y) and g(x, y) are arithmetical expressions in x and y. Within
TTL the following abbreviation is introduced as a definable predicate:

point(γ, t, x, v, y, w) ⇔ state(γ, t) |= has_value(x, v) ∧ has_value(y, w)

Using this predicate, the following global properties can for example be specified:

Monotonicity
monotic_increase_after(γ, t, x) ⇔
∀ t1, t2 [t � t1 < t2 & point(γ, t1, x, v1, y, w1) & point(γ, t2, x, v2, y, w2) � v1<v2]

Bounded
upward_bounded_after_by(γ, t, M) ⇔ ∀ t1 [t � t1 & point(γ, t1, x, v1, y, w1) � v1�M]

Equilibrium points
These are points in the (x, y) plane for which, when they are reached by a solution,
the state stays at this point in the plane for all future time points. This can be
expressed as a global dynamic property in TTL as follows:
has_equilibrium(γ, x, v, y, w) ⇔ ∀ t1 [point(γ, t1, x, v, y, w) � ∀ t2≥t1 point(γ, t2, x, v, y, w)]
occurring_equilibrium(γ, x, v, y, w) ⇔ ∃ t point(γ, t, x, v, y, w) & has_equilibrium(γ, x, v, y, w)

Behaviour Around an Equilibrium
attracting(γ, x, v, y, w, ε0) ⇔ has_equilibrium(γ, x, v, y, w) &
ε0>0 ∧ ∀ t [point(γ, t, x, v1, y, w1) ∧ dist(v1, w1, v, w) < ε0 �
∀ε >0 ∃ t1≥t ∀ t2≥t1 [point(γ, t2, x, v2, y, w2) � dist(v2, w2, v, w) < ε]]

11

Here, dist(v1, w1, v2, w2) denotes the distance between the points (v1, w1) and (v2,
w2) in the (x, y) plane.

Limit cycle
A limit cycle is a set S in the x, y plane such that
∀ t, v, w point(γ, t, x, v, y, w) & (v, w) ∈ S � ∀ t'≥t, v', w' [point(γ, t', x, v', y, w') � (v', w') ∈ S]

In specific cases the set can be expressed in an implicit manner by a logical and/or
algebraic formula, e.g., an equation, or in an explicit manner by a parameterisation.
For these cases it can be logically expressed that a set S is a limit cycle.

(1) When S is defined in an implicit manner by a formula ϕ(v, w) with S = { (v, w) |
ϕ(v, w) }, then it is defined that S is a limit cycle as follows:

∀ t, v, w point(γ, t, x, v, y, w) & ϕ(v, w) � ∀ t'≥t, v', w' [point(γ, t', x, v', y, w') � ϕ(v', w')]

E.g., when S is a circle defined by a formula of the form S = { (v, w) | v2 + w2 = r2 }

(2) When a set S in the plane is parameterised by two functions c1, c2: [0, 1] → ℜ , i.e.,
S = { (c1(u), c2(u)) | u ∈ [0, 1] }, then S is a limit cycle if

∀ t, u point(γ, t, c1(u), c2(u)) � ∀ t'≥t ∃ u' point(γ, t', c1(u'), c2(u'))

An example of a parameterising for S in the shape of a circle is as follows:

c1(u) = r cos 2π u, c2(u) = r sin 2π u

In many cases, however, the set S cannot be expressed explicitly in the form of an
equation or an explicitly defined parameterisation. What still can be done often is to
establish the existence of a limit cycle within a certain area, based on the Poincaré-
Bendixson Theorem [16].

6.3 Mathematical Analysis in TTL: Local Dynamic Properties

The global dynamic properties described above can also be addressed from a local
perspective. For example, the property of monotonicity (which was expressed above
for a whole trace after a certain time point t), can also be expressed for a certain
interval (with duration d) around t, as shown below.

Local monotonicity property
monotic_increase_around(γ, t, x, d) ⇔
∀ t1, t2 [t-d � t1 < t < t2� t+d & point(γ, t1, x, v1, y, w1) & point(γ, t2, x, v2, y, w2) � v1< v2]

In terms of f and g:
monotic_increase_around(γ, t, x, d) ⇔ point(γ, t, x, v1, y, w1) � f(v1, w1) > 0

Local bounding property
upward_bounding_around(γ, t, M, δ, d) ⇔
[point(γ, t, x, v1, y, w1) � ∀ t' [t�t'�t+d & point(γ, t', x, v2, y, w2) � M-v2 ≥ (1-δ)*(M-v1)]

In terms of f and g from the equations dx/dt = f(x, y) and dy/dt = g(x, y):
upward_bounding_around(γ, t, M, δ, d) ⇔ point(γ, t, x, v1, y, w1) � f(v1, w1) � δ/d (M - v1)

Local equilibrium property
From the local perspective of the underlying mechanism, equilibrium points are those
points for which dx/dt = dy/dt = 0, i.e., in terms of f and g for this case f(x, y) = g(x, y) =
0.
equilibrium_state(v, w) ⇔ f(v, w) = 0 & g(v, w) = 0

12

Local property for behaviour around an equilibrium:
attracting(γ, x, v, y, w, δ, ε0, d) ⇔ has_equilibrium(γ, x, v, y, w) &
ε0>0 ∧ 0< δ <1 ∧ d≥0 ∧ ∀ t [point(γ, t, x, v1, y, w1) ∧ dist(v1, w1, v, w) < ε0 �
∀ t' [t+d�t'�t+2d & point(γ, t', x, v2, y, w2) � dist(v2, w2, v, w) < δ*dist(v1, w1, v, w)]]

In terms of f and g, this can be expressed by relationships for the eigen values of the
matrix of derivatives of f and g.

Local limit cycle property
Let a set S in the plane be parameterised by two explicitly given functions c1, c2: [0, 1]
→ ℜ , i.e., S = { (c1(u), c2(u)) | u ∈ [0, 1] }, and d1(u) = dc1(u)/du, d2(u) = dc2(u)/du. Then S is
a limit cycle if:
∀ t, u point(γ, t, c1(u), c2(u)) � d1(u)*g(c1(u), c2(u)) = f(c1(u), c2(u))*d2(u)

6.4 Logical Relations between Local and Global Properties

The properties of local and global level can be logically related to each other by
general interlevel relations, for example, the following ones:

∃ d>0 ∀ t'≥t monotic_increase_around(γ, t', x, d) � monotic_increase_after(γ, t, x)

∃ d>0, δ>0 ∀ t'≥t upward_bounding_around(γ, t, M, δ, d) � upward_bounded_after_by(γ, t, M)

∀ t [state(γ, t) |= equilibrium_state(v, w) � has_equilibrium(γ, x, v, y, w)

∃ d>0, δ>0 attracting(γ, x, v, y, w, δ, ε0, d) � attracting(γ, x, v, y, w, ε0)

These interlevel relations are general properties of dynamic systems, as explained,
e.g., in [10]. Full proofs for these relations fall outside the scope of this paper.
However, to make them a bit more plausible, the following sketch is given. The first
interlevel relation involving monotonicity can be based on induction on the number of
d-intervals of the time axis between two given time points t1 and t2. The second
interlevel relation, involving boundedness is based on the fact that local bounding
implies that in any d-interval, if the value at the start of the interval is below M, then
it will remain below M in that interval. The third interlevel relation, on equilibrium
points, is based on the fact that if at no time point the value changes, then at all time
points after this value is reached, the value will be the same. For the fourth interlevel
relation, notice that local attractiveness implies that for any d-interval the distance of
the value to the equilibrium value at the end point is less than δ times the value at the
starting point. By induction over the number of d-intervals the limit definition as used
for the global property can be obtained.

7 Discussion

The LEADSTO approach discussed in this paper provides means to simulate models
of dynamic systems that combine both quantitative and qualitative aspects. A
dynamic system, as it is used here, is a system, which is characterised by states and
transitions between these states. As such, dynamic systems as considered in [23],
which are described by differential equations, constitute a subclass of the dynamic
systems considered in this paper. Systems that incorporate both continuous

13

components and discrete components are sometimes called hybrid systems. Hybrid
systems are studied in both computer science [9], [19] and control engineering [17].
They incorporate both continuous components, whose dynamics is described by
differential equations and discrete components, which are often represented by finite-
state automata. Both continuous and discrete dynamics of components influence each
other. In particular, the input to the continuous dynamics is the result of some
function of the discrete state of a system; whereas the input of the discrete dynamics
is determined by the value of the continuous state. In the control engineering area,
hybrid systems are often considered as switching systems that represent continuous-
time systems with isolated and often simplified discrete switching events. Yet in
computer science the main interest in hybrid systems lies in investigating aspects of
the discrete behaviour, while the continuous dynamics is often kept simple.

Our LEADSTO approach provides as much place for modelling the continuous
constituent of a system, as for modelling the discrete one. In contrast to many studies
on hybrid systems in computer science (e.g., [25]), in which a state of a system is
described by assignment of values to variables, in the proposed approach a state of a
system is defined using a rich ontological basis (i.e., typed constants, variables,
functions and predicates). This provides better possibilities for conceptualising and
formalising different kinds of systems (including those from natural domains).
Furthermore, by applying numerical methods for approximation of the continuous
behaviour of a system, all variables in a generated model become discrete and are
treated equally as finite-state transition system variables. Therefore, it is not needed to
specify so-called control points [19], at which values of continuous variables are
checked and necessary transitions or changes in a mode of a system’s functioning are
made. Moreover, using TTL, a super-language of LEADSTO, dynamical systems can
be analysed by applying formalised standard techniques from mathematical calculus.

Since LEADSTO has a state-based semantics and allows a high ontological
expressivity for defining state properties, many action-based languages (A, B, C [12],
 L [2] and their extensions) can be represented in (or mapped to) the LEADSTO
format. In particular, trajectories that define the world evolution in action languages
correspond to traces in LEADSTO, fluents evaluated in each state can be represented
by state properties, and transitions between states due to actions can be specified by
LEADSTO rules that contain the corresponding actions within the antecedents.
Furthermore, to represent actions, observations, and goals of agents and facts about
the world, the state ontology of LEADSTO includes corresponding sorts, functions
and predicates. LEADSTO allows representing both static and dynamic laws as they
are defined in [12], and non-deterministic actions with probabilities. To represent and
reason about temporal aspects of actions, LEADSTO includes the sort TIME, which is
a set of linearly ordered time points.

The expressions of query languages used to reason about actions [2], [12] can be
represented in TTL, of which LEADSTO is a sublanguage. TTL formulae can express
causality relations of query languages by implications and may include references to
multiple states (e.g., histories of temporally ordered sequences of states). Using a
dedicated tool [TTL], TTL formulae can be automatically checked on traces (or
trajectories) that represent the temporal development of agent systems.

Concerning other related work, in [26], a logic-based approach to simulation-
based modelling of ecological systems is introduced. Using this approach, continuous

14

dynamic processes in ecological systems are conceptualised by system dynamics
models (i.e., sets of compartments with flows between them). For formalising these
models and performing simulations, the logical programming language Prolog is
used. In contrast to this, the LEADSTO approach provides a more abstract (or high-
level) logic-based language for knowledge representation.

Also within the area of cognitive modelling, the idea to combine qualitative and
quantitative aspects within one modelling approach is not uncommon. A number of
architectures have been developed in that area, e.g., ACT-R [1] and SOAR [15]. Such
cognitive architectures basically consist of a number of different modules that reflect
specific parts of cognition, such as memory, rule-based processes, and
communication. They have in common with LEADSTO that they are hybrid
approaches, supporting both qualitative (or symbolic) and quantitative (or
subsymbolic) structures. However, in LEADSTO these qualitative and quantitative
concepts can be combined within the same expressions, whereas in ACT-R and
SOAR separate modules exist to express them. In these cognitive architectures, often
the role of the subsymbolic processes is to control the symbolic processes. For
example, the subsymbolic part of ACT-R is represented by a large set of parallel
processes that can be summarised by a number of mathematical equations, whereas its
symbolic part is fulfilled by a production system. Here, the subsymbolic equations
control many of the symbolic processes. For instance, if multiple production rules in
ACT-R’s symbolic part are candidates to be executed, a subsymbolic utility equation
may estimate the relative cost and benefit associated with each rule and select the rule
with the highest utility for execution.

Accuracy and efficiency of simulation results for hybrid systems provided by the
proposed approach to a great extend depend on the choice of a numerical
approximation method. Although the proposed approach does not prescribe usage of
any specific approximation method (even the most powerful of them can be modelled
in LEADSTO), for most of the cases the fourth-order Runge-Kutta method can be
recommended, especially when the highest level of precision is not required. For
simulating system models, for which high precision is demanded, higher-order
numerical methods with an adaptive step size can be applied.

References

1. Anderson, J.R., Lebiere, C. The atomic components of thought. Lawrence Erlbaum
Associates, Mahwah, NJ (1998)

2. Baral, C., Gelfond, M., Provetti, A. Representing Actions: Laws, Observation and
Hypothesis. Journal of Logic Programming, 31(1-3) (1997) 201-243

3. Barringer, H., Fisher, M., Gabbay, D., Owens, R., Reynolds, M. The Imperative Future:
Principles of Executable Temporal Logic, Research Studies Press Ltd. and John Wiley &
Sons (1996)

4. Boccara, N. Modeling Complex Systems. Graduate Texts in Contemporary Physics series,
Springer-Verlag (2004)

5. Bosse, T., Delfos, M.F., Jonker, C.M., Treur, J. Modelling Adaptive Dynamical Systems to
analyse Eating Regulation Disorders. Simulation Journal: Transactions of the Society for
Modeling and Simulation International, 82 (2006) 159-171

15

6. Bosse, T., Jonker, C.M., Los, S.A., Torre, L. van der, Treur, J. Formalisation and Analysis
of the Temporal Dynamics of Conditioning. In: Mueller, J.P. and Zambonelli, F. (eds.),
Proceedings of the Sixth International Workshop on Agent-Oriented Software Engineering,
AOSE'05 (2005) 157-168

7. Bosse, T., Jonker, C.M., Meij, L. van der, Treur, J. LEADSTO: a Language and
Environment for Analysis of Dynamics by SimulaTiOn. In: Eymann, T. et al. (eds.), Proc.
MATES'05. LNAI 3550. Springer Verlag (2005) 165-178. Extended version in:
International Journal of Artificial Intelligence Tools. To appear, 2007

8. Bosse, T., Jonker, C.M., Meij, L. van der, Sharpanskykh, A., Treur, J. Specification and
Verification of Dynamics in Cognitive Agent Models. In: Nishida, T. (ed.), Proceedings of
the Sixth International Conference on Intelligent Agent Technology, IAT'06. IEEE
Computer Society Press (2006) 247-254

9. Davoren, J.M., Nerode, A. Logics for Hybrid Systems. In Proceedings of the IEEE, 88 (7)
(2000) 985-1010

10. Edwards, C.H., Penney, D. L. Calculus with Analytic Geometry. Prentice Hall, London, 5th
edition (1998)

11. Gear, C.W. Numerical Initial Value Problems in Ordinary Differential Equations.
Englewood Cliffs, NJ: Prentice-Hall (1971)

12. Gelfond, M., Lifschitz, V. Action languages, Electronic Transactions on AI, 3(16) (1998)
13. Hynne F, Dano S, Sorensen PG., Full-scale model of glycolysis in Saccharomyces

cerevisiae. Biophys. Chem., 94 (1-2) (2001) 121-63
14. Jonker, C.M., Treur, J. Compositional Verification of Multi-Agent Systems: a Formal

Analysis of Pro-activeness and Reactiveness. International Journal of Cooperative
Information Systems 11 (2002) 51-92.

15. Laird, J.E., Newell, A., and Rosenbloom, P.S. Soar: an architecture for general intelligence.
Artificial Intelligence 33 (1) (1987) 1-64.

16. Lefschetz, S. Differential equations: geometric theory. Dover Publications (2005)
17. Liberzon, D., Morse, A. S. Basic problems in stability and design of switched systems,

IEEE Control Systems Magazine 19 (5) (1999) 59-70
18. Machado, A. Learning the Temporal Dynamics of Behaviour. Psychological Review, vol.

104 (1997) 241-265
19. Manna, Z., Pnueli, A. Verifying Hybrid Systems. In Hybrid Systems, LNCS 736, Springer-

Verlag, (1993) 4-35
20. Meyer, J.J.Ch., Treur, J. (volume eds.). Agent-based Defeasible Control in Dynamic

Environments. Series in Defeasible Reasoning and Uncertainty Management Systems (D.
Gabbay and Ph. Smets, series eds.) vol. 7, Kluwer Academic Publishers (2002)

21. Morin P.J. Community Ecology. Blackwell Publishing, USA (1999)
22. Pearson, C.E.. Numerical Methods in Engineering and Science. CRC Press (1986)
23. Port, R.F., Gelder, T. van (eds.). Mind as Motion: Explorations in the Dynamics of

Cognition. MIT Press, Cambridge, Mass (1995)
24. Press, W. H., Teukolsky, S. A., Vetterling,W. T., Flannery, B. P. Numerical recipes in C:

the art of scientific computing. Cambridge university press, second edition (1992)
25. Rajeev, A., Henzinger, T.A., and Wong-Toi, H. Symbolic analysis of hybrid systems. In

Proceedings of the 36th Annual Conference on Decision and Control (CDC), IEEE Press
(1997) 702-707

26. Robertson, D., Bundy, A., Muetzelfeldt, R., Haggith, M., Ushold, M. Eco-Logic: Logic-
Based Approaches to Ecological Modelling. MIT Press, Cambridge, Mass (1991)

27. Sharpanskykh, A., Treur, J. Verifying Interlevel Relations within Multi-Agent Systems. In:
Brewka, G., Coradeschi, S., Perini, A., and Traverso, P. (eds.), Proc. of the 17th European
Conference on Artificial Intelligence, ECAI'06, IOS Press (2006) 290-294

16

On the Complexity Monotonicity Thesis for
Environment, Behaviour and Cognition

Tibor Bosse, Alexei Sharpanskykh, and Jan Treur

Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV, The Netherlands
{tbosse, sharp, treur}@cs.vu.nl

http://www.cs.vu.nl/~{tbosse, sharp, treur}

Abstract. Development of more complex cognitive systems during evolution is
sometimes viewed in relation to environmental complexity. In more detail,
growth of complexity during evolution can be considered for the dynamics of
externally observable behaviour of agents, for their internal cognitive systems,
and for the environment. This paper explores temporal complexity for these
three aspects, and their mutual dependencies. A number of example scenarios
have been formalised in a declarative temporal language, and the complexity of
the structure of the different formalisations was measured. Thus, some
empirical evidence was provided for the thesis that for more complex
environments, more complex behaviour and more complex mental capabilities
are needed.

1 Introduction

Behaviour of agents (both living organisms and artificial (software or hardware)
agents) can occur in different types and complexities, varying from very simple
behaviour to more sophisticated forms. Depending on the complexity of the externally
observable behaviour, the internal mental representations and capabilities required to
generate the behaviour also show a large variety in complexity. From an evolutionary
viewpoint, for example, Wilson [16], p. 187 and Darwin [3], p. 163 point out how the
development of behaviour relates to the development of more complex cognitive
capabilities. Godfrey-Smith [4], p. 3 assumes a relationship between the complexity
of the environment and the development of mental representations and capabilities.
He formulates the main theme of his book in condensed form as follows: ‘The
function of cognition is to enable the agent to deal with environmental complexity’
(the Environmental Complexity Thesis). In this paper, this thesis is refined as follows:
• the more complex the environment, the more sophisticated is the behaviour required to deal with this

environment,
• the more sophisticated the behaviour, the more complex are the mental representations and capabilities

needed
This refined thesis will be called the Complexity Monotonicity Thesis. The idea is

that to deal with the physical environment, the evolution process has generated and
still generates a variety of organisms that show new forms of behaviour. These new
forms of behaviour are the result of new architectures of organisms, including

17

cognitive systems with mental representations and capabilities of various degrees of
complexity. The occurrence of such more complex architectures for organisms and
the induced more complex behaviour itself increases the complexity of the
environment during the evolution process. New organisms that have to deal with the
behaviour of such already occurring organisms live in a more complex environment,
and therefore need more complex behaviour to deal with this environment, (to be)
realised by an architecture with again more complex mental capabilities. In particular,
more complex environments often ask for taking into account more complex histories,
which requires more complex internal cognitive representations and dynamics, by
which more complex behaviour is generated.

This perspective generates a number of questions. First, how can the Complexity
Monotonicity Thesis be formalised, and in particular how can the ‘more complex’
relation be formalised for (1) the environment, (2) externally observable agent
behaviour and (3) internal cognitive dynamics? Second, connecting the three items,
how to formalise (a) when does a behaviour fit an environment: which types of
externally observable behaviours are sufficient to cope with which types of
environments, and (b) when does a cognitive system generate a certain behaviour:

which types of internal cognitive dynamics are sufficient to generate which types of
externally observable agent behaviour?

In this paper these questions are addressed from a dynamics perspective, and
formalised by a declarative temporal logical approach. Four cases of an environment,
suitable behaviour and realising cognitive system are described, with an increasing
complexity over the cases. Next, for each case, complexity of the dynamics of
environment, externally observable agent behaviour and internal cognitive system are
formalised in terms of structure of the formalised temporal specifications describing
them, thus answering (1) to (3). Moreover, (a) and (b) are addressed by establishing
formalised logical (entailment) relations between the respective temporal
specifications. By comparing the four cases with respect to complexity, the
Complexity Monotonicity Thesis is tested.

2 Evolutionary Perspective

The environment imposes certain requirements that an agent’s behaviour needs to
satisfy; these requirements change due to changing environmental circumstances. The
general pattern is as follows. Suppose a certain goal G for an agent (e.g., sufficient
food uptake over time) is reached under certain environmental conditions ES1
(Environmental Specification 1), due to its Behavioural Specification BS1, realised by
its internal (architecture) CS1 (Cognitive Specification 1). In other words, the
behavioural properties BS1 are sufficient to guarantee G under environmental
conditions ES1, formally ES1 & BS1 � G, and the internal dynamics CS1 are sufficient
to guarantee BS1, formally CS1 � BS1. In other environmental circumstances,
described by environmental specification ES2 (for example, more complex) the old
circumstances ES1 may no longer hold, so that the goal G may no longer be reached
by behavioural properties BS1. An environmental change from ES1 to ES2 may entail
that behaviour BS1 becomes insufficient. It has to be replaced by new behavioural

18

properties BS2 (also more complex) which express how under environment ES2 goal
G can be achieved, i.e., ES2 & BS2 � G.

Thus, a population is challenged to realise such behaviour BS2 by changing its
internal architecture and its dynamics, and as a consequence fulfill goal G again. This
challenge expresses a redesign problem: the given architecture of the agent as
described by CS1 (which entails the old behavioural specification BS1) is insufficient
to entail the new behavioural requirements BS2 imposed by the new environmental
circumstances ES2; the evolution process has to redesign the architecture into one
with internal dynamics described by some CS2 (also more complex), with CS2 � BS2,
to realise the new requirements on behaviour.
Based on these ideas, the Complexity Monotonicity Thesis can be formalised in the
following manner. Suppose < E1, B1, C1 > and < E2, B2, C2 > are triples of environment,
behaviour and cognitive system, respectively, such that the behaviours Bi are adequate
for the respective environment Ei and realised by the cognitive system Ci. Then the
Complexity Monotonicity Thesis states that

E1 ≤c E2 � B1 ≤c B2 & B1 ≤c B2 � C1 ≤c C2
Here ≤c is a partial ordering in complexity, where X ≤c Y indicates that Y is more

complex than X. A special case is when the complexity ordering is assumed to be a
total ordering where for every two elements X, Y either X ≤c Y or Y ≤c X (i.e., they are
comparable), and when some complexity measure cm is available, assigning degrees
of complexity to environments, behaviours and cognitive systems, such that

X ≤c Y ⇔ cm(X) ≤ cm(Y)
where ≤ is the standard ordering relation on (real or natural) numbers. In this case the
Complexity Monotonicity Thesis can be reformulated as

cm(E1) ≤ cm(E2) � cm(B1) ≤ cm(B2) &
cm(B1) ≤ cm(B2) � cm(C1) ≤ cm(C2)

The Temporal Complexity Monotonicity Thesis can be used to explain increase of
complexity during evolution in the following manner. Make the following assumption
on Addition of Environmental Complexity by Adaptation, as described above:

• adaptation of a species to an environment adds complexity to this environment

Suppose an initial environment is described by ES0, and the adapted species by
BS0. Then this transforms ES0 into a more complex environmental description ES1.
Based on ES1, the adapted species will have description BS1. As ES1 is more
complex than ES0, by the Complexity Monotonicity Thesis it follows that this BS1 is
more complex than BS0: ES0 � ES1 � BS0 � BS1. Therefore BS1 again adds
complexity to the environment, leading to ES2, which is more complex than ES1, et
cetera1:

ES0 � ES1 � ES2 …

BS0 � BS1 � BS2 …

This argument shows that the increase of complexity during evolution can be
related to and explained by two assumptions: the Complexity Monotonicity Thesis,

1 Note that this argument can also be applied to multiple species at the same time, i.e., species A increases the complexity

of the environment, which causes another species B to adapt to this more complex environment.

19

and the Addition of Environmental Complexity by Adaptation assumption. This paper
focuses on the former assumption.

3 Variations in Behaviour and Environment

To evaluate the approach put forward, a number of cases of increasing complexity are
analysed, starting from very simple stimulus-response behaviour solely depending on
stimuli the agent gets as input at a given point in time. This can be described by a very
simple temporal structure: direct associations between the input state at one time point
and the (behavioural) output state at a next time point. A next class of behaviours,
with slightly higher complexity, analysed is delayed response behaviour: behaviour
that not only depends on the current stimuli, but also may depend on input of the
agent in the past. This pattern of behaviour cannot be described by direct functional
associations between one input state and one output state; it increases temporal
complexity compared to stimulus-response behaviour. For this case, the description
relating input states and output states necessarily needs a reference to inputs received
in the past. Viewed from an internal perspective, to describe mental capabilities
generating such a behaviour, often it is assumed that it involves a memory in the form
of an internal model of the world state. Elements of this world state model mediate
between the agent’s input and output states.

Other types of behaviour go beyond the types of reactive behaviour sketched
above. For example, behaviour that depends in a more indirect manner on the agent’s
input in the present or in the past. Observed from the outside, this behaviour seems to
come from within the agent itself, since no direct relation to current inputs is
recognised. It may suggest that the agent is motivated by itself or acts in a goal-
directed manner. For a study in goal-directed behaviour and foraging, see, for
example, [5]. Goal-directed behaviour to search for invisible food is a next case of
behaviour analysed. In this case the temporal description of the externally observable
behavioural dynamics may become still more complex, as it has to take into account
more complex temporal relations to (more) events in the past, such as the positions
already visited during a search process. Also the internal dynamics may become more
complex. To describe mental capabilities generating such a type of behaviour from an
internal perspective, a mental state property goal can be used. A goal may depend on
a history of inputs. Finally, a fourth class of behaviour analysed, which also goes
beyond reactive behaviour, is learning behaviour (e.g., conditioning). In this case,
depending on its history comprising a (possibly large) number of events, the agent’s
externally observable behaviour is tuned. As this history of events may relate to
several time points during the learning process, this again adds temporal complexity
to the specifications of the behaviour and of the internal dynamics.

To analyse these four different types of behaviour in more detail, four cases of a
food supplying environment are considered in which suitable food gathering
behaviours are needed. These cases are chosen in such a way that they correspond to
the types of behaviour mentioned above. For example, in case 1 it is expected that
stimulus-response behaviour is sufficient to cope with the environment, whilst in case
2, 3 and 4, respectively, delayed response behaviour, goal-directed behaviour, and

20

learning behaviour is needed). The basic setup is inspired by experimental literature in
animal behaviour such as [6], [14], [15]. The world consists of a number of positions
which have distances to each other. The agent can walk over these positions. Time is
partitioned in fixed periods (days) of a duration of d time units (hours). Every day the
environment generates food at certain positions, but this food may or may not be
visible, accessible and persistent at given points in time. The four different types of
environment with increasing temporal complexity considered are:
(1) Food is always visible and accessible. It persists until it is taken.
(2) Food is visible at least at one point in time and accessible at least at one later time point. It persists

until it is taken.
(3) Food either is visible at least at one point in time and accessible at least at one later time point, or it

is invisible and accessible the whole day. It persists until it is taken.
(4) One of the following cases holds:

a) Food is visible at least at one point in time and accessible at least at one later time point. It
persists until it is taken.

b) Food is invisible and accessible the whole day. It persists until it is taken.
c) Food pieces can disappear, and new pieces can appear, possibly at different positions. For every

position where food appears, there are at least three different pieces in one day. Each piece that
is present is visible. Each position is accessible at least after the second food piece disappeared.

Note that there is an accumulating effect in the increase of complexity of these types
of environment. For example, the behaviour of environment (3) is described as the
disjunction of the behaviour of environment (2) and another type of behaviour. For
this reason, it is expected that agents that survive in environment n will also survive in
environment n-1.

4 Modelling Approach

To express formal specifications for environmental, behavioural and cognitive
dynamics for agents, the Temporal Trace Language (TTL, see [2]) is used. This
language is a variant of order-sorted predicate logic. In dynamic property expressions,
TTL allows explicit references to time points and traces. If a is a state property, then,
for example state(γ, t, input(agent)) |= a denotes that this state property holds in trace γ at
time point t in the input state of the agent. Here, a trace (or trajectory) is defined as a
time-indexed sequence of states, where time points can be expressed, for example, by
real or integer values. If these states are input states, such a trace is called an input
trace. Similarly for an output trace. Moreover, an input-output correlation is defined
as a binary relation C : Input_traces x Output_traces between the set of possible input
traces and the set of possible output traces.

In the following sections, the four variations in behaviour and environment as
introduced above are investigated in more detail. For formalising dynamic properties
in TTL that will be used to specify these cases, the following state properties are used:

at(o, p) object o is at position p
visible(sp) an object occurring in the state property sp is visible

 (e.g. as it is not covered by a large object)
accessible(p) position p is accessible (e.g. because there is no enemy at the position)
distance(p1, p2, i) the distance between positions p1 and p2 is i
max_dist a constant indicating the maximum distance the agent can travel in one step
observed(sp) the agent observes state property sp
performing_action(a) the agent performs action a

21

For example, a property that describes stimulus-response behaviour of an agent
that goes to food, observed in the past can be expressed and formalised as follows:

At any point in time t,
if the agent observes itself at position p
and it observes an amount of food x at position p'
and position p' is accessible
then at the next time point after t the agent will go to position p'

Formalisation:
∀ t ∀ x ∀ p ∀ p’
[state(γ, t, input(agent)) |= observed(at(agent, p)) ∧ observed(at(food(x), p’)) ∧
 observed(accessible(p’)) � state(γ, t+1, output(agent)) |= performing_action(goto(p'))]

5 Behavioural Cases

Using the introduced approach to formalise dynamic properties, the four variations in
behaviour and environment are addressed in this section: stimulus-response, delayed-
response, goal-directed, and learning behaviour.

5.1 Stimulus-Response Behaviour

As a first, most simple type of behaviour, stimulus-response behaviour is analysed in
more detail. For this and the following cases of behaviour the following basis
properties EP1-EP5 are used to describe the behaviour of the environment. They are
specified both in a structured semi-formal temporal language, and in the formal
temporal language TTL. Additionally, for every case specific properties of the
environment will be specified.

Environmental properties
EP1 Sufficient food within reach
At the beginning of every day n (d is the duration of a day), the agent is positioned at a position p, and a
sufficient amount x of food (c is the minimum) is provided at some position p' within reachable distance
from p.
∀ n ∃ p ∃ p’ ∃ x ∃ i x>c & i≤max_dist &
state(γ, n*d, environment) |= at(agent, p) ∧ at(food(x), p’) ∧ distance(p, p’, i)

EP2 Complete observability
If the agent is at position p, and a(p, p') is a visible state property involving p and a position p' within
reachable distance, then this is observed by the agent. This property is to be applied to food, distance,
accessibility, agent position, and the absence of these.
∀ t ∀ x ∀ p ∀ p’ ∀ i
[[i≤max_dist & state(γ, t, environment) |= at(agent, p) ∧ a(p, p’) ∧ visible(a(p, p’)) ∧
 distance(p, p’, i)] � state(γ, t, input(agent)) |= observed(a(p, p’)))]

EP3 Guaranteed effect of movement
At any point in time t, if the agent goes to position p, then it will be at position p.
∀ t ∀ p state(γ, t, output(agent)) |= performing_action(goto(p))
 � state(γ, t+1, environment) |= at(agent, p)

22

EP4 Guaranteed effect of eating
At any point in time t, if the agent takes food and the amount of food is sufficient for the agent then the
agent will be well fed
∀ t [[∀ x state(γ, t, output(agent))|= performing_action(take(food(x))) & x≥c]
 � state(γ, t+1, environment) |= agent_well_fed]

EP5 Reachability of environment
The distances between all positions p in the agent’s territory are smaller than max_dist. Here, p and p' are
variables over the type TERRITORY_POSITION, which is a subtype of POSITION.
∀ t ∀ p ∀ p’ ∀ I state(γ, t, environment) |= distance(p, p’, i) � i ≤ max_dist

The following environmental properties hold for the stimulus-response case and some
of the other cases considered.

EP6 Food persistence
Food persists until taken by the agent.
∀ t1 ∀ t2 ∀ x ∀ p [t1<t2 & state(γ, t1, environment) |= at(food(x), p) &
[∀ t t1 ≤ t ≤ t2 � state(γ, t, output(agent)) |= not(performing_action(take(food(x))))]
 � state(γ, t2, environment) |= at(food(x), p)]

EP7 Food on one position
Per day, food only appears on one position.
∀ n ∀ x ∀ p ∀ p’ ∀ t state(γ, n*d, environment) |= at(food(x), p) &
state(γ, t, environment) |= at(food(x), p’) & n*d < t ≤ (n+1)*d � p = p’

EP8 Complete accessibility
Each position is accessible for the agent (i.e., never blocked by enemies).
∀ t ∀ p state(γ, t, environment) |= accessible(p)

EP9 Complete visibility
All state properties a(p, p') that are true, are visible (which means that they will be observed by agents that
are close enough, according to EP2). This property is to be applied to food, distance, accessibility, agent
position, and the absence of these.
∀ t ∀ p ∀ p’ state(γ, t, environment) |= a(p, p’) � state(γ, t, environment(agent)) |= visible(a(p, p’))

Note that the property of an agent being well fed is assumed to be a state property of
the environment, since it refers to the agent’s body state.

For the case of stimulus-response behaviour the environment is characterised by the
following conjunction ES1 of a subset of the environmental properties given above:

ES1 ≡ EP1 & EP2 & EP3 & EP4 & EP5 & EP6 & EP7 & EP8 & EP9

Behavioural Properties
The agent’s stimulus-response behaviour is characterised by the following
behavioural properties.

BP1 Going to observed food
At any point in time t, if the agent observes itself at position p and it observes no food at position p and it
observes that an amount of food x is present at position p' and it observes that position p' is accessible and it
observes that position p' is within reachable distance then it will go to position p'.
∀ t ∀ x ∀ p ∀ p’ [[state(γ, t, input(agent)) |= observed(at(agent, p)) ∧ observed(not(at(food(x), p))) ∧
observed(at(food(x), p’)) ∧ observed(accessible(p’)) ∧ observed(distance(p, p’, i)) & i≤max_dist]
 � state(γ, t+1, output(agent)) |= performing_action(goto(p’))]

BP2 Food uptake
At any point in time t, if the agent observes itself at position p and the agent observes food at p then it will
take the food
∀ t ∀ x ∀ p [[state(γ, t, input(agent)) |= observed(at(agent, p)) ∧ observed(at(food(x), p))]
 � state(γ, t+1, output(agent))|= performing_action(take(food(x)))]

23

Vitality property VP
The animal gets sufficient food within any given day.
∀ n ∃ t1 [n*d ≤ t1 ≤ (n+1)*d & state(γ, t1, environment) |= agent_well_fed]

Logical relations
Given the dynamic properties specified above, the environmental and behavioural
specifications (in short, ES1 and BS1) for case 1 (stimulus-response behaviour) are as
follows:

 ES1 ≡ EP1 & EP2 & EP3 & EP4 & EP5 &EP6 & EP7 & EP8 & EP9
BS1 ≡ BP1 & BP2

Given these specifications, the question is whether they are logically related in the
sense that this behaviour is adequate for this environment, i.e., whether indeed the
following implication holds:

BS1 & ES1 � VP

To automatically check such implications between dynamic properties at different
levels, model checking techniques can be used. To this end, first the dynamic
properties should be converted from TTL format to a finite state transition format.
This can be done using an automated procedure, as described in [11]. After that, for
checking the implications between the converted properties, the model checker SMV
is appropriate (see URL: http://www.cs.cmu.edu/~modelcheck/smv.html; see also [8]).
SMV has been used to verify (and confirm) the above implication, as well as a
number of other implications shown in this paper.

Concerning the relation between the specification of the cognitive and the
behavioural dynamics: in this case CS1 = BS1. Thus, CS1 � BS1 also holds.

5.2 Delayed Response Behaviour

In delayed response behaviour, previous observations may have led to maintenance of
some form of memory of the world state: a model or representation of the (current)
world state (for short, world state model). This form of memory can be used at any
point in time as an additional source (in addition to the direct observations). In that
case, at a given time point the same input of stimuli can lead to different behavioural
output, since the world state models based on observations in the past can be
different. This makes that agent behaviours do not fit in the setting of an input-output
correlation based on a direct functional association between (current) input states and
output states. Viewed from an external viewpoint, this type of behaviour, which just
like stimulus-response behaviour occurs quite often in nature, is just a bit more
complex than stimulus-response behaviour, in the sense that it adds complexity to the
temporal dimension by referring not only to current observations but also to
observations that took place in the past.

This leads to the question what kind of complexity in the environment is coped
with this kind of behaviour that is not coped with by stimulus-response behaviour. An
answer on this question can be found in a type of environment with aspects which are
important for the animal (e.g., food or predators), and which cannot be completely
observed all the time; e.g., food or predators are sometimes hidden by other objects:

24

Environmental properties
For this case the environment described sometimes shows the food, but not always as
in the previous case. It is characterised by the following conjunction ES2 of a subset
of the environmental properties given above, extended with the properties EP10, EP11
and EP12 given below:

ES2 ≡ EP1 & EP2 & EP3 & EP4 & EP5 & EP6 & EP7 & EP10 & EP11 & EP12

EP10 Temporary visibility of food
Per day, all food that is present is visible for at least one time point, and is accessible for at least one later
time point2.

EP11 Complete visibility of non-food
All state properties that are true, except the presence of food, are visible. Thus, this property is applied to
distance, accessibility, and agent position.

EP12 Complete local observability of food
For all time points, if the agent is at the position p with food then the agent observes the food (no matter if
it is visible, e.g., by smell)

Behavioural properties
Next, dynamic properties are identified that characterise the input-output correlation
of delayed response behaviour, observed from an external viewpoint. Such a dynamic
property has a temporal nature; it can refer to the agent’s input and output in the
present, the past and/or the future. In semi-formal and formal notation, for the case
considered, the input-output correlation for delayed response behaviour can be
characterised by:

BP3 Going to food observed in the past
At any point in time t, if the agent observes itself at position p and it observes no food at position p and it
observes that position p' is accessible and it observes that position p' is within reachable distance and at
some earlier point in time t1 the agent observed that an amount of food x was present at position p' and at
every point in time t2 after t1 up to t, the agent did not observe that no food was present at p' then at the
next time point after t the agent will go to position p'
∀ t ∀ x ∀ i ∀ p ∀ p’
[[state(γ, t, input(agent)) |= observed(at(agent, p)) ∧ observed(not(at(food(x), p))) ∧
 observed(accessible(p’)) ∧ observed(distance(p, p’, i)) & i≤max_dist] &
 ∃ t1<t [state(γ, t1, input(agent)) |= observed(at(food(x), p')) &
 ∀ t2 [t ≥ t2 > t1 � state(γ, t2, input(agent))|= not(observed(not(at(food(x), p'))))]]
 � state(γ, t+1, output(agent)) |= performing_action(goto(p'))]

Cognitive properties
Since the external characterisations of delayed response behaviour refer to the agent’s
input in the past, it is assumed that internally the agent maintains past observations by
means of persisting internal state properties, i.e., some form of memory. These
persisting state properties are sometimes called beliefs. For the example case, it is
assumed that an internal state property b1(p) is available, with the following
dynamics:

CP1 Belief formation on food presence
At any point in time t, if the agent observes that food is present at position p then internal state property
b1(p) will hold (i.e., a belief that food is present at p)

2 Formal expressions for all properties can be found in the Appendix at http://www.cs.vu.nl/~tbosse/complexity.

25

CP2 Belief b1 persistence
At any point in time t, if internal state property b1(p) holds and the agent does not observe the absence of
food at position p then at the next time point internal state property b1(p) still holds

CP3 Going to food believed present
At any point in time t, if the agent observes itself at position p and it observes no food at position p and it
observes that position p' is accessible and it observes that position p' is within reachable distance and p ≠ p'
and internal state property b1(p') holds then the agent will go to position p'

Logical relations
ES2 ≡ EP1 & EP2 & EP3 & EP4 & EP5 & EP6 & EP7 & EP10 & EP11 & EP12
BS2 ≡ BP2 & BP3
CS2 ≡ BP2 & CP1 & CP2 & CP3
BS2 & ES2 � VP

 CS2 � BS2

5.3 Goal-Directed Behaviour

A next, more complex type of behaviour considered is goal-directed behaviour. This
behaviour is able to cope with environments where visibility can be more limited than
in the environments considered before.

Environmental properties
For this case the environment is characterised by the following expression ES3 based
on a subset of the environmental properties given earlier, extended with property
EP13, given below:

ES3 ≡ EP1 & EP2 & EP3 & EP4 & EP5 & EP6 & EP7 & EP11 & EP12 &
(EP10 OR (EP8 & EP13))

EP13 Complete invisibility of food
Food is always invisible for the agent (e.g., always covered), unless the agent is at the same position as the
food.

Behavioural properties
The agent’s behaviour exploring positions in order to discover food is characterised
by the following behavioural property:

BP4 Searching for food
At any point in time t, if the agent observes itself at position p and it observes that position p' is accessible
and it observes that position p' is within reachable distance and it did not visit position p' yet and p' is the
position closest to p which the agent did not visit and it did not observe any food at all yet then at the next
time point after t the agent will go to position p'
∀ t ∀ p ∀ p’
state(γ, t, input(agent)) |= observed(at(agent, p)) ∧ observed(accessible(p’)) ∧
observed(distance(p, p’, i)) & i≤max_dist &
 not [∃ t’ t’<t & state(γ, t’, input(agent)) |= observed_at(agent, p’)] &
 ∀ p” [[not [∃ t’ t’<t & state(γ, t’, input(agent)) |= observed_at(agent, p”)]]
 � ∃ d1 ∃ d2 state(γ, t, input(agent)) |= observed(distance(p, p’, d1)) ∧
 observed(distance(p, p’’, d2)) & d1<d2] &
 not [∃ t’ ∃ p’’ ∃ x t’≤t & state(γ, t’, input(agent)) |= observed(at(food(x), p’’))]
 � state(γ, t+1, output(agent)) |= performing_action(goto(p’))

26

Cognitive properties
To describe the internal cognitive process generating this type of behaviour, the
mental state property goal is used. In particular, for the case addressed here, when the
agent has no beliefs about the presence of food, it will generate the goal to find food.
If it has this goal, it will pro-actively search for food in unexplored positions. This is
characterised by the following dynamic properties:

CP4 Goal formation
At any point in time t, if the agent does not believe that food is present at any position p then it will have
the goal to find food

CP5 Non-goal formation
At any point in time t, if the agent believes that food is present at position p then it will not have the goal to
find food

CP6 Belief formation on visited position
At any point in time t, if the agent observes itself at position p then internal state property b2(p) will hold
(i.e., the belief that it visited p)

CP7 Belief b2 persistence
At any point in time t, if internal state property b2(p) holds then at the next time point internal state
property b2(p) still holds

CP8 Belief formation on distances
At any point in time t, if the agent observes that the distance between position p and p' is d then internal
state property belief(p, p', d) will hold

CP9 Belief persistence on distances
At any point in time t, if internal state property belief(p, p', d) holds then at the next time point internal state
property belief(p, p', d) still holds

CP10 Going to closest position
At any point in time t, if the agent observes itself at position p and it observes that position p' is accessible
and it observes that position p' is within reachable distance and it has the goal to find food and it believes it
did not visit p' yet and p' is the position closest to p of which the agent believes it did not visit it then at the
next time point after t the agent will go to position p'

Logical relations
ES3 ≡ EP1 & EP2 & EP3 & EP4 & EP5 & EP6 & EP7 & EP11 & EP12 &

 (EP10 OR (EP8 & EP13))
BS3 ≡ BP2 & BP3 & BP4
CS3 ≡ BP2 & CP1 & CP2 & CP3 & CP4 & CP5 & CP6 & CP7 & CP8 & CP9 & CP10
BS3 & ES3 � VP
CS3 � BS3

5.4 Learning Behaviour

A final class of behaviour analysed is learning behaviour. In this case, depending on
its history comprising a (possibly large) number of events, the agent’s externally
observable behaviour is tuned to the environment’s dynamics. In the case addressed
here, in contrast to the earlier cases, the environment has no guaranteed persistence of
food for all positions. Instead, at certain positions food may come and go (e.g.,
because it is eaten by competitors). The agent has to learn that, when food often

27

appears (and disappears) at a certain position, then this is an interesting position to be,
because food may re-appear at that position (but soon disappear again).

Environmental properties
For this case the environment is characterised by the following expression ES4 based
on a subset of the environmental properties given earlier, extended with property
EP14, given below.

ES4 ≡ EP1 & EP2 & EP3 & EP4 & EP5 & ((EP6 & EP7 & EP10 & EP11 & EP12)
 OR (EP6 & EP7 & EP8 & EP11 & EP12 & EP13) OR (EP9 & EP14))

EP14 Food reoccurrence
Every piece of food disappears and reappears at least 2 times per day, of which at least after the second
disappearance its position will be accessible.

Behavioural properties
The agent’s behaviour for this case should take into account which positions show
reoccurence of food. The following behavioural property characterises this.

BP5 Being at useful positions
At any point in time t, if the agent observes itself at position p and it observes that position p' is accessible
and it observes that position p' is within reachable distance and for all positions p" that the agent observed
food in the past, the agent later observed that the food disappeared and at some earlier point in time t1 the
agent observed that food was present at position p' and after that at time point t2 before t the agent observed
no food present at position p' and after that at time point t3 before t the agent again observed the presence
of food at position p' and after that at a time point t4 before t the agent again observed no food present at
position p' and p' is the closest reachable position for which the above four conditions hold then at the next
time point after t the agent will go to position p'
∀ t ∀ p ∀ p’ ∀ x
state(γ, t, input(agent)) |= observed(at(agent, p)) ∧
observed(accessible(p’)) ∧ observed(distance(p, p’, i)) & i≤max_dist &
∀ t’ ∀ p’’ ∀ x’ [t’<t & state(γ, t’, input(agent)) |= observed(at(food(x’), p’’))
� ∃ t’’ t’<t’’≤t &
 state(γ, t’’, input(agent)) |= observed(not(at(food(x’), p’’)))]
 & ∃ t1 ∃ t2 ∃ t3 ∃ t4 [t1<t2<t3<t4<t &
 state(γ, t1, input(agent)) |= observed(at(food(x), p’)) &
 state(γ, t2, input(agent)) |= observed(not(at(food(x), p’))) &
 state(γ, t3, input(agent)) |= observed(at(food(x), p’)) &
 state(γ, t4, input(agent)) |= observed(not(at(food(x), p’)))]
 & ∀ p” [∃ t1 ∃ t2 ∃ t3 ∃ t4 [t1<t2<t3<t4 &
 state(γ, t1, input(agent)) |= observed(at(food(x), p”)) &
 state(γ, t2, input(agent)) |= observed(not(at(food(x), p”))) &
 state(γ, t3, input(agent)) |= observed(at(food(x), p”)) &
 state(γ, t4, input(agent)) |= observed(not(at(food(x), p”)))] �

 ∃ d1 ∃ d2
 state(γ, t, input(agent)) |= observed(distance(p, p’, d1)) ∧
 observed(distance(p, p’’, d2)) & d1<d2]

 � state(γ, t+1, output(agent)) |= performing_action(goto(p’))

Cognitive properties
The internal cognitive dynamics has to take into account longer histories of positions
and food (re)appearing there. This is realised by representations that are built up for
more complex world properties, in particular, not properties of single states but of
histories of states of the world. For example, at a certain time point, it has to be
represented that for a certain position in the past food has appeared twice and in

28

between disappeared. The state properties b3(p, q) play the role of representations of
world histories on food (re)occurrence.

CP11 Initial mental state
At the beginning of every day n, for all positions p, internal state property b3(p, 0) holds (i.e. a belief that
there is no food at p)

CP12 Belief update on food presence
At any point in time t, for q ∈ {0,2}, if internal state property b3(p, q) holds and the agent observes food at
position p then internal state property b3b(p, q+1) will hold

CP13 Belief update on food absence
At any point in time t, for q ∈ {1,3}, if internal state property b3(p,q) holds and the agent observes no food
at position p then internal state property b3(p,q+1) will hold

CP14 Belief b3 persistence
At any point in time t, for all q, if internal state property b3(p,q) holds then at the next time point internal
state property b3(p,q) still holds

CP15 Going to interesting position
At any point in time t, if the agent observes itself at position p and it observes that position p' is accessible
and it observes that position p' is within reachable distance and it has the goal to find food and p' is the
position closest to p of which the agent believes that it is an attractive position then at the next time point
after t the agent will go to position p'

Here, b3(p,4) represents the belief that food was twice present at p, and subsequently
disappeared (in other words, a belief that p is an attractive position, since food might
show up again). Note that, although the mechanism described here is quite different
from, e.g., machine learning, this type of behaviour nevertheless can be qualified as
learning behaviour. The reason for this is that the behaviour can be split into two
distinct phases: one in which nothing was learned, and one in which the agent has
learned which positions are useful by maintaining a history of previous observations.

Logical relations
ES4 ≡ EP1 & EP2 & EP3 & EP4 & EP5 & ((EP6 & EP7 & EP10 & EP11 & EP12)

 OR (EP6 & EP7 & EP8 & EP11 & EP12 & EP13) OR (EP9 & EP14))
BS4 ≡ BP2 & BP3 & BP4 & BP5
CS4 ≡ BP2 & CP1 & CP2 & CP3 & CP4 & CP5 & CP6 & CP7 & CP8 & CP9 & CP10 &

 CP11 & CP12 & CP13 & CP14 & CP15
BS4 & ES4 � VP
CS4 � BS4

6 Formalisation of Temporal Complexity

The Complexity Monotonicity Thesis discussed earlier involves environmental,
behavioural and cognitive dynamics of living systems. In Section 2 it was shown that
based on a given complexity measure cm this thesis can be formalised by:

cm(E1) ≤ cm(E2) � cm(B1) ≤ cm(B2) &
cm(B1) ≤ cm(B2) � cm(C1) ≤ cm(C2)

What remains is the existence or choice of the complexity measure function cm. To
measure degrees of complexity for the three aspects considered, a temporal
perspective is chosen: complexity in terms of the temporal relationships describing

29

them. For example, if references have to be made to a larger number of events that
happened at different time points in the past, the temporal complexity is higher. The
temporal relationships have been formalised in the temporal language TTL based on
predicate logic. This translates the question how to measure complexity to the
question how to define complexity of syntactical expressions in such a language. In
the literature an approach is available to define complexity of expressions in predicate
logic in general by defining a function that assigns a size to every expression [7]. To
measure complexity, this approach was adopted and specialised to the case of the
temporal language TTL. Roughly spoken, the complexity (or size) of an expression is
(recursively) calculated as the sum of the complexities of its components plus 1 for
the composing operator. In more details it runs as follows.

Similarly to the standard predicate logic, predicates in the TTL are defined as
relations on terms. The size of a TTL-term t is a positive natural number s(t)
recursively defined as follows:

(1) s(x)=1, for all variables x.
(2) s(c)=1, for all constant symbols c.
(3) s(f(t1,…, tn))= s(t1) + … + s(tn) + 1, for all function symbols f.

For example, the size of the term observed(not(at(food(x), p))) from the property BP1
(see the Appendix) is equal to 6.

Furthermore, the size of a TTL-formula ψ is a positive natural number s(ψ)
recursively defined as follows:

(1) s(p(t1,…, tn))= s(t1) + … + s(tn) +1, for all predicate symbols p.
(2) s(¬ϕ)=s((∀ x) ϕ)= s((∃ x) ϕ) = s(ϕ)+1, for all TTL-formulae ϕ and variables x.
(3) s(ϕ&χ) = s(ϕ|χ) = s(ϕ�χ) = s(ϕ)+ s(χ)+1, for all TTL-formulae ϕ, χ.

In this way, for example, the complexity of behavioural property BP1 amounts to 53,
and the complexity of behavioural property BP2 is 32. As a result, the complexity of
the complete behavioural specification for the stimulus-response case (which is
determined by BP1 & BP2) is 85.

Using this formalisation of a complexity measure as the size function defined
above, the complexity measures for environmental, internal cognitive, and
behavioural dynamics for the considered cases of stimulus-response, delayed
response, goal-directed and learning behaviours have been determined. Table 1
provides the results (see the Appendix for all properties).

Table 1. Temporal complexity of environmental, behavioural and cognitive dynamics.

Case Environmental
dynamics

Behavioural
dynamics

Cognitive
dynamics

Stimulus-response 262 85 85
Delayed response 345 119 152
Goal-directed 387 234 352
Learning 661 476 562

The data given in Table 1 confirm the Complexity Monotonicity Thesis put
forward in this paper, that the more complex the environmental dynamics, the more
complex the types of behaviour an agent needs to deal with the environmental
complexity, and the more complex the behaviour, the more complex the internal
cognitive dynamics.

30

7 Discussion

In this paper, the temporal complexity of environmental, behavioural, and cognitive
dynamics, and their mutual dependencies, were explored. As a refinement of
Godfrey-Smith’s Environmental Complexity Thesis [4], the Complexity
Monotonicity Thesis was formulated: for more complex environments, more complex
behaviours are needed, and more complex behaviours need more complex internal
cognitive dynamics. A number of example scenarios were formalised in a temporal
language, and the complexity of these formalisations was measured. Complexity of
environment, behaviour and cognition was taken as temporal complexity of dynamics
of these three aspects, and the formalisation of the measurement of this temporal
complexity was based on the complexity of the syntactic expressions to characterise
these dynamics in a predicate logic language, as known from, e.g., [7]. The outcome
of this approach is that the results support the Complexity Monotonicity Thesis.

Obviously, the results as reported in this paper are no generic proof for the
correctness of the Complexity Monotonicity Thesis. Instead, the paper should rather
be seen as a case study in which the thesis was tested positively. However, the
approach taken for this test was not completely arbitrary: the used complexity
measure is one of the standard approaches to measure complexity of syntactical
expressions [7]. Moreover, the formal specifications were constructed very carefully,
to ensure that no shorter specifications exist that are equivalent. Although no formal
proof is given that the used specifications are indeed the shortest possible ones, the
construction of these specifications has been an iterative process in which multiple
authors have participated. To represent the specifications, the language TTL was just
used as a vehicle. Various similar temporal languages could have been used instead,
but we predict that this would not significantly influence the results.

Nevertheless, there are a number of alternative possibilities for measuring
complexity that might in fact influence the results. Among these is the option to use
complexity measures from information theory based on the amount of entropy of a
system, such as [1]. In future work, such alternatives will be considered as well.
Another challenging direction for future work is the possibility to establish a uniform
approach for specification of dynamic properties for environment, behaviour, and
cognition. Such an approach may, for example, prescribe a limited number of
predefined concepts that can be used within the dynamic properties.

Another issue that is worth some discussion is the fact that the Complexity
Monotonicity Thesis can also be considered in isolation of Godfrey-Smith’s
Environmental Complexity Thesis. Although it was used as a source of inspiration to
explore for the more refined Complexity Monotonicity Thesis, the Environmental
Complexity Thesis as such was not investigated in this paper. Doing this, again from
an agent-based modelling perspective, is another direction for future work. To this
end, techniques from the area of Artificial Life may be exploited, e.g., to perform
social simulations and observe whether more complex agents evolve in a way that
supports the Environmental Complexity Thesis.

In [4], in particular in Chapters 7 and 8, mathematical models are discussed to
support the Environmental Complexity Thesis, following, among others [9] and [12].
These models are made at an abstract level, abstracting from the temporal dimension
of the behaviour and the underlying cognitive architectures and processes. Therefore,

31

the more detailed temporal complexity as addressed in this paper is not covered.
Based on the model considered, Godfrey-Smith [4] concludes that the flexibility to
accommodate behaviour to environmental conditions, as offered by cognition, is
favoured when the environment shows (i) unpredictability in distal conditions of
importance to the agent, and (ii) predictability in the links between (observable)
proximal and distal. This conclusion has been confirmed to a large extent by the
formal analysis described in this paper. Comparable claims on the evolutionary
development of learning capabilities in animals are made in work such as [13] and
[10]. According to these authors, learning is an adaptation to environmental change.
All these are conclusions at a global level, compared to the more detailed types of
temporal complexity considered in our paper, where cognitive processes and
behaviour extend over time, and their complexity can be measured in a more detailed
manner as temporal complexity of their dynamics.

References

1. Berlinger, E. (1980). An information theory based complexity measure. In Proceedings of
the Natural Computer Conference, pp. 773-779.

2. Bosse, T., Jonker, C.M., Meij, L. van der, Sharpanskykh, A., and Treur, J. (2006).
Specification and Verification of Dynamics in Cognitive Agent Models. In: Proceedings of
the Sixth International Conference on Intelligent Agent Technology, IAT'06. IEEE
Computer Society Press, 2006, pp. 247-254.

3. Darwin, C. (1871). The Descent of Man. John Murray, London.
4. Godfrey-Smith, P., (1996). Complexity and the Function of Mind in Nature. Cambridge

University Press.
5. Hills, T.T. (2006). Animal Foraging and the Evolution of Goal-Directed Cognition.

Cognitive Science, vol. 30, pp. 3-41.
6. Hunter, W.S. (1912). The delayed reaction in animals. Behavioral Monographs, 2, 1912,

pp. 1-85
7. Huth, M. and Ryan, M. (2000). Logic in Computer Science: Modelling and reasoning about

computer systems, Cambridge University Press.
8. McMillan, K.L. (1993). Symbolic Model Checking: An Approach to the State Explosion

Problem. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,
1992. Published by Kluwer Academic Publishers, 1993.

9. Moran, N. (1992). The evolutionary maintenance of alternative phenotypes. American
Naturalist, vol. 139, pp. 971-989.

10. Plotkin, H. C. and Odling-Smee, F. J. (1979). Learning, Change and Evolution. Advances in
the Study of Behaviour 10, pp. 1-41.

11. Sharpanskykh, A., Treur, J. (2006). Verifying Interlevel Relations within Multi-Agent
Systems. In: Proceedings of the 17th European Conference on Artificial Intelligence,
ECAI'06. IOS Press, 2006, pp. 290-294.

12. Sober, E. (1994). The adaptive advantage of learning versus a priori prejustice. In: From a
Biological Point of View. Cambridge University Press, Cambridge.

13. Stephens, D. (1991). Change, regularity and value in evolution of animal learning.
Behavioral Ecology, vol. 2, pp. 77-89.

14. Tinklepaugh, O.L. (1932). Multiple delayed reaction with chimpanzees and monkeys.
Journal of Comparative Psychology, 13, 1932, pp. 207-243.

15. Vauclair, J. (1996). Animal Cognition. Harvard Univerity Press, Cambridge, MA.
16. Wilson, O. (1992). The Diversity of Life. Harvard University Press, Cambridge, MA.

32

Component-Based Standardisation of

Agent Communication

Frank Guerin and Wamberto Vasconcelos

Dept. of Computing Science, Univ. of Aberdeen, Aberdeen AB24 3UE, UK
{fguerin, wvasconc}@csd.abdn.ac.uk

Abstract. We address the problem of standardising the semantics of
agent communication. The diversity of existing approaches suggests that
no single agent communication language can satisfactorily cater for all
scenarios. However, standardising the way in which different languages
are specified is a viable alternative. We describe a standard meta-language
in which the rules of an arbitrary institution can be specified. In this way
different agent communication languages can be given a common ground-
ing. From this starting point, we describe a component based approach
to standardisation, whereby a standard can develop by adding compo-
nent sets of rules; for example to handle various classes of dialogs and
normative relations. This approach is illustrated by example. Eventually
we envisage different agent institutions publishing a specification of their
rules by simply specifying the subset of standard components in use in
that institution. Agents implementing the meta-language can then inter-
operate between institutions by downloading appropriate components.

1 Introduction

We are interested in facilitating interoperability for agents interacting with dif-
ferent institutions on the Internet. For example, consider a personal agent of a
professor who is invited to participate in a conference (say to give a keynote
address and chair a session). The personal agent may connect with the con-
ference site and enter a collaborative dialogue with the agents of the various
other speakers, and the conference organiser, in order to arrange the schedule of
events. Subsequently the agent will connect to various online travel sites to pro-
cure airline tickets and accommodation, most likely by means of some auction
mechanism. Finally the agent may discover that an airline ticket it has bought
does not conform to what was advertised, thus it may seek compensation, lodging
an appeal with some arbitration site, and bringing evidence to support the claim.
Each of these interactions occurs in a different institution; the requirements for
the agent communication language (ACL) in each institution are quite different.
Yet, would it be possible to provide a standard language which ecompasses all
requirements?

Past attempts to standardise agent communication [8, 15, 7]1 have managed
to standardise certain syntactic or pragmatic aspects, but fared poorly when it
comes to the issue of the semantics of the communication language. In practice,
implementers who claim to be using a particular standard ACL tend to ignore
those aspects of the standard that pose difficulties for their implementation

1 Note that the FIPA’97 specification is cited here because the communication lan-
guage semantics has not changed since then.

33

(often the formal semantics are ignored); additionally they often create ad hoc
extensions when none of the constructs of the standard quite fits their needs.
Effectively they invent their own custom dialect, which will not be understood
by any other system [22]. Given the diverse needs of different domains, it is
probably not feasible to come up with a single standard ACL which will cater
for the needs all possible agent systems. Furthermore, a standard ACL would be
rigid, precluding the possibility of agents negotiating the semantics of their own
custom ACL on the fly, for a particular purpose. The ACL would seem to be
the wrong level to standardise at; instead, it would seem appropriate to have a
standard way of specifying semantics, to allow developers (or agents themselves)
to create their own languages in a standard and structured way. Our proposal
is to create a standard meta-language which would allow different interaction
languages to be defined for different domains.

The core language, on which developers will build, must be sufficiently ex-
pressive to allow any reasonable language to be specified. For this purpose we
identify a class of agent communication languages which are universal in the
sense that they could be used to simulate any other agent communication lan-
guage which is computable. We specify one such language and demonstrate its
generality by showing how it allows the specification of institutions in which
agents can change the rules of the institution itself. With this core in place, we
envisage a standard evolving gradually by adding “components”, by which we
mean a set of rules to govern a certain type of interaction (i.e. a component
encodes a protocol), or to make available useful abstractions (e.g. a component
provides rules for normative relations and further components can use these to
specify high-level protocols). In this way we can give developers the flexibility
to define their own components, and publish the specifications, so that others
can develop further components, and agents, to work with that language. It is
hoped that this could bring together the efforts of the community as similar
efforts have done in other programming languages. A further advantage of the
component based approach is that all agents in a society do not necessarily need
to support the same components. Some agents may be less sophisticated than
others and may support simple reactive protocol components, while other more
sophisticated agents may be able to use components which allow them to ex-
press their intentions and desires, with a well defined meaning. When agents wish
to communicate they would firstly discover which components they support in
common, and then they can determine the level at which they can interact. This
ability to implement lightweight versions of an agent communication language is
one of the desiderata for agent communication languages outlined by Mayfield
et al. [19].

In this paper we will illustrate the proposed approach with some examples.
We must stress that we are not advocating that the components described in
this paper be adopted as a standard; we merely provide simple examples to
demonstrate the feasibility of the component-based approach. This paper will
focus exclusively on the semantic issues as these have proved to be the most
problematic for the standardisation of agent communication. We therefore ignore
all pragmatic issues, e.g. how to find the name of an agent who provides some
service, authentication, registration, capability definition and facilitation [16].
We assume an agent platform which can take care of all these issues. Pragmatic

34

issues are of course important, but they would require a full treatment in their
own right.

This paper is organised as follows. Section 2 looks at the most general frame-
work within which all practical ACLs could be specified. Section 3 defines an
agent communication language which allows unlimited extensions, and so forms
the base component which we later build on. Section 4 adds a component for
normative relations. Section 5 discusses how protocols can be added in general,
and adds an auction protocol. Section 6 describes a temporal logic component
we have added. Section 7 discusses related work and Section 8 concludes with a
look to the future.

2 Definition of an Agent Communication Language

In this section we want to define what an ACL is in the most general terms,
and to have a formal framework which captures the space of possible ACLs.
Following Singh’s seminal work on social commitments [22, 23], there does seem
to be a consensus in the community that the semantics of communication for
open systems should be based on social phenomena rather than agents’ private
mental states [25, 9, 4, 5]. We follow this social approach and we consider that
all “reasonable” languages for use in an open system must be of the social type.
We do not restrict ourselves to commitments: we allow arbitrary social facts2.

We define an ACL by specifying an institution. The existence of a com-
munication language presumes the existence of an institution, which defines the
meaning of language. Institutions are man-made social structures created to reg-
ulate the activities of a group of people engaged in some enterprise. They may
be created deliberately, as is the case for formal organisations, or they may be
created by conventions evolving over time, as is the case for human culture. Insti-
tutions regulate the activities of their members by inventing institutional facts,
a term due to Searle [21]. Some institutional facts take the form of rules while
others merely describe a state of affairs in the institution. Rules describe how
institutional facts can be created or modified. An example of an institutional fact
of the state of affairs type is having the title “doctor”; examples of institutional
facts which are rules are the rules in a University which describe how the title
can be awarded and by whom. The rule type of facts can be used to provide a
relationship between the real physical world and the institution; rules can have
preconditions which depend on the physical world and/or on other institutional
facts. For example, the submission of a thesis physically bound in a specified
format is a necessary precondition to the awarding of the title “doctor”; the
passing of an examination (a purely institutional fact) is another precondition.

Rules relating to the physical world describe how events or states of the world
(typically the actions of members) bring about changes in the institutional facts.
The classic example of this is where an utterance by a member of an institution
can bring about an institutional fact, for example the naming of a ship: “I hereby
name this ship the Queen Elizabeth.” [3]. It is not possible for institutional

2 This means that we are not precluded from representing mental states that have
been publicly expressed by an agent [12], the difference betweeen this and earlier
mentalistic semantics [8, 15, 7] is that we do not require that agents actually hold
the mental states which they have publicly expressed.

35

facts to bring about changes in the physical world because the institution itself,
being a collection of intangible institutional facts, cannot directly effect any
physical change in the world.3 Institutions may describe their rules in a form
which specifies physical effects in the world, but such rules are not strictly true
because the physical effects are not guaranteed to happen; the only way in which
the institution can influence the actions of its members is through the threat of
further institutional facts being created. For example a legal institution may
prescribe a term of imprisonment as the consequence of an institutional fact,
but it cannot directly bring about the imprisonment of a member; instead it can
state that a policeman should use physical force to bring the member to prison,
and the policeman can be threatened with the loss of his job if he does not. The
rule prescribing imprisonment can be reformulated as a rule which states that
if the policeman does not imprison the member by physical force or otherwise,
then the policeman loses his job. Thus all the rules relating to the physical world
take the form of descriptions of how events or states of the world bring about
changes in the institutional facts.

A further point to note is that the institutional facts being modified by a rule
could be rules themselves. Many institutions do modify their rules over time; a
legal institution may allow arguments about the rules by which argumentation
should take place. This is accommodated by the framework described above,
because a rule can modify an institutional fact, and that institutional fact could
be another rule.

If we assume that any relevant change in the world’s state can be translated
into an event, then we can say (without loss of generality) that the instutional
facts change only in response to events in the world (we do not allow rules to
refer to states of the world). In a typical agent system we rely on the agent
platform to handle the generation of events. Typical events include messages
being transmitted, timer events and possibly other non communicative actions
of agents or events such as agent death. Let E be the set of possible events and
let F be the set of possible institutional facts. Let update be a function which
updates the institutional facts in response to an event; update : E × 2F → 2F .
Now in an institution I, it is the institutional rules R which indirectly define
this update function. The institution interprets the rules in order to define the
update function, let the interpreter function be I, where I maps R to some
update function. An institution I can then be fully specified by specifying the
interpreter I and the facts F ⊂ F . F is itself composed of the rule type of facts
R and the state of affairs type of facts A, so F = 〈R,A〉. Therefore institution I
can be represented by a tuple 〈I, F 〉. The F component fully describes the facts
and rules which currently hold in the institution.

This gives us the most general view of agent communication languages; by
specifying the tuple 〈I, F 〉 we can specify any ACL. It describes how institutional

3 Institutions may indirectly affect the physical world if agents of the institution take
physical actions in response to institutional facts. We consider a bank balance to be
an institutional fact; it happens that banks have implemented physical agents which
act on this institutional fact and dispense money. Neverless, the bank balance itself
is not a physical fact. Likewise, if certain institutional facts are valued or feared by
agents, then they will act in response to them (hence the institutional facts affect
the physical world only through the agents).

36

facts F change in response to events as the multi-agent system runs. Given an
institution described by 〈I, F0〉 at some instant, and a subsequent sequence of
events e1, e2, e3 . . ., we can calculate the description of the institutional facts
after each event, obtaining a sequence of facts descriptions: F0, F1, F2, . . ., where
each Fi is related to Fi−1 as follows: Fi = update

i−1
(ei, Fi−1) where update

i−1
=

I(Ri−1) (and Fi = 〈Ri, Ai〉 for all i). Interpreter I remains fixed throughout runs.

2.1 A Universal Agent Communication Machine

The rule interpreter I specified above is the immutable part of an institution.
The choice of I can place limits on what is possible with that institution, or give
it universal expressive power. Just as a universal Turing machine can simulate
the behaviour of any turing machine, we can have an analogous universal agent
communication machine.

Definition 1. A universal agent communication machine is a machine which
can simulate the behaviour of any computable agent communication language.

By “simulate” here we mean that (given an appropriate set of input rules) it
could generate the same sequence of institutional facts in response to the same
sequence of events. In fact a universal Turing machine is a universal agent com-
munication machine. The input R to the machine produces the function update.
Any update function that is computable can be produced in this way. Any Tur-
ing complete programming language can be used to implement a universal agent
communication machine.

3 Specifying Extensible Languages

Given a universal agent communication machine it is possible to specify an ACL
which has universal expressive power, in the following sense.

Definition 2. An agent communication language is said to have universal ex-
pressive power if the agents using it can transform its rules so that it simulates
the behaviour of any computable agent communication language.

Given a language defined by an institutional specification I = 〈I, 〈R,A〉〉 (as
described above), if I is a universal agent communication machine, then the
language will have universal expressive power if the rules R allow messages sent
(i.e. events) to program the machine in a Turing complete way.4 Languages with
universal power are of particular interest because they allow unlimited extension.
It is our thesis that a minimal language with universal expressive power is an
appropriate basis for standardising agent communication; i.e. the specification
of the programming language and core code can be agreed upon and published.
Such a choice of standard does not restrict agents to the rules given because it
can provide a mechanism through which agents can change the rules at runtime;
this can allow agents to introduce new protocols at runtime, for example. Such
protocols could come from trusted libraries, or could be generated by the agents
on the fly for the scenario at hand. If necessary, agents could also have a phase
of negotiation before deciding on accepting some new rules.

4 This expressiveness implies undecidability, but if desired one can specify a restricted
and decidable language on top of this, by restricting the agents’ ability to modify
rules, as described in the sequel.

37

1 interpretEvent(F,Event,NewF):-
2 F=[Rules,Asserts],
3 Event=..EventAsList,
4 append(EventAsList,[F,NewF],NewEventAsList),
5 Pred=..NewEventAsList,
6 copy term(Rules,Rules2),
7 member([|[Pred|Tail]],Rules2),
8 callPred(Tail,Rules).

9 callPred([],).
10 callPred([HeadPred|Tail],Rules):-
11 copy term(Rules,Rules2),
12 member([|[HeadPred|NestTail]],Rules2),
13 callPred(NestTail,Rules),
14 callPred(Tail,Rules).
15 callPred([HeadPred|Tail],Rules):-
16 call(HeadPred),
17 callPred(Tail,Rules).

Fig. 1: Extensible Communication Language in Prolog

We define one such language in Fig. 1. We make use of Prolog as the logic
programming paradigm is particularly appropriate for agent communication;
there is also evidence that Prolog already enjoys considerable popularity in the
agent communication semantics community [1, 20, 14]. The interpretEvent/3
predicate takes as input the current set of facts F and an event Event, and
generates the new set of facts NewF. In line 3 the event is converted from its
predicate form to a list form, so that line 4 can append the old and new facts
variables to it. In line 5 the event is converted back from list form to its predicate
form. The next step will be to match the head of the event with the appropriate
rule in Rules (this corresponds to R in the formal model); however, we do not
want to change the rule itself by unifying its variables, this is why we make a
clean copy of it in line 6 before doing the matching in line 7 , via the member/2
predicate. Now that the body of the rule (Tail) has been retrieved, we can
invoke it in line 8 via callPred/2. Lines 9 to 17 define the recursive callPred/2
predicate. Line 10 handles the case where the rule body to be executed invokes
another rule within Rules, in which case callPred/2 is called to handle it. Line
15 handles the case where the rule body to be executed invokes a built in Prolog
predicate, in which case it is called directly via call/1. It is important that
interpretEvent/3 forces the event to use a rule from Rules (i.e. it checks that
the rule is a member of Rules before passing control to callPred/2) so that
agents are unable to directly invoke Prolog predicates with their messages; their
messages are interpreted first. Without this precaution our interpreter would
not truly have universal expressive power, as it would always accept Prolog
predicates, which could be used to reprogram it; hence it would be impossible to
define a language which restricted the possible things which events could change.

Rules stored in R are written in the form of lists, with an index number at
the head of each rule. A Prolog clause of the form “pred1(A,B):-pred2(A),
pred3(B)” becomes “[1,pred1(A,B),pred2(A),pred3(B)]”. This corresponds
to the Horn clause pred2 (A)∧ pred3 (B) → pred1 (A,B). Some sample rules are:

38

[[1, addRule(Rule,[R1,A1],[NewR1,A1]),

append(R1,[Rule],NewR1)],

[2, deleteRule(Index,[R2,A2],[NewR2,A2]),

delete(R2,[Index|_],NewR2)]

]

Let the above program be called prog and the interpreter I = 〈prog,Prolog〉. Let
the assertions A be initially empty and rules R be the two rules above.

Theorem 1. The ACL specified by institution 〈I, 〈R,A〉〉 has universal expres-
sive power.

The truth of this follows from that fact that Prolog is Turing-complete, and
addRule can be used to add arbitrary predicates, and can therefore give subse-
quent events access to the underlying Prolog language (or restrict their access).
Despite the ease with which this can be done, to our knowledge this is the first
example of such an ACL. We propose that an ACL such as this would form
the core component of a standard. This is only the first step of standardisation
however. Standards will also need to define libraries and tools which will make
the base machine more usable.

Let us briefly illustrate how we can begin to use the above ACL. The following
is an example of an event:

addrule([3,assert(Fact,[R,A],[R,[Fact|A]])])

After interpreting this event, the rules R will be updated so that subsequent
assert events cause the addition of an element to the assertions A. For ex-
ample, a subsequent event assert(alive(agent1)) would add alive(agent1)
to A. Note that this is invoking our rule 3 and not Prolog’s built-in assert/1
predicate. At this point we will avoid giving an extended example of the kind
of interaction we can capture. Instead we want to show the component based
approach to standardisation, so we will eventually illustrate only a very simple
auction protocol, but we will build it upon some useful components.

We now add some basic “housekeeping” rules. We will have a timer predicate
in A, which records the current time, e.g. timer(524). We will assume that our
agent platform generates timer events at regular intervals. Whenever a timer
event happens we want to update the clock and execute a set of housekeeping
rules. These rules perform housekeeping checks, for example to see if an agent
has failed to meet a deadline. The following rule (in R) handles the timer event:

[3, timer(Time,[R,A],[NewR,NewA]),

replace(A,timer(Time),UpdatedA),

housekeeping([R,UpdatedA],[NewR,NewA])

]

Here we have assumed the existence of a replace predicate which replaces a
named predicate in A with a new version. The initial housekeeping predicate
simply preserves the institutional facts F ; subsequent components will modify
the predicate, adding their own rules.

It is desirable to add another layer for the interpretation of agent commu-
nications. We create a speechAct rule for this purpose. Agents communicate by
sending messages (events) of the form speechAct(sender, receiver, performative,

39

content). We must rely on the platform’s message handling layer to discard any
messages where the sender parameter is falsified; there is no way to do this
once the event is processed by the interpreter. We also rely on the platform to
distribute the message to the intended recipients. The message event is then
handled by our speechAct rule. With this in place we protect the lower level
operations from direct access by the agents. We do not want agents to be able to
directly invoke the timer event or the rule changing events; however, if desired,
we can still create speech acts which allow the modification of certain rules in R
by suitably empowered agents. Now the speechAct predicate becomes particu-
larly useful to gather together all those operations which need to be done during
the processing of any message (e.g. check roles, permissions and empowerments).
This is described in Section 4.

It is worth noting that the update rule we have been describing needs to have
access to all events in the system in order to build a complete picture of the social
facts. If each agent is applying the update rule using only the events they have
observed, they only build a view of the institutional facts from their individual
perspectives. If agents apply the rules on limited information in this way, it is
entirely possible that the institutional facts from the perspective of two different
agents may have contradictory assertions. This is not a problem, so long as the
developer bears this in mind when designing components (protocols for example).
Specifications of norms should not create “unfair” rules, for example creating an
obligation for an agent to do something, and leaving the agent unaware of the
existence of the obligation. In most practical systems which we envisage, there
will be no need for any agent to maintain this global view and indeed in a large
system it might not be feasible to maintain it; it will be sufficient for each agent
to maintain an individual perspective, which coincides with the perspective of
other agents for any interactions they share.

Obviously we need to be particularly careful if we allow agents to change
the rules R, lest conversational participants have contradictory beliefs about
the meanings of the messages they are exchanging. At least two solutions can
be envisaged: either all members of the institution need to be informed of any
change, or a subgroup can decide to set up a virtual organisation (having new
communicative actions and corresponding rules which apply only within that
virtual organisation, the old ones still applying outside).

4 Normative Relations Component

Various different notions are employed by institutions to describe their rules; Ser-
got distinguishes between notions of power, permission and practical possibility
[13]. Power is the ability of a member to bring about changes in the institutional
facts; i.e. for each event which changes F we can describe which members of
the institution can effect those changes. For convenience it is common to define
roles and define the power of a role. This is because the occupants of roles often
change, while the powers associated with the role do not.

Permission can be used to describe those actions which ought or ought not to
be taken. Permission is distinct from power because a member may be empow-
ered to do something even though he is not permitted; in this case: if he does
it then it counts, i.e. it creates the institutional fact. For example, an examiner
could award a student a pass on submission which falls short of the required

40

standards as set out by the institution. In this case the examiner’s action is
not permitted but still counts as a pass under the rules of the institution; the
examiner may be subject to some sanction if the abuse is discovered, but this
may not necessarily revoke the fact that the student has passed.

The notion of permission leads to its dual: obligation; obligation is equivalent
to “not permitted not to”. Obligation can be captured by a rule which specifies
a sanction if an action is not done. Because we will be testing agents’ compliance
over finite models, we must always specify a time-limit for obligations. It is no
good for an agent to promise something and deliver “eventually”, if there is no
upper bound on the time taken.

Practical possibility is another distinct notion which some institutions may
need to represent explicitly. For example, suppose there is a rule defining the
sanction to be placed on a member in the case of failing to fulfil an obligation,
there may be a need to exempt the case where the member was physically inca-
pable of fulfilling the obligation at the time. Thus there could be institutional
facts to represent the physical capabilities of each agent; i.e. a rule will define
the events in the physical world which count as the agent being recognised by
the institution as being capable or incapacitated. We do not implement practical
possibility however.

4.1 Implementing Norms

The normative relations we implement are defined by predicates stored in the as-
sertions A. Relations can apply to agents directly or via roles; an agent occupies
one or more roles (also stored in the assertions A). There are four types of nor-
mative predicate: power, permitted, obliged and sanction. Sanctions are defined
for actions which agents should not do. Permitted or obliged actions are treated
as exemptions to these sanctions, i.e. the sanction applies unless the agent was
permitted or obliged. Power and permission have arity 3: the first parameter is
the agent name (or role name), the second is the performative of the speech act
he is empowered/permitted to do, and the third is a condition. For example

power(bidder,bid,[Content=[C],C>47])

means that any agent in the role of bidder is empowered to send a bid speech
act provided it complies with the following conditions: the content of the act
must be a list containing a single number whose value is greater than 47. If the
condition is the empty list then it is always true. Sanctions and obligations add
a further (fourth) parameter, which is the “sanction code”. Following [20] we
will associate a 3-figure “sanction code” with each norm violation (similar to the
error codes used in the Internet protocol HTTP), in our case higher numbers are
used for more egregious violations. The sanction codes gathered by each agent
as it commits offences are merely recorded in a list. The use of codes is just a
convenient way to record sanctions without yet dealing with them; we would
require a separate component to impose some form of punishment. Finally the
obligation adds a fifth parameter which is the deadline by which the specified
speech act must be sent.

The algorithm shown in Fig. 2 is added to the speechAct rule to handle the
normative relations, it effectively defines an operational semantics for the norma-
tive relations. With this implementation we make obligation imply permission

41

algorithm HANDLE-NORMS

1. Input: a speech act with Sender, Receiver, Performative, Content
2. Check if there is an obligation which requires that Sender (or one of the roles he

occupies) send this speech act. If so remove the obligation from A and jump to
5.

3. Check if there is a sanction for Sender (or one of the roles he occupies) sending
this speech act: If not, go to the next step; If so,
◦ check if there is a permission for Sender (or one of the roles he occupies) to

send this speech act: If so, go to the next step; If not, apply the specified
sanction.

4. Check if Sender (or one of the roles he occupies) is empowered to send this speech
act: If not, discard the act and exit this algorithm.

5. Process the act as normal.

Fig. 2: Algorithm to Handle Normative Relations

and power. It is in this algorithm that roles are consulted to retrieve the names
of the agents occupying the roles; e.g. when checking if an agent who has just
sent a message is obliged (and hence permitted), the algorithm will consult the
facts to see what roles the sending agent occupies. We also need to add the fol-
lowing to the housekeeping rule (recall that the housekeeping rule is invoked on
every timer event):

– For each obligation check if it has timed out. If so, apply the sanction to the
agent (or all agents occupying the obliged role) and remove the obligation
from A.

Note that we are assuming that the existence of a speechAct rule is an agreed
standard across component developers, so that any new components can add
checks and guards to this rule.

5 Protocol Components

Protocols are additional components of the ACL, they are each encoded via
their own rules in R. Each protocol has a unique name and may be represented
by a number of clauses in R. Protocols essentially determine what actions are
to be taken next, given the current state and an event that happens. They
do this by consulting the current state and modifying the normative relations
according to the event that has just happened. Agents initiate protocols by
using the special speech act initProtocol ; the speechAct predicate passes control
to the protocol on initiation. A protocol initiates a “sub-conversation” within
the institution. All the assertions describing the protocol’s state of execution are
gathered together as an indexed list within A. In order to ensure the index is
unique, the initiator will compose an index by concatenating his name with a
positive integer which increases with each new protocol he initiates. Subsequently
all speech acts indexed with the protocol’s identifier will be processed by the
protocol’s rules (instead of the standard rules which process speech acts that
are not part of any protocol). Normative relations defined within the protocol’s
“space” in A only apply to messages that are part of that protocol. Timer events
are processed by all protocols running at any time. Agents are free to enter

42

multiple parallel protocols, each being a separate sub-conversation. Sending a
exitProtocol message terminates the protocol and removes its assertions from A.

5.1 Example Protocol: Auction

The Vickrey auction protocol below is expected to be invoked by a speech act
with content [Index,Protocol,Item,OffersOver,ClosingTime]. These then become
variables accessible to the initiator clause of the protocol rule, along with the
initiator of the protocol and the list of receivers. Each clause has access to the
variables Sndr and Rcvr from the event that invoked the clause (we cannot use
the names Sender and Receiver as these are used by content checking conditions).
The Prolog-style pseudocode below describes a series of clauses, one to handle
each speech act that can happen during the execution of the protocol. To keep
the presentation concise we have avoided presenting the example in real Prolog
code.

initiator:

add role(Sndr,auctioneer)

for each Rcvr add role(Rcvr,bidder)

add power(bidder,bid,[Content>OffersOver])

add permitted(bidder,bid,[Receiver=R,

role(R,auctioneer),Content>OffersOver])

add sanction(bidder,bid,[],100)

retrieve global.timer(Time)

add timeout(closingTime+Time)

add item(Item)

add high1(0)

add high2(0)

if bid([auctioneer,NewBid])

retrieve high1(High1)

retrieve high2(High2)

if NewBid>High1 then replace winner(_) with winner(Sndr)

replace high1(_) with high1(NewBid)

else if NewBid>High2 then replace high2(_) with high2(NewBid)

if timer(Time)

retrieve timeout(T)

if Time>T then

retrieve high1(High1)

retrieve high2(High2)

NewTime = Time+50

if High1=High2 then

obliged(auctioneer,exitProtocol,[Receiver=bidder],101,250)

else

remove power(bidder,bid,_)

add power(auctioneer,inform,[])

retrieve winner(Winner)

add obliged(auctioneer,inform,

[Receiver=Winner,Content=[won,High2]],103,NewTime)

add obliged(auctioneer,exitProtocol,

[Receiver=[bidder]],101,NewTime)

43

if inform([won,Price]) then

retrieve global.timer(Time)

retrieve winner(Winner)

retrieve item(Item)

NewTime = Time + 150

add global.obliged(auctioneer,inform,

[Receiver=bank,Content=[transfer,Item,Winner]],102,NewTime)

add global.obliged(Winner,inform,[Receiver=bank,

Content=[credit,Price,auctioneer]],102,NewTime)

Note that the final clause creates obligations which are to persist after the proto-
col’s termination (this is the meaning of add global...). When this is done the
agent’s name is put in the obligation instead of the role name. This is because
the role will cease to exist on termination of the protocol (i.e. the fact asserting
it is within the indexed list of facts for that protocol, and hence will be deleted
when the protocol terminates), whereas we want the agent to still be obliged to
pay even after the auction is finished.

5.2 Auction Animation

The initiating speech act is

speechAct(alice, [bob,claire], initProtocol,

[alice1,auction,IPRowner,47,200])

Here initProtocol is the performative and auction is the protocol to be initi-
ated. This starts a new conversation state, having its assertions as an indexed
list within A. The index is alice1. Subsequent messages which are part of this
protocol execution must be tagged with this index at the head of their content
list. After this the following assertions hold within the indexed list

role(alice,auctioneer)

role(bob,bidder)

role(claire,bidder)

power(bidder,bid,[Content=[C],C>47])

power(auctioneer,exitProtocol,[Receiver=[bob,claire]])

permitted(bidder,bid,[Receiver=R,role(R,auctioneer),Content=[C],>47])

sanction(bidder,bid,[],100)

The next speech act is a bid by bob:

speechAct(bob, alice, bid, [alice1,53])

The only effect of this is to add a predicate recording this as the highest bid.
Bidders still retain the power and permission to revise their bids. Next we have
claire bidding 51, which adds a predicate recording the second highest bid. Then
the timeout event happens. This results in the power to bid being revoked. Agents
are still permitted to bid, but it has no effect. We now have the following norms
for the auctioneer:

power(auctioneer,inform,[])

obliged(auctioneer,inform,[Receiver=bob,Content=[won,51]],103,250)

obliged(auctioneer,exitProtocol,[Receiver=[bob,claire]],101,250)

44

Note that the auctioneer is empowered to inform anything to the bidders; what-
ever he says, it counts. However, he is obliged to announce the winner and losers
as expected in a Vickrey auction. The auctioneer’s next messages are

speechAct(alice, bob, inform, [alice1,won,52])

speechAct(alice, [bob, claire], exitProtocol,[alice1])

This terminates the protocol and generates two obligations which exist in the
“root” of A, i.e. not in the sublist indexed by alice1.

obliged(alice,inform,[Receiver=bank,

Content=[transfer,IPRowner,bob]],102,400)

obliged(bob,inform,[Receiver=bank,Content=[credit,52,alice]],102,400)

Note that alice has overcharged bob. Without any third party monitoring, there is
no way for him to know. However, we could imagine a subsequent dialog where
claire reveals her bid to him and he lodges a complaint with an arbitration
authority. If the evidence is deemed to be sufficient, the protocol specification
can be consulted again to determine the appropriate sanction, i.e. that sanction
103 should be enforced on alice.

6 Temporal Logic Component

Our obliged predicate only allows us to specify that an action must be done before
some future time. We have also added a temporal logic component which allows
us to express more complex conditions. For example we can specify that an agent
is obliged to ensure that a certain condition holds true, where the condition is
expressed in temporal logic, but ultimately refers to the truth values of predicates
in A. We are interested in making these kinds of normative specifications for the
behaviour of agents, and then testing their compliance with the specification by
observing their behaviour at runtime (by observing finite runs of the system).
This is the same type of testing as described by Venkatraman and Singh [24];
i.e. given an observed run of the system we can determine if the agents have
complied so far, but not if they will comply in other circumstances. We have
found that the standard temporal logic operator ⋄ (at some time in the future)
is not very useful for our specifications. The linear temporal formula ⋄p promises
that p will eventually true, but there is no way to falsify it in a finite model;
i.e. if we require that an agent perform some action eventually, it is not possible
to be non compliant in a finite model. Hence this formula becomes meaningless
when referring to agent behaviour in a finite observed sequence. A typical type
of formula we need to specify is that some condition must hold continuously
before a deadline. This can be done with the U (until) operator. The formula
pUq means that p must hold continuously until q becomes true, and q should
eventually become true (this second part is of course redundant in our finite
sequences). We include Boolean connectives ¬,∧ and ∨ in the language. The �

operator (now and at all future times) is not included in our language because
� p is the same as pU false in a finite sequence. Despite the fact that our temporal
logic only has one temporal operator, it is still quite expressive, as nestings of
U can be used, as well as the Boolean connectives.

Using this simple language we have constructed a model checking component
which keeps track of the temporal formulae which an agent is obliged to keep

45

true; i.e. the checker “carries forward” the pending formulae and checks each
new state as timer events are processed. This allows the formulae to be used
in normative specifications, and sanctions to be triggered automatically when
the formulae are falsified. We use the method of particle tableau from [18] to
check the formulae. This allows an efficient incremental construction of the rel-
evant portion of the tableaux. Unfortunately the algorithm cannot be properly
described in the space available.

7 Related Work

There are few recent works which address standardising agent communication
semantics. It appears that the effort has been abandoned since the attempts
of FIPA and KQML [8, 15, 7] in the 90’s. However, in terms of technical ideas,
there are some recent proposals which are moving in directions similar to what
we propose.

In [10] it is demonstrated that a system of production rules can be used to
implement many agent institutions that had originally been specified with very
diverse formalisms. This is similar to our proposal as it is given a common com-
putational grounding to proposals which were previously hard to compare. It also
shows that if we are considering computational implementations of agent com-
munication, then one simple language will be sufficient to implement whatever
diverse notions we choose to employ to govern the agents.

In [20] the possibility of agents modifying the rules of the institution is men-
tioned; it is stated that this would require “interpretable code or some form of
dynamic compilation”. In [2] the event calculus formalism has been implemented
to animate a specification of a rule governed agent society, but it is also stated
that features of the underlying programming language could be made accessible
to complement the event calculus formalism; this comes closer to the flavour of
our proposal. In [11] normative relations are implemented in the Jess production
rule system. The authors mention the possibility of “societal change”, where so-
cieties may “evolve over time by altering, eliminating or incorporating rules”.
This societal change facility is not actually implemented in [11], but the authors
do specify norms in a computationally grounded language based on observable
phenomena.

In [6] there is a proposed development methodology which is similar to the
“component based” aspect of our approach; generic protocols are specified, and
then transformers can be applied to them to capture variations of the protocol
for specific contexts. The work of [26] advocates the need for tools to assist
developers in protocol design, while also showing how protocols can be built on
the social commitments approach to agent communication semantics; this type
of tool support and structured development is exactly what we expect will be
needed to take our standardisation approach forward.

8 Conclusions and Future Work

There are two requirements which should be fulfilled as a precondition to making
a standard for agent communication which has a reasonable prospect of actually
being adopted. One is the expressive power to allow developers to do what they
want, and the second is the ease of use (for which tools are required). The first

46

aspect is easy, as we have shown, the second will take more effort. Even with
the few components we described, we can see already that programming moves
to a higher level as we add more components. We expect that standardisation
will need to proceed by means of evolving libraries and tools which make the
agent developers job easier. In this process the role of a standards body would
be to accredit components and publish them, and to standardise the form of
their documentation.

We are currently experimenting with our temporal logic component which
model checks temporal logic formulae, and plan to extend the expressiveness of
its language. Argumentation is yet more interesting as it typically requires the
use of nonmonotonic logics: an agent may undercut another agent’s argument,
and so force a conclusion to be retracted. Here we would code the rules defining
acceptability of an argument. The ability of a meta-interpreter to specify a depth
limit on proofs is particularly useful for this purpose; in order to have a common
consensus on what arguments are accepted we need to specify the limits on the
resource bounded reasoning [17]. Argumentation also introduces the possibility
of negotiating changes to the rules of the institution itself. There will also no
doubt be considerable interest in developing components for various logics such
as the C+ action language (which is gaining popularity [2, 6]) and various modal
logics.

Eventually it is hoped that different electronic institutions could publish
the components which comprise their communication language in a machine
readable format, so that a roaming agent could come and join the institution
without needing to be programmed to use that particular language in advance.
This is an ambitious goal, as the agent would need not to just know the rules, but
also its strategy for participation. However, if we restrict our attention to certain
types of dialog, and their variants (e.g. auctions) then it does seem feasible.

References

1. R. Agerri and E. Alonso. Semantics and Pragmatics for Agent Communication.
volume 3808 of LNAI. Springer-Verlag, 2005.

2. A. Artikis, M. Sergot, and J. V. Pitt. Specifying Norm-Governed Computational
Societies. Technical Report 06-5, Dept. of Computing, Imperial College, London,
UK, 2005.

3. J. L. Austin. How To Do Things With Words. Oxford University Press, 1962.
4. J. Bentahar, B. Moulin, J.-J. C. Meyer, and B. Chaib-Draa. A Computational

Model for Conversation Policies for Agent Communication. volume 3487 of LNAI.
Springer-Verlag, 2005.

5. B. Chaib-Draa, M.-A. Labrie, M. Bergeron, and P. Pasquier. An Agent Communi-
cation Language Based on Dialogue Games and Sustained by Social Commitments.
Autonomous Agents and Multi-Agent Systems, 13(1):61–95, 2006.

6. A. K. Chopra and M. P. Singh. Contextualizing Commitment Protocols. In Procs.
5th. Int’l Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS), Hako-
date, Japan, May 2006. ACM Press.

7. P. R. Cohen and H. J. Levesque. Communicative Actions for Artificial Agents. In
Int’l Conf. on MASs, pages 65–72, Mass., USA, 1995. MIT Press.

8. FIPA. [FIPA OC00003] FIPA 97 Part 2 Version 2.0: Agent Communication Lan-
guage Specification. In Website of the Foundation for Intelligent Physical Agents.
http://www.fipa.org/specs/fipa2000.tar.gz, 1997.

47

9. N. Fornara, F. Vigano, and M. Colombetti. Agent communication and arti-
ficial institutions. Autonomous Agents and Multi-Agent Systems, online; DOI:
10.1007/s10458-006-0017-8, 2006.

10. A. Garcia-Camino, J. Rodriguez-Aguilar, C. Sierra, and W. Vasconcelos. A
Rule-based Approach to Norm-Oriented Programming of Electronic Institutions.
SIGEcomm Exchanges, 5(5), 2006.

11. A. Garcia-Camino, J.-A. Rodriguez-Aguilar, and P. Noriega. Implementing Norms
in Electronic Institutions. In Procs. 4th Int’l Conf. on Autonomous Agents &
Multiagent Systems (AAMAS), Utrecht, The Netherlands, 2005. ACM Press.

12. F. Guerin and J. V. Pitt. A semantic framework for specifying agent commu-
nication languages. In Fourth International Conference on Multi-Agent Systems
(ICMAS-2000), pages 395–396. IEEE Computer Society, Los Alamitos, California,
2000.

13. A. J. I. Jones and M. J. Sergot. A formal characterisation of institutionalised
power. Journal of the IGPL, 4(3):429–445, 1996.

14. Y. Labrou. Semantics for an agent communication language. PhD thesis, Balti-
more, MD: University of Maryland Graduate School, 1996.

15. Y. Labrou and T. Finin. A semantics approach for kqml – a general purpose
communication language for software agents. In Third International Conference
on Information and Knowledge Management (CIKM’94), pages 447–455, 1994.

16. Y. Labrou, T. Finin, and Y. Peng. The current landscape of agent communication
languages, 1999.

17. R. P. Loui. Process and policy: Resource-bounded nondemonstrative reasoning.
Computational Intelligence, 14(1):1, 1998.

18. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems (Safety), vol.
2. Springer-Verlag, New York, 1995.

19. J. Mayfield, Y. Labrou, and T. Finin. Desiderata for agent communication lan-
guages. In Proceedings of the AAAI Symposium on Information Gathering from
Heterogeneous, Distributed Environments, AAAI-95 Spring Symposium, pages 347–
360. Stanford University, Stanford, CA, 1995.

20. J. Pitt, L. Kamara, M. Sergot, and A. Artikis. Formalization of a voting protocol for
virtual organizations. In Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS’05), Utrecht, July 2005.
ACM Press, 2005.

21. J. R. Searle. What is a speech act ? In Philosophy of Language. edited by A.P.
Martinich, Third edition. 1996, Oxford University Press, 1965.

22. M. Singh. Agent communication languages: Rethinking the principles. IEEE Com-
puter, 31(12):40–47, 1998.

23. M. Singh. A social semantics for agent communication languages. In IJCAI Work-
shop on Agent Communication Languages, Springer-Verlag, Berlin., 2000.

24. M. Venkatraman and M. P. Singh. Verifying compliance with commitment pro-
tocols: Enabling open web-based multiagent systems. Autonomous Agents and
Multi-Agent Systems, 2(3):217–236, 1999.

25. M. Verdicchio and M. Colombetti. A logical model of social commitment for agent
communication. In Proceedings of the second international joint conference on
Autonomous agents and multiagent systems table of contents Melbourne, Australia,
pages 528 – 535, 2003.

26. P. Yolum. Towards design tools for protocol development. In AAMAS ’05: Pro-
ceedings of the fourth international joint conference on Autonomous agents and
multiagent systems, pages 99–105, New York, NY, USA, 2005. ACM Press.

48

Satisfying Maintenance Goals

Koen V. Hindriks1 and M. Birna van Riemsdijk2

1 EEMCS, Delft University of Technology, Delft, The Netherlands
2 LMU, Munich, Germany

Abstract. A rational agent derives its choice of action from its beliefs
and goals. Goals can be distinguished into achievement goals and mainte-
nance goals. The aim of this paper is to define a mechanism which ensures
the satisfaction of maintenance goals. We argue that such a mechanism
requires the agent to look ahead, in order to make sure that the ex-
ecution of actions does not lead to a violation of a maintenance goal.
That is, maintenance goals may constrain the agent in choosing its ac-
tions. We propose a formal semantics of maintenance goals based on the
notion of lookahead, and analyze the semantics by proving some prop-
erties. Additionally, we discuss the issue of achievement goal revision, in
case the maintenance goals are so restrictive that all courses of action
for satisfying achievement goals will lead to a violation of maintenance
goals.

1 Introduction

The research presented in this paper concerns the role of maintenance goals in
the selection of actions by a rational agent. A rational agent aims at satisfying its
goals, which may include both achievement goals as well as maintenance goals.
Achievement goals define states that are to be achieved, whereas maintenance
goals define states that must remain true.

The distinction between achievement and maintenance goals is common in
the literature about rational agents. However, whereas various proposals for
computational semantics and programming frameworks that include achieve-
ment goals are available [3, 5, 11, 14, 17, 18], maintenance goals have received less
attention [3, 4, 6]. In this paper we investigate a semantics for maintenance goals.
Our aim is to define a mechanism which ensures the satisfaction of maintenance
goals that can be integrated into various agent programming languages.

Achievement goals in agent programming frameworks are typically used in
combination with rules that express which action or plan an agent may execute
in certain circumstances in order to achieve a particular achievement goal. In
such a setting, achievement goals thus trigger the execution of a course of action.
A maintenance goal can have a similar role in agent programming frameworks,
in the sense that it can trigger an agent to perform actions in order to ensure
that a maintenance goal is not violated, or to take action to reestablish the
maintenance goal if it is violated.

Implementing maintenance goals using conditions to trigger the execution
of actions, however, is not sufficient to guarantee that maintenance goals are

49

not violated. In order to prevent the violation of a maintenance goal, an agent
may sometimes have to refrain from performing an action that the agent would
otherwise have selected, e.g., to satisfy one of its achievement goals [6]. A com-
prehensive framework for maintenance goals should thus not only incorporate
an action selection mechanism based on triggering conditions, but should also
take into account the constraining role of maintenance goals. As we will show, a
selection mechanism that is based on this constraining role can also be used to
actively ensure that a maintenance goal is not violated.

We argue that taking into account the constraining role of maintenance goals
requires some kind of lookahead mechanism, which allows the agent to determine
whether certain actions or plans it would like to perform might lead to the viola-
tion of one of its maintenance goals. The main aim of this paper is to investigate
how the semantics of maintenance goals can be formally defined through such
a lookahead mechanism. We analyze the semantics formally by proving several
properties. It is important to note that one advantage of giving a formal seman-
tics, is the fact that one can formally prove certain properties. This is important
in order to get a clear understanding of the phenomenon under investigation.
Besides providing a formal semantics and analysis of maintenance goals, we dis-
cuss the issue of achievement goal revision, in case the maintenance goals are so
restrictive that all plans for satisfying achievement goals will lead to a violation
of maintenance goals.

The paper is organized as follows. In Section 2, a motivating example is intro-
duced to illustrate the main ideas throughout the paper. Our investigations are
carried out in the context of the agent programming language GOAL [5], which
is briefly introduced in Section 3. The results presented, however, are general
and can be integrated into any agent framework. Section 4 formally defines a
lookahead mechanism that ensures selected actions do not violate the agent’s
maintenance goals. The look-ahead mechanism introduced, however, may over-
constrain an agent’s decision procedure. In Section 5 this problem is discussed
and a revision procedure is suggested to resolve it. Section 6 concludes the paper,
outlines some directions for future work, and discusses related work.

2 Motivating Example: A Carrier Agent

In this section, a simple scenario involving a carrier agent is presented in order
to illustrate the role of maintenance goals in action selection and the reasoning
we believe is involved in avoiding violation of maintenance goals.

2.1 The Basic Scenario

The setting is as follows. Consider an agent who wants to bring parcels from
some location A to a location B, using its truck. The distance between A and B
is too large to make it without refueling, and so, in order not to end up without
gas, the agent needs to stop every once in a while to refuel. The fact that the
agent does not want to end up without gas, can be modeled as a maintenance

50

goal.3 This maintenance goal constrains the actions of the agent, as it is not
supposed to drive on in order to fulfil its goal of delivering the parcels, if driving
on would cause it to run out of gas.

The action of driving is an action that the agent can take in order to fulfil its
achievement goal of delivering the parcels. Other actions that the agent has at its
disposal, may be used to actively ensure that the agent’s maintenance goals are
not violated. In the example scenario, the action of refueling can be viewed as an
action of this kind (although, in this example, not violating the maintenance goal
is also instrumental for achieving the achievement goal). Maintenance goals thus
on the one hand constrain the agent’s actions, but may also induce the agent to
take preventive actions to make sure maintenance goals are not violated.

An essential reasoning mechanism in order to ensure that the agent does
not take actions that would violate the agent’s maintenance goals is a lookahead
mechanism. In the example scenario, the agent should reason about the distance
to the next gas station and the amount of fuel it has left, in order to make sure
it does not end up without fuel between two gas stations. That is, it should in
one way or another, reason about the consequences of possible future sequences
of actions in order to be able to choose those actions that will not lead to a
violation of maintenance goals at some point in the future.

2.2 Conflicts between Achievement and Maintenance Goals

In this simple scenario so far, there is no conflict between the agent’s maintenance
goals and achievement goals. It is perfectly possible for the agent to deliver its
parcels without running out of gas, as long as it refuels in time. It may, however,
sometimes be the case that conflicts between achievement goals and maintenance
goals arise, in the sense that in order to achieve an achievement goal, the agent
will have to violate a maintenance goal.

In the example scenario, such a conflict may arise if the agent has the addi-
tional maintenance goal of making sure that the weight of truck load stays below
a certain threshold. Assuming that the total weight of the parcels exceeds this
threshold, and assuming that the agent cannot drive back and forth between
A and B (e.g., because the agent has loaned the truck and has to return it af-
ter arriving at location B), there is a conflict between the achievement goal of
bringing all the parcels from A to B, and not overloading the truck.

Such a situation of conflict may result in the agent not doing anything any-
more at a certain point. That is, it may be the case that any action the agent is
able to do to achieve its achievement goal is not allowed because this would lead
to a violation of the agent’s maintenance goal, and, moreover, there is no pos-
sibility to actively ensure that the maintenance goal is not violated. In general,
there are several possibilities of dealing with such a situation.

The first option is not to do anything about it. The intuition here is that
the agent should never violate its maintenance goals, i.e., maintenance goals
are hard constraints, and the agent wants “all or nothing” when it comes to

3 Other papers [3, 4, 6] have used a similar maintenance goal in some of their examples.

51

its achievement goals. In the example scenario, it may be the case that it is of
utmost importance that the truck is not overloaded, e.g., because the truck has
a device with which the weight of the freight is measured, and if the weight
exceeds the threshold the truck cannot start. Moreover, it may be the case that
bringing the parcels only makes sense if all parcels are brought, e.g., because the
parcels contain parts of a closet and there is no use for bringing only part of the
closet. Put differently, the utility of delivering only part of the parcels is zero.

A second option is to allow the agent to violate its maintenance goals, if this
is absolutely necessary in order to achieve an achievement goal. An intuitive
implementation of such a mechanism would have to make sure that the agent
really only violates maintenance goals if there is no way around it, and if this
is necessary, it should try to “minimize” the violation, e.g., by trying to make
sure that the maintenance goal is satisfied again as soon as possible after the
achievement goal that was the reason to violate the maintenance goal has been
satisified. In the example scenario, it may be the case that overloading the truck
does not do too much harm, as long as this does not happen too often. It is then
important that the truck is unloaded as soon as the destination is reached.

The third option is to modify the achievement goal, such that the modified
achievement goal does not conflict anymore with the agent’s maintenance goals.
The idea here is that there might be achievement goals that can be achieved
“to a certain degree”, i.e., it might be possible to “weaken” the achievement
goal, in case it would conflict with a maintenance goal. In the example scenario,
the conflict between the achievement goal of getting all parcels at location A,
and the maintenance goal of not overloading the truck, could be resolved by
modifying the achievement goal such that the agent settles on bringing only
part of the parcels to location B. The decision of which parcels to leave behind
can be based on the weight of the parcels, i.e., the weight of the parcels to be
taken along should not exceed the threshold, and on the utility of getting certain
parcels at the destination, i.e., some parcels may be more important than others.

Of course, combinations of these possibilities of dealing with conflicts are
also possible. Such combinations might define certain maintenance goals as hard
constraints and certain achievement goals as “all or nothing” goals, while other
maintenance goals and achievement goals may be violated or modified, respec-
tively. In this paper, however, we focus on the third option, i.e., we view main-
tenance goals as hard constraints, and opt for the modification or weakening of
achievement goals in case a conflict with a maintenance goal arises. In domains
in which maintenance goals relate, e.g., to the limited availability of resources
and time which cannot easily be lifted the third strategy will typically be valid.

3 The GOAL Language

In this section, the GOAL programming language [5, 10] is briefly introduced
and a GOAL agent that implements a simplified version of the carrier agent
of Section 2.1 is presented. A GOAL agent selects actions on the basis of its
beliefs and achievement goals, i.e., maintenance goals were not investigated in

52

the original GOAL language. Whenever goals are mentioned in this section, this
should thus be interpreted as meaning achievement goals. The definitions we
provide in this section are used to make the notion of an agent computation
precise, which we use in Section 4 to define the semantics for maintenance goals.

A GOAL program for the carrier agent is specified in Table 1. The program
consists of four sections: (1) a set of initial beliefs, collectively called the (initial)
belief base of the agent, (2) a set of initial achievement goals, called the (initial)
goal base, (3) a program section which consists of a set of conditional actions, and
(4) an action specification that consists of a specification of the pre- and post-
conditions of basic actions of the agent. In the example, variables are used as
a means for abbreviation; variables should be thought of as being instantiated
with the relevant arguments to yield propositions. The constants used in the
example denote locations (a, ab1, ab2, b, assumed to be spatially positioned in
this order), parcels (p1,p2) and a truck truck. The order of the locations means
that if the agent wants to get from a to b, it first has to pass ab1, and then ab2.
We use the comma to denote conjunction.

:beliefs{ loc(p1,a). loc(p2,a). loc(truck,a). loc(gasstation,ab1).
fuel(2). next(a,ab1). next(ab1,ab2). next(ab2,b). }

:a-goals{ loc(p1,b), loc(p2,b). }
:program{

if B(loc(truck,X), loc(P,X), X 6=Y), G(loc(P,Y)) then load(P).

if B(loc(truck,a)), ∼(B(loc(P,a)), G(loc(P,b))), G(loc(R,b))
then adopt(loc(truck,b)).

if G(loc(truck,b)) then move.
if B(loc(gasstation,X)) then tank.
if B(loc(truck,X), in(P,truck)), G(loc(P,X)) then unload(P). }

:action-spec{
move { :pre{loc(truck,X), next(X,Y), fuel(Z), Z > 0}

:post{loc(truck,Y), not loc(truck,X), fuel(Z-1), not fuel(Z)} }
load(P) { :pre{loc(P,X), loc(truck,X)} :post{in(P,truck), not loc(P,X)} }
unload(P){ :pre{in(P,truck), loc(truck,X)} :post{loc(P,X), not in(P,truck)} }
tank { :pre{loc(truck,X), loc(gasstation,X), fuel(Y), Y<3}

:post{fuel(3), not fuel(Y)}} }

Table 1. GOAL Carrier Agent

The belief base, typically denoted by Σ, and the goal base, typically denoted
by A, together define the mental state of a GOAL agent. Mental states should
satisfy a number of rationality constraints, which are introduced next.

Definition 1 (Mental States)
Assume a language of propositional logic L0 with the standard entailment rela-
tion |= and typical element φ. A mental state of a GOAL agent, typically denoted
by s, is a pair 〈Σ,A〉 with Σ,A ⊆ L0 where Σ is the belief base, and A with
typical element α is the goal base. Additionally, mental states need to satisfy
the following rationality constraints:

(i) The belief base is consistent: Σ 6|= ⊥,
(ii) Individual goals are consistent4: for all α ∈ A: 6|= ¬α,
(iii) Goals are not believed to be achieved: for all α ∈ A: Σ 6|= α.

53

In the example carrier agent, the two parcels and the truck are initially be-
lieved to be at location a, represented by loc(p1,a), loc(p2,a), and
loc(truck,a). The agent also believes it has two units of fuel, and that the
gas station is at location ab1. The initial achievement goal of the agent is to
have both parcels at location b, represented by loc(p1,b), loc(p2,b). Note
that the carrier agent satisfies the rationality constraints on mental states.

A GOAL agent derives its choice of action from its beliefs and goals. In order
to do so, a GOAL agent inspects its mental state by evaluating so-called mental
state conditions. The syntax and semantics of these conditions is defined next.

Definition 2 (Mental State Conditions)
The language LM of mental state conditions, typically denoted by ψ, is induc-
tively defined by the two clauses:

– if φ ∈ L0, then Bφ,Gφ ∈ LM ,
– if ψ1, ψ2 ∈ LM , then ¬ψ1, ψ1 ∧ ψ2 ∈ LM .

The truth conditions of mental state conditions ψ, relative to a mental state
s = 〈Σ,A〉, are defined by the following four clauses:

s |=m Bφ iff Σ |= φ,
s |=m Gφ iff there is α ∈ A such that α |= φ and Σ 6|= φ,
s |=m ¬ψ iff s 6|=m ψ,
s |=m ψ1 ∧ ψ2 iff s |=m ψ1 and s |=m ψ2.

The semantics of Bφ defines that this holds iff φ follows from the belief
base under a standard proposition logic entailment relation. The definition of
the semantics of Gφ is somewhat more involved. It specifies that Gφ holds, iff
φ is not already believed by the agent, and there is a formula in the goal base
from which φ follows. Also multiple goals are not required to be consistent which
reflects the fact that each goal may be realized at a different moment in time.

In GOAL, two types of actions are distinguished: basic actions and goal
update actions. The execution of basic actions updates and modifies the agent’s
beliefs, apart from changing the agent’s environment. Indirectly, a basic action
may also affect the goal base of an agent. That is, in case a goal is believed to
be achieved after action execution the goal is dropped by the agent and may be
removed from the agent’s goal base.

In the example program, the way in which the execution of basic actions
changes the beliefs of the agent is specified using pre- and post-conditions.
The example agent has four basic actions at its disposal, i.e., the actions move,
load(P), unload(P), and tank. Through the action move, it can move one posi-
tion towards location b. Using unload(P) and load(P), it can unload and load
the parcel P, respectively, if the agent is at the same location as the parcel. The
action tank can be executed if the agent is at location ab1, resulting in the
amount of fuel becoming 3.

In the formal definition of GOAL, we use a transition function T to model
the effects of basic actions. This function maps a basic action a and a belief

54

base Σ to an updated belief base T (a, Σ) = Σ′. The transition function is
undefined if an action is not enabled in a mental state. In a GOAL agent, the
action specification section of that agent specifies this transition function. In the
example agent in Table 1 a STRIPS-like notation is used, where positive literals
define the add list and negative literals define the delete list (cf. [12]). (Other,
extended action formalisms could be used but for the purpose of this paper a
more extended formalism is not needed.) GOAL has two built-in goal update
actions: the adopt(φ) action to adopt a goal, and the drop(φ) to drop goals
from the agent’s goal base. An adopt(φ) action has to satisfy the rationality
constraints on mental states, i.e. φ must be consistent and not believed by the
agent. The drop(φ) action removes all goals from the goal base that imply φ.

Definition 3 (Mental State Transformer M)
Let a be a basic action, φ ∈ L0 and T be a transition function for basic actions.
Then the mental state transformer function M is defined as a mapping from
actions and mental states to updated mental states as follows:

M(a, 〈Σ,A〉) =

{

〈Σ′, A \ {ψ | Σ′ |= ψ}〉 if T (a, Σ) = Σ′

undefined otherwise

M(adopt(φ), 〈Σ,A〉) =

{

〈Σ,A ∪ {φ}〉 if 6|= ¬φ and Σ 6|= φ

undefined otherwise
M(drop(φ), 〈Σ,A〉) = 〈Σ,A \ {ψ ∈ A | ψ |= φ}〉

In order to select the appropriate actions to achieve the goal of having the
two parcels at location b, our example carrier agent has five conditional actions
as listed in the program section of Table 1. A conditional action c has the form
if ψ then a, with a either a basic action or a goal update action. This conditional
action specifies that a may be performed if the mental state condition ψ and the
preconditions of a hold. In that case we say that conditional action c is enabled.

During execution, a GOAL agent selects non-deterministically any of its en-
abled conditional actions. This is expressed in the following transition rule, de-
scribing how an agent gets from one mental state to another.

Definition 4 (Conditional Action Semantics)
Let s be a mental state, and c = if ψ then a be a conditional action. The
transition relation

c
−→ is the smallest relation induced by the following transition

rule.
s |= ψ M(a, s) is defined

s
c

−→ M(a, s)

The execution of a GOAL agent results in a computation. We define a com-
putation as a sequence of mental states, such that each mental state can be
obtained from the previous by applying the transition rule of Definition 4. As
GOAL agents are non-deterministic, the semantics of a GOAL agent is defined
as the set of possible computations of the GOAL agent, where all computations
start in the initial mental state of the agent.

55

Definition 5 (Agent Computation)
A computation, typically denoted by t, is an infinite sequence of mental states
s0, s1, s2, . . . such that for each i there is an action ci and si

ci−→ si+1 can be

derived using the transition rule of Definition 4, or si 6
ci−→ and for all j > i,

sj = si. The meaning SA of a GOAL agent named A with initial mental state
〈Σ0, A0〉 is the set of all computations starting in that state.

Observe that a computation is infinite by definition, even if the agent is not
able to perform any action anymore from some point in time on. Also note that
the concept of an agent computation is a general notion in program semantics
that is not particular to GOAL. The notion of a computation can be defined
for any agent programming language that is provided with a well-defined oper-
ational semantics. For such languages, it is possible to transfer the analysis of
maintenance goals in this paper that is based on the notion of a computation
and to incorporate the proposed maintenance goal semantics.

Our example carrier agent may execute the following computations. In the
initial mental state, the conditional action for loading a parcel is executed, and
the agent non-deterministically picks up one of the parcels, followed by another
execution of this conditional action to load the other parcel. Consecutively, the
only enabled conditional action is the one for adopting the goal loc(truck,b),
by which the example agent adopts the goal to be at location b. As the agent
now has the goal to be at location b it will execute the enabled action move.
After executing the move action, the agent is at location ab1, and has one unit
of fuel left.

In this situation, there are two possibilities. The agent can execute another
move action, after which the agent will be at location ab2 without any fuel.
The other option is that the agent executes the tank action, after which the
agent will have three units of fuel while still being at location ab1. If the agent
chooses the first option, it will get stuck at ab2, as it has no fuel and there is
no possibility to tank. If the agent chooses the second option, it can execute
two move actions after tanking and get to location b. Then the only option is to
execute the conditional action for unloading parcels two times, after which the
achievement goal of having the parcels at location b is reached.

4 Semantics of Maintenance Goals

In this section, we define the semantics of a GOAL agent if this agent is given
a set of maintenance goals to satisfy. In defining the operational semantics for
maintenance goals, the idea is that agents reason about the result of the execu-
tion of their actions, in order to make sure that only those actions are chosen
that do not violate the agent’s maintenance goals. That is, agents look ahead
in order to foresee the consequences of their actions. Adding maintenance goals
that may have a constraining role makes sense only if the original agent is under-
specified, that is, if alternative courses of action are available, as in the case of
GOAL agents. Only then can the agent actually choose to take actions that do

56

not violate maintenance goals. Intuitively, the idea is thus that the incorporation
of maintenance goals leads to the exclusion of (parts of) computations that were
allowed in the agent semantics of Definition 5 without maintenance goals.

In the example program of Section 3, we have seen that the carrier agent gets
stuck at location ab2 if it does not tank at location ab1. The idea is that such
behavior can be prevented by introducing a maintenance goal that expresses
that the agent should not be in a situation where it has no fuel left (Table 2).

:m-goals{ fuel(X), X > 0. }

Table 2. Extension With Maintenance Goals

Syntactically, the introduction of maintenance goals thus poses no problems.
Incorporating maintenance goals in the semantics, however, is more involved and
is the subject of the remainder of this section. In Section 5 we look at the case
that maintenance and achievement goals cannot be satisfied simultaneously.

4.1 Operational Semantics of Maintenance Goals

Ideally, an agent should look ahead infinitely far into the future, in order to be
absolutely sure that it does not choose a path that will lead to the violation
of a maintenance goal. In practice, however, infinite lookahead cannot be im-
plemented, and presumably it will neither be necessary. We propose a general
definition of lookahead, that takes the number of steps that an agent may look
ahead as a parameter. This parameter is called the lookahead range.

In the following, Ω ⊆ L0 will denote a set of maintenance goals. A set of
maintenance goals will be assumed to be consistent, i.e., Ω 6|= ⊥. If maintenance
goals are hard constraints, it is not rational to have two maintenance goals that
are inconsistent, as it will never be possible to satisfy both maintenance goals.
Moreover, we assume that maintenance goals are satisfied initially, i.e., it should
be the case that for the initial belief base Σ0 we have Σ0 |= Ω (where Σ0 |= Ω

abbreviates ∀ω ∈ Ω : Σ |= ω). Also, we take the set of maintenance goals as
being static. That is, an agent cannot drop or adopt new maintenance goals.
Although there might be situations where one would want to consider dropping
or adopting maintenance goals, we think that maintenance goals are intuitively
more stable than achievement goals as the former express a kind of background
requirements that an agent should always fulfill.

In order to provide a formal definition of the effect of n-step lookahead on the
computations of an agent, we first introduce some additional terminology and
notation. A prefix of a computation t is an initial finite sequence of t or t itself.
A prefix of length n of a computation t is denoted by t〈n〉 with n ∈ N ∪ {∞},
where t〈∞〉 is defined as t. N is the set of natural numbers including 0, and ∞
is the first infinite ordinal. We write p 4 p′ to denote that p is a prefix of p′.

57

The order 4 is lifted to sets as follows: S 4 S′ iff each p ∈ S is a prefix of some
p′ ∈ S′. A set S of sequences is called a chain if for all p, p′ ∈ S we have either
p 4 p′ or p′ 4 p. The least upper bound of a chain S is denoted by ⊔S. In case of
a set S of prefixes of a computation t, ⊔S is either a maximal element in S (i.e.
a prefix that has the greatest finite length), or the computation t itself (which
need not be in S); moreover, ⊔∅ = ǫ with ǫ the empty sequence. Finally, s ∈ p

for s a mental state and p a prefix of a computation abbreviates that s is a state
on the prefix p; sometimes si is used to denote the ith state in the sequence.

Now we are in a position to formally define how maintenance goals, given
an n-step lookahead operator ↾n, restrict the possible computations of an agent
A. First, we define the notion of a safe prefix of a computation t, given a set
of maintenance goals Ω and the capability to do a lookahead of n steps. The
predicate safen(p,Ω), with n ∈ N ∪ {∞}, is true if all states of the prefix p

of computation t satisfy the maintenance goals Ω and, in the next n steps of
computation t no violation of such a goal will occur, except possibly for the
last state. (Note that we leave the computation t implicit in safen(p,Ω).) This
corresponds with the behavior of a very cautious agent that will avoid to go in a
direction that may lead towards a violation of a maintenance goal. Formally, we
define safen(ǫ, Ω) to be false for technical reasons, and we define safen(t〈k〉, Ω)
for prefixes of non-zero length k > 0 as follows:

safen(t〈k〉, Ω) iff ∀s ∈ t〈k+n−1〉(Σs |= Ω).

When the set of maintenance goalsΩ is clear from the context, we also simply
write safen(t〈k〉). All states on a safe prefix of a computation t based on n-step
lookahead have the property that lookahead does not predict any violations of
a maintenance goal in Ω in less then n steps. Note that there is at least one
non-empty safe prefix including the initial state using 0-step lookahead since a
goal agent initially must believe that its maintenance goals are satisfied. The set
of all safe prefixes of computation t is denoted by Safen(t, Ω). Note that the set
Safen(t, Ω) is a chain and has a least upper bound, which is the computation t
itself when all prefixes of t are safe.

The n-step lookahead operator ↾n applied to a computation t and a set of
maintenance goals Ω can now be defined in terms of safe prefixes. Using this
operator it is easy to define the effect of maintenance goals as hard constraints
on the behavior of an agent with an n-step lookahead capability: The semantics
SA of an agent without such goals, i.e. its associated set of computations, is
restricted by applying the lookahead operator to each computation in SA to
ensure that an agent with such lookahead capabilities will act cautiously and
will never head towards a predicted violation of one of its maintenance goals.

Definition 6 (Lookahead Operator and Semantics of Maintenance Goals)
The n-step lookahead operator ↾n, applied to a computation t and a set of
maintenance goals Ω, is defined as the least upper bound of the set of safe
prefixes of t with respect to Ω, and is also lifted to sets of computations.

– The n-step lookahead operator ↾n is defined as: t↾nΩ = ⊔Safen(t, Ω).

58

– The lift of ↾n to a set S is defined by:

S↾nΩ =
⋃

t∈S

{t↾nΩ |∀t′ ∈ S : t↾nΩ 4 t′↾nΩ ⇒ t↾nΩ = t′↾nΩ}

– Let A be an agent with an n-step lookahead capability. Then the semantics
of A with a set of maintenance goals Ω is defined as: SA↾nΩ.

The lift of ↾n to a set S is the set of all maximal elements of the set
⋃

t∈S t↾nΩ.
Only the maximal elements are taken in order to exclude prefixes p that are a
strict prefix of another prefix p′ in this set, i.e., p ≺ p′. The semantics SA↾nΩ

for an agent A with maintenance goals Ω thus specifies that the agent continues
until all further action would lead to a violation within n steps. Note that the
set SA↾nΩ may be empty when the set of maintenance goals Ω is so restrictive
that each computation would violate a maintenance goal within n steps.

4.2 Properties

The following proposition says that a lookahead capability with a bigger looka-
head range than another one is more restrictive than the latter. Since the seman-
tics implements a cautious strategy towards possible violations of maintenance
goals, an agent that detects such potential violations sooner, will act cautiously
and will not follow a course of action that may lead to this violation.

Proposition 1. If n > m, then SA↾nΩ 4 SA↾mΩ.

The proposition suggests that agents with a more powerful lookahead ca-
pability, i.e. with a greater lookahead range, possibly are able to satisfy fewer
achievement goals than they would be able to satisfy with a less powerful looka-
head capability. That is, an agent that does everything to avoid maintenance
goal violation will not allow itself to achieve a highly valued goal on a path that
will lead to such a violation. Such computation paths may be excluded by the
the more powerful lookahead capability while still being allowed by the weaker
one.

For the idealized situation where an agent has infinite lookahead, we have
the following proposition.

Proposition 2. (Infinite Lookahead Maintenance Goal Semantics)

SA↾∞Ω = {t ∈ SA | ∀s ∈ t : Σs |= Ω}

This proposition states that an agent with infinite lookahead will only execute
a computation that is completely free of maintenance goal violations. For the
example carrier agent, if we assume infinite lookahead, any computation where
the agent does not tank at location ab1 are excluded from the semantics. The
reason is that in these computations the agent will violate its maintenance goal
as it will be at location ab2 without any fuel.

Although the infinite lookahead semantics is elegant and captures intuitions
in a simple manner, such lookahead cannot be implemented. In the next propo-
sition we look at bounded lookahead where lookahead ranges are less than ∞.

59

Proposition 3. (Bounded Lookahead Maintenance Goal Semantics)
Let n ∈ N. The n-step lookahead semantics SA↾nΩ is equal to:

⋃

t∈SA

{p ≺ t |safen(p) & (∀p′, t′ : p 4 p′ ≺ t′ & safen(p′) ⇒ p = p′)} ∪ SA↾∞Ω

Corollary 1. (One-Step Lookahead Maintenance Goal Semantics)
The one-step lookahead semantics SA↾1Ω of an agent A is equal to:

⋃

t∈SA

{p ≺ t | (∀s ∈ p : Σs |= Ω) & (∀t′ : p ≺ t′ & sk+1 ∈ t′ ⇒ Σsk+1
6|= Ω)} ∪ SA↾∞Ω

Bounded lookahead implies that the agent may choose a path which in-
evitably will violate a maintenance goal because potential violations of the main-
tenance goal lie outside of the agent’s lookahead range. As discussed above, it
might be the case that on such a path an achievement goal is achieved that
would never have been achieved if the agent would have had a greater lookahead
range that would have predicted these violations. Note, however, that the fact
that an agent takes a path on which it would violate a maintenance goal if it
would continue still does not lead to violation of a maintenance goal. The reason
is that the agent will be required to stop acting as soon as there are only actions
enabled that would lead to a violation of a maintenance goal. This is in line with
our assumption that maintenance goals are hard constraints.

In our example carrier agent it is sufficient to have a lookahead of one. As
stated in Corollary 1, an agent with a lookahead range of one continues acting
until it recognizes that by doing so at all possible next states it violates a mainte-
nance goal. The carrier agent with a lookahead of one will be able to detect that
if it executes a move action at location ab1 before tanking, it will immediately
violate its maintenance goal and will select the alternative action of tanking as
a result. This illustrates that the lookahead mechanism, which primarily con-
strains the actions of the agent, may also induce the agent to actively prevent
the violation of maintenance goals (in the example realized through tanking).
To be more accurate, our mechanism does not distinguish between preventive
actions that should prevent the violation of an achievement goal, and actions
that are executed to fulfill achievement goals. As we can see in this example,
in practice a very limited lookahead range may already be sufficient to prevent
the agent from taking a path that would lead to violation of maintenance goals.
To be more specific, the semantics of the example agent with lookahead range of
one is equal to the semantics with lookahead range ∞. In general, the minimally
needed lookahead range should be derived from available domain knowledge.

In this simple example, it is not difficult to modify the GOAL program in
such a way that the desired behavior is obtained without explicitly incorporating
maintenance goals. One could, e.g., add a condition to the conditional action for
moving, specifying that if the agent is at location ab1, it may not move unless its
tank is full. We argue, however, that the explicit incorporation of maintenance
goals in the GOAL program provides a separation of concerns, and thereby
potentially yields more transparent and easier to verify agent programs.

60

It is interesting to investigate under what circumstances bounded lookahead
is guaranteed to be sufficient to avoid violation of maintenance goals. One par-
ticular such case is the case that an agent can undo actions, that is, if it has
a rollback mechanism to go back to a previous state. In the presence of such a
rollback mechanism, a bounded lookahead of 1 is sufficient to satisfy all mainte-
nance goals. Obviously, the ability to rollback combined with 1 step lookahead
will not be sufficient in all cases to realize the agent’s achievement goals. The
combination does allow the agent, however, to continue any computation given
that at least one action is enabled. For our purposes, we model such a rollback
mechanism simply by adding for each transition s → s′ the inverse transition
s′ → s to the agent semantics.

Theorem 1. (Lookahead of One Sufficient with Rollback Mechanism)
For agents that can do at least one action initially without violating a mainte-
nance goal, and that have a rollback mechanism to undo arbitrary actions, that
is, are able to reverse a computation step s→ s′ by performing the step s′ → s,
we have the following:

SA↾1Ω = SA↾∞Ω

Proof. The main observation needed in the proof is that any finite, safe prefix
can be continued without violating a maintenance goal by doing either a “regular”
action or otherwise by doing an “undo” action. By assumption, the agent can
at least do one action initially, and so any finite safe prefix can be extended to
a complete computation that does not violate a maintenance goal.

Although Theorem 1 shows that an agent will always be able to continue
pursuing its goals, it does not state that it will also achieve these goals if possible.
In the presence of a rollback mechanism, computations that make no progress
but instead repeatedly have to recover from performing an action that leads to a
violation of a maintenance goal are included in the set SA↾∞Ω. What is missing
is a notion of fairness that would prevent such repeated execution of a part of
the computation (cf. [7]). Fairness is included in the original GOAL semantics
but is not discussed further in this paper (cf. [5]). Intuitively, moreover, by using
lookahead of more than one step computations that require rollback can be
detected sooner which will reduce the need for such rollbacks.

5 Detecting and Revising Goal Conflicts

In this section an algorithm is presented that implements the maintenance goal
semantics and, additionally, it includes an extension that provides the agent
with the option to revise its achievement goals in case no achievement goal is
reachable without choosing a path that would lead to violation of a maintenance
goal. As discussed in Section 2.2, revising achievement goals is a way of dealing
with conflicts between maintenance goals and achievement goals, if maintenance
goals are taken as hard constraints. Revision of achievement goals is not the
main subject of this paper (see e.g. [9]), but we will illustrate the main ideas
using the carrier agent example.

61

Function SelectAction(E, s, n)
Input: A set of enabled conditional actions E, a state s, a lookahead range n

Output: A selected conditional action c, or skip

1. actionOkSet ← ∅
2. for each c ∈ E

3. do conflict[c]← ConflictSets(c, s, n)
4. if ∅ ∈ conflict[c] then actionOkSet ← actionOkSet ∪ {c}
5. if actionOkSet 6= ∅
6. then return ChooseAction(actionOkSet)
7. else c′ ← SelectActionWithMinimalConficts(E, conflict)
8. ReviseConflictingAchievementGoals(conflict[c′])
9. (∗ do nothing and recompute enabled actions using revised achievement goal(s) ∗)
10. return skip

Function ConflictSets(c, s, n)
Input: A conditional action c, a state s, and a lookahead range n

Output: The conflict sets of c

1. if n ≤ 0
2. then return {∅} (∗ Indicates that at least one path is ok. ∗)
3. else S ← SuccessorStates(c, s)
4. for each s′ ∈ S

5. do cset← ∅ (∗ Conflict set ∗)
6. if Σ

s′ 6|= Ω

7. then cset← cset ∪ {ReasonConflict(c)}
8. else E ← ComputeEnabledActions(s′)
9. for each c′ ∈ E

10. do cset ← cset ∪ ConflictSets(c′, s′, n− 1)
11. return cset

Table 3. Action Selection Algorithm Including Maintenance Goals

The first step to implement the semantics for maintenance goals based on
lookahead is to define an algorithm which is able to detect potential future main-
tenance goal violations. The algorithm depicted in Table 3 implements the de-
tection of such violations as well as the cautious strategy of an agent that avoids
taking a path that would lead to violation of a maintenance goal. The function
SelectAction computes for each enabled conditional action whether it might
result in any conflicts with or violations of maintenance goals for a given looka-
head range n. In case executing an action does not inevitably lead to such a
conflict, it is added to the set of actions that are ok to select for execution. Only
if there are no actions that are “safe” in this sense, the action selection algo-
rithm will select an achievement goal in order to revise it. The detection of these
conflicts is done through the function ConflictSets. This function recursively
computes the so-called conflict sets, which will be explained in more detail be-
low. An empty conflict set indicates that no future violation of a maintenance
goal within lookahead range is detected.

As discussed in Section 2.2, detected conflicts between achievement goals and
maintenance goals may cause the agent not to do anything at a certain point,
as it might be the case that any action would lead to a future violation of a
maintenance goal. In the example scenario, adding a weight constraint that
expresses that the truck cannot carry a load that weighs more than a certain
threshold, has this effect if the sum of the weight of the two parcels is higher than
the threshold (see Table 4, where weightTotal(N) computes the total weight of
the parcels in the truck).

62

:beliefs{ ... weight(p1,3). weight(p2,2). threshold(4). weightTotal(N) :- ... }
:a-goals{ loc(p1,b), loc(p2,b). }
:m-goals{ fuel(X), X > 0. weightTotal(T), threshold(W), T<W. }

Table 4. GOAL Carrier Agent

If at least a lookahead of two is used, the agent will not be able to execute any
action in the initial mental state. After loading either one of the parcels, loading
the other one would lead to a violation of the weight maintenance goal. With the
cautious strategy, taking a path on which the violation of a maintenance goal is
foreseen within two steps, is not an option (note that the agent can only unload
parcels at location b).

In this case where the agent cannot execute any action as this would lead to
violation of maintenance goals, the algorithm of Table 3 allows the revision of
achievement goals by means of lowering ones ambitions. The idea here is that
actions are induced by achievement goals and these actions thus may be pre-
vented from being taken by revising those goals (we disregard the possibility
of incorrect beliefs, which might instead require an agent to revise its beliefs).
In order to revise its achievement goals the agent needs more information to
base the revision on and to this end the notion of a conflict set is introduced.
A conflict set is an achievement goal α which has been identified as a poten-
tial reason for the violation of a maintenance goal. In general, identifying such
a reason may involve complicated diagnostic reasoning, but in GOAL a more
pragmatic solution is available. In GOAL, goal conditions are typically associ-
ated with the selection of actions and we can simply take these conditions as the
reason why a maintenance goal is violated. In our example agent, the function
ReasonConflict(c) extracts an instance of the goal condition loc(P,b) as a
reason for the violation of the maximum weight loaded. The function Revise-

ConflictingAchievementGoals then may revise the achievement goal in the
goal base and drop one of the conjuncts to avoid the violation. Consecutively,
the agent verifies again if the maintenance goal violation has been eliminated. If
no reason can be identified in this way, # is returned to indicate a violation of
a maintenance goal.

6 Conclusion and Related Work

In this paper, we have looked at a mechanism for agents to handle mainte-
nance goals. In particular, we have proposed a formal semantics of maintenance
goals based on the notion of lookahead, and we have analyzed the semantics by
proving some properties, in order to gain a better understanding of the role of
maintenance goals in action selection. We presented an algorithm for detecting
maintenance goal violation, parametrized by a variable lookahead range in order
to be able to control computational costs. Additionally, we have discussed the is-
sue of achievement goal revision, in case the maintenance goals are so restrictive

63

that all courses of action for satisfying achievement goals will lead to a violation
of maintenance goals.

There are several interesting directions for future research. Regarding the
revision of achievement goals, several issues have remained unexplored. For ex-
ample, we have suggested one possible way of determining that an achievement
goal conflicts with a maintenance goal. In future research, we plan to investigate
this approach and possible alternatives in more detail. One research direction in
this respect is the investigation of existing techniques for determining whether
achievement goals conflict with each other [16, 15, 13]. It will need to be investi-
gated whether the issue of conflicts between maintenance goals and achievement
goals is the same as or similar to the issue of conflicts between achievement goals.

Existing approaches for defining preferences over goals, such as in utility
theory [1], may be useful to refine the strategy for revising achievement goals.
Intuitively, an agent should revise its achievement goals in such a way that they
are reachable without violating maintenance goals, and the revision should max-
imize the agents expected utility. Moreover, in this paper we have taken mainte-
nance goals as hard constraints, and have suggested to revise achievement goals
in case they conflict with the agent’s maintenance goals. Alternatively, it could
be allowed to violate maintenance goals under certain circumstances. Again util-
ity theory could be useful here, in order to weigh the violation of a maintenance
goal against the realization of an achievement goal. For example, negative utility
could be associated with the violation of a maintenance goal assigning a main-
tenance goal that defines a hard constraint e.g. as having infinitely negative
utility. The work in [8] on qualitative preferences in agent programming could
also be relevant here. There are also some similarities with the planning litera-
ture on oversubscription (e.g. [2]), but as with planning approaches in general
the main difference is that GOAL agents check violations of maintenance goals
while executing actions.

Regarding related work on maintenance goals, we discuss the approach fol-
lowed in the Jadex framework [3], the language presented by Dastani et al. [4],
and the work of Duff et al. [6]. These approaches can be categorized into ap-
proaches that use maintenance goals as a trigger for the execution of actions, and
approaches that use some mechanism for reasoning about the result of action
execution in order to prevent maintenance goals from being violated. Jadex uses
maintenance goals to trigger the execution of actions in case the maintenance
goal is violated. In the framework of Dastani et al., a trigger condition is used to
determine when action is needed to prevent the violation of maintenance goals.
In our approach and in the framework of Duff et al., a reasoning mechanism is
used in order to prevent maintenance goals from being violated.

One of the main differences between the work of Duff et al. and our work is
that in Duff et al. it is determined before an achievement goal is pursued whether
the plans for achieving this achievement goal may conflict with one of the agent’s
maintenance goals. In our work, by contrast, we propose to use a lookahead
mechanism for keeping maintenance goals from being violated during pursuit of
achievement goals. We also suggested the possibility to revise achievement goals

64

when they cannot be realized without violating maintenance goals, while Duff
et al. propose to not adopt such achievement goals to avoid the risk of violating
maintenance goals. The approaches also differ in that in this paper a mechanism
to ensure satisfaction of maintenance goals is based on a semantic analysis and
Duff et al. validate their work using an experimental approach.

Finally, an advantage of doing lookahead during achievement goal pursuit,
we believe, is that it may provide for more flexible agent behavior. An approach
based on executing a preventive plan that is associated with the maintenance
goal in case an achievement goal might conflict with a maintenance goal, as
proposed in Duff et al., does not seem to leave the agent with as many options
as are possible. Moreover, such an approach still does not guarantee that the
consecutive pursuit of the achievement goal will not violate the maintenance
goal. The approach of Duff et al. can be compared with planning approaches,
in the sense that reasoning takes place before execution. If something is about
to go wrong during execution, this is not detected. In our approach, the agent
pursues achievement goals, but takes any measures that it has at its disposal if
this is necessary to prevent a maintenance goal from being violated.

References

1. Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic planning:
Structural assumptions and computational leverage. Journal of AI Research, 11:1–
94, 1999.

2. Ronen I. Brafman and Yuri Chernyavsky. Planning with goal preferences and
constraints. In Proceedings of ICAPS’05, 2006.

3. Lars Braubach, Alexander Pokahr, Daniel Moldt, and Winfried Lamersdorf. Goal
representation for BDI agent systems. In Programming multiagent systems, second
international workshop (ProMAS’04), volume 3346 of LNAI, pages 44–65. Springer,
Berlin, 2005.

4. Mehdi Dastani, M. Birna van Riemsdijk, and John-Jules Ch Meyer. Goal types in
agent programming. In Proceedings of the 17th European Conference on Artifical
Intelligence 2006 (ECAI’06), volume 141 of Frontiers in Artificial Intelligence and
Applications, pages 220–224. IOS Press, 2006.

5. F.S. de Boer, K.V. Hindriks, W. van der Hoek, and J.-J.Ch. Meyer. A Verification
Framework for Agent Programming with Declarative Goals. Journal of Applied
Logic, 2006. To appear.

6. Simon Duff, James Harland, and John Thangarajah. On Proactivity and Main-
tenance Goals. In Proceedings of the fifth international joint conference on au-
tonomous agents and multiagent systems (AAMAS’06), pages 1033–1040, Hako-
date, 2006.

7. N. Francez. Fairness. Springer, 1986.
8. Christian Fritz and Sheila A. McIlraith. Decision-theoretic golog with qualitative

preferences. In KR, pages 153–163, 2006.
9. P. Gardenfors. Belief Revision. Cambridge Computer Tracts. Cambridge Univer-

sity Press, 1992.
10. Koen V. Hindriks, Frank S. de Boer, Wiebe van der Hoek, and John-Jules Ch.

Meyer. Agent Programming with Declarative Goals. In Proceedings of ATAL00,
volume 1986 of LNCS, pages 228–243, 2000.

65

11. Jomi Fred Hübner, Rafael H. Bordini, and Michael Wooldridge. Declarative goal
patterns for AgentSpeak. In Proceedings of the fourth International Workshop on
Declarative Agent Languages and Technologies (DALT’06), 2006.

12. V. Lifschitz. On the semantics of strips. In M.P. Georgeff and A.L. Lansky, editors,
Reasoning about Actions and Plans, pages 1–9. Morgan Kaufman, 1986.

13. Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. A goal deliberation
strategy for BDI agent systems. In MATES 2005, volume 3550 of LNAI, pages
82–93. Springer-Verlag, 2005.

14. Sebastian Sardina and Steven Shapiro. Rational action in agent programs with
prioritized goals. In Proceedings of the second international joint conference on au-
tonomous agents and multiagent systems (AAMAS’03), pages 417–424, Melbourne,
2003.

15. J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and avoiding interference
between goals in intelligent agents. In Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI 2003), 2003.

16. J. Thangarajah, M. Winikoff, L. Padgham, and K. Fischer. Avoiding resource
conflicts in intelligent agents. In F. van Harmelen, editor, Proceedings of the 15th
European Conference on Artifical Intelligence 2002 (ECAI 2002), Lyon, France,
2002.

17. M. Birna van Riemsdijk, Mehdi Dastani, John-Jules Ch Meyer, and Frank S.
de Boer. Goal-oriented modularity in agent programming. In Proceedings of the
fifth international joint conference on autonomous agents and multiagent systems
(AAMAS’06), pages 1271–1278, Hakodate, 2006.

18. Micheal Winikoff, Lin Padgham, James Harland, and John Thangarajah. Declara-
tive and procedural goals in intelligent agent systems. In Proceedings of the eighth
international conference on principles of knowledge respresentation and reasoning
(KR2002), Toulouse, 2002.

66

Conflict Resolution in Norm-Regulated

Environments via Unification and Constraints

M. J. Kollingbaum[1,∗], W. W. Vasconcelos[1,†], A. Garćıa-Camino[2,⋄], and
T. J. Norman[1,‡]

1Dept. of Computing Science, Univ. of Aberdeen, Aberdeen AB24 3UE, UK
{∗mkolling,† wvasconc,‡ tnorman}@csd.abdn.ac.uk
2IIIA-CSIC, Campus UAB 08193 Bellaterra, Spain

⋄andres@iiia.csic.es

Abstract. We present a novel mechanism for the detection and resolu-
tion of conflicts within norm-regulated virtual environments, populated
by agents whose behaviours are regulated by explicit obligations, permis-
sions and prohibitions. A conflict between norms arises when an action
is simultaneously prohibited and obliged or prohibited and permitted.
In this paper, we use first-order unification and constraint satisfaction
to detect and resolve such conflicts, introducing a concept of norm cur-
tailment. A flexible and robust algorithm for norm adoption is presented
and aspects of indirect conflicts and conflicts across delegation of actions
between agents is discussed.

1 Introduction

Norm-governed virtual organisations use obligations, permissions and prohibi-
tions for the regulation of the behaviour of self-interested, heterogeneous soft-
ware agents. Norms are important in the design and management of virtual
organisations, as they allow a detailed specification of these social structures
in terms of roles and the rights and duties of agents adopting these roles.
Norm-regulated VOs, however, may experience problems when norms assigned
to agents are in conflict – actions that are forbidden, may, at the same time,
also be obliged and/or permitted. For example, a norm “Agent X is permitted
to send bid(ag1, 20)” and “Agent ag2 is prohibited from doing send bid(Y ,Z)”
(where X ,Y and Z are variables and ag1, ag2 and 20 are constants) show two
norms that are in conflict regarding an action send bid.

In order to detect and resolve norm conflicts and to check norm-compliance
of actions, we propose a mechanism based on first-order term unification [1]
and constraint satisfaction. With that, we develop further the work presented
in [2] where we used first-order term unification for conflict detection and norm
annotations to avoid conflicts indicating what the variables of a prohibition
cannot be when actions are deployed. In this paper, we also use unification, but
add constraint satisfaction for conflict detection and resolution.

In the following section, we introduce a “lightweight” definition of virtual
organisations and their enactments. In Section 3 we define norms, constraints
and global normative states. Section 4 describes in detail a machinery for conflict
detection and resolution. In section 5, we describe how agents check the norm-
compliance of their actions with the use of unification and constraint satisfaction.
Section 6 describes indirect conflicts occurring via domain-specific relationships
between actions and via the delegation between roles. Section 7 describes the

67

application of the conflict resolution machinery in a detailed example. Section 8
provides an overview about related work and section 9 concludes this paper.

2 Virtual Organisations

Following [2], we base our discussion of norm conflicts on a simple representation
of a virtual organisation [3] as a finite-state machine where actions of individual
agents lead to state transitions. Figure 1 depicts a graphical representation of

//?>=<89:;0

p(X)

��

q(Y ,Z)
//?>=<89:;1

s(A,B)
//?>=<89:;/.-,()*+2

Fig. 1: Sample VO as a Finite-State Machine

this finite-state machine, where the edges between discrete states are labelled
with first-order formulae representing actions performed by individual agents 1.
Although there are more sophisticated and expressive ways to represent agent
activity and interaction (e.g., AUML [5] and electronic institutions [6], to name
a few), but for the sake of generalising our approach, we shall assume any higher-
level formalism can be mapped onto a finite-state machine (possibly with some
loss of expressiveness). A virtual organisation is defined as follows:

Definition 1. A virtual organisation I is the tuple 〈S , s0,E ,T 〉, where S =
{s1, . . . , sn} is a finite and non-empty set of states, s0 ∈ S is the initial state,
E is a finite set of edges (s , s ′, ϕ) with s , s ′ ∈ S connecting s to s ′ and labelled
with a first-order atomic formula ϕ, and T ⊆ S is the set of terminal states.

Notice that edges are directed, so (s , t , ϕ) 6= (t , s , ϕ). The sample VO of Fig-
ure 1 is formally represented as I = 〈{0, 1, 2}, 0, {(0, 0, p(X)), (0, 1, q(Y ,Z)), (1,
2, s(A,B)}, {2}〉. We assume an implicit existential quantification on any vari-
ables in ϕ, so that, for instance, s(A,B) stands for ∃A,B s(A,B).

Roles, as exploited in, for instance, [7] and [6], define a pattern of behaviour
to which any agent that adopts a role ought to conform. Moreover, all agents
with the same role are guaranteed the same rights, duties and opportunities.
We shall make use of two finite, non-empty sets, Agents = {ag1, . . . , agn} and
Roles = {r1, . . . , rm}, representing, respectively, the sets of agent identifiers and
role labels.

The specification of a VO as a finite-state machine gives rise to a possibly
infinite set of histories of computational behaviours, in which the actions la-
belling the paths from the initial state to a final state are recorded. Although
the actions comprising a VO are carried out distributedly, we propose an ex-
plicit global account of all events. In practice, this can be achieved if we require
individual agents to declare/inform whatever actions they have carried out; this
assumes trustworthy agents, naturally2.

In order to record the authorship of the action, we annotate the formulae
with the agents’ unique identification. Our explicit global account of all events is

1 We adopt Prolog’s convention [4] and use strings starting with a capital letter to
represent variables and strings starting with a small letter to represent constants.

2 Non-trustworthy agents can be accommodated in this proposal, if we associate to
each of them a governor agent which supervises the actions of the external agent and
reports on them. This approach was introduced in [8] and is explained in section 5.

68

a set of ground atomic formulae ϕ̄, that is, we only allow constants to appear as
terms of formulae. Each formula is a truthful record of an action specified in the
VO. Notice, however, that in the VO specification, we do not restrict the syntax
of the formulae: variables may appear in them, and when an agent performs an
actual action then any variables of the specified action must be assigned values.
We thus define:

Definition 2. A global execution state of a VO, denoted as Ξ, is a finite, pos-
sibly empty, set of tuples 〈a : r , ϕ̄, t〉 where a ∈ Agents is an agent identifier,
r ∈ Roles is a role label, ϕ̄ is a ground first-order atomic formula, and t ∈ IN
is a time stamp.

For instance, 〈ag1:buyer, p(a, 34), 20〉 states that agent ag1 adopting role buyer
performed action p(a, 34) at instant 20. Given a VO I = 〈S , s0,E ,T 〉, an ex-
ecution state Ξ and a state s ∈ S , we can define a function which obtains a
possible next execution state, viz., h(I, Ξ, s) = Ξ ∪ {〈a:r , ϕ̄, t〉}, for one (s , s ′,
ϕ) ∈ E . Such a function h must address the two kinds of non-determinism above,
as well as the choice on the potential agents that can carry out the action and
their adopted roles. We also define a function to compute the set of all possible
execution states, h∗(I, Ξ, s) = {Ξ ∪ {〈a:r , ϕ̄, t〉} | (s , s ′, ϕ) ∈ E}.

The VO specification introduced previously must be augmented to accom-
modate the agent identification as well as its associated role. We thus have
edges specified as (s , s ′, 〈a, r , ϕ, t〉). More expressiveness can be achieved if we
allow constraints (as introduced below) to be added to edges, as in, for instance,
(s , s ′, 〈a, r , (p(X ,Y) ∧ X > Y), t〉), depicting that the formula p(X ,Y) causes
the progress of the VO, provided X > Y . Such VOs are as expressive as the
logic-based electronic institutions proposed in [9].

3 Norms

Norms are the central element in our discussion. We regard agents adopting
specific roles and, with that, a set of norms that regulate their actions within
a virtual organisation. We extend our previous work [2], and introduce a more
expressive norm definition, accommodating constraints. We, again, adopt the
notation of [10] for specifying norms and complement it with constraints [11]. By
using constraints, we can restrict the influence of norms on specific parameters of
actions. Our building blocks are first-order terms τ , that is, constants, variables
and functions (applied to terms). We shall make use of numbers and arithmetic
functions to build those terms. Arithmetic functions may appear infix, following
their usual conventions. Constraints are defined as follows:

Definition 3. Constraints, generically represented as γ, are any construct of
the form τ ⊳ τ ′, where ⊳∈ {=, 6=, >,≥, <,≤}.

We then introduce the syntax of norms:

Definition 4. A norm ω is a tuple 〈ν, td , ta , te〉, where ν is any construct of
the form Oτ1:τ2ϕ ∧

∧n

i=0 γi (an obligation), Pτ1:τ2ϕ ∧
∧n

i=0 γi (a permission)
or Fτ1:τ2ϕ ∧

∧n
i=0 γi (a prohibition), where τ1, τ2 are terms, ϕ is a first-order

atomic formula and γi , 0 ≤ i ≤ n, are constraints. The elements td , ta , te ∈ IN
are, respectively, the time when ν was declared (introduced), when ν becomes
active and when ν expires, td ≤ ta ≤ te .

69

Term τ1 identifies the agent(s) to whom the norm is applicable and τ2 is the
role of such agent(s). Oτ1:τ2ϕ ∧

∧n

i=0 γi thus represents an obligation on agent
τ1 taking up role τ2 to bring about ϕ, subject to constraints γi , 0 ≤ i ≤ n. The
γi ’s express constraints on those variables occurring in ϕ.

In the definition above, we only cater for conjunctions of constraints. If dis-
junctions are required then a norm must be established for each disjunct. For
instance, if we required the norm PA:Rmove(X) ∧ (X < 10 ∨ X = 15) then
we must break it into two norms PA:Rmove(X) ∧ X < 10 and PA:Rmove(X) ∧
X = 15. This holds because we assume an implicit universal quantification
over variables in ν. For instance, PA:Rp(X , b, c) stands for ∀A ∈ Agents. ∀R ∈
Roles. ∀X .PA:Rp(X , b, c). We comment on the existential quantification in the
final section of this paper.

We propose to formally represent the normative positions of all agents, tak-
ing part in a virtual society, from a global perspective. By “normative position”
we mean the “social burden” associated with individuals [8], that is, their obli-
gations, permissions and prohibitions:

Definition 5. A global normative state Ω is a finite and possibly empty set of
tuples ω = 〈ν, td , ta , te〉.

As a simplification, we assume a single global normative state Ω for a virtual
organisation. However, this can be further developed into a fully distributed
form, with each agent maintaining its own Ω, thus allowing the scaling up of our
machinery.

Global normative states complement the execution states of VOs with in-
formation on the normative positions of individual agents. We can relate them
via a function to obtain a norm-regulated next execution state of a VOs, that
is, g(I, Ξ, s , Ω, t) = Ξ ′, t standing for the time of the update. For instance, we
might want all prohibited actions to be excluded from the next execution state,
that is, g(I, Ξ, s , Ω, t) = Ξ ∪ {〈a:r , ϕ̄, t〉}, (s , s ′, ϕ) ∈ E and 〈Fa:rϕ, td , ta , te〉 6∈
Ω, ta ≤ t ≤ te . We might equally be interested that only permitted actions
be chosen for the next execution state. We do not legislate, or indeed recom-
mend, any particular way to regulate VOs. We do, however, offer simple un-
derpinnings to allow arbitrary policies to be put in place. In the same way
that a normative state is useful to obtain the next execution state of a VO,
we can use an execution state to update a normative state. For instance, we
might want to remove any obligation specific to an agent and role, which has
been carried out by that specific agent and role, that is, f (Ξ, Ω) = Ω − Obls,
Obls = {〈Oa:rϕ, td , ta , te〉 ∈ Ω | 〈a : r , ϕ̄, t〉 ∈ Ξ}. The management (i.e., cre-
ation and updating) of global normative states is an interesting area of research.
A simple and useful approach is reported in [12]: production rules generically
depict how norms should be updated to reflect what agents have done and which
norms currently hold. In this paper our focus is not proposing how Ω’s should
be managed, and assume some mechanism which does it.

4 Norm Conflicts

A conflict between two norms occurs if a formula representing an action is simul-
taneously under the influence of a permission and prohibition or an obligation
and prohibition for the same agent (or set of agents) – the agent experiences a

70

normatively ambiguous situation for a specific set of actions. A norm influences
who (what agent/set of agents in a specific role) is either permitted, prohib-
ited or obliged to perform a specific action (or set of actions). We regard norms
having a scope of influence as they may have an influence on a set of actions.

Figure 2 shows the scope of influence of a prohibition and a permission on
instantiations of the action shift(X ,Y ,Z),X ∈ {a, b},Y ∈ {r , s},Z ∈ {u, v},

shift (X, Y, Z)

shift (a, Y, Z)

shift (a, r, Z) shift (a, s, Z)

shift (a, r, u)

shift (a, r, v)

shift (a, s, u)

shift (a, s, v)

shift (X, r, Z) X ∈ {a, b}

Y ∈ {r, s}

Z ∈ {u, v}

Conflict

〈FA:R shift(X, Y, Z) ∧∧∧∧ X = a, 1,1,1000 〉

〈PA:R shift(X, Y, Z) ∧∧∧∧ X = a ∧∧∧∧ Y = r, 1,1,1000 〉

X/bY/r

Y/r Y/s X/a

Z/u Z/v Z/u Z/v

Fig. 2: Conflict between a Permission and a Prohibition

in a blocks world scenario, representing that block X is shifted from the top
of block Y to the top of block Z . The prohibition prevents any agent in any
role to shift a specific block a from any block to any block. The scope of this
prohibition is the portion of the action’s space of possibilities enclosed within
the larger irregular polygon. The diagram also shows the scope of a permission
conflicting with this prohibition – it permits any agent in any role to shift a
specific block a from a specific block r to any other block. The scope of influence
of the permission is the portion of shift’s space of possibilities enclosed within
the smaller grey irregular polygon, contained within the scope of the prohibition.
This is a typical situation of conflict – the scopes of influence of both norms
overlap.

We use unification of first-order terms [4, 1] as an instrument to detect and
resolve conflicts between norms. Unification allows us i) to detect whether norms
are in conflict and ii) to detect the set of actions that are under the influence
of a norm. Unification is a fundamental problem in automated theorem proving
and many algorithms have been proposed [1], recent work proposing means to
obtain unifiers efficiently. Unification is based on the concept of substitution:

Definition 6. A substitution σ is a finite and possibly empty set of pairs x/τ ,
where x is a variable and τ is a term.

We define the application of a substitution in accordance with [1] – a substitution
σ is a unifier of two terms τ1 : τ2, if τ1 · σ = τ2 ·σ. In addition, we describe, how
substitutions are applied to obligations, permissions and prohibitions. Below, X

stands for either O, P or F:
1. c · σ = c for a constant c.
2. x · σ = τ · σ if x/τ ∈ σ; otherwise x · σ = x .

71

3. pn(τ0, . . . , τn) · σ = pn(τ0 · σ, . . . , τn · σ).
4. (Xτ1:τ2ϕ ∧

∧n

i=0 γi) · σ = (X(τ1·σ):(τ2·σ)ϕ · σ) ∧
∧n

i=0 γi · σ).
5. 〈ν, td , ta , te〉 · σ = 〈(ν · σ), td , ta , te〉

We shall use unification in the following way:

Definition 7. unify(τ1, τ2, σ) holds for two terms τ1, τ2, iff τ1 ·σ = τ2 ·σ holds,
for some σ; unify(pn(τ0, . . . , τn), pn (τ ′

0, . . . , τ
′
n), σ) holds, for two atomic for-

mulae pn(τ0, . . . , τn), pn(τ ′
0, . . . , τ

′
n), iff unify(τi , τ

′
i , σ), 0 ≤ i ≤ n, for some σ.

We assume that unify is based on a suitable implementation of a unification al-
gorithm that i) always terminates (possibly failing, if a unifier cannot be found),
ii) is correct and iii) is of linear computational complexity. The unify relation-
ship checks, on the one hand, that substitution σ is a unifier, but can also be
used to find σ. By extending the definition of unify for handling norms, we can
use unification for detecting a conflict between two norms (X, X′, again, stand
for either O, P or F):

Definition 8. unify(ω, ω′) holds for two norms ω = 〈(Xτ1:τ2ϕ∧
∧n

i=0 γi),Ta ,Td ,
Te〉 and ω′ = 〈(X′

τ ′
1:τ

′
2
ϕ′ ∧

∧m

j=0 γ′
j),T

′
a ,T ′

d ,T ′
e〉, iff

1. unify(〈τ1, τ2, ϕ,Ta ,Td ,Te〉, 〈τ
′
1, τ

′
2, ϕ

′,T ′
a ,T ′

d ,T ′
e〉, σ) and

2. satisfy((
∧n

i=0(γi · σ)) ∧ (
∧m

j=0(γ
′
j · σ)))

Two conditions are tested: the first one checks that the various components of
a norm, organised as a tuple, unify; the second one checks that the constraints
associated with the norms are satisfiable3.

4.1 Conflict Detection

With unification, we can detect whether norms are in conflict. We define formally
a conflict between norms as follows:

Definition 9. A conflict arises between ω, ω′ ∈ Ω under a substitution σ, de-
noted as conflict(ω, ω′, σ), iff the following conditions hold:

1. ω = 〈(Fτ1:τ2ϕ ∧
∧n

i=0 γi), td , ta , te〉, ω′ = 〈(Oτ ′
1:τ ′

2
ϕ′ ∧

∧n

i=0 γ′
i), t

′
d , t ′a , t ′e〉,

2. unify(〈τ1, τ2, ϕ〉, 〈τ
′
1, τ

′
2, ϕ

′〉, σ), satisfy(
∧n

i=0 γi ∧ (
∧m

i=0 γ′
i · σ))

3. overlap(ta , te , t
′
a , t ′e).

That is, a conflict occurs if i) a substitution σ can be found that unifies the vari-
ables of two norms4, and ii) the conjunction

∧n

i=0 γi∧(
∧m

i=0 γ′
i)·σ) of constraints

from both norms can be satisfied (taking σ under consideration), and iii) the
activation period of the norms overlap. The overlap relationship holds if i) ta ≤
t ′a ≤ te ; or ii) t ′a ≤ ta ≤ t ′e . For instance, for the two norms PA:Rp(c,X)∧X > 50
and Fa:bp(Y ,Z) ∧ Z < 100, a substitution σ = {A/a,R/b,Y /c,X /Z} can be
found that allows the unification of both norms – being able to construct such a

3 We assume an implementation of the satisfy relationship based on “off the shelf”
constraint satisfaction libraries such as those provided by SICStus Prolog [13–15]
and it holds if the conjunction of constraints is satisfiable.

4 A similar definition is required to address the case of conflict between a prohibi-
tion and a permission – the first condition should be changed to ω′ = 〈(Pτ ′

1:τ ′
2
ϕ′ ∧

Vn

i=0 γ′
i), t

′
d , t ′a , t ′e〉. The rest of the definition remains the same.

72

unifier is a first indication that there may be a conflict, expressed as an overlap
of their influence on actions. The unifier expresses that the two norms conflict
if the variables A,R,Y and X receive as bindings the values contained in the
unifier. On the other hand, there will be no conflict if different bindings are cho-
sen. The constraints on the norms may restrict this overlap and, therefore, leave
actions under certain variable bindings free of conflict. The constraints of both
norms have to be investigated to see if an overlap of the values indeed occurs.
In our example, the permission has a constraint X > 50 and the prohibition
has Z < 100. By using the substitution X /Z , we see that 50 < X < 100 and
50 < Z < 100 represent ranges of values for variables X and Z where a conflict
will occur.

For convenience (and without any loss of generality) we assume that our
norms are in a special format: any non-variable term τ occurring in ν is replaced
by a fresh variable X (not occurring anywhere in ν) and a constraint X =
τ is added to ν. This transformation can be easily automated by scanning ν
from left to right, collecting all non-variable terms {τ1, . . . , τn}; then we add
∧n

i=1Xi = τi to ν. For example, norm PA:Rp(c,X)∧X > 50 is transformed into
PA:Rp(C ,X) ∧ X > 50 ∧ C = c.

4.2 Conflict Resolution

In order to resolve a conflict with respect to a specific action that is located
in the overlap of the scopes of influence of both norms, a social entity has to
decide which of the two conflicting norms it should adhere and which it should
ignore. For a software agent, a machinery has to be put in place that computes
a possible disambiguation of its normative situation – the set of norms Ω has
to be transformed into a set Ω′ that does not contain any conflicting norms so
that the agent can proceed with its execution. In [2], we achieved this by using a
concept of curtailment – one of the norms is changed in a way so that its scope of
influence is retracted from specific actions (which norm to choose for curtailment
is a different matter and not discussed in this paper). By curtailing the scope of
influence of a norm, the overlap between the two norms is eliminated.

Extending [2], we achieve curtailment by manipulating the constraints of the
norms. In figure 3, we show how a curtailment of the prohibition changes its scope

shift (X, Y, Z)

shift (a, Y, Z)

shift (a, r, Z) shift (a, s, Z)

shift (a, r, u)

shift (a, r, v)

shift (a, s, u)

shift (a, s, v)

shift (X, r, Z) X ∈ {a, b}

Y ∈ {r, s}

Z ∈ {u, v}

Conflict Resolution

by curtailing the

Prohibition with the

constraint Y ≠≠≠≠ r

X/bY/r

X/a

Y/r
Y/s X/a

Z/u Z/v Z/u Z/v

〈FA:R shift(X, Y, Z) ∧∧∧∧ X = a ∧∧∧∧ Y ≠≠≠≠ r, 1,1,1000 〉

〈PA:R shift(X, Y, Z) ∧∧∧∧ X = a ∧∧∧∧ Y = r, 1,1,1000 〉

Fig. 3: Conflict Resolution with Curtailment

73

of influence and thus eliminates the overlap between the two norms. Specific
constraints are added to the prohibition in order to perform this curtailment –
as shown in figure 3, these additional constraints are derived from the permission.
The scope of the permission is determined by the constraints X = a and Y = r ,
restricting the set of bindings for variables X and Y to values a and r . Adding a
constraint Y 6= r to the prohibition curtails its scope of influence and eliminates
the overlap with the scope of influence of the permission.

We now formally define how the curtailment of norms takes place. It is im-
portant to notice that the curtailment of a norm creates a new (possibly empty)
set of curtailed norms:

Definition 10. Relationship curtail(ω, ω′, Ω), where ω = 〈Xτ1:τ2ϕ ∧
∧n

i=0 γi ,
td , ta , te〉 and ω′ = 〈X′

τ ′
1:τ ′

2
ϕ′ ∧

∧m

j=0 γ′
j , t

′
d , t ′a , t ′e〉 (X and X′ being either O, F or

P) holds iff Ω is a possibly empty and finite set of norms obtained by curtailing
ω with respect to ω′. The following cases arise:

1. If conflict(ω, ω′, σ) does not hold then Ω = {ω}, that is, the set of curtail-
ments of a non-conflicting norm ω is ω itself.

2. If conflict(ω, ω′, σ) holds, then Ω = {ωc
0 , . . . , ω

c
m}, where ωc

j = 〈Xτ1:τ2ϕ ∧∧n
i=0 γi ∧ (¬γ′

j · σ), td , ta , te〉, 0 ≤ j ≤ m.

The rationale for the definition above is as follows. In order to curtail ω thus
avoiding any overlapping of values its variables may have with those variables of
ω′, we must “merge” the negated constraints of ω′ with those of ω. Additionally,
in order to ensure the appropriate correspondence of variables between ω and ω ′

is captured, we must apply the substitution σ obtained via conflict(ω, ω′, σ) on
the merged negated constraints. By combining the constraints of ν = Xτ1:τ2ϕ ∧∧n

i=0 γi and ν′ = X′
τ ′
1:τ

′
2
ϕ′∧

∧m

j=0 γ′
j , we obtain the curtailed norm νc = Xτ1:τ2ϕ∧∧n

i=0 γi ∧ ¬(
∧m

j=0 γ′
j · σ). The following equivalences hold:

Xτ1:τ2ϕ ∧

n∧

i=0

γi ∧ ¬(

m∧

j=0

γ′
j · σ) ≡ Xτ1:τ2ϕ ∧

n∧

i=0

γi ∧ (

m∨

j=0

¬γ′
j · σ)

That is,
∨m

j=0(Xτ1:τ2ϕ ∧
∧n

i=0 γi ∧ ¬(γ′
j · σ)). This shows that each constraint

of ν′ leads to a possible solution for the resolution of a conflict and a possible
curtailment of ν. The curtailment thus produces a set of curtailed norms νc

j =

Xτ1:τ2p(t1, . . . , tn) ∧
∧n

i=0 γi ∧ ¬γ′
j · σ, 0 ≤ j ≤ m. Although each of the νc

j ,
0 ≤ j ≤ m, represents a solution to the norm conflict, we advocate that all of
them have to be added to Ω in order to replace the curtailed norm. This would
allow a preservation of as much of the original scope of the curtailed norm as
possible. During the formation of a conflict-free Ω′, the agent has to choose
which norm to curtail in case of a conflict. In order to express such a choice,
we introduce the concept of special curtailment policies that determine, given a
pair of norms, which norm to curtail. We define curtailment policies as:

Definition 11. A policy π is a tuple 〈ω, ω′, (
∧n

i=0 γi)〉 establishing that ω should
be curtailed (and ω′ should be preserved), if (

∧n
i=0 γi) hold.

74

For example, a policy 〈〈FA:Rp(X ,Y),Td ,Ta ,Te〉, 〈PA:Rp(X ,Y),T ′
d ,T ′

a ,T ′
e〉,

(Td < T ′
d)〉 expresses that any prohibition held by any agent that corresponds

to the pattern FA:Rp(X ,Y) has to be curtailed, if the additional constraint,
which expresses that the prohibition’s time of declaration Td precedes that of
the permission’s T ′

d , holds. Adding constraints to policies allows us a fine-grained
control of conflict resolution, capturing classic forms of resolving deontic conflicts
– the constraint in the example establishes a precedence relationship between
the two norms that is known as legis posterior (see section 8 for more details).
We shall represent a set of such policies as Π .

The algorithm shown in figure 4 depicts how to obtain a conflict-free set
of norms. It describes how an originally conflict-free (possibly empty) set Ω
can be extended in a fashion that resolves any emerging conflicts during norm
adoption. With that, a conflict-free Ω is always transformed into a conflict-free

algorithm adoptNorm(ω, Ω, Π, Ω′)
input ω, Ω, Π
output Ω′

begin

Ω′ := ∅
if Ω = ∅ then Ω′ := Ω ∪ {ω}
else

for each ω′ ∈ Ω do
// test for conflict
if unify(ω, ω′, σ) then

// test policy
if 〈ωπ, ω′

π, (
Vn

i=0 γi)〉 ∈ Π and unify(ω, ωπ, σ) and unify(ω′, ω′
π, σ) and

satisfy(
Vn

i=0(γi · σ))
then

curtail(ω, ω′, Ω′′)
Ω′ := Ω ∪ Ω′′

else
// test policy
if 〈ω′

π, ωπ, (
Vn

i=0 γi)〉 ∈ Π and unify(ω, ωπ, σ) and unify(ω′, ω′
π, σ) and

satisfy(
Vn

i=0(γi · σ))
then

curtail(ω′, ω, Ω′′)
Ω′ := (Ω − {ω′}) ∪ ({ω} ∪ Ω′′)

endif
endif

endif
endfor

endif
end

Fig. 4: Norm Adoption Algorithm
Ω′ that may contain curtailments. The algorithm makes use of a set Π of policies
determining how the curtailment of conflicting norms should be done. Policies
determine whether the new norm ω is curtailed in case of a conflict or whether
a curtailment of one of the existing ω′ ∈ Ω should take place. When a norm
is curtailed, a set of new norms replace the original norm. This set of norms is
collected into Ω′′ by curtail(ω, ω′, Ω′′). A curtailment takes place if there is a
conflict between ω and ω′. This test creates a unifier σ that is re-used in the
policy test. When checking for a policy that is applicable, the algorithm uses
unification to check (a) whether ω matches/unifies with ωπ and ω′ with ω′

π; and
(b) whether the policy constraints hold under the given σ. If a previously agreed
policy in Π determines that the newly adopted norm ω is to be curtailed in
case of a conflict with an existing ω′ ∈ Ω, then the new set Ω′ is created by
adding Ω′′ (the curtailed norms) to Ω. If the policy determines a curtailment of
an existing ω′ ∈ Ω when a conflict arises with the new norm ω, then a new set
Ω′ is formed by a) removing ω′ from Ω and b) adding ω and the set Ω′′.

75

5 Norm-Aware Agent Societies

With a set Ω that reflects a conflict-free normative situation, the agent can
test whether its actions are norm-compliant. In order to check actions for norm-
compliance, we, again, use unification. If an action unifies with a norm, then it
is within its scope of influence:

Definition 12. 〈a : r , ϕ̄, t〉, is within the scope of influence of 〈Xτ1:τ2ϕ∧
∧n

i=0 γi ,
td , ta , te〉 (where X is either O, P or F) iff the following conditions hold:

1. unify(a, τ1, σ), unify(r , τ2, σ), unify(ϕ̄, ϕ, σ) and satisfy(
∧n

i=0 γi · σ)
2. ta ≤ t ≤ te

This definition can be used to establish a predicate check/2, which holds if its
first argument, a candidate action (in the format of the elements of Ξ of Def. 2),
is within the influence of an prohibition ω, its second parameter. Figure 5 shows

check(Action, ω)←
Action = 〈a :r , ϕ̄, t〉∧
ω = 〈(Fτ1:τ2ϕ

′ ∧
Vn

i=0 γi), td , ta , te〉∧
unify(〈a, r , ϕ̄〉, 〈τ1, τ2, ϕ

′〉, σ) ∧ satisfy(
Vn

i=0 γi · σ)∧
ta ≤ t ≤ te

Fig. 5: Check if Action is within Influence of a Prohibition

the definition of this relationship as a logic program. Similarly to the check of
conflicts between norms, it tests i) if the agent performing the action and its role
unify with the appropriate terms τ1, τ2 of ω; ii) if the actions ϕ̄, ϕ themselves
unify; and iii) the conjunction of the constraints of both norms can be satisfied,
all under the same unifier σ. Lastly, it checks if the time of the action is within
the norm temporal influence.

6 Indirect Conflicts

In our previous discussion, norm conflicts were detected via a direct comparison
of atomic formulae representing actions. However, conflicts and inconsistencies
may also arise indirectly via relationships among actions. For instance, if we
consider that an agent holds the two norms PA:Rp(X) and FA:Rq(X ,X) and
that the action p(X) amounts to the action q(X ,X), then we can rewrite the
permission as PA:Rq(X ,X) and identify an indirect conflict between these two
norms. We use a set of domain axioms in order to declare such domain-specific
relationships between actions:

Definition 13. The set of domain axioms, denoted as ∆, are a finite and possi-
bly empty set of formulae ϕ → (ϕ′

1∧· · ·∧ϕ′
n) where ϕ, ϕ′

i , 1 ≤ i ≤ n, are atomic
first-order formulae.

In order to accommodate indirect conflicts between norms based on domain-
specific relationships of actions, we have to adapt our curtailment mechanism.
A curtailment occurs, if there is a conflict, that is, if for two norms ω and ω′,
their variables unify, the conjunction of their constraints can be satisfied and
their activation periods overlap. With the introduction of domain axioms, this
test has to be performed for each of the conjuncts in the relationship. For ex-
ample, if we have a set of domain axioms ∆ = {(p(X) → q(X ,X) ∧ r(X ,Y))}

76

and a permission 〈PA:Rp(X), td , ta , te〉 then q(X ,X) and r(X ,Y) are also per-
mitted. There is, thus, an indirect conflict between 〈PA:Rp(X), td , ta , te〉 and
〈FA:Rq(X ,X), td , ta , te〉 and 〈FA:Rr(X ,Y), td , ta , te〉.

Domain axioms may also accommodate the delegation of actions between
agents. Such a delegation transfers norms across the agent community and, with

that, also conflicts. We introduce a special logical operator ϕ
τ1:τ2 τ′

1:τ
′
2

−−−−−−→(ϕ′
1∧· · ·∧ϕ′

n)
to represent that agent τ1 adopting role τ2 can transfer any norms on action ϕ to
agent τ ′

1 adopting role τ ′
2, which should carry out actions ϕ′

1 ∧ · · · ∧ ϕ′
n instead.

7 Example: Agents for the Grid

We address a scenario taken from the e-Science/Grid domain in which a service
provider may request payment that introduces a financial obligation for users,
but, at the same time commits to the provision of the service that represents a
right for the user to access the service.

In this scenario, a Principal Investigator (PI) of a research project has
to perform a specific research task that involves the analysis of data. We as-
sume that a contract exists between the PI and the funding body that in-
troduces certain rights, restrictions
and obligations for the contracting
partners. We regard both the PI
and the funding body as being rep-
resented as agents operating on the

8

>

>

<

>

>

:

〈Frsa:piclaim(X), 1, 1, 1000〉
〈Prsa:piclaim(staff costs), 1, 1, 1000〉
〈Prsa:piclaim(travel), 1, 1, 1000〉
〈Orsa:pireport experiment(rsa, D), 1, 1, 1000〉
〈FX :Y publish(D), 1, 1, 1000〉

9

>

>

=

>

>

;

Fig. 6: Contract C

Grid and that this contract is available in electronic form and taken into account
by the agents in their actions.

A possible initial contract C is shown in Fig. 6. The first three norms repre-
sent financial requirements of the agent taking on the principal investigator role.
All claims are prohibited (norm 1)
with the exception of a number of
specific types of item: staff costs
(norm 2) and travel costs (norm 3)
are itemised here. In addition, an
obligation is stated that requires
the PI to report about the experi-

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

〈FA:R claim(X) ∧

„

A = rsa∧
R = pi

«

, 1, 1, 1000〉

〈PA:R claim(X) ∧

„

A = rsa ∧ R = pi∧
X = staff costs

«

, 1, 1, 1000〉

〈PA:R claim(X) ∧

A = rsa∧
R = pi∧

X = travel

!

, 1, 1, 1000〉

〈OA:R report experiment(A, D) ∧

„

A = rsa∧
R = pi∧

«

, 1, 1, 1000〉

〈FX :Y publish(D), 1, 1, 1000〉

9

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

;

Fig. 7: Alternative Format of Contract C

ment as well as a prohibition for anybody to publish data. The last norm is a
basic prohibition, forbidding any agent in any role to publish data. Contract C
in its alternative (equivalent) format in which constants are replaced by variables
and constraints is shown in Fig. 7.

7.1 Conflict Resolution

Contract C has conflicting norms. We use our machinery to obtain a conflict-
free version C ′ of it, in which only the first prohibition is curtailed. C ′ is
shown in Fig. 8. In our example, two
Grid services are made available by
two potential subcontractors for the
execution of the data analysis task.
These are: i) a public non-profit or-
ganisation provides a free service, but

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

〈FA:R claim(X) ∧

A = rsa ∧ R = pi∧
X 6= staff costs∧

X 6= travel

!

, 1, 1, 1000〉

〈PA:R claim(X) ∧ . . . , 1, 1, 1000〉

.

.

.
〈FX :Y publish(D), 1, 1, 1000〉

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

Fig. 8: Contract C ′ with Curtailed Norm

77

requires the disclosure of data in a public repository; and ii) a private com-
mercial organisation provides the service without the need for disclosure, but
requests a payment. These conditions of use can be expressed as norms in our
formalism. The terms of the service, provided by the public non-profit organisa-
tion, are N1 = {〈OA:R publish(D ′), 1, 1, 1000〉}, that is, according to the terms
of conditions of the public service, the input data have to be published. The
terms of the service of the private commercial organisation, on the other hand,
are 〈OA:R pay(fee), 1, 1, 1000〉 or, alternatively, N2 = {〈OA:R pay(X) ∧ X =
fee, 1, 1, 1000〉} That is, whoever uses the service is obliged to pay a fee. The
Research Assistant Agent (rsa) has to choose which service to use. Each of them
introduces a new obligation with associated inconsistencies, explained below.

If the public Grid service is chosen, then the set N1, containing a new obli-
gation, is introduced. The set C ′ ∪ N1 contains a conflict: the obligation to
publish overlaps with the influence of the
prohibition to publish. Our machinery han-
dles this, completely curtailing the prohibi-
tion and giving rise to a new set C ′′, shown
in Fig. 9. The constraint D 6= D ′ expresses

8

>

>

>

>

>

<

>

>

>

>

>

:

〈FA:R claim(X) ∧ . . . , 1, 1, 1000〉
〈PA:R claim(X) ∧ . . . , 1, 1, 1000〉
〈PA:R claim(X) ∧ . . . , 1, 1, 1000〉
〈OA:R report experiment(A, D) . . . , 1, 1, 1000〉

〈FX :Y publish(D) ∧ D 6= D′, 1, 1, 1000〉

〈OA:R publish(D′), 1, 1, 1000〉

9

>

>

>

>

>

=

>

>

>

>

>

;

Fig. 9: Contract C ′′ = C ′ ∪ N1

that variable D cannot be bound to anything (since D ′ is a free variable) – the
prohibition, therefore, becomes completely curtailed and has no effect any more
and, hence, it is removed.

A conflict within the set C ′ ∪N2 is not immediately obvious. Intuitively, in
terms of paying expenses for research (the domain of discussion here), the action
pay is related to the action claim. In order for our mechanism to cope with such
a situation, a concept of indirect conflicts based on domain axioms for relating
actions has to be introduced. We have explored such indirect conflicts in [2] and
we plan to extend that work to handle arbitrary constraints.

7.2 Indirect Conflict Resolution

In choosing the private service, the obligation N2 = {〈OA:R pay(X) ∧ X =
fee, 1, 1, 1000〉} is introduced and a contract C ′′ = C ′ ∪ N2 created. Intu-
itively, we know that this introduces an indirect conflict, as the original contract
does not allow such a claim. With a do-
main axiom, we can express that to pay for
something eventually amounts to claiming
it: ∆ = {pay(X)

A:R A:R
−−−−→claim(X)}. In con-

tract C ′′, we have to permissions that allow

8

>

>

>

>

>

<

>

>

>

>

>

:

〈FA:R claim(X) ∧ . . . , 1, 1, 1000〉
〈PA:R claim(X) ∧ . . . , 1, 1, 1000〉
〈PA:R claim(X) ∧ . . . , 1, 1, 1000〉
〈OA:R report experiment(A, D) . . . , 1, 1, 1000〉

〈FX :Y publish(D) ∧ D 6= D′, 1, 1, 1000〉
〈OA:R claim(X) ∧ X = fee, 1, 1, 1000〉

9

>

>

>

>

>

=

>

>

>

>

>

;

Fig. 10: Contract C ′′ = C ′ ∪ N ∆
2

claiming staff costs and travel, but not claiming fees. According to the given do-
main axiom, obligation N2 can be transformed into N ∆

2 = OA:R claim(X)∧X =
fee, 1, 1, 1000〉}. By forming a new contract C ′′ = C ′ ∪N ∆

2 , a direct conflict be-
tween the first prohibition regarding claims and obligation N ∆

2 arises (Fig. 10).
The conflict resolution can now take place as shown in the case of direct conflicts
(see contract C ′ in Fig. 8).

7.3 Solving Conflicts arising from Delegation

Conflicts can also arise from delegation among agents/roles. Let there be the
set of domain axioms ∆ of Fig. 11: it contains axioms describing how the
Research Assistant Agent can fulfil its obligation to report the result of an

78

experiment. As the domain axioms show, there is a relationship between the
action report experiment and do exp. An additional axiom tells us that the
action do exp leads to the sending of experimental data to one of the cho-

sen Grid services of subcontractors. The domain axiom send(A,R′,E ,D)
A:R A′:R′
−−−−−→

receive(A′,R′,A,E ,D) shows the
delegation of activities from the
agent responsible for the data anal-
ysis to a subcontractor for actually
performing the experiment. The
rest of the domain axioms describe

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

pay(X)
A:R A:R
−−−−−→claim(X)

report experiment(A, E, D)
A:R A:R
−−−−−→do exp(A, E, D)

do exp(A, e1, D)
A:pi A:pi
−−−−−→send(A, exp, e1, D)

send(A, R′, E, D)
A:R A′:R′
−−−−−−→receive(A′, R′, A, E, D)

receive(A′, R′, A, E, D)
A′:R′ A′:R′
−−−−−−−−→

„

analyse(A′, E, D, S)∧

send(A, A′, S)

«

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

Fig. 11: Set of Domain Axioms ∆

how a subcontractor performs an experiment and sends back results upon receiv-
ing such a request. For example, the obligation to report experimental results
gives rise to an obligation to perform the action do exp and, continuing in this
transitive fashion, obligations for all the related actions as described before. Due
to the delegation step, obligations also arise for the partner agents. These obli-
gations, in their turn, may interfere with prohibitions held by the collaborating
agents and may have to be dealt with in the same way.

8 Related Work

The work presented in this paper is an extension and adaptation of the work
presented in [2, 16] and [17]. It can also be seen as a logic-theoretic investigation
into deontic logics to represent normative modalities along with their paradoxes
[18, 19]. In [2], we introduced conflict detection and resolution based on unifica-
tion. In this paper, we re-visited this research and introduced constraints into
the given conflict detection/resolution mechanism. The result is a new machinery
for conflict detection/resolution and reported in this paper.

Efforts to keep law systems conflict-free can be traced back to the jurispru-
dential practice in human society. Inconsistency in law is an important issue
and legal theorists use a diverse set of terms such as, for example, normative
inconsistencies/conflicts, antinomies, discordance, etc., in order to describe this
phenomenon. There are three classic strategies for resolving deontic conflicts by
establishing a precedence relationship between norms: legis posterior – the most
recent norm takes precedence, legis superior – the norm imposed by the strongest
power takes precedence, and legis specialis – the most specific norm takes prece-
dence [20]. The work presented in [16] discusses a set of conflict scenarios and
conflict resolution strategies, among them the classic strategies mentioned above.
For example, one of these conflict resolution strategies achieves a resolution of a
conflict via negotiation with a norm issuer. In [21], an analysis of different norma-
tive conflicts is provided. The authors suggest that a deontic inconsistency arises
when an action is simultaneously permitted and prohibited. In [22], three forms
of conflict/inconsistency are described as total-total, total-partial and intersec-
tion. These are special cases of the intersection of norms as described in figure 2
and in [16] – a permission entailing the prohibition, a prohibition entailing the
permission or an overlap of both norms.

The SCIFF framework [23] is related to our work in that it also uses con-
straint resolution to reduce the scope of expectations to avoid conflict – expec-
tation is a concept closely related to norms [24]. For instance, in that work,
E(p,X), 0 ≤ X ≤ 10 means that p is expected to hold true between 0 and

79

10, and EN(p,Y),Y > 5 means that p is expected not to hold true when
Y is greater than 5; positive expectations are related to obligations (and are
implicitly existentially quantified) and negative expectations are related to pro-
hibitions (and are implicitly universally quantified). The SCIFF proof procedure
uses constraint resolution to reduce the domain of the expectations (and non-
expectations). However, SCIFF always gives higher priority to negative expec-
tations against positive ones.

9 Conclusions and Future Work

We have presented a novel mechanism to detect and resolve conflicts in norm-
regulated environment. Such conflicts arise when an action is simultaneously
obliged and prohibited or, alternatively, when an action is permitted and pro-
hibited. We introduce norms as first-order atomic formulae to whose variables we
can associate arbitrary constraints – this allows for more expressive norms, with a
finer granularity and greater precision. The proposed mechanism is based on first-
order unification and constraint satisfaction algorithms, extending our previous
work [2], addressing a more expressive class of norms. Our conflict resolution
mechanism amounts to manipulating the constraints of norms to avoid overlap-
ping values of variables – this is called the “curtailment” of variables/norms. We
have also introduced a robust and flexible algorithm to manage the adoption of
possibly conflicting norms, whereby explicit policies depict how the curtailment
between specific norms should take place. Our proposed formalism naturally
allows the detection of indirect normative conflicts, arising when an action is
broken down into composite actions appearing in conflicting norms.

In this paper we only considered universally quantified norms, leaving out
important cases of existential quantifications. If existential quantification is al-
lowed, then disjunction of constraints must be preserved. In this case, replacing a
norm that has a disjunction of constraints with a conjunction of separate norms
does not work anymore. If we allow existential quantification then we must pre-
serve disjunctions of constraints and the set of norms Ω should be managed
differently, in particular, disjunctions of norms should be allowed. We are cur-
rently working to address these issues.

The policies establishing which of two conflicting norms should be curtailed,
confers generality on our approach, being neatly accommodated in our algo-
rithms. We observe, however, that it would also be possible to make policies
part of the virtual organisation (VO) specification, giving higher priority to
those norms that allow the progress of the organisation. For instance, if p(X) is
forbidden and p(Y) is permitted (both for the same group of agents/roles), that
is, there is a complete overlap on the norms’ scope of influence, then a policy
on the VO could specify which of the two should be “removed” (by adding the
constraint X 6= Y onto it), based on which of them would allow the VO to
progress. For example, if the VO progresses when an agent performs p(a), then
the prohibition could be lifted.

We want to extend our work to also address the removal of norms: when a
norm is removed, all those curtailments it caused must be undone. We envisage a
roll-back/roll-forward mechanism, whereby a history of normative states allows
us to retrieve the state prior to the introduction of the norm to be removed (roll-
back) and apply to this state all the updates which took place after the norm was

80

introduced, skipping the actual norm to be removed (roll-forward). Additionally,
we want to integrate our mechanisms with norm-updating approaches such as
[12] – we want to investigate if it is possible (and in which circumstances) to
detect conflicts at the design stage of norm updates (as opposed to run-time).

Acknowledgements: This research is continuing through participation in the Inter-

national Technology Alliance sponsored by the U.S. Army Research Laboratory and

the U.K. Ministry of Defence (http://www.usukita.org).

References

1. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer-Verlag,
New York, U.S.A. (1990)

2. Vasconcelos, W., Kollingbaum, M., Norman, T., Garćıa-Camino, A.: Resolving
Conflict and Inconsistency in Norm-Regulated Virtual Organizations. In: Pro-
ceedings of AAMAS 2007. (2007)

3. O’Leary, D.E., Kuokka, D., Plant, R.: Artificial Intelligence and Virtual Organi-
zations. Commun. ACM 40(1) (1997)

4. Apt, K.R.: From Logic Programming to Prolog. Prentice-Hall, U.K. (1997)
5. Parunak, H.V.D., Odell, J.: Representing Social Structures in UML. In: Procs 5th

Int’l Conf. on Autonomous Agents, Montreal, Canada, ACM Press (2001) 100–101
6. Rodŕıguez-Aguilar, J.A.: On the Design and Construction of Agent-mediated Elec-

tronic Institutions. PhD thesis, IIIA-CSIC, Spain (2001)
7. Pacheco, O., Carmo, J.: A Role Based Model for the Normative Specification of

Organized Collective Agency and Agents Interaction. Autonomous Agents and
Multi-Agent Systems 6(2) (2003) 145–184

8. Garcia-Camino, A., Rodriguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.W.: A
Distributed Architecture for Norm-Aware Agent Societies. Volume 3904 of LNAI.
Springer-Verlag (2005)

9. Vasconcelos, W.W.: Expressive Global Protocols via Logic-Based Electronic In-
stitutions. In: Proc. 2nd Int’l Joint Conf. on Autonomous Agents & Multi-Agent
Systems (AAMAS 2003), Melbourne, Australia, ACM, U.S.A (2003)

10. Pacheco, O., Carmo, J.: A Role Based Model for the Normative Specification of
Organized Collective Agency and Agents Interaction. Autonomous Agents and
Multi-Agent Systems 6(2) (2003) 145–184

11. Jaffar, J., Maher, M.J.: Constraint Logic Programming: A Survey. Journal of
Logic Progr. 19/20 (1994) 503–581

12. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: A Rule-
based Approach to Norm-Oriented Programming of Electronic Institutions. ACM
SIGecom Exchanges 5(5) (2006) 33–40

13. Swedish Institute of Computer Science: SICStus Prolog. (2005) http://www.sics.
se/isl/sicstuswww/site/index.html, viewed on 10 Feb 2005 at 18.16 GMT.

14. Jaffar, J., Maher, M.J., Marriott, K., Stuckey, P.J.: The Semantics of Constraint
Logic Programs. Journal of Logic Programming 37(1-3) (1998) 1–46

15. Holzbaur, C.: ÖFAI clp(q,r) Manual, Edition 1.3.3. TR-95-09, Austrian Research
Institute for A. I., Vienna, Austria (1995)

16. Kollingbaum, M., Norman, T., Preece, A., Sleeman, D.: Norm Refinement: In-
forming the Re-negotiation of Contracts. In Boella, G., Boissier, O., Matson, E.,
Vazquez-Salceda, J., eds.: ECAI 2006 Workshop on Coordination, Organization,
Institutions and Norms in Agent Systems, COIN@ECAI 2006. (2006) 46–51

17. Garćıa-Camino, A., Noriega, P., Rodŕıguez-Aguilar, J.A.: An Algorithm for Con-
flict Resolution in Regulated Compound Activities. In: Seventh Annual Interna-
tional Workshop Engineering Societies in the Agents World (ESAW’06). (2006)

81

18. Dignum, F.: Autonomous Agents with Norms. Artificial Intelligence and Law 7
(1999) 69–79

19. Sergot, M.: A Computational Theory of Normative Positions. ACM Transactions
on Computational Logic 2(4) (2001) 581–622

20. Leite, J.A., Alferes, J.J., Pereira, L.M.: Multi-Dimensional Dynamic Knowledge
Representation. Volume 2173 of LNAI. Springer-Verlag (2001)

21. Elhag, A., Breuker, J., Brouwer, P.: On the Formal Analysis of Normative Conflicts.
Information & Comms. Techn. Law 9(3) (2000) 207–217

22. Ross, A.: On Law and Justice. Stevens & Sons (1958)
23. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The SCIFF Abduc-

tive Proof Procedure. Volume 3673 of LNAI. Springer-Verlag (2005)
24. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Sartor, G., Torroni, P.: Mapping

Deontic Operators to Abductive Expectations. Computational & Mathematical
Organization 12(2-3) (2006) 205–225

82

Structured Argumentation in a Mediator

for Online Dispute Resolution

Ioan Alfred Letia1 and Adrian Groza1

Technical University of Cluj-Napoca
Department of Computer Science

Baritiu 28, RO-400391 Cluj-Napoca, Romania
{letia,adrian}@cs-gw.utcluj.ro

Abstract. Online dispute resolution is becoming the main method when
dealing with a conflict in e-commerce. A family of defeasible reason-
ing patterns is used to provide a useful link between dispute resolution
agents and legal doctrines. The proposed argumentation framework com-
bines defeasible logic with temporal reasoning and argumentation with
level of certainty. The evaluation of arguments depends on the stage
of the dispute: commencement, discovery, pre-trial, arbitration, accord-
ing to current practice in law. By applying the open world assumption
to the rules, the argumentative semantics of defeasible logic is enriched
with three types of negated rules which offer symmetrical means of ar-
gumentation for both disputants. A corollary of this extension consists
in defining a specialized type of undercutting defeater. The theory is il-
lustrated with the help of a concrete business-to-client case in a partially
implemented system.

1 Introduction

Online Dispute Resolution (ODR) promises to become the predominant ap-
proach to settle e-commerce disputes. To reach this statute it needed ten years of
fast and sustained development [1]: starting in 1996 as a hobby, an experimental
stage sustained by academics and non-profit organizations during 1997-1998, an
entrepreneurial stage from 1999 (75% rate of success as business), and begin-
ning with 2003 there have been much governmental effort and many projects to
institutionalize the online dispute resolution process.

Regarding the automation of the ODR process, one goal of this paper is to
provide a flexible argumentation framework, according to the current practice
in law, which can be effectively employed in online dispute resolution agents. In
recent years several researchers acknowledged the value of argumentation theory
for ODR [2]. Flexibility in configuring ODR systems is both an opportunity and
a challenge. The opportunity is that any business can, quite quickly, have its own
”court” specialized in disputes that might occur in its specific business domain.
The challenge is that the technical instrumentation must simultaneously satisfy
the business viewpoint asking for trust [3] and the legal viewpoint, which requires
accordance with the current practice in law.

83

2 Argumentation Framework

We enrich the defeasible logic of Governatori [4] with interval-based temporal
reasoning and its argumentation semantics with level of certainty and negated
rules. Although defeasible logic has already been proved suitable for legal rea-
soning [5], by introducing interval-based reasoning we attempt to provide a more
appropriate framework for practical scenarios, having the possibility to model
contract deadlines. The levels of certainty for weighting arguments are meant
to better handle incomplete information, vagueness, or fuzziness of the terms
implied in the dispute.

Definition. A theory in temporal defeasible logic (TDL) is a structure 〈F , R〉
formed by a finite set of facts f(β)[a, b] ∈ F valid at time t, a ≤ t ≤ b, and a
finite set of rules r(γ) ∈ R, with certainty factors β, γ ∈ (0..1]. A fact f(β) ∈ F

is strict if β = 1 and defeasible if β < 1.

The rules are split in two disjoint sets: the set of support rules Rsup which
can be used to infer conclusions and the set of defeaters Rdef that can be used
only to block the derivation of some conclusions.

Definition. A rule r(γ) ∈ Rsup is strict (→) iff γ = 1, with the set of strict
rules Rs = {r(γ) ∈ Rsup|γ = 1}. A rule r(γ) ∈ Rsup is defeasible (⇒) iff γ < 1,
with the set of defeasible rules Rd = {r(γ) ∈ Rsup|γ < 1}.

Strict rules are rules in the classical sense, that is whenever the premises
are indisputable, then so is the conclusion, while defeasible rules are rules that
can be defeated by contrary evidence. Following Pollock’s terminology [6], a
defeasible conclusion q can be defeated either by inferring the opposite one ∼ q

with a superior certainty factor (rebuttal defeater), or by attacking (Ã q) the
link between the premises and the conclusion q (undercutting defeater1).

Facts within TDL are enhanced with validity intervals. For premise a[x, y]
and a conclusion b[u, v] the following weak semantics is used: if a is valid in
at least one moment within [x, y], then b is valid in all moments from [u, v].
In this interpretation (imprecise premise, precise conclusion), the validity in-
terval [a,b] of a rule depends on the activation intervals of its own premises:
ri(γ)[a, b] : q1(β1)[a1, b1], ...qk(βk)[ak, bk] ⇒ q0(β0)[a0, b0], with a = min(ai) and
b = max(bi), i ∈ [1..k]. For the particular case when a defeasible rule has only
one premise, its activation interval is synonym to the validity of that premise:
q1[a1, b1] ⇒ q0[a0, b0] ⇔ (q1 ⇒ q0[a0, b0])[a1, b1]. This feature is used in nested
rules2.

1 Intuitively, an undercutting defeater argues that the conclusion is not sufficiently
supported by its premises.

2 In our approach, rules are allowed to appear as premises or conclusions within other
rules. The general case of such nested rule is represented by: ri(γi) : rj [a2, b2] ⇒

rk[a3, b3], where the existence of the rule rj fires the conclusion rk, which can be seen
as a dynamic rule. Another technical approach [7] consists in using an objectivation
operator to translate a meta-level expression to an object-level expression.

84

Similar to facts, the rules acting as premises or conclusion within the body of a
nested rule can appear negated. We use the following notations: 9 for ¬ (a → b),
meaning that ”a does not strictly determine b”, ; for ¬ (a ⇒ b), meaning that ”a
does not defeasibly determine b”, and 6Ã for ¬ (a Ã b) meaning that ”a does not
defeat b”. We note by Rns the set of negated strict rules, by Rnd the set of negated
defeasible rules, and by Rndef the set of negated defeaters. The problem consists
in giving a proper interpretation to a negated rule. Firstly, the negated rule
represents a counterargument to the opposite rule, negated rules having the same
role as an undercutting defeater, attacking the links between the premises and the
conclusion. The difference consists in the fact that a defeater of the consequent
q attacks all rules which sustain q, whilst the negated rule attacks a single rule
sustaining the respective conclusion3. The version of Toulmin’s standard example

Claim: Harry is a British subject now.
Datum: Harry was born in Bermuda in 1937.

Harry is become an American citizen[1966,1966].
Very probably Harry speaks English.

Warrant : A man born in Bermuda will generally be a British subject.
English speakers are usually British subject.

Backing : Civil Code 123 provides that persons born in Bermuda
are generally British subjects.

Exception: An American Citizen cannot be a British subject.
Counter-example: Speaking English does not mean one is a British subject.

Harry Born Bermuda(1.0)[1937, 1937]
Harry American Citizen(1.0)[1960, 1960]
Harry Speaks English(0.95)[1937, now]
r1 : (0.9) : Born Bermuda[t, t] ⇒ British Subject[t, now]
r2 : (0.5) : Speak English[1, 1] ⇒ [t, t]British Subject[t, t]
r3 : (0.9)Harry American Citizen[1, 1] Ã British Subject[2, 2]).
r4 : (0.9)Speak English[1, 1] ; British Subject[t, t]).
r5 : valid code 123[0, t] → (Born Bermuda[t, t] ⇒ British Subject[t, now]).

Fig. 1. A special type of undercutting defeater: negated rules.

about British citizenship in figure 1 illustrates this difference. Here, the rule r4

attacks only the rule r2, which is defeated. Opposite, the undercutting defeater
r3 attacks both r1 and r2 with a stronger certainty factor, blocking the claim
+∂British Subject : now. We use Pollock’s undercutting defeaters to model
exceptions and negated rules in representing counter-examples. Undercutting
defeaters or negated rules cannot be used to draw a conclusion, their only use is
to prevent some conclusions. Practically, introducing negated rules, we extend
the open world assumption to the rules. A relation between two terms a and

3 If defeaters represent rules used to block the derivation of some conclusion q, the
negated rules are used to block the activation of a specific support argument for q.

85

ϕ ∼ ϕ

q ¬q, X → ¬q, X ⇒ ¬q

A → q ¬q, X → ¬q, A 9 q

A ⇒ q ¬q, X → ¬q, X ⇒ ¬q, X Ã ¬q, A ; q

A Ã q A 6Ã q

A 9 q A → q

A ; q A ⇒ q

A 6Ã q A Ã q

Fig. 2. Attacking a sentence ϕ depends on its type.

b can be positive (a → b), negative (a 9 b), or unspecified. Pairs of relations
provide symmetrical means of argumentation for both disputants. The type of
counterargument depends on the type of the current sentence ϕ: fact, support
rule, defeater (figure 2). Here, one can see that the support rules (→, ⇒) can
be attacked in different ways. The negated rule A 6Ã q represents an argument
in favor of q, because it attacks the undercutting defeater A Ã q. The second
utility of the negated rules is the dynamic elimination of some arguments from
the knowledge base. The existence of a negated rule allows the deactivation of a
rule, when the certainty factor is strong enough.

3 Types of Agents for ODR

A family of defeasible reasoning patterns is discussed next, employed in dispute
resolution agents for more flexibility of the decision. The strategy of an agent con-
sists of three orthogonal components which modularly capture different concerns
of the problem: basic component, tactical component, and attitude component.

3.1 Basic Component

Fuzzy Inference. Using the weakest link principle for deductive arguments [6],
the conclusion q0 is as good as the weakest premise, given by min(β1, ..., βk).
Additionally, the certainty factor is also influenced by the strength γ of the
inferencing rule (figure 3). The figure presents the generalized modus ponens
where given the premises qi(βi)[ti] valid at time ti required by the rule ri, the
conclusion q0 is inferred with a strength equal to the minimum between the
strength of the premises βi and the strength of the rule ri.

Probabilistic inference. A probabilistic approach of computing the certainty
factor of a conclusion would multiply the certainty factors of all premises. Practi-
cally, the certainty factor depends on the number of premises. In this probabilistic
context, the temporal persistence issue can also be considered. Suppose the fact
a having the certainty factor βa is valid at time t. The following interpretation
could arise: if a at t then there is a defeasible reason to infer a at t + ∆t, the

86

rule ri : q0[a0, b0]
γ

←− q1[a1, b1] ∧ ∧ qk[ak, bk]
facts : q1(β1)[t1], a1 ≤ t1 ≤ b1.................., qk(βk)[tk], ak ≤ tk ≤ bk

q0(min(β1,, βk, γ)[ai], ∀ai, a0 ≤ ai ≤ b0

Fig. 3. Inferring the conclusion q0 when no valid defeaters exist.

certainty factor for a being a monotonic decreasing function of argument ∆t.
A typical scenario might be: the probability that the new business partner will
breach the contract is 0.2. This probability decreases as time passes and the
contract meets its time of maturity. Similarly, an agent believes that his busi-
ness partner is trust-able with a factor of 0.6. If nothing defeats this believe in
time, the agent increases the trust in the partnership as the business runs. By
default we consider that the certainty factor is constant in time and we provide
mechanisms to adjust it for each scenario.

3.2 Tactical Component

The same conclusion q can be sustained by several arguments with different
degrees of reliance. The tactical component defines how an agent handles the
accrual of such valid arguments. Let n be the number of valid derivations of
the consequent q and cf [qi] the certainty factor of the inference number i of
q, i ∈ [1..n]. Similarly, m is the number of valid undercutting defeaters (both
defeaters and negated rules) of the sentence q and we note by cf [∼ qj] the
certainty factor of the j defeater of q, j ∈ [1..m]. If p is the number of valid
rebuttal defeaters, we note with cf [¬qk] the certainty factor of the k rebuttal
defeater for q, k ∈ [1..p].

Persuasion Agent. In some situations, independent reasons supporting the
same action provide stronger arguments in favor of that conclusion. For instance,
the testimony of two witnesses is required in judicial cases. This approach is
appropriate for practical reasoning, when the decision is about what actions to
perform [6] or evidential reasoning [8]. One issue related to this agent regards
the difficulty to identify independent reasons. Thus, an argument presented in
different forms contributes with all its avatars to the certainty factor. Similarly,
an argument subsumed by another general argument also contributes to the
certainty factor. Correlated to the same judicial example, if the two witnesses
are kin or they conferred with each other, only one testimony is accepted in the
trial. The accrual of dependent arguments is not necessarily useless. Changing
the perspective, this case can be valuable in persuasion dialogs, where an agent,
by repeatedly posting the same argument in different representations, will end
in convincing his partner to accept that sentence.

A persuasion agent computes the certainty factor of the thesis q under dispute
as follows. Firstly, it considers all the accepted arguments supporting the claim

87

q at time t. This amount is decreasing by all his objections about deriving q,
in our case all the undercutting defeaters. If the remaining certainty factor is
still greater than all the existing support for the opposite conclusion ¬q, the
thesis is successfully established. Formally, the model of persuasion based on the
defeasible pattern of inference becomes:

cf [q] =

8

>

<

>

:

min(1,

n
X

i=1

cf [qi] −

m
X

j=1

cf [∼ qj]),

n
X

i=1

cf [qi] −

m
X

j=1

cf [∼ qj] >

p
X

k=1

cf [¬qk]

0, otherwise

Epistemic Agent. In reasoning about what to believe or epistemic reasoning
the accrual of arguments does not hold [6]. The sentence q is inferred if it has
a greater support than any of the undercutter or rebuttal defeaters, but the
certainty factor is not diminished:

cf [q] =

(

max(cf [qi]), max(cf [qi]) > max(cf [¬qk], cf [∼ qj])

0, otherwise

The choice between a persuasion or an epistemic agent depends on the context. A
hybrid agent would include modalities such as action or knowledge for capturing
practical and, respectively, epistemic reasoning, with the certainty factor of the
conclusion computed accordingly.

Rigorous Agent. A rigorous agent will treat differently each type of defeater.
Thus, only the strongest undercutting defeater contributes to the decreasing of
the certainty factor. If the remaining strength of the conclusion overwhelms the
most powerful rebuttal defeater, the respective conclusion is derived.

cf [q] =

8

>

<

>

:

max(cf [qi]) − max(cf [∼ qj], max(cf [qi]) − max(cf [∼ qj])

> max(cf [¬qk])

0, otherwise

Next we present the derivation formula of a consequent according to the reason-
ing strategy of the rigorous agent. A conclusion in TDL is a tagged literal which
can have the following forms: i) +∆q : t ⇔ q is definitely provable at time t in
TDL, using only strict facts and rules (figure 4); ii) −∆q : t ⇔ q is not definitely
provable at time t in TDL; iii) +∂q : t ⇔ q is defeasibly provable at time t in
TDL (figure5); iv) −∂q : t ⇔ q is not defeasibly provable at time t in TDL.

A conclusion q is strictly provable at time t (figure 4) if (1) q is a strict fact
valid at time t or (2) there exists a strict rule with conclusion q[u, v] and the
instant of time t within [u, v], which rule, (2.1) for all its antecedents a[x1, y1],
there is a time t′ when they are strictly valid and (2.2) there is no strict negated
rule ns, attacking rule r.

Defeasible derivations have an argumentation like structure [4]: firstly, we
choose a supported rule having the conclusions q we want to prove, secondly
we consider all the possible counterarguments against q, and finally we rebut all

88

+∆:
If P (i + 1) = +∆q : t then

(1) ∃q(β)[u, v] ∈ F and β = 1 and u ≤ t ≤ v or
(2) ∃r ∈ Rs[q[u, v]] with u ≤ t ≤ v such as

(2.1)∀a[x1, y1] ∈ A(r)∃t′ : +∆a : t′ ∈ P (1..i) and x1 ≤ t′ ≤ y1

(2.2) 6 ∃ns ∈ Rns[r]

Fig. 4. Definite proof for the consequent q at time t for the rigorous agent.

the above counterarguments showing that, either some of their premises do not
hold, or the rule used for its derivation is weaker than the rule supporting the
initial conclusion q. The sentence q is defeasibly provable at time t (figure 5) if

+∂:
If P (i + 1) = +∂q : t then
(1) +∆q : t ∈ P (1..i) or
(2) q is supported

(2.1) ∃q(β)[u, v] ∈ F and β < 1 and t ∈ [u, v] or
(2.2) ∃r(γr) ∈ Rsup[q[u, v]], ∀a[x1, y1] ∈ A(r)∃t′ such as +∂a : t′ ∈ P (1..i) and

t′ ∈ [x1, y1])
and not defeated
(2.3) ∀nd(γnd) ∈ Rnd[r] ∪ Rns[r]], γr > γnd and
(2.4) ∀def(γdef) ∈ Rdef [q[u1, v1]]or

(2.4.1) t 6∈ [u1, v1] or
(2.4.2) ∃a[x1, y1] ∈ A(def) ∀t′ ∈ [x1, y1] − ∂a : t′ or
(2.4.3) ∃ndef(γndef)inRndef [def], γndef > γdef and

(2.5) ∀d(γd) ∈ Rsup[∼ q[u2, v2]] with
∀a[x2, y2] ∈ A(d), ∃t′ ∈ [x2, y2] + ∂a : t′, t ∈ [u2, v2] either
(2.5.1) ∃nnd(γnnd) ∈ Rnd[d] ∪ Rns[d], γnnd > γd, or
(2.5.2) γr − γdef > γd

Fig. 5. Defeasible derivation of consequence q at time t for the rigorous agent.

(1) it is strictly provable at t, or (2) there is a valid support for q either (2.1) it
is a defeasible fact valid at t, or (2.2) there exists a rule with all premises valid
sustaining that conclusion q and it is not defeated by (2.3) a negated rule with a
stronger certainty factor, or (2.4) by an undercutting defeater def where (2.4.1)
time t is not within the validity interval of the defeater, or (2.4.2) the defeater
has an antecedent a which cannot be derived, or (2.4.3) there exists a negated
defeater stronger than def , and (2.5) for all valid rebuttal defeaters d either
(2.5.1) there is a negated rule which defeats d or (2.5.2) the support for conclusion
q after it is attacked by the undercutter defeaters remains stronger than all the
valid rebuttal defeaters. The strict order relation in (2.3), (2.4.3), and (2.5.2)
provides a skeptical reasoning mechanism, meaning that none of q : t and ∼ q : t

89

is derived when they have equal support. Allowing the ambiguity propagation
increases the number of inferred conclusions, useful in the argumentation process
of ODR systems oriented towards solution rather than finding the degree of guilt.

3.3 Attitude Component

The attitude component defines the argumentative attitude of an agent towards
other participants, making a distinction between the agent’s private collection
of arguments and its public uttered sentences. We adapt the claim-attitude and
concede-attitude [9], defining the level of proof sufficient to convince the oppo-
nent that a given sentence is true, to our defeasible formalism.

The following standards of proofs from current legal practice are modeled:
scintilla of evidence, reasonable suspicion4, preponderance of evidence5, clear
and convincing evidence, and beyond reasonable doubt6.

Definition. Claim-attitude at time t

– A confident agent can claim any sentence q : t for which there is a valid
support rule r ∈ Rsup (scintilla of evidence).

– A careful agent can claim any proposition q : t if there is no valid rebuttal
defeater sustaining the opposite sentence ¬q : t (reasonable suspicion).

– A precaution agent can claim any proposition q : t if there is no valid rebuttal
or undercutting defeater for the opposite sentence ¬q : t (preponderance of
evidence).

– A thoughtful agent can claim any proposition q : t for which it can construct
a defeasible proof +∂q : t (clear and convincing evidence).

– A strict agent can claim any proposition q : t for which it can construct a
definite proof +∆q : t according to its theory (beyond reasonable doubt).

Definition. Concede-attitude at time t

– A credulous agent can concede to any sentence q : t for which it has a valid
support rule r ∈ Rsup (scintilla of evidence).

– A cautious agent can concede to any proposition q : t if it is not able to pro-
vide a stronger rebuttal defeater for the opposite sentence ¬q : t (reasonable
suspicion).

– A vigilant agent can concede to any proposition q : t if it is not able to
provide a stronger rebuttal or undercutting valid defeater (preponderance of
evidence).

4 Reasonable suspicion is a low standard of proof used to determine whether a brief
investigative stop or a brief search by a police officer is warranted.

5 Also known as the ”balance of probabilities”, this standard is met if the proposition
is more likely to be true than not true

6 This means that the proposition must be proved to the extent that there is no
”reasonable doubt” in the mind of a reasonable person, such as 90% certain in the
US.

90

– A skeptical agent can concede only to those propositions q : t for which it can
construct a defeasible proof +∂q : t (clear and convincing evidence).

– A wary agent can concede to any proposition q : t for which it can construct
a definite proof +∆q : t according to its theory (beyond reasonable doubt).

During the argumentation process, a confident agent might claim any propo-
sition for which it is able to construct an argument (propositions which are not
credible can also be uttered). When, for example, the knowledge base of the
agent consists of the rules r1 : (0.5) : a[1, 1] ⇒ q[2, 2], and r2 : b[1, 1] → ¬q[2, 2]
where a and b are strict valid facts, then it is still presumable for the agent to
claim q, even if it is aware of the existence of the stronger counterargument r2

sustaining the opposite consequent. A careful agent does not communicate a sen-
tence if it is conscious about the validity of a rebuttal defeater, no matter what
certainty factor that argument has. Similarly, a precaution agent additionally
considers the validity of an undercutter defeater in order to minimize the risk of
a potential counterattack from the other disputants. A more critical attitude is
the thoughtful one, where an agent will claim propositions for which it is able
to construct an acceptable argument, an argument which is defeasibly provable
from its knowledge base. A strict agent does not take any risk to be combated
in its claims, therefore it conveys only sentences supported by strict inference
according to its defeasible theory. The concede-attitudes are used similarly to
the claim-attitudes.

4 Choosing the Proper Strategy

Various situations might be encountered. (i) The market may have substantial
authority, and the same mediation strategy is imposed to all disputants. (ii)
Consistent with party autonomy, the agents may settle on different mediation
strategies at contracting time or just prior to the arbitration. This approach
increases the flexibility and efficiency, because the agents are the ones who know
what type of mediation strategy better protects their interests7. (iii) All the
above mediator’s strategies might be used during the resolution process8.

In markets where the consumer protection is the main concern, the mediator
may provide different interfaces to the disputants. For instance, the persuasion
strategy might guarantee high level of protection to the client being irritated by
several issues. The strategies may also be correlated to the current dispute: per-
suasion strategy is connected to cases involving fairness or good faith. Similarly,
the persuasion strategy is adequate in the first stage of the dispute, the so called
evidential phase, when the factual information is collected.

7 Mediators and arbitrators are humans who might have biases and prejudices. Fre-
quently, the disputants have the opportunity to select the arbitrator who is likely to
be sensitive to their predicament.

8 Most of the human mediators use a form of the co-mediation model. Having two
mediators can be an effective way to deal with many different ODR challenges,
fitting well to legal systems based on jury.

91

On the one hand, a probabilistic approach is a good candidate when the dis-
pute process is in its early stages, when there is little information available, and
the mediator tries to figure out if the initial claim is warranted9. It also may be
considered when the information sources are not trust-able. On the other hand,
when the process reaches its maturity stage, the irrelevant facts become clear.
Therefore, within a fuzzy inference, the unimportant facts do not influence the
decision. Legal rules are often open to several interpretations because some terms
within legal texts are vague. It is the mediator who gives the appropriate inter-
pretation to terms such as reasonable or sufficient. The agent strategy depends
on the active legal doctrines within the market. If the required standard of proof
is preponderance of evidence, the probabilistic approach fits better, but when
beyond a reasonable doubt doctrine is active, the fuzzy reasoning is appropriate.

The attitude component is relevant in the context of revealing information.
Sometimes, the arguments uttered, either fact or rule, represent private infor-
mation. The agents must assign a utility cost to revealing information, as well
as a utility to winning an argument. The strategy depends on the rules of dialog
game where the agent participates. When the dialog protocol stipulates that a
claim which has been defeated by a party cannot be uttered again, then a strict
or thoughtful attitude must be considered. Opposite, a confident attitude is ade-
quate when a party wants to find information, because his opponent defeats the
claim by revealing his private arguments.

The relevant question concerns the validity of the semantic model. This ques-
tion requires empirical evaluations with realistic test cases10 in order to choose
the best suited defeasible pattern within a particular market. The common dis-
putes are translated into defeasible theories11, and the agent’s decision is com-
pared with the one given by the human mediator. The highest scored strategy is
provided to the disputant who might better anticipate the verdict and the execu-
tion timing. The advantage here consists in the fact that judicial cases that are
not conforming to a pattern useful in deriving rules, are not treated as noise and
removed. Simply, they are considered exceptions and encapsulated as defeaters
or strong defeasible rules.

5 Dispute Resolution Phases

The client orders a hardware object through a shop-on-line web site (scenario
adapted from [11]). The seller has published general contractual conditions on
the web site. One of the clauses stipulates that if the product sent is defective,
the client has the right to get it repaired or replaced, depending on the seller’s
choice. After an order is made at t0, the seller sends the item. When the client

9 The probable cause doctrine may be invoked which requires a fair probability that a
breach took place. Courts vary when determining what constitutes a ”fair probabil-
ity,” some say 30%, others 40%, others 51%.

10 See http://www.as.uky.edu/polisci/ulmerproject/index.html for a collection of such
a legal dataset.

11 ILP techniques are available for deriving defeasible theories from legal datasets [10].

92

receives it at t7, he notices both that it does not work and its design was not
quite similar to the picture on the web site. The seller accepts that the hardware
might be defective, but invokes the mentioned clause. His default choice is to
repair the item, but he also proposes to replace the product if the client accepts
to pay the transport fee. The client replies that he will only pay half the fee.
The client asks an ODR system for arbitration, submitting his argumentation.
The seller asks the product to be replaced. The ODR system accepts to lead
the arbitration and notifies the seller. The seller accepts and submits his own
argumentation.

5.1 Commencement of Dispute

A dispute action is commenced by filling a complaint. If minimum of evidence
is provided12, the mediator takes into consideration the plaintiff’s claim. Con-
sequently, a judicial summon is addressed to the defendant. The probabilistic
rigorous mediator with a credulous concede attitude is appropriate for this stage.
The plaintiff believes with a certainty factor of 0.9 that the picture illustrating
the item was irrelevant (f2 in figure 6). Considering rule r5 such a mediator will
prove the +∂replace : 7 conclusion with a certainty factor of 0.9 ∗ 0.95 = 0.855.
Because this value is greater than the threshold of 0.2, the complaint is accepted
and a dispute starts.

5.2 Discovery

The discovery is the pre-trial phase in a lawsuit in which each disputant can
request evidence from the other party. Under the duty of disclose doctrine, the
disputants have the obligation to share their own supporting evidence without
being requested to by the other party. Failure to do so can preclude that evidence
from being used in trial13. Modern dispute resolution strategies try to set the
dispute in its early stages. Thus, the discovery phase is meant to clarify what
the lawsuit is about, and perhaps to make a party realize it should settle or
drop the claim, all before wasting court resources14. Because this early phase is
mainly about evidence, a probabilistic epistemic mediator is recommended. Also,
confident or careful claim attitudes prevail in obtaining information. During this
dialog, the following facts become known: the item might be defective (defeasi-
ble fact f1 has a certainty factor of 0.9), and the seller option is to repair the
item (f3). He advocates this through the contractual clauses r1, r2, r3, and r4,
accepted by the buyer when the contract has been signed. The seller proposes to
repair the product if the client accepts to pay the transport fee (r6). The client
might agree to pay half the fee (r7) in order to derive the seller choice replace

consequent, which is defeated by the seller response r8.

12 The claim is supported with 20% certainty factor.
13 This applies only to evidence that supports their own case, not anything that could

harm their case.
14 A procedural rule stipulates that parties have the right to query 25 questions to each

other in order to reveal information.

93

5.3 Pre-trial

The pre-trial represents the last gate-keeping function before trial, answering
the question of whether the claim could even go to the arbitration phase. In
this stage, the movant can affirmatively negate the claim, whilst the plaintiff
may provide different arguments to support the claim. Therefore, a probabilistic
persuasion mediator is appropriate in this stage. Because the negation of claims
is modeled by rebuttal defeaters, the vigilant concede attitude functioning under
the reasonable suspicion doctrine is recommended. The rebuttal defeater r9 is
conveyed by the defendant who argues that usually he does not replace items to
non-premium customers. The probabilistic persuasion mediator will derive the
replace conclusion with a certainty factor of 0.985.

5.4 Arbitration

f1 : defective item(0.9)[t7, t7].
f2 : irrelevant picture(0.9)[t7, t7].
f3 : seller choice repair(0.8)[t0, t7].
f4 : ¬premium customer(1.0)[t0, t7].

r1 : (0.5)defective item[t0, t7] ⇒ repair[t0, t7]
r2 : (0.5)defective item[t0, t7] ⇒ replace[t0, t7]
r3 : (0.6)seller choice replace[t0, t7] Ã repair[t0, t7]
r4 : (0.6)seller choice repair[t0, t7] Ã replace[t0, t7]
r5 : (0.95)irrelevant picture[t0, t7] ⇒ replace[t0, t7]
r6 : transport fee[t0, t7] → seller choice replace[t0, t7]
r7 : (0.9)transport fee[t0, t7] ⇒ seller choice replace[t0, t7]
r8 : transport fee[t0, t7] 9 seller choice replace[t0, t7]
r9 : (0.7)¬premium customer[t0, t7] ⇒ ¬replace[t0, t7]
r10 : (0.9)offer[t0, t0], acceptance[t0, t0], consideration[t0, t0] ⇒ contract valid[t0, t7]
r11 : (0.8)contract valid[t0, t0] ⇒ (irrelevant picture[t0, t7] ⇒ replace[t0, t7])

Fig. 6. Sample of arguments collected during the run of a dispute

This phase is the presentation of the evidence gathered during earlier stages
(figure 6). In the next step, the mediator decides to which jurisdiction the case
belongs and loads the corresponding legal doctrines encapsulated as defeasi-
ble theories. He uses both the hard law (enactments, i.e. r10) and the soft
law (usages, customs within the e-market, i.e r11) to activate the rules or to
adjust the certainty factor of the disputants’ arguments. As nested rules are
allowed in our framework the activation can be done dynamically (rule r11).
Consider that offer , acceptance, and consideration accepted as strict facts, the
contract is validated with a certainty factor of 0.915. Thus, the dynamic rule

15 In order to accommodate some exceptions like ”the signer is under 18”.

94

is activated with a certainty factor of min(0.9, 0.8) = 0.8, resulting the rule
r′
5
(0.8) : irrelevant picture ⇒ replace, which takes the place of the rule r5 in

figure 6. This mechanism provides the mediator the ability to dynamically adjust
priorities among rules16.

We recommend a fuzzy rigorous mediator with a skeptical concede attitude in
order to compute the expected outcome. In the probabilistic approach the claim
replace is sustained by the rule r2 with 0.5 and by the rule r′

5
with 0.72 ∗ 0.9 =

0.64. In the fuzzy approach r′
5

supports the consequent with min(0.8, 0.9). Ac-
cording to the fuzzy rigorous mediator max(0.5, 0.8) − max(0, 6) < max(0.7),
therefore the conclusion replace is not derived. Users can also explore hypo-
thetical situations when mediators have different strategies: fuzzy, probabilistic,
persuasion or epistemic. How the dispute outcome depends on each defeasible
mediator type is shown in figure 7. Here, in case the ambiguity propagation is
enabled, the fuzzy persuasion agent proves the consequent. Users are also able
to have dialogs with the system to explore what would happen if some of their
claims were rejected or just partially accepted17.

+∂replace : t7 Persuasion Epistemic Thorough

Probabilistic No0.5+0.64−0.6<0.7 Nomax(0.5,0.64)<max(0.6,0.7) Nomax(0.5,0.64)−0.6<0.7

Fuzzy No/Y es0.5+0.8−0.6=0.7 Y esmax(0,5,0.8)>max(0.6,0,7) Nomax(0.5,0.8)−0.6<0.7

Fig. 7. Answer for query +∂replace : t7 depends on mediator type.

5.5 Post-trial

After the arbitration is done two paths might follow: the enforcement of judgment
and appealing the results of the arbitration process. Appealing after the trial may
be quite difficult. To facilitate trust in e-commerce, many governments have en-
acted a norm similar to: ”Any item achieved in online transaction can be returned
within 15 days, without reason.” Under these circumstances, the seller concedes
to replace the defective item within 3 days if the client requests this: r20 :
request[t8, t8] → must replace item[t8, t10]. If the client is satisfied this obli-
gation is no longer active: r21 : satisfied[t8, t10] → ¬must change item[8, 10].
The last role of the system is to monitor contract enactment. This is done sim-
ply by trying to prove +∂must change item : 10. If the client has asked for
replacement and within 3 days he did not get satisfaction, the obligation still
stands.
16 Under most laws, the arbitrator can assign as much probatory force as he believes

they deserve, as long as this assessment is not arbitrary [11]. In the long run of ODR
it is necessary to create specialized jurisdiction for e-commerce cases, where the cer-
tainty factor would be fine tuned according to precedents and mediator experience.

17 For the scenario in figure 6 if the certainty factor of irrelevant picture fact is greater
than 0.8 a persuasion mediator will infer the replace conclusion.

95

6 Related Work

The need for computerized mechanisms for decision support comes from well
known limits of human knowledge processing. One aim is to provide disputants
information about the expected outcome of the resolution process18. The other
goal is to enrich the mediator’s ability to process knowledge and weight argu-
ments. By enhancing the expertise level of the mediator we argue that such
decision support system can be looked at as a fourth party as defined in [13].

In the DiaLaw system [14], if the respondent of an argument accepts all the
premises of a valid argument, he must also accept the conclusion, in case the
respective inductive rule was previously accepted. In our framework, in the light
of new information, an undercutting defeater might be used to attack the link
between the premises and the consequent. In our view, the existence of a finite
set of pre-agreed rules is not feasible for practical applications19. Thus, both
facts and rules may be dynamically asserted and retracted within the defeasible
framework.

In the Carneades argumentation framework [15] three kinds or premises are
used: ordinary premises, presumptions, and exceptions, where presumptions are
used to model uncertain knowledge. In our approach, the nondeterminacy in-
herent in the early stages is handled by probabilistic reasoning, whilst defeaters
deal with exceptions and information obtained during the resolution process.
The framework also deals with information about dialectical status of a sentence:
undisputed, at issue, accepted, rejected. We treated this issue elsewhere [16], by
defining defeasible commitment machines as a flexible mechanism to adapt the
life-cycle of the conveyed facts.

An ODR system was modeled within a multi-agent context by identify-
ing and representing the types of communication between the different actors:
parties, mediator, arbitrator, experts, witnesses, ODR-administrator, system-
administrator, visitors [11]. Our approach does not regard the architectural re-
quirements of an ODR system, but rather the reasoning capabilities of the arbi-
trator.

Rule-based systems are suitable for modeling the logical structure of leg-
islation and are practically successful when the gap between factual and legal
language is small and the regulations are uncontroversial, but they fail to model
legal argument. Defeasible logic, through its argumentative semantics, overcomes
this drawback. It is also adequate in practical applications due to its low com-
plexity [17]. As a simulation tool, the ODR system designer may obtain results

18 In the negotiation literature this is called BATNA: Know your best alternative to a
negotiated agreement [12]

19 By accepting a jurisdiction parties practically agree on a set of legal rules. Through
a signed contract, parties agree not only on some contractual clauses, but also re-
garding several specific doctrines under which that contract is enacted (such as ex-
pectation damages, opportunity costs, reliance damages). Due to the open character
of both legal rules and contractual clauses, there are situations when supplementary
rules have to be considered.

96

regarding what types of strategies better suit the e-market or how information
sharing can be used to settle the dispute.

The formalization of virtual organizations and contracts based on commit-
ments [18] opens another path for ODR by enabling to capture the social struc-
ture. Changes of organizations impose some treatment for the dynamics of en-
acted contracts.

7 Conclusions

There is a strong motivation for the need of ODR systems to reflect different
types of argumentation patterns, mainly those models where persuasion can be
functionally embedded into negotiation protocols [2]. From the knowledge repre-
sentation viewpoint the implemented system accommodates temporal defeasible
reasoning, nested rules, and a dynamic notion of priority over the rules20. From
the argumentative semantics viewpoint the system introduces negated rules to
model counter-exampls, whilst Pollock’s style undercutting defeaters are used to
represents exceptions.

We advocate two strong points of this approach: (i) the flexibility of the
framework due to the different patterns of weighting arguments and to the prop-
erty of defeasible logic to model exceptions; (ii) the accordance to legal practice,
by establishing a connection between these patterns and disputes phases as they
appear in current practice in law. This view on the ODR issue does not insist on
the temporal aspects included in the logic. They can be subject to further inves-
tigation regarding the application of the framework to contract enactment [18].
Our future work regards also the enrichment of the logical framework with expla-
nation capabilities of the outcome, as a need for the trustworthiness and practical
usability in a dispute resolution system.

Acknowledgments

We are grateful to the anonymous reviewers for useful comments. Part of this
work was supported by the grant 27702-990 from the National Research Council
of the Romanian Ministry for Education and Research.

References

1. Tyler, M.C., Bretherton, D.: Seventy-six and counting: An analysis of ODR sites.
In: Workshop on Online Dispute Resolution at the International Conference on
Artificial Intelligence and Law, Edinburgh, UK (2003) 13–28

2. Walton, D., Godden, D.: Persuasion dialogues in online dispute resolution. Artifi-
cial Intelligence and Law 13 (2006) 273–295

3. Rule, C., Friedberg, L.: The appropriate role of dispute resolution in building trust
online. Artificial Intelligence and Law 13 (2006) 193–205

20 A prototype based on LISA (Lisp-based Intelligent Software Agents) is available at
http://cs-gw.utcluj.ro/∼adrian/tdl.html.

97

4. Governatori, G.: Representing business contracts in RuleML. Journal of Cooper-
ative Information Systems 14 (2005)

5. Hage, J.: Law and defeasibility. Artificial Intelligence and Law 11 (2003) 221–242
6. Pollock, J.L.: Defeasible reasoning with variable degrees of justification. Artificial

Intelligence 133 (2001) 233–282
7. Pollock, J.L.: How to reason defeasibly. Artificial Intelligence 57 (1992) 1–42
8. Prakken, H.: A study of accrual of arguments, with applications to evidential

reasoning. In: 10th International Conference on Artificial Intelligence and Law,
New York, NY, USA (2005) 85–94

9. Parsons, S., Wooldridge, M., Amgoud, L.: Properties and complexity of some
formal inter-agent dialogues. Journal of Logic and Computation 13 (2003) 347–
376

10. Johnston, B., Governatori, G.: An algorithm for the induction of defeasible logic
theories from databases. In: Australasian Database Conference. (2003) 75–83

11. Bonnet, V., Boudaoud, K., Gagnebin, M., Harms, J., Schultz, T.: Online dispute
resolution systems as web services. ICFAI Journal of Alternative Dispute 3 (2004)
57–74

12. Bellucci, E., Lodder, A.R., Zeleznikow, J.: Integrating artificial intelligence, argu-
mentation and game theory to develop an online dispute resolution environment.
In: 16th International Conference on Tools with Artificial Intelligence, IEEE Com-
puter Society (2004) 749–754

13. Katsh, E., Rifkin, J.: Online Dispute Resolution: Resolving Conflicts in Cy-
berspace. John Wiley (2001)

14. Lodder, A.: DiaLaw: On Legal Justification and Dialogical Models of Argumenta-
tion. Kluwer, Dordrecht (1999)

15. Gordon, T., Walton, D.: The Carneades argumentation framework: Using presump-
tions and exceptions to model critical questions. In: 1st International Conference
on Computational Models of Argument, Amsterdam, IOS Press (2006) 208–219

16. Letia, I.A., Groza, A.: Running contracts with defeasible commitment. In Moonis,
A., Dapoigny, R., eds.: Advances in Applied Artificial Intelligence. LNCS 4031.
Springer (2006) 91–100

17. Maher, M.J.: Propositional defeasible logic has linear complexity. Theory and
Practice of Logic Programming 1 (2001) 691–711

18. Udupi, Y.B., Singh, M.P.: Contract enactment in virtual organizations: A
commitment-based approach. In: 21st National Conference on Artificial Intelli-
gence, AAAI (2006) 722–727

98

Reflections on Agent Beliefs

J.W. Lloyd1 and K.S. Ng2

1Computer Sciences Laboratory
Research School of Information Sciences and Engineering

The Australian National University
jwl@mail.rsise.anu.edu.au

2Symbolic Machine Learning and Knowledge Acquisition
National ICT Australia⋆

kee.siong@nicta.com.au

Abstract. Some issues concerning beliefs of agents are discussed. These
issues are the general syntactic form of beliefs, the logic underlying be-
liefs, acquiring beliefs, and reasoning with beliefs. The logical setting is
more expressive and aspects of the reasoning and acquisition processes
are more general than are usually considered.

1 Introduction

Beliefs are an important component of every agent system that assist in the
selection of actions. Because of their importance, there is a huge literature on
representing, reasoning with, and acquiring beliefs. This paper contributes to
this literature with a setting for beliefs that employs an unusually expressive
logic.

We argue that since the purpose of beliefs is to help select actions, the general
syntactic form for beliefs matters and that this form should be function defini-
tions. We also argue that it is desirable that the logic in which these definitions
are written be as expressive as possible. For this reason, we admit higher-order
functions so that functions may take other functions as arguments. This means
that the programming idioms of functional programming are available, and that
sets and multisets can be represented by abstractions. Also it is common for
beliefs to have a modal nature, usually temporal or epistemic. For example, on
the temporal side, it might be important that at the last time or at some time in
the past, some situation held and, therefore, a certain action is now appropriate.
Similarly, on the epistemic side, beliefs about the beliefs of other agents may be
used to determine which action to perform. The usefulness of modal beliefs for
agents is now well established, in [1] and [2], for example. Besides, introspection
reveals that people use temporal and epistemic considerations when deciding
what to do. These considerations lead to the choice of multi-modal, higher-order
logic as the logic for the beliefs.

⋆ NICTA is funded through the Australian Government’s Backing Australia’s Ability
initiative, in part through the Australian Research Council.

99

While many beliefs can be built into agents beforehand by their designers,
it is also common for beliefs to be acquired by some kind of learning process
during deployment. We discuss an approach to belief acquisition that includes
as special cases simple updating, belief revision [3], and learning [4].

During action selection, it is necessary to reason about beliefs or, more ac-
curately in our case, compute with beliefs. We discuss a computation system for
the logic that greatly extends existing modal and temporal logic programming
systems, and give examples to illustrate how computation works. For most ap-
plications, computation is efficient enough that it could be used to select actions
in real time.

The paper provides a general discussion of these issues. The extensive techni-
cal details to support the arguments have already appeared or will soon appear
elsewhere [5–9]. All the facilities described here have been implemented.

The next section contains a discussion of the necessary logical machinery.
Section 3 considers the idea that beliefs should be function definitions. Section 4
shows how an agent can acquire beliefs. Section 5 discusses how reasoning with
beliefs is handled. Section 6 gives some conclusions.

2 Logic

In this section, we outline the most relevant aspects of the logic, focussing to
begin with on the monomorphic version. We define types and terms, and give an
introduction to the modalities that will be most useful in this paper. Full details
of the logic, including its reasoning capabilities, can be found in [8].

Definition 1. An alphabet consists of three sets:

1. A set T of type constructors.
2. A set C of constants.
3. A set V of variables.

Each type constructor in T has an arity. The set T always includes the type
constructor Ω of arity 0. Ω is the type of the booleans. Each constant in C

has a signature. The set V is denumerable. Variables are typically denoted by
x, y, z, Types are built up from the set of type constructors, using the symbols
→ and ×.

Definition 2. A type is defined inductively as follows.

1. If T is a type constructor of arity k and α1, . . . , αk are types, then T α1 . . . αk

is a type. (Thus a type constructor of arity 0 is a type.)
2. If α and β are types, then α→ β is a type.
3. If α1, . . . , αn are types, then α1 × · · · × αn is a type.

The set C always includes the following constants.

1. ⊤ and ⊥, having signature Ω.

100

2. =α, having signature α→ α→ Ω, for each type α.
3. ¬, having signature Ω → Ω.
4. ∧, ∨, −→, ←−, and ←→, having signature Ω → Ω → Ω.
5. Σα and Πα, having signature (α→ Ω)→ Ω, for each type α.

The intended meaning of =α is identity (that is, =α x y is ⊤ iff x and y are
identical), the intended meaning of ⊤ is true, the intended meaning of ⊥ is false,
and the intended meanings of the connectives ¬, ∧, ∨, −→,←−, and←→ are as
usual. The intended meanings of Σα and Πα are that Σα maps a predicate to
⊤ iff the predicate maps at least one element to ⊤ and Πα maps a predicate to
⊤ iff the predicate maps all elements to ⊤.

We assume there are necessity modality operators �i, for i = 1, . . . ,m.

Definition 3. A term, together with its type, is defined inductively as follows.

1. A variable in V of type α is a term of type α.
2. A constant in C having signature α is a term of type α.
3. If t is a term of type β and x a variable of type α, then λx.t is a term of

type α→ β.
4. If s is a term of type α→ β and t a term of type α, then (s t) is a term of

type β.
5. If t1, . . . , tn are terms of type α1, . . . , αn, respectively, then (t1, . . . , tn) is a

term of type α1 × · · · × αn.
6. If t is a term of type α and i ∈ {1, . . . ,m}, then �it is a term of type α.

Terms of the form (Σα λx.t) are written as ∃αx.t and terms of the form
(Πα λx.t) are written as ∀αx.t (in accord with the intended meaning of Σα and
Πα). Thus, in higher-order logic, each quantifier is obtained as a combination of
an abstraction acted on by a suitable function (Σα or Πα).

Constants can be declared to be rigid; they then have the same meaning in
each world (in the semantics). A term is rigid if every constant in it is rigid.

If α is a type, then Bα is the set of basic terms of type α [5]. Basic terms repre-
sent individuals. For example, BΩ is {⊤,⊥}. Also BInt is {. . . ,−2,−1, 0, 1, 2, . . .}.

The polymorphic version of the logic extends what is given above by also
having available parameters which are type variables (denoted by a, b, c, . . .).
The definition of a type as above is then extended to polymorphic types that
may contain parameters and the definition of a term as above is extended to
terms that may have polymorphic types. We work in the polymorphic version of
the logic in the remainder of the paper. In this case, we drop the α in ∃α, ∀α,
and =α, since the types associated with ∃, ∀, and = are now inferred from the
context. The universal closure of a formula ϕ is denoted by ∀(ϕ).

An important feature of higher-order logic is that it admits functions that
can take other functions as arguments. (First-order logic does not admit these so-
called higher-order functions.) This fact can be exploited in applications, through
the use of predicates to represent sets and predicate rewrite systems that are used
for learning, for example.

101

Theories in the logic consist of two kinds of assumptions, global and local.
The essential difference is that global assumptions are true in each world in
the intended interpretation, while local assumptions only have to be true in
the actual world in the intended interpretation. Each kind of assumption has a
certain role to play when proving a theorem. A theory is denoted by a pair (G,L),
where G is the set of global assumptions and L is the set of local assumptions.

As is well known, modalities can have a variety of meanings, depending on
the application. Some of these are indicated here; much more detail can be found
in [1], [2] and [8], for example.

In multi-agent applications, one meaning for �iϕ is that ‘agent i knows ϕ’.
In this case, the modality �i is written as Ki.

A weaker notion is that of belief. In this case, �iϕmeans that ‘agent i believes
ϕ’ and the modality �i is written as Bi.

The modalities also have a variety of temporal readings. We will make use of
the (past) temporal modalities (‘last’) and � (‘always in the past’). We also
use the modality � (‘sometime in the past’), which is dual to �.

Modalities can be applied to terms that are not formulas. Thus terms such
as Bi42 and A, where A is a constant, are admitted. We will find to be par-
ticularly useful terms that have the form �j1 · · ·�jr

f , where f is a function and
�j1 · · ·�jr

is a sequence of modalities.
Throughout, it is assumed that all belief bases contain the standard equality

theory given in [8] which includes definitions for equality, the connectives, the
quantifiers, the if then else function, an assumption that gives β-reduction, and
some assumptions concerning modalities.

One of these modal assumptions is the following schema that can be used as
a global assumption.

(�is t) = �i(s t),

where s is a syntactical variable ranging over terms of type α → β and t is a
syntactical variable ranging over rigid terms of type α. Specialised to some of
the epistemic and temporal modalities discussed so far, this means, for example,
that

(Bis t) = Bi(s t) and (s t) = (s t)

are global assumptions (under the rigidity assumption on t).
Another useful global assumption in the standard equality theory is

�it = t,

where t is a syntactical variable ranging over rigid terms and i ∈ {1, . . . ,m}.
Instances of this schema that could be used as global assumptions include the
following.

Bi42 = 42, Bi⊤ = ⊤ and ⊥ = ⊥.

102

3 Beliefs as Function Definitions

In this section, we discuss suitable syntactic forms for beliefs.
In [6], it was argued that beliefs should take the form of function definitions,

in particular, definitions of features of states of an agent. Briefly, the motivation
for this is that usually there is a very large number of states. Thus it is helpful
to use the features to induce an equivalence relation on the state space so that
it is only necessary to deal with a much smaller number of equivalence classes,
each of which contains states that can be treated in the same way.

We take the idea that beliefs should be function definitions as a suitable
starting point for the discussion here. Of course, there are still lots of different
ways that one could write function definitions in the logic; we choose a particular
form that is motivated by the need to acquire beliefs during deployment of the
agent. We consider beliefs of the following form.

���∀x.((f x) =

if (p1 x) then v1

else if (p2 x) then v2

...

else if (pn x) then vn

else v0),

where ��� is a (possibly empty) sequence of modalities, p1, . . . , pn are predicates
that can be modal and/or higher order, and v0, v1, . . . , vn are suitable values
(usually basic terms). Such a belief is a definition for the function f in the
context of the modal sequence ���.

Typically, for agent j, beliefs have the form Bjϕ, with the intuitive meaning
‘agent j believes ϕ’, where ϕ is ∀x.((f x) = if (p1 x) then v1 . . . else v0). Other
typical beliefs have the form BjBiϕ, meaning ‘agent j believes that agent i
believes ϕ’. If there is a temporal component to beliefs, this is often manifested
by temporal modalities at the front of beliefs. Then, for example, there could
be a belief of the form

2
BjBiϕ, whose intuitive meaning is ‘at the second last

time, agent j believed that agent i believed ϕ’. (Here, 2 is a shorthand for .)
While the above form for beliefs may appear to be rather specialised, it

turns out to be convenient and general, and easily encompasses beliefs in more
conventional form. Here is an example to illustrate how one can represent a
(relational) database.

Example 1. Consider an agent that recommends TV programs. Amongst other
things the agent will need to have access to a TV guide as part of its belief base.
Represented as a relational database, the TV guide would consist of a set of
tuples, where each tuple gave details of the program that is on at a certain date,
time, and channel. Similarly, as a Prolog program, the TV guide would be the
corresponding set of facts. Actually, neither of these representations is a good
one because each ignores a functional dependency in the data: each date, time

103

and channel triple uniquely determines a program. Here we represent the TV
guide as a function definition that correctly models this functional dependency.

For this, we require the following type synonyms.

Occurrence = Date × Time × Channel

Date = Day ×Month ×Year

Time = Hour ×Minute

Program = Title ×Duration × (List Genre)× Classification × Synopsis.

Now we can give (a typical instance of) the definition of the function

tv guide : Occurrence → Program

that models the TV guide.

Bt ∀x.((tv guide x) =

if ((= ((21, 7, 2004), (19, 30),WIN)) x)

then (“Seinfeld”, 30, [Sitcom],PG , “Kramer . . . ”)

else if ((= ((20, 7, 2004), (20, 30),ABC)) x)

then (“The Bill”, 50, [Drama],M , “Sun Hill . . . ”)

...

else (“ ”, 0, [],NA, “ ”)),

where Bt is the belief modality for the TV recommender and (“ ”, 0, [],NA, “ ”)
is the default program (where ‘default’ has a technical meaning [5]). It is worth
noting that all the queries that one might want to pose to the relational database
(or Prolog) version of the TV guide can be just as easily posed to, and answered
by, the function definition form (using computation, as discussed in Section 5).

It is also straightforward to rewrite Horn clause theories, a common way of
representing beliefs, as function definitions in the form above.

Example 2. Consider an agent with belief modality B that has beliefs of the
form

B((p t1)←−W1)

...

B((p tn)←−Wn).

This form of belief base includes Horn clause theories and logic programs. By
adding equations to the bodies and existentially quantifying free local variables
in the bodies, the beliefs can be written in the form

B((p x)←− V1)

...

B((p x)←− Vn).

104

This set of beliefs can then be written in the function definition form

B ∀x.((p x) =

if (λx.V1 x) then ⊤

...

else if (λx.Vn x) then ⊤

else ⊥),

which is equivalent to the original set of beliefs under the closed world assump-
tion. (The latter formula is essentially the completion of the original set of beliefs,
probably the semantics intended anyway.)

4 Acquiring Beliefs

Now we turn to belief acquisition. Belief bases are generally dynamic, that is,
they change from time to time during deployment of the agent. It follows that
agents need to have some method by which they can acquire new beliefs. We use
the phrase ‘belief acquisition’ to name this process. The term ‘acquire’ is intended
to be understood in a general sense that includes ‘update’, ‘revise’ and ‘learn’ as
special cases. ‘Update’ refers to the simplest form of belief acquisition in which
facts are added to or deleted from a simple database, ‘revise’ refers to the form
of acquisition that is studied in the literature on belief revision [3], and ‘learning’
refers to machine learning [4]. Belief acquisition thus covers the spectrum from
simple updating at one end to the generalisation that is characteristic of learning
at the other end.

The approach we take to belief acquisition starts from the machine learning
perspective in that it extends decision-list learning in [10]. In machine learning,
one wants to learn a function definition. The input to the learning process is
a collection of training examples that give the value of the function for some
points in its domain. A space of hypotheses is searched to find a definition for
the function that agrees ‘as well as possible’ according to some measure with the
training examples. The hypothesis learned is intended to generalise, in the sense
that it should give the correct value on unseen examples.

We extend the learning process in several ways so that it also includes update
and belief revision. The first extension is that training examples can give the
value of the function not just on a single point of the domain but on a subset
of it given by some predicate. This allows us to capture some aspects of what
happens in theory revision. In addition, the predicate can include modalities.
Then, in order to control where on the spectrum from updating to learning we
want to be, we make a careful choice of hypothesis language. If we want simple
updating, then the hypothesis language is chosen to be very specific; if we want
learning, then the hypothesis language is chosen to be general; for intermediate
points on the spectrum, the hypothesis language is chosen accordingly.

105

A major ingredient for belief acquisition is a method of generating predicates.
For this, we use predicate rewrite systems which we describe informally as fol-
lows. A predicate rewrite is an expression of the form p ֌ q, where p and q are
predicates (in a particular syntactic form). The predicate p is called the head and
q is the body of the rewrite. A predicate rewrite system is a finite set of predicate
rewrites. One should think of a predicate rewrite system as a kind of grammar
for generating a particular class of predicates. Roughly speaking, this works as
follows. Starting from the weakest predicate top (defined below), all predicate
rewrites that have top (of the appropriate type) in the head are selected to make
up child predicates that consist of the bodies of these predicate rewrites. Then,
for each child predicate and each redex in that predicate, all child predicates are
generated by replacing each redex by the body of the predicate rewrite whose
head is identical to the redex. This generation of predicates continues to produce
the entire space of predicates given by the predicate rewrite system. The details
of the non-modal version of this can be found in [5] and the modal version in [9].

A particular predicate language, called the basic language, often arises in
applications.

Definition 4. Let α be a type. A basic predicate for the type α is one of the
form (= t), for some t ∈ Bα.

The set Bα = {(= t) | t ∈ Bα} of basic predicates for the type α is called the
basic language for the type α.

We distinguish two predicate languages that are used in belief acquisition.
One is the training predicate language that is used in training examples. The
general form of a training example for a function f is

���∀x.((p x)→ (f x) = v),

where p is a predicate from the training predicate language and v is a value. It
is common for training predicate languages to include the corresponding basic
language (of the appropriate type).

The other language is the hypothesis predicate language that is used in hy-
potheses. The predicates appearing in a belief come from the hypothesis pred-
icate language. In the case of learning, it would be very unlikely that the hy-
pothesis predicate language would include any basic predicates at all (because
in learning one wants to generalise beyond the training examples).

Here are two examples that illustrate some of the issues for belief acquisition.

Example 3. This example illustrates database updating which is the simplest
form of belief acquisition. We show how to acquire the database of Example 1.

First, we set up the training examples. The training predicate language is
the basic language BOccurrence . A typical predicate in this language is

(= ((21, 7, 2004), (19, 30),WIN)).

The set of values is the set of basic terms BProgram . A typical value is

(“Seinfeld”, 30, [Sitcom],PG , “Kramer . . . ”).

106

Training examples have the form

Bt ∀x.(((= ((21, 7, 2004), (19, 30),WIN)) x) −→

(tv guide x) = (“Seinfeld”, 30, [Sitcom],PG , “Kramer . . . ”))

Bt ∀x.(((= ((20, 7, 2004), (20, 30),ABC)) x) −→

(tv guide x) = (“The Bill”, 50, [Drama],M , “Sun Hill . . . ”))

and so on.
Now we choose the hypothesis predicate language. For database updating,

one wants predicates in the hypothesis predicate language to pick out individuals.
Thus BOccurrence is also chosen as the hypothesis predicate language. With this
choice, the belief acquisition algorithm returns the definition for the function
tv guide given in Example 1.

Example 4. Consider a majordomo agent that manages a household. There are
many tasks for such an agent to carry out including keeping track of occupants,
turning appliances on and off, ordering food for the refrigerator, and so on.

Here we concentrate on one small aspect of the majordomo’s tasks which is
to recommend television programs for viewing by the occupants of the house.
Suppose the current occupants are Alice, Bob, and Cathy, and that the agent
knows the television preferences of each of them. Methods for acquiring these
preferences were studied in [11]. Suppose that each occupant has a personal
agent that has acquired (amongst many other functions) the function likes :
Program → Ω, where likes is true for a program iff the person likes the program.
We also suppose that the majordomo has access to the definitions of this function
for each occupant, for the present time and for some suitable period into the past.
Let Bm be the belief modality for the majordomo agent, Ba the belief modality
for Alice, Bb the belief modality for Bob, and Bc the belief modality for Cathy.
Thus part of the majordomo’s belief base has the following form:

BmBa ∀x.((likes x) = ϕ0)

 BmBa ∀x.((likes x) = ϕ1)

...

n−1

BmBa ∀x.((likes x) = ϕn−1)

n
Bm∀x.(�Ba(likes x) = ⊥)

BmBb ∀x.((likes x) = ψ0)

 BmBb ∀x.((likes x) = ψ1)

...

k−1

BmBb ∀x.((likes x) = ψk−1)

k
Bm∀x.(�Bb(likes x) = ⊥)

BmBc ∀x.((likes x) = ξ0)

107

 BmBc ∀x.((likes x) = ξ1)

...

l−1

BmBc ∀x.((likes x) = ξl−1)

l
Bm∀x.(�Bc(likes x) = ⊥),

for suitable ϕi, ψi, and ξi. The form these can take is explained in [11].
In the beginning, the belief base contains the formula

Bm∀x.(�Ba(likes x) = ⊥),

whose purpose is to prevent runaway computations into the infinite past for
certain formulas of the form �ϕ. The meaning of this formula is “the agent
believes that for all programs it is not true that at some time in the past Alice
likes the program”. After n time steps, this formula has been transformed into

n
Bm∀x.(�Ba(likes x) = ⊥).

In general, at each time step, the beliefs about likes at the previous time steps
each have another placed at their front to push them one step further back into
the past, and a new current belief about likes is acquired. (For this application,
a time step could occupy hours, days, or even longer, depending on how often
the beliefs need to be updated.)

Based on these beliefs about the occupant preferences for TV programs, the
task for the agent is to recommend programs that all three occupants would be
interested in watching together. The simplest idea is that the agent should only
recommend programs that all three occupants currently like. But it is possible
that less stringent conditions might also be acceptable; for example, it might
be sufficient that two of the occupants currently like a program but that the
third has liked the program in the past (even if they do not like it at the present
time). A (simplified) predicate rewrite system suitable for giving an hypothesis
predicate language for such an acquisition task is as follows.

top ֌ ∧3 top top top

top ֌ ∨2 top top

top ֌ Bi likes % for each i ∈ {a, b, c}

top ֌ �Bi likes % for each i ∈ {a, b, c}.

Here, the function top : a → Ω is defined by (top x) = ⊤, for each x. The
function

∧3 : (a→ Ω)→ (a→ Ω)→ (a→ Ω)→ a→ Ω

is defined by ∧3 p1 p2 p3 x = (p1 x)∧(p2 x)∧(p3 x), for each x. The function ∨2,
which defines ‘disjunction’ at the predicate level for two arguments, is defined
analogously.

108

Let group likes : Program → Ω be the function that the agent needs to ac-
quire. Thus the informal meaning of group likes is that it is true for a program iff
the occupants collectively like the program. (This may involve a degree of com-
promise by some of the occupants.) The training predicate language is BProgram ,
so that training examples for this task look like

Bm∀x.(((= P1) x) −→ (group likes x) = ⊤)

Bm∀x.(((= P2) x) −→ (group likes x) = ⊥),

where P1 and P2 are particular programs. The definition of a typical function
that might be acquired from training examples and the hypothesis predicate
language given by the above predicate rewrite system is as follows.

Bm∀x. ((group likes x) =

if ((∧3 �Ba likes Bb likes Bc likes) x) then ⊤

else if ((∧3 Bc likes (∨2 Ba likes Bb likes) top) x) then ⊤

else ⊥).

Now let P be some specific program. Suppose that a computation shows that
Bm((group likes P) = ⊥) is a consequence of the belief base of the agent. On
this basis, the agent will presumably not recommend to the occupants that they
watch program P together.

5 Reasoning with Beliefs

As well as representing knowledge, it is necessary to reason with it. The reasoning
system for the logic combines a theorem prover and an equational reasoning
system. The theorem prover is a fairly conventional tableau theorem prover for
modal higher-order logic similar to what is proposed in [12]. The equational
reasoning system is, in effect, a computational system that significantly extends
existing declarative programming languages by adding facilities for computing
with modalities. The proof component and the computational component are
tightly integrated, in the sense that either can call the other. Furthermore, this
synergy between the two makes possible all kinds of interesting reasoning tasks.
For agent applications, the most common reasoning task is a computational
one, that of evaluating a function call. In this case, the theorem-prover plays a
subsidiary role, usually that of performing some rather straightforward modal
theorem-proving tasks. However, in other applications it can just as easily be
the other way around with the computational system performing subsidiary
equational reasoning tasks for the theorem prover.

Here we concentrate on computation. As motivation for what computation
actually means, consider the problem of determining the meaning of a term t
in the intended interpretation (for some application). If a formal definition of
the intended interpretation is available, then this problem can be solved (under
some finiteness assumptions). However, we assume here that the intended inter-
pretation is not available, as is usually the case, so that the problem cannot be

109

solved directly. Nevertheless, there is still a lot that can be done if the theory T

of the application is available and enough of it is in equational form. Intuitively,
if t can be ‘simplified’ sufficiently using T, its meaning may become apparent
even in the absence of detailed knowledge of the intended interpretation. For
example, if t can be simplified to a term containing only data constructors, then
the meaning of t will generally be obvious.

More formally, the computation problem is as follows.

Given a theory T, a term t, and a sequence �j1 · · ·�jr
of modalities, find

a ‘simpler’ term t′ such that �j1 · · ·�jr
∀(t = t′) is a consequence of T.

Thus t and t′ have the same meaning in all worlds accessible from the point
world in the intended interpretation according to the modalities �j1 · · ·�jr

.
Here now is the definition of a mechanism that addresses the computational

problem by employing equational reasoning to rewrite terms to ‘simpler’ terms
that have the same meaning. To simplify matters, we only consider the case
when the computation does not need to call on the theorem prover. (This is the
rank 0 case in [8].) In the following definition, a modal path to a subterm is the
sequence of indices of modalities whose scope one passes through when going
down to the subterm. A substitution is admissible if any term that replaces a
free occurrence of a variable that is in the scope of a modality is rigid.

Definition 5. Let T ≡ (G,L) be a theory. A computation using �j1 · · ·�jr
with

respect to T is a sequence {ti}
n
i=1 of terms such that the following conditions are

satisfied.

1. For i = 1, . . . , n− 1, there is

(a) a subterm si of ti at occurrence oi, where the modal path to oi in ti is
k1 . . . kmi

,
(b) i. a formula �j1 · · ·�jr

�k1
· · ·�kmi

∀(ui = vi) in L, or
ii. a formula ∀(ui = vi) in G, and

(c) a substitution θi that is admissible with respect to ui = vi

such that uiθi is α-equivalent to si and ti+1 is ti[si/viθi]oi
.

The term t1 is called the goal of the computation and tn is called the answer.
Each subterm si is called a redex.
Each formula �j1 · · ·�jr

�k1
· · ·�kmi

∀(ui = vi) or ∀(ui = vi) is called an
input equation.

The formula �j1 · · ·�jr
∀(t1 = tn) is called the result of the computation.

The treatment of modalities in a computation has to be carefully handled.
The reason is that even such a simple concept as applying a substitution is
greatly complicated in the modal setting by the fact that constants generally
have different meanings in different worlds and therefore the act of applying a
substitution may not result in a term with the desired meaning. This explains
the restriction to admissible substitutions in the definition of computation. It
also explains why, for input equations that are local assumptions, the sequence

110

of modalities �k1
· · ·�kmi

whose scopes are entered going down to the redex
must appear in the modalities at the front of the input equation. (For input
equations that are global assumptions, in effect, every sequence of modalities
that we might need is implicitly at the front of the input equation.)

In the general case, an input equation can also be a theorem that was proved
by the theorem-proving component of the reasoning system, as the examples
below show.

Here are two examples to illustrate various aspects of computation.

Example 5. Consider a belief base for an agent that contains the definition

B ∀x.((f x) =

if x = A then 42 else if x = B then 21 else if x = C then 42 else 0),

where A,B,C : σ, f : σ → Nat and B is the belief modality for the agent. With
such a definition, it is straightforward to compute in the ‘forward’ direction.
Thus (f B) can be computed in the obvious way to produce the answer 21 and
the result B((f B) = 21).

Less obviously, the definition can be used to compute in the ‘reverse’ direc-
tion. For example, consider the computation of {x | (f x) = 42} in Figure 1,
which produces the answer {A,C}. The redexes selected are underlined. This
computation makes essential use of the equations

(w if x then y else z) = if x then (w y) else (w z)

(if x then y else z w) = if x then (y w) else (z w)

from the standard equality theory.

Example 6. This example illustrates computation using a belief base that has
been obtained by incremental belief acquisition and that exploits modalities
acting on arbitrary terms. Consider an agent with belief modality B and a
belief base that includes definitions of the function f : σ → Nat at the current
time and some recent times. Suppose at the current time the part of the belief
base concerning f is as follows.

B ∀x.((f x) = if (p4 x) then (f x) else if (p5 x) then 84 else 0)

 B ∀x.((f x) = if (p3 x) then (f x) else 0)

2
B ∀x.((f x) = if (p1 x) then 42 else if (p2 x) then 21 else 0)

3
B ∀x.((f x) = 0).

Three time steps ago, the function f was 0 everywhere. Two time steps ago, the
definition

B ∀x.((f x) = if (p1 x) then 42 else if (p2 x) then 21 else 0)

for f was acquired. Then, one time step ago, the definition

B ∀x.((f x) = if (p3 x) then (f x) else 0)

111

{x | (f x) = 42}

{x | ((= if x = A then 42 else if x = B then 21 else if x = C then 42 else 0) 42)}

{x | (if x = A then (= 42) else (= if x = B then 21 else if x = C then 42 else 0) 42)}

{x | if x = A then (42 = 42) else ((= if x = B then 21 else if x = C then 42 else 0) 42)}

{x | if x = A then ⊤ else ((= if x = B then 21 else if x = C then 42 else 0) 42)}

{x | if x = A then ⊤ else (if x = B then (= 21) else (= if x = C then 42 else 0) 42)}

{x | if x = A then ⊤ else if x = B then (21 = 42) else ((= if x = C then 42 else 0) 42)}

{x | if x = A then ⊤ else if x = B then ⊥ else ((= if x = C then 42 else 0) 42)}

{x | if x = A then ⊤ else if x = B then ⊥ else (if x = C then (= 42) else (= 0) 42)}

{x | if x = A then ⊤ else if x = B then ⊥ else if x = C then (42 = 42) else (0 = 42)}

{x | if x = A then ⊤ else if x = B then ⊥ else if x = C then ⊤ else (0 = 42)}

{x | if x = A then ⊤ else if x = B then ⊥ else if x = C then ⊤ else ⊥}

Fig. 1. Computation using B of {x | (f x) = 42}

for f was acquired. This definition states that, on the region defined by p3, f is
the same as the f at the last time step; and, otherwise, f is 0. Finally, we come
to the current definition, which on the region defined by p4 is the same as the f
at the last time step; on the region defined by p5 is 84; and, otherwise, f is 0.
Definitions like these which use earlier definitions arise naturally in incremental
belief acquisition. A technical device needed to achieve incrementality is to admit
values of the form (kf x), so that earlier definitions become available for use.
In turn this depends crucially on being able to apply modalities to arbitrary
terms, in this case, functions.

Now suppose t is a rigid term of type σ and consider the computation using
B of (f t) in Figure 2. Note how earlier definitions for f get used in the compu-
tation: at the step (f t), the definition at the last time step gets used, and at

the step 2(f t), the definition from two time steps ago gets used.
Also needed in this computation is the instance (f t) = (f t) of the

global assumption discussed in Section 2. Incidentally, the assumption that the
argument to a function like f is rigid is a weak one; in typical applications, the
argument will naturally be rigid.

It is assumed that the belief base of the agent contains the global assumption

 Bϕϕϕ −→ B ϕϕϕ.

Using this assumption, it can be proved that

B ∀x.((f x) = if (p3 x) then (f x) else 0)

and

B
2 ∀x.((f x) = if (p1 x) then 42 else if (p2 x) then 21 else 0)

112

(f t)

if (p4 t) then (f t) else if (p5 t) then 84 else 0

...

if ⊤ then (f t) else if (p5 t) then 84 else 0

(f t)

 (f t)

 (if (p3 t) then (f t) else 0)

...

 (if ⊤ then (f t) else 0)

 (f t)

2(f t)

2(if (p1 t) then 42 else if (p2 t) then 21 else 0)

...

2(if ⊤ then 42 else if (p2 t) then 21 else 0)

242

 42

42

Fig. 2. Computation using B of (f t)

are consequences of the belief base. These can then be used as input equations
in the computation.

The computation shows that B((f t) = 42) is a consequence of the belief
base. Thus the agent believes that the value of (f t) is 42; on the basis of this
and other similar information, it will select an appropriate action.

6 Conclusion

In this paper, we have reflected on some issues concerning beliefs for agents.
The main conclusion we draw from this is the value of using a highly expressive
logic for representing beliefs. Temporal and epistemic modalities allow beliefs to
capture information about an environment that can be crucial when an agent
is trying to select an appropriate action. For beliefs, propositional logic is not
particularly useful and so it is necessary to move beyond the propositional case;
we argue for the use of higher-order logic because of its extra expressive power.

113

References

1. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT
Press (1995)

2. Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal
Logics: Theory and Applications. Studies in Logic and The Foundations of Math-
ematics, Volume 148. Elsevier (2003)

3. Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change:
Partial meet contraction and revision functions. Journal of Symbolic Logic 50(2)
(1985) 510–530

4. Mitchell, T.: Machine Learning. McGraw-Hill (1997)
5. Lloyd, J.: Logic for Learning. Cognitive Technologies. Springer (2003)
6. Lloyd, J., Sears, T.: An architecture for rational agents. In Baldoni, M., et al, eds.:

Declarative Agent Languages and Technologies (DALT 2005), Springer, LNAI 3904
(2006) 51–71

7. Lloyd, J., Ng, K.: Learning modal theories. In Muggleton, S., Otero, R., eds.:
Proceedings of the 16th International Conference on Inductive Logic Programming
(ILP2006), Springer, LNAI (to appear April, 2007) http://csl.anu.edu.au/~jwl.

8. Lloyd, J.: Knowledge representation and reasoning in modal higher-order logic.
submitted for publication. http://csl.anu.edu.au/~jwl (2006)

9. Lloyd, J., Ng, K.: Belief acquisition for agents. In preparation (2007)
10. Rivest, R.: Learning decision lists. Machine Learning 2(3) (1987) 229–246
11. Cole, J., Gray, M., Lloyd, J., Ng, K.: Personalisation for user agents. In Dignum, F.,

et al, eds.: Fourth International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 05). (2005) 603–610

12. Fitting, M.: Types, Tableaus, and Gödel’s God. Kluwer Academic Publishers
(2002)

114

Composing high-level plans

for declarative agent programming

Felipe Meneguzzi and Michael Luck

Department of Computer Science
King’s College London

felipe.meneguzzi@kcl.ac.uk

michael.luck@kcl.ac.uk

Abstract. Research on practical models of autonomous agents has large-
ly focused on a procedural view of goal achievement. This allows for
efficient implementations, but prevents an agent from reasoning about
alternative courses of action for the achievement of its design objectives.
In this paper we show how a procedural agent model can be modified
to allow an agent to compose existing plans into new ones at runtime
to achieve desired world states. This new agent model can be used to
implement a declarative goals interpreter, since it allows designers to
specify only the desired world states in addition to an agent’s basic ca-
pabilities, enhancing the agent’s ability to deal with failures. Moreover
our approach allows the new plans to be included in the plan library,
effectively enabling the agent to improve its runtime performance over
time.

1 Introduction

The notion of autonomous intelligent agents has become increasingly relevant
in recent years both in relation to numerous real applications and in drawing
together different artificial intelligence techniques. Perhaps the best known and
most used family of agent architectures is that based around the notions of
beliefs, desires and intentions, which is exemplified by such systems as PRS,
dMARS and AgentSpeak [1]. For reasons of efficiency and real-time operation,
these architectures have been based around the inclusion of a plan library con-
sisting of predefined encapsulated procedures, or plans, coupled with information
about the context in which to use them [2]. However, designing agents in this
way severely limits an agent’s runtime flexibility, as the agent depends entirely
on the designer’s previous definition of all possible courses of action associated
with proper contextual information to allow the agent to adopt the right plans
in the right situations.

Typically, agent interpreters select plans using more or less elaborate algo-
rithms, but these seldom have any knowledge of the contents of the plans, so
that plan selection is ultimately achieved using fixed rules, with an agent adopt-
ing black box plans based solely on the contextual information that accompanies
them. Alternatively, some agent interpreters allow for plan modification rules to

115

allow plans to be modified to suit the current situation [3], but this approach
still relies on a designer establishing a set of rules that considers all potentially
necessary modifications for the agent to achieve its goals. The problem here is
that for some domains, an agent description must either be extremely extensive
(requiring a designer to foresee every possible situation the agent might find
itself in), or will leave the agent unable to respond under certain conditions.

This procedural response to goal achievement has been favoured to enable
the construction of practical systems that are usable in real-world applications.
However, it also causes difficulties in cases of failure. When a procedural agent
selects a plan to achieve a given goal it is possible that the selected plan may
fail, in which case the agent typically concludes that the goal has also failed,
regardless of whether other plans to achieve the same goal might have been
successful. By neglecting the declarative aspect of goals in not considering the
construction of plans on-the-fly, agents lose the ability to reason about alterna-
tive means of achieving a goal, making it possible for poor plan selection to lead
to an otherwise avoidable failure.

In this paper we describe how a procedural agent model can be modified to
allow an agent to build new plans at runtime by chaining existing fine-grained
plans from a plan library into high-level plans. We demonstrate the applica-
bility of this approach through a modification to the AgentSpeak architecture,
allowing for a combination of declarative and procedural aspects. This modi-
fication requires no change to the plan language, allowing designers to specify
predefined procedures for known tasks under ideal circumstances, but also al-
lowing the agent to form new plans when unforeseen situations arise. Though
we demonstrate this technique for AgentSpeak, it can be easily applied to other
agent architectures with an underlying procedural approach to reasoning, such
as JADEX or the basic 3APL [4]. The key contribution is a method to augment
an agent’s runtime flexibility, allowing it to add to its plan library to respond to
new situations without the need for the designer to specify all possible combi-
nations of low-level operators in advance. The paper is organised as follows: in
Section 2 we briefly review relevant aspects of AgentSpeak, in order to introduce
the planning capability in Section 3; in Section 4 a classic example is provided
to contrast our approach to that of traditional AgentSpeak; in Section 5 we
compare our work with similar or complementary approaches that also aim to
improve agent autonomy; finally, in Section 6 a summary of the contribution is
provided along with further work that can be carried out to improve our system.

2 AgentSpeak

AgentSpeak [2] is an agent language that allows a designer to specify a set of
procedural plans which are then selected by an interpreter to achieve the agent’s
design goals. It evolved from a series of procedural agent languages originally
developed by Rao and Georgeff [5]. In AgentSpeak an agent is defined by a
set of beliefs and a set of plans, with each plan encoding a procedure that is
assumed to bring about a desired state of affairs, as well as the context in which

116

a plan is relevant. Goals in AgentSpeak are implicit, and plans intended to fulfil
them are invoked whenever some triggering condition is met in a certain context,
presumably the moment at which this implicit goal becomes relevant.

The control cycle of an AgentSpeak interpreter is driven by events on data
structures, including the addition or deletion of goals and beliefs. These events
are used as triggering conditions for the adoption of plans, so that adding an
achievement goal means that an agent desires to fulfil that goal, and plans whose
triggering condition includes that goal (i.e. are relevant to the goal) should lead
to that goal being achieved. Moreover, a plan includes a logical condition that
specifies when the plan is applicable in any given situation. Whenever a goal
addition event is generated (as a result of the currently selected plan having
subgoals), the interpreter searches the set of relevant plans for applicable plans;
if one (or more) such plan is found, it is pushed onto an intention structure for
execution. Elements in the intention structure are popped and handled by the
interpreter. If the element is an action this action is executed, while if the ele-
ment is a goal, a new plan is added into the intention structure and processed.
During this process, failures may take place either in the execution of actions, or
during the processing of subplans. When such a failure takes place, the plan that
is currently being processed also fails. Thus, if a plan selected for the achieve-
ment of a given goal fails, the default behaviour of an AgentSpeak agent is to
conclude that the goal that caused the plan to be adopted is not achievable. This
control cycle is illustrated in the diagram of Figure 1,1 and strongly couples plan
execution to goal achievement.

Find applicable plans

Push plan into Intentions

Process Intention

Goal FailedGoal Achieved

Goal addition/deletion

Applicable plan found

No plan found

Plan failed

Plan executed

Fig. 1. AgentSpeak control cycle.

1 For a full description of AgentSpeak, refer to d’Inverno et al. [1]

117

The control cycle of Figure 1 allows for situations in which the poor selection
of a plan leads to the failure of a goal that would otherwise be achievable through
a different plan in the plan library. While such limitations can be mitigated
through meta-level [6] constructs that allow goal addition events to cause the
execution of applicable plans in sequence, and the goal to fail only when all

plans fail, AgentSpeak still regards goal achievement as an implicit side-effect of
a plan being executed successfully.

3 Planning in an AgentSpeak interpreter

In response to these limitations, we have created an extension of AgentSpeak
that allows an agent to explicitly specify the world-state that should be achieved
by the agent. In order to transform the world to meet the desired state, the agent
uses a propositional planner to form high-level plans through the composition of
plans already present in its plan library. This propositional planner is invoked
by the agent through a regular AgentSpeak action, and therefore requires no
change in the language definition. The only assumption we make is the exis-
tence of plans that abide by certain restrictions in order to be able to compose
higher-level plans taking advantage of planning capabilities introduced in the
interpreter. Whenever an agent needs to achieve a goal that involves planning,
it uses a special planning action that converts the low-level procedural plans
of AgentSpeak into STRIPS operators and invokes the planning module. If the
planner succeeds in finding a plan, it is converted back into a high-level AgentS-
peak plan and added to the intention structure for execution. Here, we liken
the low-level procedural plans of AgentSpeak to STRIPS operators, connecting
the agent interpreter to the planner by converting one formalism into the other
and vice versa. We have chosen to use STRIPS as the planning language in this
paper for simplicity reasons, and this approach would not lose applicability if
one was to use PDDL [7] (or another language) as the planning language.

3.1 The planning action

In order to describe the connection of the planning component with AgentSpeak,
we need to review the main constructs of this agent language. As we have seen,
an AgentSpeak interpreter is driven by events on the agent’s data structures
that may trigger the adoption of plans. Additions and deletions of goals and
beliefs are represented by the plus (+) and minus (−) sign respectively. Goals
are distinguished into test goals and achievement goals, denoted by a preceding
question mark (?), or an exclamation mark (!), respectively. For example, the
addition of a goal to achieve g would be represented by +!g. Belief additions and
deletions arise as the agent perceives the environment, and are therefore outside
its control, while goal additions and deletions only arise as part of the execution
of an agent’s plans.

In our approach, in addition to the traditional way of encoding goals for an
AgentSpeak agent implicitly as triggering events consisting of achievement goals

118

+goal conj(Goals) : true ← plan(Goals).

Table 1: Planner invocation plan.

(!goal), we allow desires including multiple beliefs (b1, . . . , bn) describing a de-
sired world-state in the form goal conj([b1, . . . , bn]). An agent desire description
consists of a conjunction of beliefs the agent wishes to be true simultaneously at
a given point in time. The execution of the planner component is triggered by
an event +goal conj([b1, . . . , bn]) as shown in Table 1.

Now, the key to our approach to planning in AgentSpeak is the introduction
of a special planning action, denoted plan(G), where G is a conjunction of desired
goals. This action is bound to an implementation of a planning component, and
allows all of the process regarding the conversion between formalisms to be
encapsulated in the action implementation, making it completely transparent to
the remainder of the interpreter.

Planning Action

Create STRIPS Problem

Invoke Planner

Convert STRIPS Plan

Plan LibraryPlan Library

BeliefsBeliefs

Trigger Plan Execution

Intention StructureIntention Structure

plan(Goals)

(Strips Problem)

Planner succeeded

Planner failed

Plan Created

Trigger Added

Plan Executed

Plan Failed / Reassess Initial State

Fig. 2. Operation of the planning action.

As illustrated in Figure 2, the internal action to plan takes as an argument
the desired world-state, and uses this, along with the current belief database and
the plan library, to generate a STRIPS [8] planning problem. This action then
invokes a planning algorithm; if a plan is found, the planning action succeeds,
otherwise the planning action fails. If the action successfully yields a plan, it
converts the resulting STRIPS plan into a new AgentSpeak plan to be added to
the plan library, and immediately triggers the adoption of the new plan. If the

119

+!move to(A, B) : available(car)

← get(car);

drive(A, B).

+!move to(A, B) : ¬available(car)

← walk(A, B).

Table 2: Movement plans.

newly created plan fails, the planner may then be invoked again to try and find
another plan to achieve the desired state of affairs, taking into consideration any
changes in the agent beliefs.

3.2 Chaining plans into higher-level plans

The design of a traditional AgentSpeak plan library follows a similar approach
to programming in procedural languages, where a designer typically defines fine-
grained actions to be the building blocks of more complex operations. These
building blocks are then assembled into higher-level procedures to accomplish
the main goals of a system. Analogously, an AgentSpeak designer traditionally
creates fine-grained plans to be the building blocks of more complex operations,
typically defining more than one plan to satisfy the same goal (i.e. sharing the
same trigger condition), while specifying the situations in which it is applicable
through the context part of each plan. Here, we are likening STRIPS actions
to low-level AgentSpeak plans, since the effects of primitive AgentSpeak actions
are not explicitly defined in an agent description. For example, an agent that
has to move around in a city could know many ways of going from one place
to another depending on which vehicle is available to it, such as by walking or
driving a car, as shown in Table 2.

Modelling STRIPS operators to be supplied to a planning algorithm is similar
to the definition of these building-block procedures. In both cases, it is important
that operators to be used sequentially fit. That is, the results from applying one
operator should be compatible with the application of the possible subsequent
operators, matching the effects of one operator to the preconditions of the next
operator.

Once the building-block procedures are defined, higher-level operations must
be defined to fulfil the broader goals of a system by combining these building
blocks. In a traditional AgentSpeak plan library, higher-level plans to achieve
broader goals contain a series of goals to be achieved by the lower-level opera-
tions. This construction of higher-level plans that make use of lower-level ones
is analogous to the planning performed by a propositional planning system. By
doing the planning themselves, designers must cope with every foreseeable sit-
uation the agent might find itself in, and generate higher-level plans combining
lower-level tasks accordingly. Moreover, the designer must make sure that the

120

subplans being used do not lead to conflicting situations. This is precisely the
responsibility we intend to delegate to a STRIPS planner.

Plans resulting from propositional planning can then be converted into se-
quences of AgentSpeak achievement goals to comprise the body of new plans
available within an agent’s plan library. In this approach, an agent can still have
high-level plans pre-defined by the designer, so that routine tasks can be handled
exactly as intended. At the same time, if an unforseen situation presents itself
to the agent, it has the flexibility of finding novel ways to solve problems, while
augmenting the agent’s plan library in the process.

Clearly, lower-level plans defined by the designer can (and often will) include
the invocation of atomic actions intended to generate some effect on the envi-
ronment. Since the effects of these actions are not usually explicitly specified in
AgentSpeak (another example of reasoning delegated to the designer), an agent
cannot reason about the consequences of these actions. When designing agents
using our model, we expect designers to explicitly define the consequences of
executing a given AgentSpeak plan in terms of belief additions and deletions in
the plan body as well as atomic action invocations. The conversion process can
then ignore atomic action invocations when generating a STRIPS specification.

3.3 Translating AgentSpeak into STRIPS

Once the need for planning is detected, the plan in Table 1 is invoked so that
the agent can tap into a planner component. The process of linking an agent
to a propositional planning algorithm includes converting an AgentSpeak plan
library into propositional planning operators, declarative goals into goal-state
specifications, and the agent beliefs into the initial-state specification for a plan-
ning problem. After the planner yields a solution, the ensuing STRIPS plan is
translated into an AgentSpeak plan in which the operators resulting from the
planning become subgoals. That is, the execution of each operator listed in the
STRIPS plan is analogous to the insertion of the AgentSpeak plan that corre-
sponded to that operator when the STRIPS problem was created.

Plans in AgentSpeak are represented by a header comprising a triggering con-
dition and a context, as well as a body describing the steps the agent takes when
a plan is selected for execution. If e is a triggering event, b1, . . . , bm are belief
literals, and h1, . . . , hn are goals or actions, then e : b1& . . .&bm ← h1; . . . ;hn.

is a plan. As an example, let us consider a triggering plan for accomplishing
!move(A,B) corresponding to a movement from A to B, where:

– e is !move(A,B);
– at(A) & not at(B) are belief literals; and
– -at(A); +at(B). is the plan body, containing information about belief addi-

tions and deletions.

The plan is then as follows:

+!move(A,B) : at(A) & not at(B)
<- -at(A);

+at(B).

121

When this plan is executed, it results in the agent believing it is no longer
in position A, and then believing it is in position B. For an agent to rationally
want to move from A to B, it must believe it is at position A and not already
at position B.

In the classical STRIPS notation, operators have four components: an iden-
tifier, a set of preconditions, a set of predicates to be added (add), and a set
of predicates to be deleted (del). For example, the same move operator can be
represented in STRIPS following the correspondence illustrated in Figure 3, in
which we convert the AgentSpeak invocation condition into a STRIPS operator
header, a context condition into an operator precondition, and the plan body is
used to derive add and delete lists.

Fig. 3. Correspondence between an AgentSpeak plan and a STRIPS operator.

A relationship between these two definitions is not hard to establish, and
we define the following algorithm for converting AgentSpeak plans into STRIPS
operators. Let e be a triggering event, b1& . . .&bm a conjunction of belief liter-
als representing a plan’s context, and a1, . . . , an be belief addition actions and
d1, . . . , do be belief deletion actions within a plan’s body. All of these elements
can be represented in a single AgentSpeak plan. Moreover let opname be the
operator name and parameters, pre be the preconditions of the operator, add the
predicate addition list and del the predicate deletion list. Mapping an AgentS-
peak plan into STRIPS operators is accomplished as follows:

1. opname = e

2. pre = b1& . . . &bm

3. add = a1, . . . , an

4. del = d1, . . . , do

In Section 3.1 we introduced the representation of a conjunction of desired
goals as the predicate goal conj([b1, . . . , bn]). The list [b1, . . . , bn] of desires is
directly translated into the goal state of a STRIPS problem. Moreover, the initial
state specification for a STRIPS problem is generated directly from the agent’s
belief database.

122

+goal conj(Goals) : true

←!op1; . . . ; !opn.

Table 3: AgentSpeak plan generated from a STRIPS plan.

3.4 Executing generated plans

The STRIPS problem generated from the set of operators, initial state and goal
state is then processed by a propositional planner. If the planner fails to gen-
erate a propositional plan for that conjunction of literals, the plan in Table 1
fails immediately and this goal is deemed unachievable, otherwise the result-
ing propositional plan is converted into an AgentSpeak plan and added to the
intention structure.

A propositional plan from a STRIPS planner is in the form of a sequence
op1, . . . , opn of operator names and instantiated parameters. We define a new
AgentSpeak plan in Table 3, where goal conj(Goals) is the event that initially
caused the planner to be invoked.

Immediately after adding the new plan to the plan library, the event
goal conj(Goals) is reposted to the agent’s intention structure, causing the gen-
erated plan to be executed. Plans generated in this fashion are admittedly simple,
since the development of a complete process of plan generalisation is not a trivial
matter since, for instance, it involves solving the issue of deriving the context
condition adequately. An extremely simple solution for this problem uses the en-
tire belief base of the agent as context for that plan, but this solution includes a
great number of beliefs that are probably irrelevant to the goal at hand, severely
limiting this plan’s future applicability. Another solution involves replicating the
preconditions of the first operator for the new plan, but this could also lead the
agent to fail to execute the plan later on. We have developed an algorithm to de-
rive a minimal set of preconditions, which we omit here due to space constraints,
showing instead the simple solution of using a constantly true context. Another
possible refinement to the conversion of a STRIPS plan into an AgentSpeak plan
is to allow the same generated plan to be reused to handle side-effects of the set
of goals that led to its generation. For example, a plan for a conjunction of goals
g can be used to achieve any subset g′ of g.

In the ensuing execution of the generated plan, the fact that multiple con-
current plans might be stacked in an agent’s intentions structure must also be
addressed. There are multiple ways of addressing this issue, namely:

– delegate the analysis and resolution of conflicting interaction between plans
to the designer;

– implement provisions to ensure that the plans used by the planner process
are executed atomically;

– drop the entire intention structure before plan adoption and prevent new
intentions from being adopted during plan execution; and

123

– analyse the current intention structure and prospective plan steps during
planning to ensure they do not interfere with each other.

The first way of resolving concurrency problems is the traditional solution in
an AgentSpeak context, but it is clearly not acceptable, since the main goal of our
extension is to diminish the amount of designer tasks. On the other hand, the last
alternative involves the introduction of a complex analysis procedure to solve a
very limited number of potential conflicts. In our work we considered the second
and third ways of dealing with concurrency problems, and in the prototype
described in Section 4 we opted to enable the agent to execute dynamically
generated plans atomically (by preventing other intentions to be selected from
the stack while a dynamic plan was being executed).

4 Experiments and Results

We have implemented the planning action described in Section 3 using Jason
[9], which is an open-source Java implementation of AgentSpeak that includes
a number of extensions, such as facilities for communication and distribution.
In addition to providing an interpreter for the agent language, Jason has an
object-oriented API for the development of actions available to the agents being
developed. Since planning is to be performed as part of a regular AgentSpeak
plan, the planning action encapsulates the conversion process of Section 3.3 using
Jason’s internal actions.

This implementation was used in a number of toy problems, such as the
Blocks world used with the original STRIPS planner [8], as well as some ex-
amples from the AgentSpeak literature [2]. Solutions for these problems were
created using both a procedural approach characteristic of traditional AgentS-
peak agents, and a declarative one, in which high-level plans are omitted and
left to be derived by the planning system. This switch in the method for describ-
ing agents results in a reduction of the plan description size, as it is no longer
necessary to enumerate relevant combinations of lower-level plans for the agent
to be able to react to different situations.

In terms of complexity the most computationally demanding part of our
architecture is the planning process, which can vary significantly depending on
the specific planner being used. The complexity of solving propositional planning
problems depends on the number of pre-conditions and post-conditions of the
operators in a certain domain [10], varying from polynomial to NP-complete and
PSPACE-complete complexity. On the other hand, the conversion process into
STRIPS is clearly very simple, having linear complexity on the number of pre-
conditions and post-conditions of the operators being converted. The same linear
complexity applies to the conversion from a STRIPS plan into an AgentSpeak
plan.

Rao [2] uses a simple example agent to describe the derivations performed by
an AgentSpeak interpreter. This agent detects when waste appears in a particular
road lane, and disposes of it in a waste bin. The original plan library for the agent
is as follows:

124

% Plan 1
+location(waste, X)

: location(robot,X) &
location(bin,Y)

<- pick(waste);
!location(robot,Y);
drop(waste).

% Plan 2
+!location(robot, X)

: location(robot,X)
<- true.

% Plan 3
+!location(robot, X)

: location(robot,Y) &
not X = Y &
adjacent(Y,Z)&
not location(car,Z)

<- move(Y, Z);
!location(robot, X).

Using Plan 1, whenever an agent detects waste in its current position, the
agent will pick up the waste, move to the location of the waste bin and drop
it. In this plan library, the agent’s movement is achieved by an internal action,
move(Y,Z), and the agent has no way of explicitly reasoning about it. Moreover,
if an agent has to perform multiple moves, recursive instantiations of Plan 3
in this library are stacked in the agent’s intention structure, until the recursion
stop condition is reached in Plan 2.

In order to be able to call a planner we need to modify the portion of the
plan library responsible for the agent’s movement (i.e. the last two plans) into
a declarative description yielding the following plan library:

+location(waste, X)
: location(robot, X) &

location(bin, Y)
<- pick(waste);

+goal_conj ([location(robot,Y)]);
drop(waste).

+!move(X,Y)
: location(robot,X) &

not X = Y &
not location(car,Y) &

adjacent(X,Y)
<- -location(robot,X);

+location(robot,Y);
move(X,Y).

The new plan library includes a description of the preconditions and effects of the
move(X,Y) action. This is the action that is to be handled by the planning process,
and the agent derives the sequence of movements required to reach the waste
bin by desiring to be in the position of the bin. In order to specify this desire,
the plan to dispose of the waste includes a step to add the desire +goal_conj([

location(robot,Y)]), which causes the planner to be invoked. Here, the atomic

125

action to move(X,Y) is also included in the plan specification so that when !move

(X,Y) is invoked, the agent not only updates its beliefs about the movement, but
actually moves in the environment. Unlike the original plan library, however,
the agent can plan its movements before starting to execute them, and will only
start carrying out these actions if it has found the entire sequence of movements
required to reach the desired location.

5 Related Work

Work on the declarative nature of goals as a means to achieve greater auton-
omy for an agent is being pursued by a number of researchers. Here we consider
the approaches to declarative goals currently being investigated, namely those
of Hübner et al. (Jason) [11], van Riemsdijk et al. [12] and Meneguzzi et al.

[13]. There are multiple interpretations as to the requirements and properties of
declarative goals for an agent interpreter, and while some models consist of an
agent that performs planning from first principles whenever a goal is selected,
others argue that the only crucial aspect of an architecture that handles declar-
ative goals is the specification of target world states that can be reached using
the traditional procedural approach.

5.1 Jason

A notion of declarative goals for AgentSpeak that takes advantage of the context
part of the plans (representing the moment an implicit goal becomes relevant)
was defined by Hübner et al. [11], and implemented in Jason [9]. More specifically,
plans that share the same triggering condition refer to the achievement of the
same goal, so that a goal can only be considered impossible for a given agent if all
plans with the same triggering condition have been attempted and failed. In this
extended AgentSpeak interpreter, these plans are modified so that the last action
of every plan consists of testing for the fulfilment of the declared goal, and then
the plans are grouped and executed in sequence until one finishes successfully.
A plan only succeeds if at the end of its execution an agent can verify that its
intended goal has been achieved. This approach retains the explicitly procedural
approach to agent operation (a pre-compiled plan library describing sequences
of steps that the agent can perform to accomplish its goals), only adding a more
robust layer for handling plan-failure.

5.2 X-BDI

X-BDI [14] was the first agent model that includes a recognisably declarative goal
semantics. An X-BDI agent is defined by a set of beliefs, a set of desires, and a
set of operators that manipulate the world. The agent refines the set of desires
through various constraints on the viability of each desire until it generates a set
containing the highest priority desires that are possible and mutually consistent.
During this process the agent selects the operators that will be applied to the

126

world in order to fulfil the selected desires in a process that is analogous to
planning. The key aspect of X-BDI is that desires express world-states rather
than triggers for the execution of pre-defined plans, leaving the composition of
plans from world-changing operators to the agent interpreter.

5.3 Formalisations of Declarative Goals

Several researchers have worked on a family of declarative agent languages and
investigated possible semantics for these languages [15, 12]. All of these languages
have in common the notion that an agent is defined in terms of beliefs, goals
and capabilities, which are interpreted in such a way as to select and apply
capabilities in order to fulfil an agent’s goals. These approaches have evolved
from GOAL [15] into a declarative semantics very similar to that of X-BDI [14],
in which an agent’s desires express world-states which must be achieved by the
agent selection and application of capabilities.

5.4 Discussion

In addition to the models described in this section, variations of the way an agent
interpreter handles declarative goals have also been described. These approaches
advocate the use of fast propositional planners to verify the existence of a se-
quence of actions that fulfil a declarative goal [13]. The planning process in this
setting allows the consideration of the entire set of available operators to create
new plans, providing a degree of flexibility to the agent’s behaviour. Our research
has not dealt with multi-agent issues so far, but the approach taken by Coo-BDI
[16] to share plans between agents might provide an interesting extension to our
architecture. The exchange of new plans might offset the sometimes significant
time needed to create plans from scratch by allowing agents to request the help
of other planning-capable agents.

The approaches in Sections 5.1 and 5.3 deal with important aspects of declar-
ative goals in agent systems, such as the verification of accomplishment and log-
ical properties of such systems. However, support for declarative goals in Jason
still requires a designer to specify high-level plans, while the formalisms described
by van Riemsdijk lack any analysis of the practicality of their implementation.
Though X-BDI implements a truly declarative agent specification language, the
language is very far from mainstream acceptance, and the underlying logic sys-
tem used in X-BDI suffers from a stream of efficiency problems.

6 Concluding Remarks

In this paper we have demonstrated how the addition of a planning component
can augment the capabilities of a plan library-based agent. In order to exploit
the planning capability, the agent uses a special planning action to create high-
level plans by composing specially designed plans within an agent’s plan library.
This assumes no modification in the AgentSpeak language, and allows an agent

127

to be defined so that built-in plans can still be defined for common tasks, while
allowing for a degree of flexibility for the agent to act in unforseen situations.
Our system can also be viewed as a way to extend the declarative goal semantics
proposed by Hübner et al. [11], in that it allows an agent designer to specify only
desired world-states and basic capabilities, relying on the planning component
to form plans at runtime. Even though the idea of translating BDI states into
STRIPS problems is not new [13], our idea of an encapsulated planning action
allows the usage of any other planning formalism sufficiently compatible with
the BDI model.

Recent approaches to the programming of agents based on declarative goals
rely on mechanisms of plan selection and verification. However, we argue that
a declarative model of agent programming must include not only constructs for
verifying the accomplishment of an explicit world-state (which is an important
capability in any declarative agent), but also a way in which an agent designer
can specify only the world states the agent has to achieve and the description
of atomic operators allowing an underlying engine to derive plans at runtime.
In this paper we argue that propositional planning can provide one such engine,
drawing on agent descriptions that include atomic actions and desired states,
and leaving the derivation of actual plans for the agent at runtime.

The addition of a planning component to a BDI agent model has been re-
cently revisited by other researchers, especially by Sardina et al. [17] and Walczak
et al. [18]. The former describes a BDI programming language that incorporates
Hierarchical Task Networks (HTN) planning by exploring the similarities be-
tween these two formalisms, but this approach fails to address the fact that
designers must specify rules for HTN planning in the same way in which they
would decompose multiple plans in a traditional BDI agent. The latter approach
is based on a specially adapted planner to support the agent, preventing the
model from taking advantage of novel approaches to planning.

The prototype implemented for the evaluation of the extensions described
in this paper has been empirically tested for a number of small problems, but,
further testing and refinement of this prototype is still required, for instance,
to evaluate how interactions between the addition of new plans will affect the
existing plan library. The system can also be improved in a number of ways
in order to better exploit the underlying planner component. For example, the
effort spent on planning can be moderated by a quantitative model of control,
so that an agent can decide to spend a set amount of computational effort into
the planning process before it concludes the goal is not worth pursuing. This
could be implemented by changing the definition of goal conj(Goals) to include
a representation of motivational model goal conj(Goals, Motivation), which can
be used to tune the planner and set hard limits to the amount of planning effort
devoted to achieving that specific desire.

As indicated above, the key contribution of this paper is a technique that
allows procedural agent architectures to use state-space (and hence, declarative)
planners to augment flexibility at runtime, thus leveraging advances in planning
algorithms. It is important to point out that previous efforts exploring the use

128

of HTN planning do not change the essential procedural mode of reasoning of
the corresponding agent architectures, as argued by Sardina et al. [17]. State-
space planners operate on a declarative description of the desired goal state, and
our conversion process effectively allows a designer to use an AgentSpeak-like
language in a declarative way, something which previous planning architectures
do not allow. Finally, we are currently working on addressing some of the limi-
tations we have identified regarding the generation and execution of concurrent
plans for multiagent scenarios.

Acknowledgments. The first author is supported by Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior (CAPES) of the Brazilian Ministry of
Education. We would like to thank Rafael Bordini and Jomi Hübner for their
support regarding the programming of AgentSpeak agents in their Jason im-
plementation, as well as the discussion of many issues regarding planning and
declarative goals.

References

1. d’Inverno, M., Luck, M.: Engineering AgentSpeak(L): A formal computational
model. Journal of Logic and Computation 8(3) (1998) 233–260

2. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In de Velde, W.V., Perram, J.W., eds.: Proceedings of the Seventh European Work-
shop on Modelling Autonomous Agents in a Multi-Agent World. Volume 1038 of
LNCS. Springer, Eindhoven, The Netherlands (1996) 42–55

3. van Riemsdijk, B., van der Hoek, W., Meyer, J.J.C.: Agent programming in dribble:
from beliefs to goals using plans. In: AAMAS ’03: Proceedings of the Second
International Joint Conference on Autonomous Agents and Multiagent Systems,
Melbourne, Australia, ACM Press (2003) 393–400

4. Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E.: Multi-Agent Pro-
gramming: Languages, Platforms and Applications. Volume 15 of Multiagent Sys-
tems, Artificial Societies, and Simulated Organizations. Springer (2005)

5. Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In: Proceedings of
the First International Conference on Multiagent Systems ICMAS-95, San Fran-
cisco (1995) 312–319

6. Georgeff, M.P., Ingrand, F.F.: Monitoring and control of spacecraft systems us-
ing procedural reasoning. In: Proceedings of the Space Operations and Robotics
Workshop, Houston, USA (1989)

7. Fox, M., Long, D.: PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains. Journal of Artificial Intelligence Research 20 (2003) 61–124

8. Fikes, R., Nilsson, N.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2(3-4) (1971) 189–208

9. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the golden fleece of agent-
oriented programming. In Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni,
A.E., eds.: Multi-Agent Programming: Languages, Platforms and Applications.
Springer (2005) 3–37

10. Bylander, T.: The computational complexity of propositional STRIPS planning.
Artificial Intelligence 69(1-2) (1994) 165–204

129

11. Hübner, J., Bordini, R.H., Wooldridge, M.: Programming declarative goals us-
ing plan patterns. In: Proceedings of the 2006 Workshop on Declarative Agent
Languages and Technologies. (2006)

12. van Riemsdijk, M.B., Dastani, M., Meyer, J.J.C.: Semantics of declarative goals
in agent programming. In: AAMAS ’05: Proceedings of the Fourth International
Joint Conference on Autonomous Agents and Multiagent Systems, Utrecht, The
Netherlands, ACM Press (2005) 133–140

13. Meneguzzi, F.R., Zorzo, A.F., Móra, M.D.C.: Propositional planning in BDI
agents. In: Proceedings of the 2004 ACM Symposium on Applied Computing,
Nicosia, Cyprus, ACM Press (2004) 58–63

14. Móra, M.d.C., Lopes, J.G.P., Vicari, R.M., Coelho, H.: BDI models and systems:
Bridging the gap. In: Intelligent Agents V, Agent Theories, Architectures, and Lan-
guages, Fifth International Workshop, ATAL ’98. Volume 1555 of LNCS. Springer,
Paris, France (1999) 11–27

15. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.J.C.: Agent program-
ming with declarative goals. In: Intelligent Agents VII. Agent Theories Architec-
tures and Languages, 7th International Workshop, ATAL 2000. Volume 1986 of
LNCS. Springer, Boston, USA (2001) 228–243

16. Ancona, D., Mascardi, V.: Coo-BDI: Extending the BDI Model with Cooperativity.
In Leite, J.A., Omicini, A., Sterling, L., Torroni, P., eds.: Proceedings of the First
Declarative Agent Languages and Technologies Workshop (DALT’03), Springer-
Verlag (2004) 109–134 LNAI 2990.

17. Sardina, S., de Silva, L., Padgham, L.: Hierarchical Planning in BDI Agent Pro-
gramming Languages: A Formal Approach. In: AAMAS ’06: Proceedings of the
Fifth International Joint Conference on Autonomous Agents and Multiagent Sys-
tems, Hakodate, Japan, ACM Press (2006) 1001–1008

18. Walczak, A., Braubach, L., Pokahr, A., Lamersdorf, W.: Augmenting BDI Agents
with Deliberative Planning Techniques. In: The Fifth International Workshop on
Programming Multiagent Systems (PROMAS-2006). (2006)

130

Modelling Agents’ Choices in Temporal Linear Logic

Duc Q. Pham, James Harland, and Michael Winikoff

School of Computer Science and Information Technology
RMIT University

GPO Box 2476V, Melbourne, 3001, Australia
{qupham,jah,winikoff}@cs.rmit.edu.au

Abstract. Decision-making is a fundamental feature of agent systems. Agents
need to respond to requests from other agents, to react to environmental changes,
and to prioritize and pursue their goals. Such decisions can have ongoingeffects,
as the future behavior of an agent may be heavily dependent on choices made ear-
lier. In this paper we investigate a formal framework for modeling the choices of
an agent. In particular, we show how the use of a choices calculus basedon tem-
poral linear logiccan be used to capture distribution, temporal and dependency
aspects of choices.

1 Introduction

Agents are increasingly becoming accepted as a suitable paradigm for conceptualizing,
designing, and implementing the sorts of distributed complex dynamic systems that can
be found in a range of domains, such as telecommunications, banking, crisis manage-
ment, and business transactions [1].

A fundamental theme in agent systems isdecision-making. Agents have to decide
which resources to use, which actions to perform, which goals and commitments to
attend to next etc. in order to fulfill their design objectives as well as to respond to
other agents in an open and dynamic operating environment. Very often, agents are
confronted with choices. Decisions on choices made now may very well affect future
achievement of goals or other threads of interactions. In a sense, agents have to make
informed and wise decisions on choices. This can be thought of as how to enable agents
to act on choices, subject to any possible constraints and with a global consideration to
future advantages.

Moreover, in open and dynamic environments, changes from the environment occur
frequently and often are unpredictable, which can hinder accomplishment of agents’
goals. How agents cope with changes remains an open and challenging problem. On
the one hand, agents should be enabled to reason about the current changes and act
flexibly. On the other hand, agents should be equipped with a reasoning ability to best
predict changes and act accordingly.

These characteristics are desirable for a single agent. However, no agent is an is-
land, and decisions of an agent are not made in isolation, butin the context of decisions
made by other agents, as part of interactions between the agents. Thus, the challenging
setting here is that in negotiation and other forms of agent interaction, decision mak-
ing is distributed. In particular, key challenges in modeling decision makingin agent
interaction are:

131

– Distribution: choices are distributed among agents, and changes from the envi-
ronments affect each agent in different ways. How to capturethese choices, their
dependencies and the effects of different strategies for their decisions as well as to
reason about the global changes at the individual level in agent systems are impor-
tant.

– Time:decision making by agents occurs in time. So do the choices tobe made and
the changes in the environment. Then it is necessary to deal with them in a time
dependent manner.

– Dependencies:i.e. capturing that certain decisions depend on other decisions.

The central importance of decision-making in agent systemsmakes it natural to use
logic as a basis for a formal framework for agents. This meansthat we can model the
current state of an agent as a collection of formulas, and theconsequences of a particular
action on a given state can be explored via standard reasoning methods. In this paper,
we explore how to extend this approach to include decisions as well as actions. Hence,
for logic-based agents, whose reasoning and decision making is based on a declarative
logical formalism, it is important to model the decision making on choices as well as
on the environment changes.

This paper tackles the modeling of agent decisions in a way that allows distribution,
dependencies, and time of choices to be captured. We discussspecific desirable prop-
erties of a formal model of agent choices (section 3) and thenpresent a formalchoice
calculus(section 4). We then consider an application of the choice calculus. Specifi-
cally, by ensuring that the choices are made in multiple different formulas consistently,
the choice calculus allows us to turn an interaction concerning a goal into multiple con-
current and distributed threads of interaction on its subgoals. This is also based on a
mechanism to split a formulaΓ which containsA into two formulas, one of which
containsA, the other contains the results of “subtracting”A from Γ .

In [2], it was shown howTemporal Linear Logic(TLL) can be used to model agent
interactions to achieve flexibility, particularly due to its ability to model resources and
choices, as well as temporal constraints. This paper can be seen as further developing
this line of work to include explicit considerations of the choices of each agent and the
strategies of dealing with them.

The remainder of this paper is structured as follows. Section 2 briefly reviews tem-
poral linear logic, and the agent interaction framework. The following two sections mo-
tivate and present the choice calculus. Section 5 presents an application of the choice
calculus to distributed concurrent problem solving. We then conclude in section 6.

2 Background

2.1 Temporal Linear Logic

Temporal Linear Logic (TLL) [3] is the result of introducing temporal logic into lin-
ear logic. While linear logic provides advantages to modeling and reasoning about re-
sources, temporal logic addresses the description and reasoning about the changes of
truth values of logic expressions over time [4]. Hence, TLL is resource-conscious as
well as dealing with time.

132

In particular, linear logic [5] is well-known for modeling resources as well as up-
dating processes. It has been considered in agent systems tosupport agent negotiation
and planning by means of proof search [6, 7].

In multi-agent systems, utilization of resources and resource production and con-
sumption processes are of fundamental consideration. In such logic as classical or tem-
poral logic, however, a direct mapping of resources onto formulas is troublesome. If we
model resources like A as “one dollar” and B as “a chocolate bar”, thenA,A ⇒ B in
classical logic is read as “given one dollar we can get a chocolate bar”. The problem
is thatA - one dollar - remains afterward. In order to resolve such resource - formula
mapping issues, Girard proposed treating formulas as resources and hence they will be
used exactly once in derivations.

As a result of such constraint, classical conjunction (and)and disjunction (or) are
recast over different uses of contexts - multiplicative as combining and additive as shar-
ing to come up with four connectives. In particular, A⊗ A (multiplicative conjunction)
means that one has two As at the same time, which is different fromA∧A = A. Hence,
⊗ allows a natural expression of proportion. AO B (multiplicative disjunction) means
that if not A then B or vice versa but not both A and B.

The ability to specify choices via the additive connectivesis also a particularly
useful feature of linear logic. If we consider formulas on the left hand side of⊢ as
what are provided (program formulas), then AN B (additive conjunction) stands for
one’s own choice, either of A or B but not both. A⊕ B (additive disjunction) stands
for the possibility of either A or B, but we don’t know which. In other words, while
N refers to inner determinism,⊕ refers to inner non-determinism. Hence,N can be
used to model an agent’s own choices (internal choices) whereas⊕ can be used to
modelindeterminate possibilities(or external choices) in the environment. The duality
betweenN and⊕, being respectively an internal and an external choice, is awell-known
feature of linear logic [5].

Due to the duality between formulas on two sides of⊢, formulas on the right side
can be regarded as goal formulas, i.e. what to be derived. A goal A N B means that
after deriving this goal, one can choose betweenA or B. In order to have this ability to
choose, one must prepare for both cases - being able to deriveA and deriveB. On the
other hand, a goalA ⊕ B means that it is not determined which goal betweenA and
B. Hence, one can choose to derive either of them. In terms of deriving goals,N and⊕
among goal formulas act as introducing indeterminate possibilities and introducing an
internal choice respectively.

The temporal operators used are, (next),@ (anytime), and3 (sometime) [3]. For-
mulas with no temporal operators can be considered as being available only at present.
Adding , to a formula A, i.e.,A, means that A can be used only at the next time
point and exactly once. Similarly,@A means that A can be used at any time (exactly
once, since it is linear).3A means that A can be at some time (also exactly once).
Whilst the temporal operators have their standard meanings,the notions of internal and
external choice can be applied here as well, in that in that@A means thatA can be used
at any time (but exactly once) with the choice of time being internal to the agent, and
3A means thatA can be used at some time with the choice of time being externalto
the agent.

133

The semantics of TLL connectives and operators as above are given via its sequent
calculus, since we take a proof-theoretic approach in modeling agent interaction.

2.2 A Model for Agent Interaction

In [8], an interaction modeling framework which uses TLL as ameans of specifying in-
teraction protocols is used as TLL is natural to model resources, internal choices and in-
determinate possibilities with respect to time. Various concepts such as resource, capa-
bility and commitment/goal are encoded in TLL. The symmetrybetween a formula and
its negation in TLL is explored as a way to model resources andcommitments/goals.
In particular, formulas to be located on the left hand side of⊢ can be regarded as for-
mulas in supply (resources) while formulas to be located on the right hand side of⊢ as
formulas in demand (goals).

A unit of consumableresourcesis then modeled as a proposition in linear logic
and can be preceded by temporal operators to address time dependency. For example,
listening to music after (exactly) three time points is denoted as, , ,music. A
shorthand is,3music.

The capabilitiesof agents refer to producing, consuming, relocating and chang-
ing ownership of resources. Capabilities are represented by describing the state before
and after performing them. The general representation formis Γ ⊸ ∆, in which Γ

describes the conditions before and∆ describes the conditions after. The linear im-
plication⊸ ensures that the conditions before will be transformed intothe conditions
after.

To take an example, consider a capability of producing musicusing music player
to play music files. There are two options available at the agent’s own choice, one is
using mp3 player to play mp3 files, the other is using CD playerto play CD files. The
encoding is:

@[[(mp3 ⊗ mp3 player) ⊕ (CD ⊗ CD player)] ⊸ music]1

where@ means that the capability can be applied at any time,⊕ indicates an internal
choice (notN, as it is located on the left hand side of⊸).

3 Desiderata for a Choice Calculus

Unpredictable changes in the environment can be regarded asa set of possibilities which
the agents do not know the outcomes. There are several strategies for dealing with
unpredictable changes. A safe approach is to prepare for allthe possible scenarios, at
the cost of extra reservation and/or consumption of resources. Other approaches are
more risky in which agents make a closest possible prediction of which possibilities to
occur and act accordingly. If the predictions are correct, agents achieve the goals with
resource efficiency. Here, there is a trade-off between resource efficiency and safety.

1 In the modeling, formulas representing media players are consumed away, which does not
reflect the persistence of physical objects. However, we focus on modeling how resources are
utilized, not their physical existences and hence simplify the encoding since it is not necessary
to have the media players retained for later use.

134

In contrast to indeterminate possibilities, internal choices are what agents can de-
cide by themselves to their own advantage. Decisions on internal choices can be based
on what is best for the agents’ current and local needs. However, it is desirable that they
consider internal choices in the context of other internal choices that have been or will
be made. This requires an ability to make an informed decision on internal choices. If
we put information for decision making on internal choices as constraints associated
with those internal choices then what required is a modelingof internal choices with
their associated constraints such that agents can reason about them and decide accord-
ingly. Also, in such a distributed environment as multi-agent systems, such a modeling
should take into account as constraints the dependencies among internal choices.

In addition, as agents act in time, decisions can be made precisely at the required
time or can be well prepared in advance. When to decide and act on internal choices
should be at the agents’ autonomy. The advantages of deciding internal choices in ad-
vance can be seen in an example as resolving a goal of,3(A⊕B). This goal involves
an internal choice (⊕) to be determined at the third next time point (,3). If the agent
decides now to choose A and commits to making the same decision at the third next
time point, then from now, the agent only has to focus a goal of,3A. This also means
that resources used for other goals can be guaranteed to be exclusive from the require-
ments of,3(A ⊕ B), which might not be the case otherwise when,3(A ⊕ B) is
decided as,3B at the third next time point.

The following example illustrates various desirable strategies of agents.

Peter intends to organize an outdoor party in two days’ time. He has a goal of
providing music at the party. He has a CD burner and a blank CD onto which he can
burn music in CD or mp3 format. His friend, John, can help by bringing a CD player
or an mp3 player to the party but Peter will not know which until tomorrow. David then
informs Peter that he would like to borrow Peter’s CD burner today.

In this situation, to Peter, there is an internal choice on the music format and an
indeterminate possibility regarding the player. We consider two strategies. If Peter does
not let David borrow the CD burner, he can wait until tomorrowto find out what kind
of player John will bring to the party and choose the music format accordingly at that
time. Otherwise, he can not delay burning the CD until tomorrow and so has to make
a prediction on which player John will bring to the party and then decide the internal
choice on the music format early (now), burn the CD and let David borrow the CD
burner. The question is then how to make such strategies available for Peter to explore.

One solution is using formalisms such as logic to enable agent reasoning on those
internal choices and indeterminate possibilities. LinearLogic is highly suitable here,
because it allows us to distinguish between internal determinism and non-determinism.
Temporallinear logic (TLL) further puts such modeling of them in a time dependent
context. Indeed, internal choices and external choices (inner non-determinism) have
been modeled previously using Linear Logic [6, 9] and TLL [8,2].

An important observation is that although (temporal) linear logic captures the no-
tions of internal choice and indeterminate possibility, its sequent rules constrain agents
to specific strategies and make each decision on internal choices in isolation (subject
only to local information). Specifically, consider the following rules of standard sequent

135

calculus:
Γ,A ⊢ ∆ Γ,B ⊢ ∆

Γ,A ⊕ B ⊢ ∆

Γ ⊢ A,∆ Γ ⊢ B,∆

Γ ⊢ A N B,∆

Γ,A ⊢ ∆

Γ,A N B ⊢ ∆

Γ,B ⊢ ∆

Γ,A N B ⊢ ∆

Γ ⊢ A,∆

Γ ⊢ A ⊕ B,∆

Γ ⊢ B,∆

Γ ⊢ A ⊕ B,∆

where for the formulas on the left hand side of⊢, N remarks internal choice and⊕
remarks indeterminate possibility and vice versa for the formulas on the right hand side
of ⊢.

The first set of rules require agents to prepare for both outcomes of the indeterminate
possibility. Though this strategy is safe, it demands extraand unnecessary resources and
actions. Moreover, this strategy does not take into accountan agents’ prediction of the
environment or whether it is willing to take risks.

More importantly, according to the last set of rules, the free (internal) choice agents
have is determinedlocally, i.e. without a global awareness. Hence decisions on these
free choices may not be optimal. In particular, if the formulaANB (on the left hand side
of ⊢) is not used in any proof now, without this kind of local information, the decision
on this internal choice becomes unguided. Hence, if there isfurther information about
possible future goals or about dependencies on other internal choices, this information
should be considered and the agent should be enabled to decide the internal choice
accordingly. Moreover, the rule does not allow agents to explore the strategy of deciding
internal choices in advance.

Referring to our running example, in the first strategy, Peter does not let David
borrow the CD burner, and so Peter can then find a proof using standard sequent rules
to achieve the goal of providing music at the party two days later. However, in the
second strategy, the search using standard TLL sequent calculus for a proof of the goal
fails as it requires to have music in both formats (mp3 and CD)so as to be matched
with the future possibility of the media player.

Hence, in this paper, we investigate how TLL not only allows us to model the differ-
ence between internal choice and indeterminate possibility with respect to time, but also
allows us to capturedependenciesamong internal choices, constraints on how internal
choices can be made as well as predictions and decisions of indeterminate possibil-
ities. Such constraints may also reflect global consideration of other goals and other
threads of interaction. We further consider strategies that can be used to deal with inter-
nal choices with respect to time, reflecting how cautious theagents are and whether the
agents deal with them in advance. However, we will not discuss how agents can predict
the environment outcomes correctly.

4 A Choice Calculus

If we assume that the order of operants is unchanged throughout the process of formulas
manipulation, in other words, ignoring the commutative property of⊕ andN, then the
decision on choices and indeterminate possibilities can beregarded as selecting the left
hand side or the right hand side of the connective. For simplicity, we shall refer to
both internal choices (choices with inner determinism) andindeterminate possibilities
(choices with non-determinism) simply as choices.

136

As the decision on a choice is revealed at the time point associated with the choice,
before that time point, the decision of the choice is unknown. We encode the decisions
on choices using TLL constants.

We need to consider the base values for choice decisions, howto specify choices of
the same decisions, choices that are dependent on other choices and also how standard
sequent calculus rules are modified to reflect decisions on choices.

We use the notation
Nx

→֒ or
⊕x

→֒ to indicate the result of the decision making ofNx

and⊕x respectively. The subscript indicates the ID of the connective. The base values
for their decision can be encoded by TLL constantsL, andR. For example, the result of
the decision on the choice inA N B is L if A results fromA N B and isR if B results.
For internal choices, their decisions can be regarded as variables as agents can decide

the assignment of values. Formally, we write⊢
N1

→֒⊸ L or
N1

→֒⊢ L to denote that the left
subformula ofN1 was selected.

Decisions on indeterminate possibilities could also be represented as variables.
However, we will explicitly represent that agents can not decide the outcomes of in-
determinate possibilities and that the decisions on them (by external factors) have not
been made by using the formL ⊕ R (or L N R). For example, given the indetermi-
nate possibility,n(A ⊕x B), we represent their decision by,n(L ⊕x R), wheren

is the time point associated with the choice and⊕x is the same connective as that in
,n(A ⊕x B).

By modeling the choices explicitly, we can state constraints between them. For ex-

ample, if two choices,
Nx

→֒ and
Ny

→֒, need to be made consistently — either both right or

both left — then this can be stated as
Nx

→֒=
Ny

→֒ or, in logic encoding,
Nx

→֒⊢
Ny

→֒,
Nx

→֒⊣
Ny

→֒.
More generally, we can state that a given choiceNx should depend on a combination
of other choices or some external constraints. We usecondLx (respectivelycondRx) to
denote the condition that should hold for the left (respectively right) side of the choice
to be taken. Clearly,condLx andcondRx should always be mutually exclusive. These
conditions, in their presence, completely determine the results of the choices’ decisions.
In their absence, the internal choices become truly free choices and we are getting back
to the normal case as of standard sequent rules. These conditions are encoded as TLL
sequents so that sub-conditions (sequents) can be found viaproof search.

Given a formulaΓ which contains a sub-formulaA, we can compress the sequence
of decisions that need to be made in order to obtainA fromΓ into a singlerepresentative
choice. For example, ifΓ = B N1 ,a(,b(A ⊕2 C) N3 D) then, in order to obtain
A from Γ we need to decide on the right side ofN1, then,a time units later, decide on
the left side ofN3, andb time units after that, have the left side of⊕2 be selected by
the environment (an indeterminate possibility). Formally, the notion of representative is
defined as below.

Definition 1. A representative choiceNr with respect to a formula A in a compound
program formula (respectively goal formula)Γ is a choice,xA Nr ,y1 (respectively
,xA ⊕r ,y1) whose decision isL if A is chosen fromΓ and isR otherwise, where
x, x ≥ 0 is the time associated with A inΓ andy, y ≥ 0 is is the time point associated
with 1.

137

Note that at the time of representing the choiceNr (or⊕r), the value ofy is not known.
It will be known after all the decisions of internal choices and indeterminate possibilities
in Γ are revealed.

In the previous example, such a sequence of decisions on internal choices and inde-
terminate possibilities onΓ to obtainA can be captured by the sequent:

⊢ (
N1

→֒⊸ R) ⊗ ,a(
N3

→֒⊸ L) ⊗ ,a+b(
⊕2

→֒⊸ L).
This is the determining condition forA to be obtained fromΓ . Observe that we can
compressΓ into a representative choice forA of the form,a+bA Nr ,y) such that
the choiceNr is decided left if,a+bA results fromF and is decided right otherwise.
The condition above then corresponds tocondLr of Nr. As being mutually exclusive,
condRr is captured as:

⊢ (
N1

→֒⊸ L) ⊕ ,a(
N3

→֒⊸ R) ⊕ ,a+b(
⊕2

→֒⊸ R).
We now come to determine sequent calculus rules for various strategies on choices.

4.1 Extended Sequent Calculus

We take a general assumption that regarding indeterminate possibilities, the environ-
ment (or external factors) determines the outcomes of the possibilities at their associ-
ated times. For example, given the indeterminate possibility ,4(A⊕B), after four time
points, the environment determines the possibility such that,4(A⊕B) becomes,4A

or ,4B and only at this time, the outcome becomes known to agents. This assumption
is based on the inherent modeling of TLL that formulas denoted at a specific time point
last only in that time point.

The standard sequent calculus rules for indeterminate possibilities, which demand
that agents prepare for all possibilities, correspond to a safe approach. However, if the
agent chooses a strategy of risk taking, it then makes predictions of the outcome of
the indeterminate possibility and follows the search path corresponding to the predicted
one. The sequent rules for such a strategy are (⊢cc means⊢ in choice calculus context):

Γ ⊢cc F,∆ [L ⊢ L Nn R]

Γ ⊢cc F Nn G,∆

Γ ⊢cc G,∆ [R ⊢ L Nn R]

Γ ⊢cc F Nn G,∆

Γ, F ⊢cc ∆ [L ⊕n R ⊢ L]

Γ, F ⊕n G ⊢cc ∆

Γ,G ⊢cc ∆ [L ⊕n R ⊢ R]

Γ, F ⊕n G ⊢cc ∆

where formulas in square brackets are the conditions (predictions) and those outside
brackets are the main formulas. The conditions are evaluated independently from the
main formulas and at the time associated with the indeterminate possibility, when the
environment reveals the outcomes. If there is a proof of the main formulas, and if the
conditions are also satisfied, then the proof search is successful. If the conditions can
not be satisfied even though there is a proof among the main formulas, then the search
for proof fails on this branch associated with the conditions.

Moreover, if the agent further decides upon its prediction of an indeterminate pos-
sibility before the time associated with the possibility, it also can bring out the possibil-
ity’s outcome earlier in the search:

Γ ⊢cc ,xF,∆ [L ⊢ L Nn R]

Γ ⊢cc ,x(F Nn G),∆

Γ ⊢cc ,xG,∆ [R ⊢ L Nn R]

Γ ⊢cc ,x(F Nn G),∆

138

Γ,,xF ⊢cc ∆ [L ⊕n R ⊢ L]

Γ,,x(F ⊕n G) ⊢cc ∆

Γ,,xG ⊢cc ∆ [L ⊕n R ⊢ R]

Γ,,x(F ⊕n G) ⊢cc ∆

Internal choices are decided by the owner agent at the time associated with the choice,
subject to any constraints (condLn or condRn) imposed on them. The following se-
quent rules reflect that:

Γ, F ⊢cc ∆ (⊢ condLn)

Γ, F Nn G ⊢cc ∆

Γ,G ⊢cc ∆ (⊢ condRn)

Γ, F Nn G ⊢cc ∆

Γ ⊢cc F,∆ (⊢ condLn)

Γ ⊢cc F ⊕n G,∆

Γ ⊢cc G,∆ (⊢ condRn)

Γ ⊢cc F ⊕n G,∆

wherecondLn andcondRn are conditions imposed on the internal choicen for the
choice to be decided left or right. These conditions may or may not be present.

Moreover, if the agent is to decide the choice priorly, it canbring out the choice’s
outcome earlier in the search:

Γ,,xF ⊢cc ∆ (⊢ condLn)

Γ,,x(F Nn G) ⊢cc ∆

Γ,,xG ⊢cc ,x∆ (⊢ condRn)

Γ,,x(F Nn G) ⊢cc ,x∆

Γ ⊢cc ,xF,∆ (⊢ condLn)

Γ ⊢cc ,x(F ⊕n G),∆

Γ ⊢cc G,,x∆ (⊢ condRn)

Γ ⊢cc ,x(F ⊕n G),∆

These above sequent rules, together with standard TLL sequent rules, form thechoice
calculus.

Considering our running example, recall that if Peter is to let David borrow the CD
burner now, he needs to decide on the music format (the internal choiceN1) now. This
involves making a prediction on the player that John will possibly bring. For instance,
Peter predicts that John will provide an mp3 player (i.e.L⊕3 R ⊢ L). Using the choice
calculus, this is captured by the following inference:

Γ,,2mp3 player ⊢cc ,2music [L ⊕3 R ⊢ L]

Γ,,(,mp3 player ⊕3 ,CD player) ⊢cc ,2music

Based on this prediction, agent Peter decides early on the choice of music formatN1

(mp3 format now) and burns the blank CD accordingly. By taking this risk on the pre-
diction, agent Peter then successfully obtains a proof of,2music (given below). If the
predictionL ⊕3 R ⊢ L is provable at the next two days, then the goal is achieved.

For the purposes of presenting the proof we make the following abbreviations.
Let B (for “Burn”) denote the formula

@[Blank CD ⊗ CD Burner ⊸ CD Burner ⊗ (@mp3 N1 @CD)]
i.e. one can convert a blank CD to either an mp3 or music formatCD (internal choice
of which).

Let P (for “Play”) denote the formula
@[[(mp3 ⊗ mp3 player) ⊕2 (CD ⊗ CD player)] ⊸ music]

i.e. at any time, either using mp3 player on mp3 music or CD player on a CD, one can
produce music (the choice⊕2 here is internal).

139

Let R (for “Resources”) denote the formula
@Blank CD ⊗ @CD Burner.

Let J (for “John”, i.e. the music player that John will provide) denote the formula
,[,mp3 player ⊕3 ,CD player]

i.e. either an mp3 player or CD player will be provided after two days.⊕3 is an inde-
terminate possibility to Peter and will be revealed tomorrow.

We also abbreviatemusic to m, andplayer to p, e.g.mp3 player becomesmp3p,
then we have the following proof of,2music where some inferences combine a num-
ber of rule applications, and where (for space reasons) we have left out giving the CD
burner to David at the rule marked “⊗,@,⊸”. As there is no imposed condition forN1

(condL1 = 1), it is omitted in the proof.

mp3 ⊢ mp3 mp3p ⊢ mp3p

mp3, mp3p ⊢ mp3 ⊗ mp3p
⊗

mp3, mp3p ⊢ (mp3 ⊗ mp3p) ⊕2 (cd ⊗ cdp)
⊕2

@mp3, P, ,2mp3p ⊢ ,2m
,2, @, ⊸

@mp3 N1 @cd, P, ,2mp3p ⊢ ,2m
N1

R, P, B, ,2mp3p ⊢ ,2m
⊗, @, ⊸

[L ⊕3 R ⊢ L]

R, F, P, B ⊢ ,2m
,⊕3

In this example we begin (bottom-most inference) by making an “in-advance” decision
of the choice⊕3, specifically we predict that John will provide an MP3 player. We
then use standard TLL sequent rules to burn an MP3 format CD. When the time comes
to make a decision for⊕2 we can select to use the MP3 player to produce music.
As can be seen from the example, internal choices and indeterminate possibilities are
properly modeled with respect to time. Moreover, several strategies are enabled at agent
Peter due to the use of choice calculus. If Peter is to take a safe approach, he should
delay deciding the music format until tomorrow and ignores David’s request. If Peter is
willing to take risks, he can predict the indeterminate possibility of which player John
will bring to the party and act accordingly. Peter can also decide the choice on music
early so as to lend David the CD burner.

Hence, these sequent calculus rules are in place to equip agents with various strate-
gies for reasoning to deal with indeterminate possibilities and internal choices. These
strategies make it more flexible to deal with changes and handle exceptions with global
awareness and dependencies among choices. In the next section, we explore an appli-
cation of such modeling of choices and their coping strategies, especially dependencies
among choices, to distributed problem solving in a flexible interaction modeling TLL
framework [8]. But first, we show that proofs using the additional rules are, in a sense,
equivalent to proofs in the original TLL sequent calculus.

The intuition behind the soundness and completeness properties of proofs using
these additional rules with respect to proofs which only useoriginal TLL sequent cal-
culus is that eventually indeterminate possibilities likebetweenA andB will be re-
vealed as the outcome turns out to be one of the two. The soundness and completeness
properties are then evaluated and proved in this context. Inparticular, we introduce the
concept of a revealed proof, which is a proof in which all the internal choices and possi-
bilities are revealed and replaced by the actual respectiveoutcomes. As a result of such

140

replacements, all of the additional rules added in our choice calculus collapse to se-
quents, leaving only the standard TLL rules. Note that the proofs using choice calculus
require that all the assumptions will turn out to be correct.Clearly, if the assumptions
turn out to be unfounded, then the proofs are not valid.

Definition 2. Therevealed proof corresponding to a given proof ofΓ ⊢ ∆ is the proof
resulting from replacing all occurrences of choices with the actual outcomes of these
choices. That is, any formulaF ⊕ G corresponding to an indeterminate possibility is
replaced by eitherF or G, corresponding to the decision that was made by the environ-
ment; and any formulaF NG corresponding to an internal choice is replaced by either
F or G, corresponding to the choice that was made by the agent.

Theorem 1 (Soundness).
A revealed proof of a proof using the TLL sequent rules augmented with the addi-

tional choice calculus rules is a valid proof under standardTLL sequent calculus rules.
Proof sketch: All of the additional rules introduced by the choice calculus disappear
when the proof is made into a revealed proof. For example, consider the rules (on the
left) which are replaced in a revealed proof, whereF N G is replaced byF , by the
identities on the right.

Γ ⊢cc F,∆ [L ⊢ L Nn R]

Γ ⊢cc F Nn G,∆

Γ ⊢ F,∆

Γ ⊢ F,∆

Γ ⊢cc ,xF,∆ [L ⊢ L Nn R]

Γ ⊢cc ,x(F Nn G),∆

Γ ⊢ ,xF,∆

Γ ⊢ ,xF,∆

Γ, F ⊢cc ∆

Γ,F Nn G ⊢cc ∆

Γ,F ⊢ ∆

Γ,F ⊢ ∆

As a result of this theorem, it then becomes that a proof underchoice calculus is sound
if the assumptions (predictions) it relies on are correct.

Moreover, as choice calculus also contains standard TLL sequent calculus rules, the
completeness property holds trivially.

Theorem 2 (Completeness).A proof using standard TLL sequent calculus rules is also
a proof under choice calculus.

5 Splitting a Formula

Interaction between agents is often necessary for the achievement of their goals. In the
above example with Peter and John, if Peter had a CD player of his own, he would
not need to interact with John in order to have music at the party. In general, it will be
necessary for an agent to co-ordinate interaction with manydifferent agents, the precise
number and identity of which may not be known in advance. In order to achieve this, in
this section we investigate a mechanism for partial achievement of a goal. In particular,
this is a process of decomposing a given TLL goal formula intoconcurrent subgoals.

141

For example, assume that Peter now has the additional goal ofhaving either Chinese
or Thai food at the party. Deriving which goal - Chinese food (abbreviated asC) or Thai
food (abbreviated asT) - is an internal choice (⊕3). Peter’s goal is then

CD Burner ⊗ ,2[music ⊗ (C ⊕3 T)]
However, Peter can not provide food, but his friends, Ming and Chaeng, can make

Chinese food and Thai food respectively. Hence, this goal can not be fulfilled by Peter
alone but involves interaction with John and David as above and also Ming or Chaeng.
If this goal is sent as a request to any one of them, none would be able to fulfill the goal
in its entirety. Hence, it is important that the goal can be split up and achieved partially
via concurrent threads of interaction. In this case, we would split this into the sub-goal
CD Burner ⊗ ,2music, which is processed as above, the sub-goal,2C ⊕4 ,21,
which is sent as a request to Ming, and the sub-goal,21 ⊕4 ,2T , which is sent as a
request to Chaeng. The choice⊕4 will be later determined consistently with⊕3.

Hence we need to be able to split a goal into sub-goals, and to keep track of which
parts have been achieved. In particular, it is useful to isolate a sub-goal from the rest of
the goal. We do this by taking the overall formulaΓ and separating from it a particular
sub-formulaA. We show how this can be done on the fragment which contains the
connectives⊗,⊕,N,,.

The split-ups of a formulaΓ with respect to the formula A thatΓ contains are the
two formulasΓ̂ − A andÂ, which are defined below.

Γ̂ − A is the formulaΓ which has undergone a single removal or substitution of
(one occurrence of) A by 1 while the rest is kept unchanged. Specifically, where A
resides in the structure ofΓ , the following mapping is applied to A and its directly
connected formulas∆. ∆ is any TLL formula andx ≥ 0.

1. A 7→ 1
2. ,xA 7→ ,x1
3. ,xA op ∆ 7→ ,x1 op ∆ for op ∈ {⊗,N,⊕}

We also apply the equivalence1 ⊗ ∆ ≡ ∆, so that,xA ⊗ ∆ 7→ ∆.
The formulaÂ is determined recursively according to structure ofΓ as below, by

examining the structure ofΓ :

– If Γ 1 = ,xA, thenÂ1 = ,xA

– If Γ 1 = ,xA opm ∆, thenÂ1 = ,xA opm 1

– If Γn = ,xΓn−1, thenÂn = ,xÂ(n−1)

– If Γn = Γn−1 opn ∆, thenÂn = Ân−1 opn 1

whereΓ i,∆ are formulas of the fragment andΓ i contains A.opn, opm ∈ {⊗,N,⊕}
andn,m are the IDs. We also again apply the equivalence1 ⊗ ∆ ≡ ∆, so that when
Γ 1 = ,xA ⊗ ∆, thenÂ1 = ,xA.

Another view is that̂A is obtained by recursively replacing formulas that rest on the
other side of connective (to the formula that contains A) by 1if the connective is⊕ or
N and remove them if the connective is⊗.

It can be seen from the formulation of̂Γ − A and Â that there are requirements
of choice dependencies among the split ups. Indeed, all the corresponding choices and

142

possibilities in them must be consistent. In particular, decisions made on the corre-
sponding choices and possibilities in̂Γ − A, andÂ should be the same as those that
would have been made on the corresponding ones inΓ . Indeed, if A is ever resulted
from Γ as a result of a sequence of choices and possibilities inΓ being decided, then
those decisions also makêA become A.

As an example, we return to our running example and consider Peter’s goal formula.
The goalG = CD Burner ⊗ ,2[music ⊗ (C ⊕3 T)] can be split into:
[Ĝ − C] = CD Burner ⊗ ,2[music ⊗ (1 ⊕3 T)] andĈ = ,2(C ⊕3 1).

Subsequently,̂G − C can be split into:
[̂G − C − T] = CD Burner ⊗ ,2music andT̂ of Ĝ − C is ,2(1 ⊕3 T).

Indeed,Â can result in,xA or ,y1, x, y ≥ 0, as a result of having all the choices
in Â decided. In the following theorem, we show thatÂ can be compressed into a
representative choice (of A in̂A) of the form,xA Nr ,y1 if Â is a program formula,
or ,xA ⊕r ,y1 if Â is a goal formula.

Theorem 3. Â ⊢cc ,xANr ,y1 if Â is a program formula, and̂A ⊢cc ,x(A⊕r 1) if
Â is a goal formula, wherex, x ≥ 0 is the time associated with the occurrence of A inÂ

and for some value ofy ≥ 0. Additionally,,xANr ,y1 ⊢cc Â and,x(A⊕r 1) ⊢cc Â

(proof omitted).
Proof: by induction on the structure of̂A. We highlight a few cases of the proof for
Â ⊢cc ,xA Nr ,y1. The others are similar.

Base step: Â = A, hencex = 0, condLr = 1. The choice is decided left and we
haveA ⊢cc A.

Induction step: Assume the hypothesis is true forn, so thatÂn ⊢cc ,nA Nn ,y1
is provable, which means the following (upper) sequents arealso provable:

cAn ⊢cc ,nA [⊢ condLn]

cAn ⊢cc ,nA Nn ,y1
Nn

cAn ⊢cc ,y1 [⊢ condRn]

cAn ⊢cc ,nA Nn ,y1
Nn

We show the case for̂An+1 = ÂnN11 below, the others,Ân, andÂn⊕21 are similar.
In this case, we need to provêAn N1 1 ⊢cc ,nA Nn+1 ,y1, wherecondLn+1 =

condLn ⊗ (
N1

→֒⊸ L); and condRn+1 = condRn ⊕ (
N1

→֒⊸ R)

cAn ⊢cc ,nA [⊢ condLn]

cAn N1 1 ⊢cc ,nA [⊢ condLn ⊗ (
N1
→֒⊸ L)]

N1

cAn N1 1 ⊢cc ,nA Nn+1 ,y1
Nn+1

cAn ⊢cc ,y1 [⊢ condRn]

1 ⊢cc 1(y = 0)

1 ⊢cc ,y1

cAn N1 1 ⊢cc ,y1 [⊢ condRn ⊕ (
N1
→֒⊸ R)]

N1

cAn N1 1 ⊢cc ,nA Nn+1 ,y1
Nn+1

where the value of y is assigned as appropriately in the proof. Both cases of the decision
onN1 are proved.

Applying this theorem to the above example, we can obtain further results:
Ĉ = ,2(C ⊕3 1) = ,2C ⊕4 ,21,

T̂ (of Ĝ − C) = ,2(1 ⊕3 T) = ,21 ⊕4 ,2T , where⊕4 is the representative choice
and is of the same decision as⊕3 at the next two time points.

The equivalence relationship betweenΓ and its split ups,̂Γ − A andÂ, is estab-
lished by the following theorems.

143

Theorem 4. Â, Γ̂ − A ⊢cc Γ .
(From the multiplicative conjunction of the split ups ofΓ via A — Â, Γ̂ − A — we can
deriveΓ).
Proof (sketch): by induction on the structure ofΓ . We highlight a few cases of the proof.
The others are similar.

Base step:
Case Γ = A⊕1 ∆. We need to proveA⊕1 1, 1⊕1 ∆ ⊢cc A⊕1 ∆. Both choices for⊕1

fulfill this, as below.

A ⊢cc A

A, 1 ⊢cc A

A ⊕1 1, 1 ⊕1 ∆ ⊢cc A ⊕1 ∆
⊕R

∆ ⊢cc ∆

1, ∆ ⊢cc ∆

A ⊕1 1, 1 ⊕1 ∆ ⊢cc A ⊕1 ∆
⊕R

Induction step: Assume the hypothesis is true forn, so thatÂn, ̂[Γ − A]n ⊢cc Γn.
We need to prove that this holds forn + 1. We show the case forΓn+1 = Γn N1 ∆
below; the others (,xΓn, Γn ⊗ ∆ andΓn ⊕2 ∆) are all similar. In this case we have

̂[Γ − A]n+1 = ̂[Γ − A]n N1 ∆, andÂn+1 = Ân N1 1.

[R ⊢ L N1 R]

cAn, ̂[Γ − A]n ⊢cc Γ n [R ⊢ L N1 R]

cAn N1 1, ̂[Γ − A]n N1 ∆ ⊢cc Γ n N1 ∆
NR

[L ⊢ L N1 R]

∆ ⊢cc ∆ [L ⊢ L N1 R]

1, ∆ ⊢cc ∆ [L ⊢ L N1 R]

cAn N1 1, ̂[Γ − A]n N1 ∆ ⊢cc Γ n N1 ∆
NR

Hence, both cases of the decision onN1 are proved.

One further point to note is the use of⊥. In our modeling context,⊥ does not
produce any resource nor consume any other resource. We makean assumption that⊥
can be removed from agents’ states of resources. This is formalized as a new axiom:

Γ,⊥ �cc Γ

where�cc denotes⊢cc under this assumption. Based on this assumption, we derive

Theorem 5. Γ, Â⊥, Â �cc Γ̂ − A ⊗ Â.

That is, fromΓ and its split up on A,̂A, as well asÂ⊥ with the same structure as of̂A,
we can derive a multiplicative conjunction of its split upsÂ andΓ̂ − A.

Proof (sketch): by induction on the structure ofΓ , whereÂ⊥ is obtained fromÂ by
replacing the single copy of A byA⊥. The proof can be obtained similarly from the
proof of theorem 4 and is omitted here for space reason.

Hence,Γ, Â⊥, Â �cc Γ̂ − A ⊗ Â ⊢cc Γ .
As Â, Â⊥ ⊢cc ⊥, in terms of resources, the concurrent presence of bothÂ and its

consumptionÂ⊥ does not consume any resource nor produce any. Hence, the presence
of both does not make any effect and hence can be ignored. In terms of resources, using
Γ , one can derivêΓ − A ⊗ Â.

Theorems 4 and 5 lay important foundation of splitting up resources and goals in
agent interaction. Particularly, if a goalΓ contains a formula A that the current interac-
tion can derive, thenΓ can be split intoÂ andΓ̂ − A. If A is ever chosen inΓ , then the

144

goalÂ becomes a goal of A which can be achieved immediately by the current interac-
tion. Similarly, if a resourceΓ , which contains A, is available for use in an interaction
that only uses A than the resourceΓ can be split into two resourceŝΓ − A andÂ, of
which Â can be used right away if A is ever chosen inΓ .

Returning to our example, the above theorems can be applied so that Peter can
turn its goal into concurrent sub-goalsCD Burner ⊗,2music⊗ (,2C ⊕4 ,21)⊗
(,21⊕4 ,2T), where the decision on⊕4 now is the same as that of⊕3 at the next two
days. Therefore, agent Peter can achieve the two sub-goalsCD Burner ⊗ ,2music

as above and sends the subgoal(,2C ⊕4 ,21) as a request to Ming and the subgoal
(,21 ⊕4 ,2T) as a request to Chaeng.

If Ming makes Chinese food, then,2C [
⊕4

→֒⊢ L] is resulted. As the choice⊕4 is
decided left, the other subgoal(,21 ⊕4 ,2T) becomes,21, which is also readily

achievable. If Ming does not make Chinese food, there is a proof of ,21, where[
⊕4

→֒⊢
R]. This decision on the choice⊕4 (choosing right) makes the subgoal(,21⊕4 ,2T)
becomes,2T . Thus, if all the subgoals are successful, this mechanism ensures that
only one kind of food is made.

Hence, such splitting up of formulas allows Peter to concurrently and partially
achieve its goal via different threads of interaction.

6 Discussion and Conclusion

The paper addresses issues in agents’ decision making when it comes to agents’ choices
and indeterminate possibilities in a distributed environment. A modeling of internal
choices and indeterminate possibilities as well as their decisions is presented via choice
calculus. The modeling supports decisions across time, decisions based on predictions
of changes in the environment, as well as dependencies and distribution among choices
with respect to time.

Temporal linear logic has been used in our modeling due to itsnatural role in sup-
porting agent planning in concurrent and resource-conscious agent systems. Its limita-
tion that the standard sequent calculus rules only provide astrategy of being safe by
always taking all future options into account is overcome. Indeed, our choice calculus
provides agents with various strategies at each decision making point when it comes to
internal choices and future possibilities. In particular,agents can make predictions of
future events and/or can decide early future decisions and act accordingly. The combina-
tions of these strategies reflect how cautious the agents arewhen dealing future changes,
how agents strike the balance between safety and resource efficiency, how agents match
up their plans with the future via predictions and how agentsshape their future actions
by early decisions. Moreover, as these strategies add flexibility into agents’ decision
making to deal with choices and changes, this is a step forward in providing flexible
agent interaction.

Furthermore, the ability to deal with dependencies among distributed choices opens
up another area for enhancing the quality of agents’ decision making. Indeed, consider-
ation of other or future choices or events can be specified as constraints to be satisfied on
current choices. Hence, decision making by agents on choices is not carried out locally
but with global and temporal awareness, and in a distributedmanner.

145

Our second contribution is deriving a mechanism for agent reasoning to divide tasks
into multiple subtasks which can be attempted concurrentlyin a distributed manner. In
other words, rather than having human designers specify thedistribution of concurrent
tasks for agents, we can have agents construct a distributedmodel of task resolution
by themselves. The mechanism is based on transferring innerdependencies into outer
dependencies among distributed formulas. This is well suited to the nature of systems
composed of multiple independent agents interacting with each other.

The mechanism also supports the notion of arbitrary partialachievement of goals
and partial utilization of resources. This removes the needto pre-specify subgoals for
various threads of interaction and lets agents work out the partial achievement of the
goals and what remain. Interaction then can take place at agents’ discretion, so long
as it is beneficial to agents’ goals. This further provides agents with an autonomy in
interacting in open systems.

Our further work includes extending the choice calculus to other temporal opera-
tors like@ and3. We will also explore variations of the splitting up of formulas which
directly encode various strategies of agents in dealing with choices. Furthermore, de-
riving an implementation platform using choice calculus and splitting up mechanisms
for such a modeling of flexible agent interaction using TLL as[2] is also considered.
Finally, there is scope for investigating the relationshipbetween our approach for mod-
eling choices, and the use of Computational tree logic (CTL).

Acknowledgments

We would like to acknowledge the support of the Australian Research Council under
grant DP0663147 and also thank the reviewers for their helpful comments.

References

1. Munroe, S., Miller, T., Belecheanu, R.A., Pechoucek, M., McBurney, P., Luck, M.: Cross-
ing the agent technology chasm: Experiences and challenges in commercial applications of
agents. Knowledge Engineering Review21(4) (2006)

2. Pham, D.Q., Harland, J.: Temporal linear logic as a basis for flexible agent interactions. In:
AAMAS ’07: Proceedings of the Sixth International Joint Conference onAutonomous Agents
and Multiagent Systems. (2007)

3. Hirai, T.: Temporal Linear Logic and Its Applications. PhD thesis, Graduate School of Science
and Technology, Kobe University (2000)

4. Emerson, E.A.: Temporal and modal logic. Handbook of Theoretical Computer ScienceB,
Chapter 16 (1990) 995–1072

5. Girard, J.Y.: Linear logic. Theoretical Computer Science50 (1987) 1–102
6. Harland, J., Winikoff, M.: Agent negotiation as proof search in linear logic. In: AAMAS ’02:

Proceedings of the first international joint conference on Autonomousagents and multiagent
systems, New York, NY, USA, ACM Press (2002) 938–939

7. Küngas, P.: Linear logic, partial deduction and cooperative problem solving. In Leite, J.A.,
Omicini, A., Sterling, L., Torroni, P., eds.: Declarative Agent Languagesand Technologies,
First International Workshop, DALT 2003. Melbourne, Victoria, July 15th, 2003. Workshop
Notes. (2003) 97–112

146

8. Pham, D.Q., Harland, J.: Flexible agent protocols via temporal and resource-based reasoning.
In: AAMAS ’06: Proceedings of the fifth international joint conferenceon Autonomous agents
and multiagent systems, New York, NY, USA, ACM Press (2006) 235–237

9. Küngas, P., Matskin, M.: Symbolic negotiation with linear logic. In: CLIMA IV: the Fourth
International Workshop on Computational Logic in Multi-Agent Systems, New York, NY,
USA (January 2004)

A Sequent Calculus for TLL (extract)

p ⊢ p
axiom

Γ ⊢ A, ∆ Γ ′, A ⊢ Γ ′

Γ, Γ ′ ⊢ ∆, ∆′
cut

Γ, A, B, Γ ′ ⊢ ∆

Γ, B, A, Γ ′ ⊢ ∆
EL

Γ ⊢ ∆, A, B, ∆′

Γ ⊢ ∆, B, A, ∆′
ER

Γ ⊢ ∆
Γ, 1 ⊢ ∆

1L
⊢ 1

1R

⊥ ⊢
⊥L

Γ ⊢ ∆
Γ ⊢ ⊥, ∆

⊥R
Γ, 0 ⊢ ∆

0L
Γ ⊢ ⊤, ∆

⊤R

Γ ⊢ A, ∆

Γ, A⊥ ⊢ ∆
−⊥L

Γ, A ⊢ ∆

Γ ⊢ A⊥, ∆
−⊥R

Γ, A, B ⊢ ∆

Γ, A ⊗ B ⊢ ∆
⊗L

Γ ⊢ A, ∆ Γ ′ ⊢ B, ∆′

Γ, Γ ′ ⊢ A ⊗ B, ∆, ∆′
⊗R

Γ, A ⊢ ∆

Γ, A N B ⊢ ∆
NL

Γ, B ⊢ ∆

Γ, A N B ⊢ ∆
NL

Γ ⊢ A, ∆ Γ ⊢ B, ∆

Γ ⊢ A N B, ∆
NR

Γ, A ⊢ ∆ Γ, B ⊢ ∆

Γ, A ⊕ B ⊢ ∆
⊕L

Γ ⊢ A, ∆

Γ ⊢ A ⊕ B, ∆
⊕R

Γ ⊢ B, ∆

Γ ⊢ A ⊕ B, ∆
⊕R

Γ, A ⊢ ∆ Γ ′, B ⊢ ∆′

Γ, Γ ′, A O B ⊢ ∆, ∆′
O L

Γ ⊢ A, B, ∆

Γ ⊢ A O B, ∆
O R

Γ ⊢ A, ∆ Γ ′, B ⊢ ∆′

Γ, Γ ′, A ⊸ B ⊢ ∆, ∆′
⊸ L

Γ, A ⊢ B, ∆

Γ ⊢ A ⊸ B, ∆
⊸ R

Γ, A[t/x] ⊢ ∆

Γ,∀x.A ⊢ ∆
∀L

Γ ⊢ A[y/x], ∆

Γ ⊢ ∀x.A, ∆
∀R

Γ, A[y/x] ⊢ ∆

Γ, ∃x.A ⊢ ∆
∃L

Γ ⊢ A[t/x], ∆

Γ ⊢ ∃x.A, ∆
∃R

A, Γ ⊢ ∆

@A, Γ ⊢ ∆
@L

!Γ, @∆ ⊢ A, 3Λ, ?Σ

!Γ, @∆ ⊢ @A, 3Λ, ?Σ
@R

!Γ, @∆, A ⊢ 3Λ, ?Σ

!Γ, @∆, 3A ⊢ 3Λ, ?Σ
3L

Γ ⊢ A.∆
Γ ⊢ 3A, ∆

3R

!Γ, @∆, Ξ ⊢ A, Φ, 3Λ, ?Π

!Γ, @∆, ,Ξ ⊢ ,A, , Φ, 3Λ, ?Π
,

!Γ, @∆, Ξ, A ⊢ Φ, 3Λ, ?Π

!Γ, @∆, ,Ξ, , A ⊢ , Φ, 3Λ, ?Π
,

!Γ, @∆, Ξ ⊢ Φ, 3Λ, ?Π

!Γ, @∆, ,Ξ ⊢ , Φ, 3Λ, ?Π
, → ,

147

Extending Propositional Logic with Concrete Domains
in Multi-issue Bilateral Negotiation

Azzurra Ragone1, Tommaso Di Noia1, Eugenio Di Sciascio1, Francesco M. Donini2

1 SisInfLab, Politecnico di Bari, Bari, Italy
{a.ragone,t.dinoia,disciascio}@poliba.it

2 Universit̀a della Tuscia , Viterbo, Italy
donini@unitus.it

Abstract. We present a novel approach to knowledge-based automated one-shot
multi-issue bilateral negotiation handling, in a homogeneous setting, both numer-
ical features and non-numerical ones. The framework makes possible to formally
represent typical situations in real e-marketplaces such as “if I spend more than
20000e for a sedan then I want a navigator pack included” where both nu-
merical (price) and non-numerical (sedan, navigator pack) issuescoexist. To this
aim we introduceP(N), a propositional logic extended with concrete domains,
which allows to: model relations among issues (both numerical and not numeri-
cal ones) via logical entailment, differently from well-known approaches that de-
scribe issues as uncorrelated; represent buyer’s request, seller’s supply and their
respective preferences as formulas endowed with a formal semantics. By model-
ing preferences as formulas it is hence possible to assign a utility value alsoto a
bundle of issues, which is obviously more realistic than the trivial sum of utili-
ties assigned to single elements in the bundle itself. We illustrate the theoretical
framework, the logical language, the one-shot negotiation protocol weadopt, and
show we are able to compute Pareto-efficient outcomes, using a mediatorto solve
a multi objective optimization problem.

1 Introduction

Bilateral negotiation between agents is a challenging problem, which finds applications
in a number of different scenarios, each one with its own peculiarities and issues. In
this work we focus on automated negotiation in e-marketplaces [30]. Clearly, in such
domains we do not simply deal with undifferentiated products (commodities as oil, ce-
ment, etc.) or stocks, where only price, time or quantity have to be taken into account.
In fact also other features have to be considered during the negotiation process. When
a potential buyer browses an automobile e-marketplace, shelooks for a car fulfilling
her needs and/or wishes, so not only the price is important, but also warranty or de-
livery time, as well as look, model, comfort and so on. In suchdomains it is harder
to model not only the negotiation process, but also the request/offer descriptions, as
well as finding the best suitable agreement. Recently, therehas been a growing interest
toward multi-issue negotiation, also motivated by the ideathat richer and expressive
descriptions of demand and supply can boost e-marketplaces(seee.g., [29] for a rea-
sonable set of motivations) but –to the best of our knowledge– also in recent literature,

148

issues are usually described as uncorrelated terms, without considering any underly-
ing semantics. Notable exceptions are discussed in Section8. In our approach we use
knowledge representation in two ways: (1) exploiting a logic theory to represent rela-
tions among issues and (2) assigning utilities to formulas to represent agents having
preferences over different bundles of issues. For what concerns the former, we intro-
duce a logical theory that allows to represent,e.g., through logical implication, that
a Ferrari is an Italian car (Ferrari ⇒ ItalianMaker) or that an Italian car is
not a German car (ItalianMaker ⇒ ¬GermanMaker). Furthermore we can ex-
press agent preferences over bundle of issues,e.g., the buyer can state she would like to
have a car with navigator pack, where the meaning of navigator pack is in the Theory
(NavigatorPack ⇔ SatelliteAlarm ∧ GPS system). In this case, the utility
assigned to a bundle is obviously not necessarily the sum of utilities assigned to single
elements in the bundle itself. Moreover issues are often inter-dependent: the selection
of one issue depends on the selection made for other issues: in our framework agents
can express conditional preferences asI would like a car with leather seats if its color is
black(ExternalColorBlack ⇒ Leather seats). In this work we introduce an
extended propositional logic,P(N) enriched with concrete domains, which allows –as
it is in the real world– to take into account preferences involving both numerical features
and not numerical ones,e.g., the seller can state that if you want a car with a GPS sys-
tem you have to wait at least one month: (GPS system ⇒ deliverytime ≥ 31)
as well as preferences can involve only numerical ones:e.g., the buyer can state that she
can accept to pay more than 25000e for a sedan only if there is more than a two years
warranty(price > 25000 ⇒ year warranty > 2). Contributions of this paper
include: the framework for automated multi-issue bilateral negotiation, the logical lan-
guage to represent existing relations between issues and preferences as formulas, which
is able to handle both numerical features and not numerical ones as correlated issues
w.r.t. a logical Theory and the one-shot protocol we adopt, which allows to compute
Pareto-efficient agreements, exploiting a mediator that solves a multi objective opti-
mization problem. The rest of the paper is structured as follows: next section discusses
the scenario and the assumptions we make; then we illustratethe modeling of issues
through our logical language and the negotiation mechanism.Section 4 presents the
multi-issue bilateral negotiation problem, Section 5 describes the computation of utili-
ties for numerical fetures. Section 6 shows how to compute Pareto-efficient agreement
and Section 7 summarizes the bargaining process. Related work and discussion close
the paper.

2 Negotiation Scenario

We start introducing the negotiation mechanism and the assumptions characterizing our
framework. So, in accordance with [25], we define: theSpace of possible deals, the
Negotiation Protocoland theNegotiation Strategy. For what concerns theSpace of pos-
sible deals, since we solve a multi objective optimization problem, possible deals are all
the solutions of the problem that satisfy the constraints, even if they do not maximize
the objective function (the so calledfeasible region[11]). TheNegotiation Protocolwe
adopt is aone-shotprotocol with the presence of a mediator. Differently from the clas-

149

sicalSingle-shotbargaining [23], where one player proposes a deal and the other player
may only accept or refuse it [2], in our framework we hypothesize the presence of an
electronic mediator, that may automatically explore the negotiation space and discover
Pareto-efficient agreements to be proposed to both parties.Such parties may then ac-
cept or refuse them. We recall that, basically, two different approaches to automated
negotiation exist:centralizedanddistributedones. In the first ones, agents elicit their
preferences and then a mediator, or some central entity, selects the most suitable deal
based on them. In the latter ones, agents negotiate through various negotiation steps
reaching the final deal by means of intermediate deals, without any external help [5].
Distributed approaches do not allow the presence of a mediator because – as stated in
[14, p.25] – agents cannot agree on any entity, so they do not want to disclose their pref-
erences to a third party, that, missing any relevant information, could not help agents.
In dynamic system a predefined conflict resolution cannot be allowed, so the presence
of a mediator is discouraged. On the other hand the presence of a mediator can be
extremely useful in designing negotiation mechanisms and in practical important com-
merce settings. As stated in [17], negotiation mechanisms often involve the presence
of a mediator3, which collects information from bargainers and exploit them in order
to propose an efficient negotiation outcome. In Section 8 some approaches adopting a
centralized approach are described. Although the main target of an agent is reaching
a satisfying agreement, this alone it is not enough, since knowing if this agreement is
also Pareto-efficient is a matter that cannot be left out. It is fundamental to assesshow
hard is to find Pareto-efficient agreements and check whether a given agreement is also
Pareto-efficient. The presence of a trusted third party can help the parties to reach a
Pareto-efficient agreement. As pointed out in [24, p.311], usually, bargainers may not
want to disclose their preferences or utilities to the otherparty, but they can be more
willing to reveal these information to a trusted – automated– mediator, helping nego-
tiating parties to achieve efficient and equitable outcomes. The presence of a mediator
and the one-shot protocol is an incentive for the two partiesto reveal the true prefer-
ences, because they can trust in the mediator and they have a single possibility to reach
the agreement with that counterpart. Therefore in our framework we propose a one-
shot protocol with the intervention of amediatorwith a proactive behavior: it suggests
to each participant afair Pareto-efficient agreement. For what concernsstrategy, the
players reveal their preferences to the mediator and then, once it has computed a solu-
tion, they can accept or refuse the agreement proposed to them; they refuse if they think
possible to reach a better agreement looking for another partner, or another shot, or for
a different set of bidding rules. Notice that here we do not consider the influence of the
outside optionsin the negotiation strategy [18].

3 Representation of issues

We divide issues involved in a negotiation in two categories. Some issues may express
properties that aretrue or false, like, e.g., in an automotive domain,ItalianMaker,

3 The most well known –and running– example of mediator is eBay site, where a mediator
receives and validates bids, as well as presenting the current highestbid and finally determining
the auction winner [17].

150

or AlarmSystem. We represent them as propositional atomsA1, A2, . . . from a finite
setA. Other issues involve numerical features likedeliverytime, orprice repre-
sented as variablesf1, f2, . . ., each one taking values in its specific domainDf1

, Df2
, . . .,

such as[0, 90] (days) fordeliverytime, or [1, 000, 20,000] (euros), forprice. The
variables representing numerical features are always constrained by comparing them to
some constant, likeprice < 20,000, ordeliverytime ≥ 30, and such constraints
can be combined into complex propositional requirements – also involving proposi-
tional issues –e.g., ItalianMaker∧(price ≤ 25,000)∧(deliverytime < 30)
(representing a car made in Italy, costing no more than 25,000 euros, delivered in less
than 30 days), orAlarmSystem⇒ (deliverytime > 30) (expressing the seller’s
requirement “if you want an alarm system mounted you’ll haveto wait more than one
month”). We now give precise definitions for the above intuitions, borrowing from a
previous formalization of so-calledconcrete domains[1] from Knowledge Representa-
tion languages.

Definition 1 (Concrete Domains, [1]).A concrete domainD consists of a finite set
∆c(D) of numerical values, and a set of predicatesC(D) expressing numerical con-
straints onD.

For our numerical features, predicates will always be the binary operatorsC(D) =
{≥,≤, >,<,=, 6=}, whose second argument is a constant in∆c(D)4. We note that in
some scenarios other concrete domains could be possible,e.g., colors as RGB vectors
in an agricultural market, when looking for or selling fruits.

Once we have defined a concrete domain and constraints, we canformally extend
propositional logic in order to handle numerical features.We call this languageP(N).

Definition 2 (The languageP(N)). Let A be a set of propositional atoms, andF a
set of pairs〈f,Df 〉 each made of a feature name and an associated concrete domain
Df , and letk be a value inDf . Then the following formulas are inP(N):

1. every atomA ∈ A is a formula inP(N)
2. if 〈f,Df 〉 ∈ F , k ∈ Df , andc ∈ {≥,≤, >,<,=, 6=} then(fck) is a formula in

P(N)
3. if ψ andϕ are formulas inP(N) then¬ψ, ψ ∧ ϕ are formulas inP(N). We also

useψ ∨ ϕ as an abbreviation for¬(¬ψ ∧ ¬ϕ), ψ ⇒ ϕ as an abbreviation for
¬ψ ∨ ϕ, andψ ⇔ ϕ as an abbreviation for(ψ ⇒ ϕ) ∧ (ϕ⇒ ψ).

In order to define a formal semantics ofP(N) formulas, we consider interpretation
functionsI that map propositional atoms into{true, false}, feature names into values
in their domain, and assign propositional values to numerical constraints and composite
formulas according to the intended semantics.

Definition 3 (Interpretation and models).An interpretationI for P(N) is a function
(denoted as a superscript·I on its argument) that maps each atom inA into a truth
valueAI ∈ {true, false}, each feature namef into a valuefI ∈ Df , and assigns truth
values to formulas as follows:

4 So, strictly speaking,C(D) would be a set of unary predicates with an infix notation,e.g.,
x > 5 is in fact a predicateP>5(x) which is true for all values ofDx greater than 5 and
false otherwise; however, this distinction is not necessary in our formalization.

151

– (fck)I = true iff fIck is true inDf , (fck)I = false otherwise
– (¬ψ)I = true iff ψI = false, (ψ ∧ ϕ)I = true iff bothψI = true andϕI = true,

etc., according to truth tables for propositional connectives.

Given a formulaϕ in P(N), we denote withI |= ϕ the fact thatI assignstrue toϕ. If
I |= ϕ we sayI is a modelfor ϕ, andI is a model for a set of formulas when it is a
model for each formula.
Clearly, an interpretationI is completely defined by the values it assigns to proposi-
tional atoms and numerical features.

Example 1.Let A = {Sedan,GPL} be a set of propositional atoms,Dprice =

{0, . . . , 60000} andDyear warranty = {0, 1, . . . , 5} be two concrete domains for
the featuresprice, year warranty, respectively. A modelI for both formulas:

{

Sedan ∧ (GPL ⇒ (year warranty ≥ 1)),
(price ≤ 5,000)

}

is SedanI = true, GPLI = false, year warrantyI = 0, priceI = 4,500.

Given a set of formulasT in P(N) (representing an ontology), we denotemodelfor T
asI |= T . An ontology issatisfiableif it has a model.T logically implies a formulaϕ,
denoted byT |= ϕ iff ϕ is true in all models ofT . We denote withMT = {I1, . . . ,In},
the set of all models forT , and omit the subscript when no confusion arises.

The following remarks are in order for the concrete domains of our e-marketplace-
oriented scenarios:
1. domains arediscrete, with auniformdiscretization stepǫ. If the seller states he can-

not deliver a car before one month, he is saying that the delivery time will be at least
in one month and one day(deliverytime ≥ 32), whereǫ = 1 (in days).

2. domains arefinite; we denote withmax(Df) andmin(Df) the maximum and min-
imum values of each domainDf .

3. even for the same feature name, concrete domains aremarketplace dependent. Let
us considerprice in two different marketplace scenarios: pizzas and cars. For the
former one, the discretization stepǫ is thee-cent: the price is usually something
like 4.50 or 6.00e. On the other hand, specifying the price of a car we usually have
10,500 or 15,000e; then the discretization step in this case can be fixed as 100e.

The above Point 1 and the propositional composition of numerical constraints imply
that the operators{≥,≤, >,<,=, 6=} can be reduced only to≥,≤.

Definition 4 (successor/predecessor).Given two contiguous elementski andki+1 in
a concrete domainD we denote by:

– s : D → D the successor function:s(ki) = ki+1 = ki + ǫ
– p : D → D the predecessor function:p(ki+1) = ki = ki+1 − ǫ

Clearly, max(Df) has no successor andmin(Df) has no predecessor. Based on the
above introduced notions, we can reduceCm(D) to {≤,≥} using the following trans-
formations:

f = k −→ (f ≤ k) ∧ (f ≥ k) (1)

f 6= k −→ (f < k) ∨ (f > k) (2)

f > k −→ f ≥ (k + ǫ) −→ f ≥ s(k) (3)

f < k −→ f ≤ (k − ǫ) −→ f ≤ p(k) (4)

152

4 Multi Issue Bilateral Negotiation in P(N)

Following [21], we use logic formulas inP(N) to model the buyer’s demand and the
seller’s supply. Relations among issues, both propositional and numerical, are repre-
sented by a setT – for Theory – ofP(N) formulas.

In a typical bilateral negotiation scenario, the issues within both the buyer’s request
and the seller’s offer can be split intostrict requirementsand preferences. Strict re-
quirements represent what the buyer and the seller want to benecessarily satisfied in
order to accept the final agreement – in our framework we call strict requirementsde-
mand/supply. Preferences denote issues they are willing to negotiate on– this is what
we callpreferences.

Example 1 Suppose to have a buyer’s request like “I would like a sedan with leather
seats. Preferably I would like to pay less than 12,000e furthermore I’m willing to
pay up to 15,000e if warranty is greater or equal than 3 years. (I don’t want to pay
more than 17,000e and I don’t want a car with a warranty less than 2 years)”. In this
example we identify:
demand: I want a sedan with leather seats. I don’t want to pay more than 17,000e. I
don’t want a car with a warranty less than 2 years
preferences: Preferably I would like to pay less than 12,000 , furthermore I’m willing
to pay up to 15,000e if warranty is greater or equal than 3 years.

Definition 5 (Demand, Supply, Agreement).Given an ontologyT represented as a
set of formulas inP(N) representing the knowledge on a marketplace domain

– a buyer’sdemandis a formulaβ (for Buyer) inP(N) such thatT ∪ {β} is satisfi-
able.

– a seller’ssupplyis a formulaσ (for Seller) inP(N) such thatT ∪{σ} is satisfiable.
– I is a possible dealbetweenβ andσ iff I |= T ∪ {σ, β}, that is,I is a model for

T , σ, andβ. We also callI anagreement.

The seller and the buyer model inσ andβ the minimal requirements they accept for
the negotiation. On the other hand, if seller and buyer have set strict attributes that are
in conflict with each other, that isMT ∪{σ,β} = ∅, the negotiation ends immediately
because, it is impossible to reach an agreement. If the participants are willing to avoid
theconflict deal[25], and continue the negotiation, it will be necessary they revise their
strict requirements.

In the negotiation process both the buyer and the seller express some preferences
on attributes, or their combination. The utility function is usually defined based on
these preferences. We start defining buyer’s and seller’s preferences and their associated
utilities: uβ for the buyer, anduσ for the seller.

Definition 6 (Preferences).The buyer’snegotiation preferencesB
.
= {β1, . . . ,βk} are

a set of formulas inP(N), each of them representing the subject of a buyer’s prefer-
ence, and a utility functionuβ : B → ℜ+ assigning a utility to each formula, such that
∑

i uβ(βi) = 1.
Analogously, the seller’snegotiation preferencesS

.
= {σ1, . . . ,σh} are a set of formu-

las inP(N), each of them representing the subject of a seller’s preference, and a utility
functionuσ : S → ℜ+ assigning a utility to each formula, such that

∑

j uσ(σj) = 1.

153

Buyer’s request in Example 1 is then formalized as:

β = Sedan ∧ Leather seats ∧ (price ≤ 17, 000) ∧

(year warranty ≥ 2)

β1 = (price ≤ 12, 000)

β2 = (year warranty ≥ 3) ∧ (price ≤ 15, 000)

As usual, both agents’ utilities are normalized to 1 to eliminate outliers, and make them
comparable. Since we assumed that utilities are additive, thepreference utilityis just a
sum of the utilities of preferences satisfied in the agreement.

Definition 7 (Preference Utilities).LetB andS be respectively the buyer’s and seller’s
preferences, andMT ∪{α,β} be their agreements set. Thepreference utilityof an agree-
mentI ∈ MT ∪{α,β} for a buyer and a seller, respectively, are defined as:

uβ,P(N)(I)
.
= Σ{uβ(βi) | I |= βi}

uσ,P(N)(I)
.
= Σ{uσ(σj) | I |= σj}

whereΣ{. . .} stands for the sum of all elements in the set.

Notice that if one agente.g., the buyer, does not specify soft preferences, but only strict
requirements, it is asβ1 = ⊤ anduβ,P(N)(I) = 1, which reflects the fact that an agent
accepts whatever agreement not in conflict with its strict requirements. From the for-
mulas related to Example 1, we note that while considering numerical features, it is still
possible to express strict requirements and preferences onthem. A strict requirement
is surely thereservation value [24]. In Example 1 the buyer expresses two reservation
values, one on price“more than 17,000e” and the other on warranty“less than 2
years”.

Both buyer and seller have their own reservation values on each feature involved in
the negotiation process. It is the maximum (or minimum) value in the range of possi-
ble feature values to reach an agreement,e.g., the maximum price the buyer wants to
pay for a car or the minimum warranty required, as well as, from the seller’s perspec-
tive the minimum price he will accept to sell the car or the minimum delivery time.
Usually, each participant knows its own reservation value and ignores the opponent’s
one. Referring to price and the two corresponding reservation valuesr

β,price and
r
σ,price for the buyer and the seller respectively, if the buyer expressesprice ≤
r
β,price and the sellerprice ≥ r

σ,price, in caser
σ,price ≤ r

β,price we
have[r

σ,price, rβ,price] as aZoneOf PossibleAgreement —ZOPA(price),
otherwise no agreement is possible [24]. More formally, given an agreementI and a
featuref , fI ∈ ZOPA(f) must hold.

Keeping the price example, let us suppose that the maximum price the buyer is
willing to pay is 15,000, while the seller minimum allowableprice is 10,000, then we
can set the two reservation values:r

β,price = 15,000 andr
σ,price = 10,000, so the

agreement pricewill be in the intervalZOPA(price) = [10000, 15000].
Obviously, the reservation value is considered as private information and will not

be revealed to the other party, but will be taken into accountby the mediator when the

154

agreement will be computed. Since setting a reservation value on a numerical feature
is equivalent to set a strict requirement, then, once the buyer and the seller express
their strict requirements, reservation values constraints have to be added to them (see
Example 1).

In order to formally define a Multi-issue Bilateral Negotiation problem inP(N),
the only other elements we still need to introduce are thedisagreement thresholds, also
called disagreement payoffs,tβ , tσ. They are the minimum utility that each agent re-
quires to pursue a deal. Minimum utilities may incorporate an agent’s attitude toward
concluding the transaction, but also overhead costs involved in the transaction itself,
e.g., fixed taxes.

Definition 8 (MBN-P(N)). Given aP(N) set of axiomsT , a demandβ and a set
of buyer’s preferencesB with utility functionuβ,P(N) and a disagreement threshold
tβ , a supplyσ and a set of seller’s preferencesS with utility functionuσ,P(N) and
a disagreement thresholdtσ, a Multi-issueBilateral Negotiation problem (MBN) is
finding a modelI (agreement) such that all the following conditions hold:

I |= T ∪ {σ, β} (5)

uβ,P(N)(I) ≥ tβ (6)

uσ,P(N)(I) ≥ tσ (7)

Observe that not every agreementI is a solution of an MBN, if eitheruσ(I) < tσ
or uβ(I) < tβ . Such an agreement represents a deal which, although satisfying strict
requirements, is not worth the transaction effort. Also notice that, since reservation
values on numerical features are modeled inβ andσ as strict requirements, for each
featuref , the conditionfI ∈ ZOPA(f) always holds by condition (5).

5 Utilities for Numerical Features

Buyer’s/seller’s preferences are used to evaluate how goodis a possible agreement and
to select the best one. On the other hand, also preferences onnumerical features have
to be considered, in order to evaluate agreements and how good an agreement is w.r.t.
another one. Let us explain the idea considering the demand and buyer’s preferences in
Example 1.

Example 2.Referring toβ, β1 andβ2 in Example 1 let us suppose to have the offer5:

σ = Sedan ∧ (price ≥ 15, 000) ∧ (year warranty ≤ 5)

Three possible agreements between the buyer and the seller are, among others:

I1 : {SedanI1 = true,Leather seatsI1 = true,

priceI1 = 17, 000,year warrantyI1 = 3}

I2 : {SedanI2 = true,Leather seatsI2 = true,

5 For illustrative purpose, in this example we consider an offer where onlystrict requirements are
explicitly stated. Of course, in the most general case also the seller can express his preferences.

155

priceI2 = 16, 000,year warrantyI2 = 4}

I3 : {SedanI3 = true,Leather seatsI3 = true,

priceI3 = 15, 000,year warrantyI3 = 5}

Looking at the values of numerical features,I1 is the best agreement from the seller’s
perspective whilstI3 is the best from the buyer’s one. In fact, the buyer the less hepays,
the happier he is and the contrary holds for the seller! The contrary is for the warranty:
the buyer is happier if he gets a greater year warranty. On theother hand,I2 is a good
compromise between buyer’s and seller’s requirements.

The above example highlights the need for utility functionstaking into account the
value of each numerical feature involved in the negotiationprocess. Of course, for each
feature two utility functions are needed; one for the buyer —uβ,f , the other for the
seller —uσ,f . These functions have to satisfy at least the basic properties enumerated
below. For the sake of conciseness, we writeuf when the same property holds both for
uβ,f anduσ,f . :

1. Sinceuf is a utility function, it is normalized to[0 . . . , 1]. Given the pair〈f,Df 〉,
it must be defined over the domainDf .

2. From Example 2 we note the buyer is happier as the price decreases whilst the seller
is sadder. Hence,uf has to be monotonic and wheneveruβ,f increases thenuσ,f

decreases and vice versa.
3. There is no utility for the buyer if the agreed value on price is greater or equal

than its reservation valuer
β,price =17,000 and there is no utility for the seller if

the price is less than or equal tor
σ,price =15,000. Since concrete domains are

finite, for the buyer the best possible price ismin(Dprice) whilst for the seller is
max(Dprice). The contrary holds if we refer to year warranty.

Definition 9 (Feature Utilities). Let 〈f,Df 〉 be a pair made of a feature namef and
a concrete domainDf andrf be a reservation value forf . A feature utility function
uf : Df → [0 . . . , 1] is a monotonic function such that
– if uf monotonically increases then (see Figure 1)

{

uf (v) = 0, v ∈ [min(Df), rf]
uf (max(Df)) = 1

(8)

– if uf monotonically decreases then
{

uf (v) = 0, v ∈ [rf ,max(Df)]
uf (min(Df)) = 1

(9)

Given a buyer and a seller, ifuβ,f increases thenuσ,f decreases and vice versa.

Clearly, the simplest utility functions are the two linear functions:

uf (v) =







1 −
v−min(Df)
rf−min(Df) , v ∈ [min(Df), rf [

0 , v ∈ [rf ,max(Df)]

(10)

156

if it monotonically decreases and

uf (v) =







1 −
v−max(Df)
rf−max(Df) , v ∈ [rf ,max(Df)[

0 , v ∈ [min(Df), rf]

(11)

if it monotonically increases (see Figure 1).

Fig. 1.Linear utility functions

6 Computing Pareto agreements inP(N)

Among all possible agreements that we can compute, given a theoryT as constraint, we
are interested in agreements that are Pareto-efficient andfair for both the participants,
in order to make them equally, and as much as possible, satisfied. We now outline how
an actual solution can be found solving a multi objective optimization problem.

First of all, let {B1, . . . ,Bk, S1, . . . ,Sh} be k + h new propositional atoms, and
let T ′ = T ∪ {Bi ⇔ βi|i = 1, . . . , k} ∪ {Sj ⇔ σj |j = 1, . . . , h} – that is, every
preference inB ∪ S is equivalent to a new atom inT ′.

6.1 Objective functions

Here we define functions to be maximized to find a solution to a multi objective op-
timization problem. In order to formulate functions to be maximized involving prefer-
ences expressed as formulas inP(N), let {b1, . . . ,bk} the (0,1)-variables one-one with
{B1, . . . ,Bk} and similarly{s1, . . . ,sh} for {S1, . . . ,Sh}. The functions representing
respectively buyer’s and seller’s utility over preferences can hence be defined as:

uβ,P(N) =

k
∑

i=1

biuβ(βi) (12)

157

uσ,P(N) =

h
∑

j=1

sjuσ(σj) (13)

As highlighted in Section 5, also utilities over numerical features have to be taken into
account while finding the best solution for both the buyer andthe seller. Hence, for each
featureft involved in the negotiation process we have afeature utility function for the
buyeruβ,ft

and one for the selleruσ,ft
. For instance, if we considerprice and the

linear function in equations (10) and (11) we likely will have:

u
β,price(v) =







1 −
v−max(Dprice)

r
β,price−max(Dprice)

0

u
σ,price(v) =







1 −
v−min(Dprice)

r
σ,price−min(Dprice)

0

6.2 The Multi Objective Optimization Problem

Given the objective functions to be optimized – thefeatureutility functions and the
preferenceutility functions – in order to compute a Pareto agreement wereduce to a
multi objective optimization problem (MOP). The functionsto be optimized are utility
functions both for the buyer and the seller, as we want them equally satisfied.

In addition to the set of functions to maximize (or minimize), in a MOP there are
a set of constrained numerical variables. In our setting, wehave three different sets of
constraints:

1. the (modified) ontologyT ′ —see the beginning of Section 6
2. strict requirementsβ andσ, including reservation values over numerical features
3. conditions (6) and (7) of an MBN on disagreement thresholds tβ andtσ — see the

definition of MBN-P(N) at the end of Section 4

Notice that the ones involving disagreements thresholds are already linear con-
straints. In order to model as linear constraints also the ones described in points 1 and
2 of the above enumeration, proceed as follows.

Clause reduction Obtain a set of clausesT ′′ s.t. each clause contains only one single
numerical constraint andT ′′ is satisfiable iffT ′ ∪ {σ, β} does. In order to have such
clauses, if after using standard transformations in clausal form [16] you find a clause
with two numerical constraintsχ : A ∨ . . . (ficiki) ∨ (fjcjkj) pick up a new proposi-
tional atomA and replaceχ with the set of two clauses6

{

χ1 : A ∨A ∨ . . . ∨ (ficiki),
χ2 : ¬A ∨A ∨ . . . ∨ (fjcjkj)

}

As a final step, for each clause, replace¬(f ≤ k) with (f ≥ s(k)) and¬(f ≥ k) with
(f ≤ p(k)) (see (3) and 4).

6 It is well know that such a transformation preserves logical entailment[27].

158

Example 3.Suppose to have the clause

χ : ItalianMaker ∨ ¬AirConditioning ∨

(year warranty ≥ 3) ∨ ¬(price ≥ 20, 500)

First of all split the clause in the following two

χ1 : A ∨ ItalianMaker ∨ ¬AirConditioning ∨

(year warranty ≥ 3)

χ2 : ¬A ∨ ItalianMaker ∨ ¬AirConditioning ∨

¬(price ≥ 20, 500)

then change the second one in

χ2 : ¬A ∨ ItalianMaker ∨ ¬AirConditioning ∨

(price ≤ 20, 000)

Here we considerǫ = 500 for the concrete domainDprice.

Encoding clauses into linear inequalitiesUse a modified version of well-known en-
coding of clauses into linear inequalities (e.g., [19, p.314]) so that every solution of the
inequalities identifies a model ofT ′′. If we identify true with values in[1 . . .∞] and
false with values in[0 . . . 1[each clause can be rewritten in a corresponding inequality.

– map each propositional atomA occurring in a clauseχ with a (0,1)-variablea. If A
occurs negated inχ then substitute¬A with (1−a), otherwise substituteA with a.

– replace(f ≤ k) with 1
max(Df)−k

(max(Df) − f) and(f ≥ k) with 1
k
f .

After this rewriting it is easy to see that, considering∨ – logicalor – as classical addi-
tion, in order to have a clausetrue the evaluation of the corresponding expression must
be a value grater or equal to 1.

Example 4.If we considermax(Dprice) = 60, 000, continuing Example 3 we have
from χ1 andχ2 the following inequalities respectively:

a + i + (1 − a) +
1

3
year warranty ≥ 1

(1 − a) + i + (1 − a) +
1

60, 000 − 20, 000
(60, 000 − price) ≥ 1

wherea, i, a are (0,1)-variables representing propositional termsA, ItalianMaker
andAirConditioning.

Looking at the example below, it should be clear the reason why only one numerical
constraint is admitted in a clause.

Example 5.Let us transform the following clause without splitting in the two corre-
sponding ones

χ : ItalianMaker ∨ (year warranty ≥ 3) ∨ (price ≤ 20, 000)

159

the corresponding inequality is then

i +
1

3
year warranty+

1

60, 000 − 20, 000
(60, 000 − price) ≥ 1

The interpretation{year warranty = 2,price = 19, 500} is not a model forχ
while the inequality is satisfied.

7 The bargaining process

Summing up, the negotiation process covers the following steps:
Preliminary Phase. The buyer defines strictβ and preferencesB with correspond-

ing utilities uβ(βi) , as well as the thresholdtβ , and similarly the sellerσ, S, uσ(σj)
and tσ. Here we are not interested in how to computetβ ,tσ,uβ(βi) anduσ(σj); we
assume they are determined in advance by means of either direct assignment methods
(Ordering, Simple Assessing or Ratio Comparison) or pairwise comparison methods
(like AHP and Geometric Mean) [20]. Both agents inform the mediator about these
specifications and the theoryT they refer to. Notice that for each feature involved in
the negotiation process, both inβ andσ their respective reservation values are set either
in the formf ≤ rf or in the formf ≥ rf .

Negotiation-Core phase. For eachβi ∈ B the mediator picks up a new propo-
sitional atomBi and adds the axiomB1 ⇔ βi to T , similarly for S. Then, it trans-
forms all the constraints modeled inβ, σ and (just extended)T in the correspond-
ing linear inequalities following the procedures illustrated in Section 6.2 and Section
6.2. Given the preference utility functionsuβ,P(N) =

∑k

i=1 biuβ(βi) anduσ,P(N) =
∑h

j=1 sjuσ(σj), the mediator adds to this set of constraints the ones involving disagree-
ment thresholdsuβ,P(N) ≥ tβ anduσ,P(N) ≥ tσ.

With respect to the above set of constraints, the mediator solves a MOP maximizing
the preferenceutility functions uβ,P(N), uσ,P(N) and for each featuref involved in
the negotiation process also thefeatureutility functions uβ,f anduσ,f . The returned
solution to the MOP is the agreement proposed to the buyer andthe seller. Notice that
a solution to a MOP is always Pareto optimal [11], furthermore the solution proposed
by the mediator is also afair solution, because among all the Pareto-optimal solutions
we take the one maximizing the utilities of both the buyer andthe seller (see Sec. 6.1).
From this point on, it is atake-it-or-leave-itoffer, as the participants can either accept
or reject the proposed agreement [12]. Let us present a tiny example in order to better
clarify the approach. Given the toy ontology inP(N),

T =

{

ExternalColorBlack ⇒ ¬ExternalColorGray
SatelliteAlarm ⇒ AlarmSystem
NavigatorPack ⇔ SatelliteAlarm ∧ GPS system

the buyer and the seller specify their strict requirements and preferences:

β = Sedan∧ (price ≤ 30,000)∧ (km warranty ≥ 120,000)∧ (year warranty ≥ 4)
β1 = GPS system ∧ AlarmSystem
β2 = ExternalColorBlack ⇒ Leather seats
β3 = (km warranty ≥ 140,000)
uβ(β1) = 0.5

160

uβ(β2) = 0.2
uβ(β3) = 0.3
tβ =0.2

σ = Sedan∧ (price ≥ 20,000)∧ (km warranty ≤ 160,000)∧ (year warranty ≤ 6)

σ1 = GPS system ⇒ (price ≥ 28,000)

σ2 = (km warranty ≤ 150,000) ∨ (year warranty ≤ 5)

σ3 = ExternalColorGray
σ4 = NavigatorPack
uσ(σ1) = 0.2
uσ(σ2) = 0.4
uσ(σ3) = 0.2
uσ(σ4) = 0.2
tσ =0.2

Then the final agreement is:

I : {SedanI = true,ExternalColorGrayI = true,

SatelliteAlarmI = true,GPS systemI = true,

NavigatorPackI = true,AlarmSystemI = true,

priceI = 28, 000, k
I = 160, 000,year warrantyI = 5}

Here, for the sake of conciseness, we omit propositional atoms interpreted asfalse.

8 Related Work and discussion

Automated bilateral negotiation among agents has been widely investigated, both in ar-
tificial intelligence and in microeconomics research communities, so this section is nec-
essarily far from complete. Several definitions have been proposed in the literature for
bilateral negotiation. Rubinstein [26] defined theBargaining Problemas the situation
in which ”two individuals have before them several possiblecontractual agreements.
Both have interests in reaching agreement but their interests are not entirely identical.
What ’will be’ the agreed contract, assuming that both parties behave rationally?” In
game theory, the bargaining problem has been modeled eitherascooperativeor non-
cooperativegames [10]. AI-oriented research has been more focused on automated ne-
gotiation among agents and on designing high-level protocols for agent interaction [15].
Agents can play different roles: act on behalf of buyer or seller, but also play the role
of a mediator or facilitator. Approaches exploiting a mediator include among others [8,
13, 9]. In [8] an extended alternating offers protocol was presented, with the presence
of a mediator, which improves the utility of both agents. In [13] a mediated-negotiation
approach was proposed for complex contracts, where inter dependency among issues
is investigated. In [3] the use of propositional logic in multi-issue negotiation was in-
vestigated, while in [4] weighted propositional formulas in preference modeling were
considered. However, in such papers, no semantic relation among issues is taken into
account. In our approach we adopt a logical theory,i.e., an ontology, which allowse.g.,
to catch inconsistencies between demand and supply or find out a feasible agreement in

161

a bundle, which is fundamental to model an e-marketplace. Self-interested agents ne-
gotiating over a set of resources to obtain an optimal allocation of such resources have
been studied in [7, 6, 5]. Endriss et al. [7] propose an optimal resource allocation in
two different negotiation scenarios: one, with money transfer, determines an allocation
with maximal social welfare; the second is a money-free framework, which results in a
Pareto outcome. In [5] agents negotiate over small bundles of resources, and a mech-
anism of resource allocation is investigated, which maximizes the social welfare by
means of a sequence of deals involving at mostk items each. Both papers [7, 5] extend
the framework proposed in [28], which focused on negotiation for (re)allocating tasks
among agents. We borrow from [31] the definition of agreementas a model for a set of
formulas from both agents. However, in [31] only multiple-rounds protocols are stud-
ied, and the approach leaves the burden to reach an agreementto the agents themselves,
although they can follow a protocol. The approach does not take preferences into ac-
count, so that it is not possible to guarantee the reached agreement is Pareto-efficient.
Our approach, instead, aims at giving anautomatedsupport to negotiating agents to
reach, in one shot, Pareto agreements. The work presented here builds on [22], where a
basic propositional logic framework endowed of a logical theory was proposed. In [21]
the approach was extended and generalized and complexity issues were discussed. In
this paper we further extended the framework, introducing the extended logicP(N),
thus handling numerical features, and showed we are able to compute Pareto-efficient
agreements, solving a multi objective optimization problem adopting a one-shot nego-
tiation protocol.

References

1. F. Baader and P. Hanschke. A schema for integrating concrete domains into concept lan-
guages. Inproc. of IJCAI-91, pages 452–457, 1991.

2. K. Binmore.Fun and Games. A Text on Game Theory. D.C. Heath and Company, 1992.
3. S. Bouveret, M. Lemaitre, H. Fargier, and J. Lang. Allocation of indivisible goods: a general

model and some complexity results. InProc. of AAMAS’05, pages 1309–1310, 2005.
4. Y. Chevaleyre, U. Endriss, and J. Lang. Expressive power of weighted propositional formulas

for cardinal preference modeling. InProc. of KR 2006, pages 145–152, 2006.
5. Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. Negotiating over small bundles of re-

sources. InProc. of AAMAS ’05, pages 296–302, 2005.
6. P. E. Dunne, M. Wooldridge, and M. Laurence. The complexity of contract negotiation.Artif.

Intell., 164(1-2):23–46, 2005.
7. U. Endriss, N. Maudet, F. Sadri, and F. Toni. On optimal outcomes ofnegotiations over

resources. InProc. of AAMAS ’03, pages 177–184, 2003.
8. S. Fatima, M. Wooldridge, and N.R. Jennings. Optimal agendas for multi-issue negotiation.

In Proc. of AAMAS’03, pages 129–136, 2003.
9. N. Gatti and F. Amigoni. A decentralized bargaining protocol on dependent continuous

multi-issue for approximate pareto optimal outcomes. InProc. of AAMAS’05, pages 1213–
1214, 2005.

10. E. H. Gerding, D. D. B. van Bragt, and J. A. La Poutre. Scientific approaches and techniques
for negotiation: a game theoretic and artificial intelligence perspective. Technical report,
SEN-R0005, CWI, 2000.

11. F. Hillier and G. Lieberman.Introduction to Operations Research. McGraw-Hill, 2005.

162

12. N.R. Jennings, P. Faratin, A.R. Lomuscio, S. Parsons, M.J. Wooldridge, and C. Sierra. Au-
tomated negotiation: prospects, methods and challenges.Int. J. of Group Decision and Ne-
gotiation, 10(2):199 – 215, 2001.

13. M. Klein, P. Faratin, H. Sayama, and Y. Bar-Yam. Negotiating complex contracts. InProc.
of AAMAS’02, pages 753–757, 2002.

14. S. Kraus.Strategic Negotiation in Multiagent Environments. The MIT Press, 2001.
15. A. R. Lomuscio, M. Wooldridge, and N. R. Jennings. A classificationscheme for negotiation

in electronic commerce.Int Journal of Group Decision and Negotiation, 12 (1):31–56, 2003.
16. D.W. Loveland.Automated theorem proving: A logical basis. North-Holland, 1978.
17. J.K. MacKie-Mason and M.P. Wellman. Automated markets and trading agents. InHand-

book of Computational Economics. North-Holland, 2006.
18. A. Muthoo. On the strategic role of outside options in bilateral bargaining. Operations

Research, 43(2):292–297, 1995.
19. C.H. Papadimitriou and K. Steiglitz.Combinatorial optimization: algorithms and complex-

ity. Prentice-Hall, Inc., 1982.
20. J.C. Pomerol and S. Barba-Romero.Multicriterion Decision Making in Management.

Kluwer Series in Operation Research. Kluwer Academic, 2000.
21. A. Ragone, T. Di Noia, E. Di Sciascio, and F.M. Donini. A logic-based framework to com-

pute pareto agreements in one-shot bilateral negotiation. InProc. of ECAI’06, pages 230–
234, 2006.

22. A. Ragone, T. Di Noia, E. Di Sciascio, and F.M. Donini. Propositional- logic approach to
one-shot multi issue bilateral negotiation.ACM SIGecom Exchanges, 5(5):11–21, 2006.

23. H. Raiffa.The Art and Science of Negotiation. Harvard University Press, 1982.
24. H. Raiffa, J. Richardson, and D. Metcalfe.Negotiation Analysis - The Science and Art of

Collaborative Decision Making. The Belknap Press of Harvard University Press, 2002.
25. J.S. Rosenschein and G. Zlotkin.Rules of Encounter. MIT Press, 1994.
26. A. Rubinstein. Perfect equilibrium in a bargaining model.Econometrica, 50:97–109, 1982.
27. S. Russell and P. Norvig.Artificial Intelligence: A Modern Approach. Pearson Education-

Prentice Hall, 2003.
28. T. Sandholm. Contract types for satisficing task allocation: I theoretical results. InProceed-

ings of the AAAI Spring Symposium, 1998.
29. D. Trastour, C. Bartolini, and C. Priest. Semantic Web Support for the Business-to-Business

E-Commerce Lifecycle. InProc. WWW ’02, pages 89–98, 2002.
30. M.P. Wellman. Online marketplaces. InPractical Handbook of Internet Computing. CRC

Press, 2004.
31. M. Wooldridge and S. Parsons. Languages for negotiation. InProc of ECAI ’04, pages

393–400, 2000.

163

Towards Alternative Approaches to

Reasoning about Goals

Patricia H. Shaw and Rafael H. Bordini

Department of Computer Science,
University of Durham, U.K.

{p.h.shaw,r.bordini}@durham.ac.uk

Abstract. Agent-oriented programming languages have gone a long way
in the level of sophistication offered to programmers, and there has also
been much progress in tools to support multi-agent systems development
using such languages. However, much work is still required in mechanisms
that can reduce the burden, typically placed on programmers, of ensur-
ing that agents behave rationally, hence being effective and as efficient as
possible. One such mechanisms is reasoning about declarative goals, which
is increasingly appearing in the agents literature; it allows agents to make
better use of resources, to avoid plans hindering the execution of other
plans, and to be able to take advantage of opportunities for reducing the
number of plans that have to be executed to achieve certain combina-
tions of goals. In this paper, we introduce a Petri net based approach
to such reasoning, and we report on experimental results showing that
this technique can have a significant impact in the agent’s behaviour
(even though these experiments do not yet cover reasoning about re-
source usage). Our long term goal is to provide a number of alternative
approaches for such reasoning, and incorporate them into interpreters
for agent-oriented programming languages in such a way that the most
appropriate approach is used at given circumstances.

1 Introduction

Recent years have seen an astonishing progress in the level of sophistication
and practical use of various different agent-oriented programming languages [3].
These languages provide constructs that were specifically created for the im-
plementation of systems designed on the basis of the typical abstractions used
in the area of autonomous agents and multi-agent systems, therefore of much
help for the development of large-scale multi-agent systems. However, the bur-
den of ensuring that an agent behaves rationally in a given application is left to
programmers (even though the languages do offer some support for that task).

Clearly, it would make the work of multi-agent systems developers much eas-
ier if we could provide (semi-) automatic mechanisms to facilitate the task of
ensuring such rationality, provided, of course, that they are sufficiently fast to
be used in practical agent programming languages. One important issue for a
rational agent is that of deliberation — that is, deciding which goals to adopt

164

in the first place (see [15, 9, 2] for some approaches to agent deliberation in the
context of agent programming languages). Besides, once certain goals have been
adopted, the particular choice of plans to achieve them can cause a significant
impact in the agent’s behaviour and performance, as particular plans may inter-
fere with one another (e.g., through the use of particular resources, or through
the effects they have in the environment). The general term for the reasoning
that is required to address these issues, which requires declarative goal represen-
tations [25, 24], has been called reasoning about goals.

Much work has been published recently introducing various approaches which
contribute to addressing this problem [7, 21–23, 11, 16]. In most cases, in partic-
ular in the work by Thangarajah et al. and Clement et al., the idea of “sum-
mary information” is used in the proposed techniques for reasoning about goals.
However, the size of such summary information can potentially grow exponen-
tially on the number of goals and plans the agent happens to be committed to
achieve/execute [8]. It remains to be seen how practical those approaches will
be for real-world problems.

In our work, we are interested in mechanisms for goal reasoning which do
not require such summary information. This, of course, does not guarantee that
they will be more efficient than the existing approaches. In fact, our approach
is to try and use well-known formalisms with which to attempt to model the
goal reasoning problem, then experimentally evaluating the various different ap-
proaches. We aim, in future work, to combine those approaches in such a way
that agents can use one mechanism or another in the circumstances where each
works best, if that turns out to be practically determinable.

So far, we have been able to model the goal reasoning problem using two
different approaches, neither of which requires summary information as in the
existing literature on the topic (the next section gives a detailed description of
such work). First, we have modelled goal-adoption decision making as a reach-
ability problem in a Petri net [14]. Then, using the idea and method suggested
in [18, 17] for translating a Hierarchical Task Network (HTN) plan into a Con-
straint Satisfaction Problem (CSP), we have also developed a method for, given
an agent’s current goals and plans (possibly including a goal the agent is con-
sidering adopting), generating an instance of a CSP which can produce a valid
ordering of plans — if one exists — to help the agent avoid conflicts (and take
advantage of opportunities) when attempting to achieve all its goals.

For reasons of space, in this paper we focus on presenting the Petri net
based technique only, and we also give initial experimental analysis of an agent’s
performance when using such goal reasoning in two different scenarios; the results
of the CSP-based technique will be reported in a separate paper. The remainder
of this paper is organised as follows. Section 2 gives an overview of the types
of goal reasoning and various approaches appearing in the literature. Then in
Section 3, we look at how such reasoning can be incorporated into a Petri net.
Section 4 provides an experimental analysis of the Petri-net based reasoning.
Finally, we give conclusions and a summary of future work in Section 5.

165

2 Reasoning About Goals

There are multiple types of conflicts that rational agents need to be aware of;
these can be internal to the individual agent, or external between two or more
agents [10]. While conflicts can occur in social interactions, when attempting to
delegate or collaborate over a set of given tasks [5], the main focus of this paper
is to look at conflicts between goals within an individual agent.

The conflicts arise within a single agent when it has taken on two or more
goals that are not entirely compatible [10]. The conflicts may be caused if there
is a limited amount of resources available [23, 16], or it may be due to the effects
the actions involved in achieving the goals have on the environment; the actions
in the plans being executed to achieve concurrent goals can cause effects which
can hinder, or even prevent altogether, the successful completion of some of those
plans [21, 22].

In all the work by Thangarajah et al. referred above, a Goal-Plan Tree (GPT)
is used to represent the structure of the various plans and sub-goals related to
each goal (see Figure 1). In order for a plan within the tree to be completed,
all of its sub-goals must first be completed. However, to achieve a goal or sub-
goal only one of its possible plans needs to be achieved. At each node on the
tree, summary information is used to represent the various constraints under
consideration. The reasoning done in their approach is solely internal to the
individual agent.

SG3: TransmitResults

P2: MoveToPlan(A)

SG1: MoveToLoc(A) SG2: PerformSoilAnalysisAt(A)

P3: AnalyseSoilPlan(A) P5: TransmitResultsPlan2P4: TransmitResultsPlan1

SG4: TransmitData

P6: TransmitDataPlan

SG6: TransmitData

P8: TransmitDataPlan

SG5: MoveCloseToLander

P7: MoveClosePlan

P1: SoilExpPlan

G1: PerformeSoilExpAt(A)

Fig. 1. Goal-Plan Tree for a Mars rover as used by Thangarajah et al. Goals and
sub-goals are represented by rectangles, while plans are represented by ovals.

Reasoning about effects of actions needs to consider both positive and nega-
tive impacts in relation to other plans, and causal links that may exist between
goals. In the first paper by Thangarajah et al. where reasoning about effects

166

is considered, they show how to detect and avoid negative interference between
goals [21]. By using additional types of summary information, similar to those
developed in [7], such as summaries for definite or potential pre-conditions and
in-conditions along with post-conditions or effects, they monitor the causal links
between effects produced by a plan which are used as pre-conditions of another
to ensure these are not interfered with. To derive these effects, a formal notation
based on set theory is defined, to allow the agent to produce the summary in-
formation in order to reason about conflicting actions between its current goals
and any new goals the agent might consider adopting.

When conflicts occur, often they can be handled by scheduling the plan
execution so as to protect the causal links until they are no longer required.
Also in [21], the authors determine a sequence of steps for an agent to schedule
plan execution so as to avoid interference, including checks that need to be
performed before an agent can accept to adopt a new goal. Empirical results
from experiments using the reasoning described in that paper are given in [19],
comparing the performance of an agent with and without such reasoning, varying
the level of interaction between goals and the amount of parallelism. The results
show the improvement in number of goals successfully achieved, and only slight
increase in time taken to perform the additional reasoning.

In [22], Thangarajah et al. focus on exploiting positive interaction between
goals. This is where two or more plans cause the same effect, so rather than
executing both, it might be possible to merge the two plans, thereby improving
the agents’ performance. To represent this form of reasoning, they again use the
goal-plan tree with summary information including the definite and potential

effects of the plans and goals; they also define a particular method to derive
such summaries. They then describe how an agent can decide if it is feasible
to merge the plans, and how to avoid waiting too long if one of the two plans
selected for merging is reached considerably sooner than the other or the second
plan is never reached, in case it was a “potential” merge rather than a “definite”
merge. Results from experiments using this type of reasoning are once again
presented in [19].

Horty and Pollack also consider positive interaction between plans [11]. In
their work, an agent evaluates the various options it has between its goals within
the context of its existing plans. They use estimates for the costs of plans, and
where there is some commonality between some plans, those plans will be con-
sidered for merging. If the estimated merged cost is less than the sum of the two
separate estimated costs, then the plans are actually merged. The example they
give to illustrate this is an “important” plan for going to a shopping centre to
buy a shirt, while also having a less important goal of buying a tie. Both plans
involve getting money and travelling to a shopping centre, so if the overall cost
of buying the tie at the same time as the shirt is less than that of buying the tie
separately, then the plans will be merged, even though the goal of having a tie
is not as important. In this way, they look for the least expensive execution of
plans involved in achieving the goals.

167

When referring to reasoning about resource usage in a GPT [23], Thangara-
jah et al. consider both reusable and consumable resources. For example, a com-
munication channel is a reusable resource, while energy or time is consumed so
they cannot be reused. Summaries of the resource requirements are passed up
the tree towards the goal, describing which resources are necessary in order to
achieve the goals, and also which resources are used only potentially. They intro-
duce a notation, based on set theory, allowing the derivation of summaries for
the resource requirements of each goal and plan with sub-goals. These can then
be used to reason about where conflicts might occur, so that they can be avoided
by choosing suitable alternative plans or appropriately ordering plan execution.
An algorithm is given to compute whether it is feasible to add a new goal to
the existing set of goals. The initial formation of the goal-plan tree and sum-
mary information for the agent is produced at compile time, and the highlighted
conflicts are then monitored at runtime in an attempt to avoid conflict.

Empirical results from experiments done using such reasoning are given
in [20]. They consider goal-plan trees of depth 2 and depth 5, varying the amount
of parallelism between multiple goals, and the amount of competition for the re-
sources either by reducing the availability or increasing the number of goals
competing for the same resources. The reasoning is implemented as an exten-
sion to the JACK agent development system [4]; the extended system is called
X-JACK. The performance of X-JACK is compared against the performance of
JACK without any of the additional reasoning, and shows an improvement in
performance regarding the number of goals successfully achieved, typically with
only a half-second time increase in the computation cost.

In comparison, [16] also consider the use of limited resources when deliber-
ating and performing actions in a multi-agent environment, where coordination
and negotiation with the other agents is required. In their attempt to address
the problem of limited resources within meta-level control, they make use of
reinforcement learning to improve the agents’ performance over time.

To our knowledge, while Thangarajah et al. have reported on experimen-
tal results for reasoning separately about each of those types of interactions
between plans and goals as well as resource usage, no results appear in the liter-
ature showing what is the performance obtained when an agent is doing all those
forms of reasoning simultaneously. All results are given for the individual types,
to demonstrate the sole effects from the individual reasoning and the (typically
very small) amount of added computational costs associated with it. The lack
of combined results seem to suggest the possibility of there being interference
between the different forms of reasoning presented in their approach. For exam-
ple, if one reasoning suggests that performing a particular plan will cause one
type of conflict (say, lack or resources), while another reasoning suggests that
the only alternative plan for that goal will also cause a conflict (say, a negative
interference with another goal), the agent may be unable to decide between the
two without some additional overriding reasoning. It also remains unknown if
their approach is still equally efficient when the various types of reasoning are
combined.

168

The results were also limited in the depth of trees tested. In the real world,
it is likely the plans (and hence the goals) would be far more complex, leading
to trees of significantly greater sizes. However, using the summary information,
as a goal-plan tree grows, the amount of summary information to handle could
potentially grow exponentially [8], which would have a significant impact on the
performance of the agent for larger problems.

Prior to the time that the work by Thangarajah et al. was published, the
Distributed Intelligent Agents Group led by Edmund Durfee, produced some
similar research for modelling — and reasoning about — plan effects, extending
their work to cover multi-agent systems rather than individual agents [6–8]. In
their work, they are interested in reasoning about conflicts to coordinate the
actions of agents that use HTN planning, while the work by Thangarajah was
based around BDI agents (focusing on individual agents instead). In [7], Clement
et al. present the summary information for pre-, in-, and post-conditions of plans,
which is adopted by Thangarajah et al. and used in goal-plan trees to reason
about both resources and effects.

3 Reasoning About Goals using Petri Nets

Petri nets are mathematical models, with an intuitive diagrammatic represen-
tation, used for describing and studying concurrent systems [14]. They consist
of places that are connected by arcs to transitions, with tokens that are passed
from place to place through transitions. Transitions can only fire when there
are sufficient tokens in each of the input places, acting as pre-conditions for the
transition. A token is then removed from each input place, and one is placed
in each of the output places. Places are graphically represented as circles, while
transitions are represented as rectangles.

There are many variations on the basic Petri net representation, and many of
these have been used in a variety of agent systems [13, 1]. Arcs can have weights
associated with them, the default weight being one. Greater weights on arcs
either require the place to have at least that many tokens for the transition to fire,
or the transition adds to the output place that number of tokens as its output.
Coloured Petri Nets are able to hold tokens of different types, representing for
example different data types. The weightings on the arcs then match up and
select the relevant tokens to fire. Reference nets allow nets to contain sub-nets.
Renew is a Petri net editor and simulator that is able to support high-level Petri
nets such as coloured and reference nets [12].

We have developed a method to represent an agents’ goals and plans using
Petri nets. Essentially, we are able to represent the same problems as expressed
by goal-plan trees in the work by Thangarajah et al. (see Figure 2 for an exam-
ple). According to the method we have devised, goals and plans are represented
by a series of places and transitions. A plan consists of a sequence of actions that
starts with a place, and has a transition to another place to represent each of the
atomic actions that occur in sequence within that plan. Goals are also set up as
places with transitions linked to the available plans for each goal or subgoal. In

169

Figure 2, the plans are enclosed in dark boxes, while the goals and subgoals are
in light boxes. The plans and subgoals are nested within each other, matching
the hierarchical tree structure of the GPT.

Fig. 2. Petri Net Representation of
the Mars Rover GPT in Figure 1.

The goal reasoning that we have in-
corporated into the Petri nets is to allow
an agent to handle both positive and neg-
ative interactions between multiple goals;
we are in the process of incorporating rea-
soning about resources on top of these.
Our aim is to be able to reason about
these three aspects together whilst also
avoiding the use of any “summary infor-
mation” as in the work by Thangarajah et

al. and Clement et al.. This reasoning and
the representation of the plans and goals
themselves can each be seen as an inter-
linked module, as will be discussed below.
This modularisation of the method we use
to represent goals and plans as (sub) Petri
nets allows an agent to dynamically pro-
duce Petri net representations of goals and
plans (and their relationship to existing
goals and plans) that can then be used
by an agent to reason on-the-fly about its
ability to adopt a new goal given its cur-
rent commitments towards existing goals.

Currently the Petri nets are being gen-
erated manually, but they have been de-
signed in such modular way with the aim
of being able to automate this process.
An agent will then be able to generate
new Petri nets to model new goals as
the agent generates them or receive re-
quests to achieve goals, allowing it to rea-
son about whether it is safe to accept the

new goal. If the goal is accepted then the Petri nets can be used to advise plan
selection to avoid interference and to benefit from positive interactions. Figure 3
shows the main modules being used in the Petri nets. Some of the notation used
in the Petri nets is specific to the Renew Petri net editor.

The negative interference reasoning protects the effects that have been caused
in the environment until they are no longer required by the goal that caused the
change. When an agent executes a plan that produces an effect in the environ-
ment, and that effect will be required by a later plan, the effect is immediately
marked as protected until it is no longer required. This is done by using a protect

module (Figure 3(a)) that adds a set of transitions and places to the Petri nets

170

:protect()

:unprotect()

Protected

Action

Plan

Variable v

v:protect()

v:set()

:set()

Protect Module

v:unprotect()

Plan

Action

:read()

v:read()

(a) Protect module for negative inter-
ference.

Variable v

:set()

:negCheck()

:check()

PreCheck Module

v:negCheck()

v:check()

Subgoal

Plan

Action

v:negCheck()

v:set()

(b) Pre-check module for pos-
itive interaction.

Can contain
multiple tokens

Variable v

While tokens remain,
continue to remove

Merge Module

Plan

Action

:removeAll()

v:removeAll()

(c) Merge module for positive interaction.

Fig. 3. Petri-Net Representation of Modules for Reasoning about Goals.

so that when the relevant effect takes place, a transition is fired to protect it,
then when it is no longer needed another transition is fired to release the pro-
tected effect. If another plan attempts to change something that will impact on
the protected effects, then it will be stopped and forced to wait until the effects
are no longer protected (i.e., until the release transition fires).

In the Mars Rover example, negative interference occurs when two or more
goals require taking samples at different locations and after having moved to
the first location, a second goal interferes to take the rover to another location
before the sample is taken to satisfy the fist goal. To avoid this, the causal link
is identified based on the effects and preconditions of the plans when Petri nets
are generated, and a protect module is added to ensure other goals and plans
cannot interfere with the casual link until the necessary plans have executed. In
the Petri nets, the protect module is implemented by adding a place that holds
a token to indicate if a variable is protected or not, with transitions that the

171

plan fires to protect the variable at the start of the causal link, then another
transition to unprotect the variable when it is no longer required.

The positive interaction reasoning checks whether the desired effects have
already been achieved (such as a Mars rover going to a specific location to
perform some tests), or whether multiple goals can all be achieved by a merged
plan rather than a plan for each goal, such as the Mars Rover transmitting all
the data back in one go instead of transmitting separately individual results
obtained by separate goals. When two or more plans achieve the same effect,
only one of the plans has to be executed. This can greatly reduce the number
of plans that are executed, especially if one of the plans has a large number of
subgoals and plans. As a result, this can speed up the completion and reduce the
costs of achieving the goals, particularly if there is a limited amount of resources.

In the Mars rover example, positive interaction can take place in both ways.
Firstly, when moving to a different location the rover may have several goals all
of which required going to the same location; however, only one plan needs to be
actually executed to take the rover there. In the Petri nets, this is handled by a
pre-check module (Figure 3(b)) that first checks whether another plan is about
to, or has already, moved the rover to the new location, and if not it then fires
a transition to indicate that the rover will be moving to the new location so the
similar plans for other parallel goals do not need to be executed.

The second form of positive interaction is the direct merging of two or more
plans. In the Mars rover scenario, this can occur when two or more goals are
ready to transmit the data they have collected back to the base station. A merge

module (Figure 3(c)) is added to indicate that when a goal is ready to transmit
data back, it also checks to see if other goals are also ready to transmit their
data. If so, all data that is ready is transmitted by the one plan rather than each
goal separately executing individual plans to transmit the data.

4 Experimental Results and Analysis

We have used two different scenarios in our evaluation: the first is an abstract
example and the other is the simple Mars rover example.

Scenario 1: Abstract Example

In this scenario, the goal structure in Figure 4 was used for each of the goals
that were initiated. In the experiments reported here, we have opted for not
considering varying structures, but this will be considered in future experiments.
The experiments we conducted with Scenario 1 aimed to match, to the extent
we could understand and reproduce, the settings of the experiments conducted
in [19] to evaluate the GPT and summary information method that they intro-
duced, in particular their experiments to compare the performance of JACK and
X-JACK.

172

Goal/Subgoal

Plan

Fig. 4. Goal-Plan Tree
Used for all Goals in
Scenario 1.

In our experiments using Scenario 1, ten goal types
were defined adjusting the selection of plans within
the goal plan tree that would interact with those of
other goals. The interaction was modelled through a
set of common variables to which each goal was able
to assign values. The variables and values are used to
represent the different effects that plans can have in
the environment.

To stress-test the Petri nets, tests were set up that
involved high levels of interaction, using a set of 5
variables, or low levels of interaction, using a set of 10
variables. Out of the 10 goal types, 5 of the goal types
used 3 variables, while the remaining 5 goals types
only altered 1 variable. During testing, 20 instanti-
ations of the 10 possible goal types were created at
random intervals and running concurrently. The Petri
nets were implemented using Renew 2.1 [12], and each
experiment was repeated 50 times.

Four experimental setups were used, with “High & Long” in the graphs (see
Figure 5) corresponding to High Levels of Negative Interference for Long Peri-
ods, down to “Normal & Random” corresponding to Normal Levels of Negative
Interference for Random Length Periods. The periods are controlled by defining
the levels within the GPT that the interaction occurs at; so, for example, in
the positive interaction, the duration over which the positive interaction takes
place can be maximised by making plans in the top levels of the GPT with the
greatest depth to interact.

A dummy Petri net was set up using the same goal structure and set of goal
types, but without any of the reasoning for positive or negative interaction. The
results from running this against the Petri net where such reasoning was included
could then be compared to show the improvements obtained by the reasoning.

Negative Interference. Each goal was given a set of 1 or 3 variables to which
it was to assign a given value and then use it (recall that this represents the
effects of plan execution in the environment). The positions in the goals where
the variables were set and then used were varied either randomly or set to require
the variables to be protected for the longest possible periods (meaning the state
of the world caused by a plan is required to be preserved for longer periods
before the interfering plans can be executed). The selections of plans in each goal
are designed to cause interference for other goals being pursued simultaneously.
This is done by ensuring a significant overlap in the variables which the goals are
setting, particularly under high levels of interaction. The effect of the reasoning
is measured by counting the number of goals achieved both by the “dummy”
and by the “reasoning” Petri nets.

The results are shown in Figure 5(a). The graphs show the averages for the
number of goals achieved by the reasoning Petri net and the dummy Petri net

173

Scenario 1: Negative Interference

0

5

10

15

20

25

High & Long High & Random Normal & Long Normal &
Random

Simulation Setup

G
o

al
s

A
ch

ie
ve

d

Reasoning
Dummy

(a) Experimental results for negative
interference.

Scenario1: Positive Interaction

0

50

100

150

200

250

300

350

400

450

500

High & Long High & Random Normal & Long Normal &
Random

Simulation Setup

P
la

n
s

E
xe

cu
te

d

Reasoning
Dummy

(b) Experimental results for nositive
interaction.

Fig. 5. Results for Negative Interference and Positive Interaction in an Abstract Sce-
nario.

from the 50 runs for each of the experiment sets, also showing the standard
deviation. The effects of the negative reasoning are immediately obvious by the
fact that the Petri nets with goal reasoning were consistently able to achieve
all the goals, while the dummy Petri nets achieved, on average, very few goals,
particularly when there were high levels of interference and variables that had
to be protected for a long time, where it was only able to achieve approximately
21% of the goals, on average. Even at normal levels of interaction and random
depth positioning, it was still only able to achieve, on average, 46% of the goals.
The standard deviation shows that the performance of the dummy Petri nets
was highly variable within the 50 runs of this experiment.

Positive Interaction. To measure the effects of reasoning about positive inter-
actions, each goal was again given a set of 1 or 3 variables, with overlap between
the goals, so that we can determine a selection of plans for each goal which can
potentially be achieved by just executing one of the plans. Each goal contains
25 plans (in its GPT), of which at least 21 would have to be executed if the goal
was being pursued on its own. This is due to two subgoals having a choice of
plans to execute in the GPT. The scenario was set up to ensure all the goals are
achievable without any reasoning, so the effects of the reasoning are measured
by the number of plans that are required to execute in order to achieve all the
goals.

As with the negative interference, the depth of the plans within the goal-plan
structure at which merging can occur is varied. Plans with more subgoals will
have a greater impact on the number of plans executed when merged than plans
with no or very few subgoals. The tests were set with mergeable plans either
high up in the GPT, or randomly placed within the tree.

The results are shown in Figure 5(b). The graphs show the averages for the
number of plans executed by an agent using the Petri net for goal reasoning
and a dummy agent; the averages are taken from the 50 runs for each of the
experiment setups, and the graphs also show the standard deviations. There is

174

clearly a major improvement between the “dummy” and the “reasoning” agents
in all of the simulation settings, with the reasoning agent requiring significantly
fewer plans to be executed than the dummy, whilst still achieving the same
goals. For high levels of interaction and mergeable plans at high levels in the
GPT, there is an average drop of 47% in the number of plans being executed.
Even with lower levels of interaction, and randomly placed mergeable plans,
there is still a decrease of 30% on average. This could lead to large savings in the
time and resources required by an agent to achieve its goals. While the standard
deviation shows there is more variance in the performance of the reasoning agent
than the dummy, this is due to the variations in depth and GPT of the merged
plans. Even with the variance, the reasoning consistently made a significant
improvement in the performance over the dummy agent.

Negative and Positive Interaction. In this section, the two types of reason-
ing have been combined into one Petri net with a scenario that causes both nega-
tive interference and provides opportunities for positive interaction. To maintain
exactly the same levels of interaction, both positively and negatively, the same
GPT has been used again and the variables are duplicated for this abstract sce-
nario. One set of variables is used for positive interaction, while the other is used
for negative interference. This has been done, in the abstract scenario, to main-
tain the levels of interaction to allow for a clear comparison, but in the second
scenario both forms of reasoning are applied to the same variables to represent
a more realistic scenario.

Each goal is given 1 or 3 variables to assign values to for the negative inter-
ference, and the same number of variables for positive interaction. The number
of goals achieved and the plans required are then measured to compare the ex-
pected performance of agent that uses the Petri-net based reasoning against a
dummy agent (i.e., an agent without any goal-reasoning).

The four sets of tests were combined, in particular the negative interference
at high levels of interaction over long periods was combined with the positive
interference at high levels of interaction and at high levels within the GPT,
while the negative interference at high levels of interaction over random periods
was combined with the positive interference at high levels of interaction and at
random levels within the GPT. The experiment for interaction at normal levels
was combined in the same way.

The results are shown in Figure 6. These are broken down into three groups:
6(a) goals achieved, 6(b) plans executed, and 6(c) the ratio between plans exe-
cuted and goals achieved. The standard deviations are also included in each of
these graphs.

The reasoning agent is once again able to achieve all of its goals, while the
dummy agent is still only able to achieve 57–83% of its goals. Not only is the
dummy agent failing to achieve all its goals, it is also attempting to execute
almost all its plans in an effort to find a solution. This means the effects of
the positive interaction reasoning are also very obvious with a drop of 50%
in the number of plans executed for high levels of negative interference with

175

Scenario 1: Positive and Negative Interaction
Comparing Goals Achieved

0

5

10

15

20

25

High & Long High & Random Normal & Long Normal &
Random

Simulation Setup

G
o

al
s

A
ch

ie
ve

d

Reasoning
Dummy

(a) Comparison of goals
achieved across the four
experimental setups.

Scenario 1: Positive and Negative Interaction
Comparing Plans Executed

0

50

100

150

200

250

300

350

400

450

High & Long High & Random Normal & Long Normal &
Random

Simulation Setup

P
la

n
s

E
xe

cu
te

d

Reasoning
Dummy

(b) Comparison of plans
executed across the four
experimental setups.

Scenario 1: Positive and Negative Interaction
Comparing Plans per Goal Ratio

0.0

10.0

20.0

30.0

40.0

50.0

60.0

High & Long High & Random Normal & Long Normal &
Random

Simulation Setup

P
la

n
s

p
er

 G
o

al

Reasoning
Dummy

(c) Comparison of ratio
between plans executed
and goals achieved.

Fig. 6. Experimental Results for Combined Positive and Negative Interaction in an
Abstract Scenario.

positive interaction for long periods in the GPT, while still maintaining a 32%
decrease in plans at lower levels of interference. The plan to goal ratio shows
that the reasoning agent only had to execute on average 10 plans at high levels
of interaction, and 14 plans at lower levels of interaction, to achieve its goals,
while the dummy agent had to execute on average 39 plans at high levels of
interaction and 25 at normal levels. Recall that while in the GPT there are only
25 plans available to achieve the main goal on its own, the dummy agent was still
executing plans in goals that failed, and the ratio shows all the plans executed
compared to the goals achieved. The standard deviation shows that in general,
the performance of the reasoning agent is very consistent, whereas the dummy
agent is highly erratic, particularly when there are high levels of interaction for
long periods.

Scenario 2: Mars Rover

To show the reasoning being used in a more concrete example, a Mars rover
scenario has also been used. In this scenario, the rover is given a set of locations
and a set of tests (or tasks) to perform at each location. Each task at each
location is represented by a separate goal, as shown in Figure 2, offering much
opportunity for both negative and positive interactions. All of the plans contain
a set of preconditions that must be true for it to be able to execute, and these
preconditions are satisfied by the effects of other plans. So while there may be
less plans involved than in Scenario 1, there is still a lot of interaction taking
place. The preconditions lead to a partial ordering of the plans for the goal
to be achieved. In our experiments, 2, 4, and 6 locations were used, with 5
tests carried out at each location, in order to evaluate the performance of the
reasoning over different levels of concurrency, specifically 10, 20, or 30 goals being
simultaneously pursued.

For the interests of comparison, the negative and positive reasoning have
again been separated out before being combined together in the final set of
experiments.

176

Negative Interference. Negative interference is caused when the rover goes
to a location ready to perform its tasks, but is then interrupted by another goal
that required going to a different location before the tasks required at the first
location by the previous goal had been completed. The effects of the reasoning
is again measured by the number of goals achieved. The results are shown in
Figure 7(a).

Scenario 2: Negative Interference

0

5

10

15

20

25

30

10 20 30

Goals Assigned

G
o

al
s

A
ch

ie
ve

d

Reasoning
Dummy

(a) Reasoning about negative interfer-
ence.

Scenario 2: Positive Interaction

0

20

40

60

80

100

10 20 30

Goals Assigned

P
la

n
s

E
xe

cu
te

d

Reasoning
Dummy

(b) Reasoning about positive interac-
tion.

Fig. 7. Results for Negative Interference and Positive Interaction in the Mars Rover
Example.

The results again show a definite improvement obtained by adding the rea-
soning about negative interference, whereby all goals were achieved, while the
dummy agent is still only able to achieve on average 75% of its goals, across all
the levels of goal concurrency, even at the lowest levels.

Positive Interaction. In the Mars Rover example, there are two main places
for positive interaction. The first is when multiple goals all require the rover to
perform tests/tasks at the same location, while the second is when the goals
require transmitting their results back to the mission control team, after having
performed the tests. When the goals have all obtained their test results, these
can either be transmitted back to the base individually, or one goal can assume
the responsibility of transmitting all the results back at the same time. This
means only one plan has to be executed whereas without the reasoning an agent
ends up executing one plan per goal.

The negative interference was removed from this setup to ensure all goals
could be achieved without any reasoning. This meant the number of plans exe-
cuted could be compared more fairly. The results are shown in Figure 7(b).

A clear reduction in the average number of plans executed can again be ob-
served in these results, with higher levels of concurrency giving a 32% reduction
in the number of plans executed to achieve the same goals. Even the lowest level
of concurrency offers a 28% reduction that could be highly beneficial when there
are many constraints imposed on an agent, such as time and resource availability.

177

Combined Negative and Positive Interaction. While both types of rea-
soning can be effectively used on their own, the combined effects of both types
of reasoning gives the best results, particularly in highly constrained conditions.
In the final set of results reported here, we show the results of the combined
reasoning about negative interference and positive interaction in the Mars rover
scenario.

The results are shown in Figure 8. These are broken down into three groups:
8(a) goals achieved, 8(b) plans executed, and 8(c) the ratio between plans exe-
cuted and goals achieved. The standard deviations are also included in each of
these graphs.

Scenario 2: Positive and Negative Interaction
Comparing Goals Achieved

0

5

10

15

20

25

30

35

10 Goals 20 Goals 30 Goals

Goals Assigned

G
o

al
s

A
ch

ie
ve

d

Reasoning
Dummy

(a) Comparing goals
achieved.

Scenario 2: Positive and Negative Interaction
Comparing Plans Executed

0

10

20

30

40

50

60

70

80

90

10 Goals 20 Goals 30 Goals

Goals Assigned

P
la

n
s

E
xe

cu
te

d

Reasoning
Dummy

(b) Comparing plans exe-
cuted.

Scenario 2: Positive and Negative Interaction
Comparing Plan to Goal Ratio

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10 Goals 20 Goals 30 Goals

Goals Assigned

P
la

n
 t

o
 G

o
al

 r
at

io

Reasoning
Dummy

(c) Comparing the ratio
between plans executed
and goals achieved.

Fig. 8. Experimental Results for Reasoning about Negative and Positive Interaction
in the Mars Rover Example.

While the results all show that there is only a slight improvement in the
number of plans executed, the number of goals achieved by the reasoning agent
is significantly more, and the plan to goal ratio is almost half that of the agent
without any reasoning, increasing from a 34% reduction in the number of plans
per goal to a 47% reduction as the amount of concurrency increases. The rea-
soning agent is again consistently achieving all the goals it has been given, while
the proportion the dummy agent was able to achieve dropped from 67% to 54%
as the amount of concurrency increased. The standard deviation also shows that
the reasoning agent is more consistent in its results in this scenario, with a lower
range of variation.

5 Conclusions and Future Work

In this paper we have presented an alternative approach to reasoning about
negative and positive interactions between goals. The results clearly show a
significant improvement in the number of goals being achieved, and the number
of plans required to achieve them. To the best of our knowledge, this is the first
time such types of reasoning have been presented combined together to show
the joint effects of both positive and negative reasoning working in tandem for

178

an individual agent. As only a small extra computing cost is expected to result
from the added reasoning, the benefits are very likely to outweigh any costs.
However, in future work, we aim to analyse in detail the costs associated with
the reasoning and compare this cost with alternative approaches such as a CSP
representation and existing approaches such as the approach by Thangarajah et

al. using a GPT [21–23]. In all experiments reported in this paper, such costs
appeared to be negligible.

Preliminary work has been done in representing the same type of reason-
ing approached in this paper as a CSP, in order to provide further sources of
comparison. A further type of reasoning that can be used to aid an agent is
reasoning about resources, particularly when there is a limited supply of con-
sumable resources available. We are currently in the process of including that
type of reasoning in both our Petri-net and CSP-based techniques for reasoning
about goals.

Currently, the Petri nets are being produced manually, but their modular de-
sign provides scope for automating this process, so that it can be incorporated
into an agent architecture for on-the-fly reasoning about new goals to be poten-
tially adopted. This will also be possible for the CSP-based approach, offering
the agents a choice of reasoners if one proves to be better suited for particular
situations (e.g., the structure/scale of the agent’s GPT, or specific properties
of the environment) than the others. Our long-term objective is to incorporate
such reasoners into the interpreters of agent-oriented programming languages.

Acknowledgements

We gratefully acknowledge the support of EPSRC’s DTA scheme. Many thanks
to Berndt Farwer for recommending the Renew tool and the help in using it.

References

1. O. Bonnet-Torrès and C. Tessier. From team plan to individual plans: a petri net-
based approach. In proceedings of AAMAS’05, 4th International Joint Conference
on Autonomous Agents and Multiagent Systems, pages 797–804, New York, July
2005. ACM Press.

2. R. H. Bordini, A. L. C. Bazzan, R. de Oliveira Jannone, D. M. Basso, R. M.
Viccari, and V. R. Lesser. AgentSpeak(XL): Efficient intention selection in BDI
agents via decision-theoretic task scheduling. In C. Castelfranchi and W. Johnson,
editors, proceedings of First International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS-2002), pages 1294–1302, New York, USA, July
2002. NY: ACM Press.

3. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors. Multi-
Agent Programming: Languages, Platforms and Applications. Number 15 in Multi-
agent Systems, Artificial Societies, and Simulated Organizations. Springer-Verlag,
2005.

4. P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas. JACK intelligent agents -
components for intelligent agents in java. Technical report, Technical report, Agent
Oriented Software Pty. Ltd, Melbourne, Australia, 1998.

179

5. C. Castelfranchi and R. Falcone. Conflicts within and for collaboration. In
C. Tessier, L. Chaudron, and H.-J. Müller, editors, Conflicting Agents: Conflict
Management in Multiagent Systems, Multiagent systems, Artificial societies, and
Simulated organizations, chapter 2, pages 33–62. Kluwer Academic Publishers,
2001.

6. B. J. Clement and E. H. Durfee. Identifying and resolving conflicts among agents
with hierarchical plans. In proceedings of AAAI Workshop on Negotiation: Settling
Conflicts and Identifying Opportunities, Technical Report WS-99-12, pages 6–11.
AAAI Press, 1999.

7. B. J. Clement and E. H. Durfee. Theory for coordinating concurrent hierarchical
planning agents using summary information. In AAAI ’99/IAAI ’99: Proceedings
of the sixteenth national conference on Artificial intelligence and the eleventh In-
novative applications of artificial intelligence conference innovative applications of
artificial intelligence, pages 495–502, Menlo Park, CA, USA, 1999. AAAI Press.

8. B. J. Clement and E. H. Durfee. Performance of coordinating concurrent hierar-
chical planning agents using summary information. In proceedings of 4th Inter-
national Conference on Multi-Agent Systems (ICMAS), pages 373–374, Boston,
Massachusetts, USA, July 2000. IEEE Computer Society.

9. M. Dastani, F. de Boer, F. Dignum, and J.-J. Meyer. Programming agent delibera-
tion: an approach illustrated using the 3apl language. In AAMAS ’03: Proceedings
of the second international joint conference on Autonomous agents and multiagent
systems, pages 97–104, New York, NY, USA, 2003. ACM Press.

10. M. Hannebauer. Their problems are my problems - the transition between internal
and external conflict. In C. Tessier, L. Chaudron, and H.-J. Müller, editors, Con-
flicting Agents: Conflict Management in Multiagent Systems, Multiagent systems,
Artificial societies, and Simulated organizations, chapter 3, pages 63–110. Kluwer
Academic Publishers, 2001.

11. J. F. Horty and M. E. Pollack. Evaluating new options in the context of existing
plans. Artificial Intelligence, 127(2):199–220, 2004.

12. O. Kummer, F. Wienberg, and M. Duvigneau. Renew – the Reference Net Work-
shop. Available at: http://www.renew.de/, May 2006. Release 2.1.

13. H. Mazouzi, A. El Fallah Seghrouchni, and S. Haddad. Open protocol design for
complex interactions in multi-agent systems. In AAMAS ’02: Proceedings of the
first international joint conference on Autonomous agents and multiagent systems,
pages 517–526, New York, NY, USA, 2002. ACM Press.

14. J. L. Peterson. Petri Net Theory and the modeling of Systems. Prentice-Hall, 1981.
15. A. Pokahr, L. Braubach, and W. Lamersdorf. A goal deliberation strategy for bdi

agent systems. In T. Eymann, F. Klügl, W. Lamersdorf, and M. H. M. Klusch,
editors, Third German conference on Multi-Agent System TEchnologieS (MATES-
2005); Springer-Verlag, Berlin Heidelberg New York, pp. 82-94. Springer-Verlag,
Berlin Heidelberg New York, 9 2005.

16. A. Raja and V. Lesser. Reasoning about coordination costs in resource-bounded
multi-agent systems. proceedings of AAAI 2004 Spring Symposium on Bridging
the multiagent and multi robotic research gap, pages 25–40, March 2004.

17. P. Surynek. On state management in plan-space planning from CP perspective.
In In proceedings of Workshop on Constraint Satisfaction Techniques for Planning
and Scheduling Problems, International Conference on Automated Planning and
Scheduling ICAPS, Cumbria, UK. AAAI Press, June 2006.

18. P. Surynek and R. Barták. Encoding HTN planning as a dynamic CSP. In Princi-
ples and Practice of Constraint Programming - CP 2005, 11th International Con-

180

ference, Sitges, Spain, volume 3709 of Lecture Notes in Computer Science, page
868. Springer, October 2005.

19. J. Thangarajah. Managing the Concurrent Execution of Goals in Intelligent Agents.
PhD thesis, School of Computer Science and Informaiton Technology, RMIT Uni-
versity, Melbourne, Victoria, Australia, December 2004.

20. J. Thangarajah and L. Padgham. An empirical evaluation of reasoning about
resource conflicts in intelligent agents. In proceedings of the 3rd International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 04),
pages 1298–1299, 2004.

21. J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and avoiding interference
between goals in intelligent agents. In proceedings of 18th International Joint
Conference on Artificial Intelligence (IJCAI), pages 721–726, Acapulco, Mexico,
August 2003. Morgan Kaufmann.

22. J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and exploiting positive
goal interaction in intelligent agents. In AAMAS ’03: Proceedings of the second in-
ternational joint conference on Autonomous agents and multiagent systems, pages
401–408, New York, NY, USA, 2003. ACM Press.

23. J. Thangarajah, M. Winikoff, and L. Padgham. Avoiding resource conflicts in intel-
ligent agents. In F. van Harmelen, editor, proceedings of 15th European Conference
on Artifical Intelligence 2002 (ECAI 2002), Amsterdam, 2002. IOS Press.

24. M. B. van Riemsdijk, M. Dastani, and J.-J. C. Meyer. Semantics of declarative goals
in agent programming. In AAMAS ’05: Proceedings of the fourth international
joint conference on Autonomous agents and multiagent systems, pages 133–140,
New York, NY, USA, 2005. ACM Press.

25. M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and proce-
dural goals in intelligent agent systems. In Proceedings of the Eighth International
Conference on Principles of Knowledge Representation and Reasoning (KR2002),
22–25 April, Toulouse, France, pages 470–481, 2002.

181

Author Index

Baldoni, Matteo, V

Bordini, Rafael H., 162

Bosse, Tibor, 1, 17

Di Noi, Tommaso, 146

Di Sciascio, Eugenio, 146

Donini, Francesco M., 146

Garcia-Camino, Andres, 65

Groza, Adrian, 82

Guerin, Frank, 33

Harland, James, 130

Hindriks, Koen, 49

Kollingbaum, Martin J., 65

Letia, Ioan Alfre, 82

Lloyd, John, 98

Luck, Michael, 114

Meneguzzi, Felipe, 114

Ng, Kee Siong, 98

Norman, Timothy J., 65

Pham, Duc Quang, 130

Ragone, Azzurra, 146

Sharpanskykh, Alexei, 1, 17

Shaw, Patricia, 162

Tran Cao, Son, V

Treur, Jan, 1, 17

van Riemsdijk, M. Birna, V, 49

Vasconcelos, Wamberto, 33, 65

Winikoff, Michael, V, 130

182

