
Matteo Baldoni, Jamal Bentahar
John Lloyd, M. Birna van Riemsdijk (eds.)

Declarative Agent Languages
and Technologies

Seventh International Workshop, DALT 2009
Budapest, Hungary, May 11th, 2009

Workshop Notes

DALT 2009 Home Page:
http://www.di.unito.it/~baldoni/DALT-2009/

Preface

The workshop on Declarative Agent Languages and Technologies (DALT), in
its seventh edition this year, is about investigating, studying, and using the
declarative paradigm in agent and in multi-agent systems. As one of the well-
established workshops in the multi-agent systems area, DALT aims at providing
a forum for researchers interested in linking theory to practical applications by
combining declarative and formal approaches with engineering and technology
aspects of agents and multi-agent systems. The purpose of the DALT workshop
is both to advance research on declarative approaches and technologies for agent
systems and to foster the scientific exchange among researchers, practitioners,
and engineers interested in building complex and practical agent-based systems.

Specification, verification, and validation of agents and multi-agent systems
using different formal techniques, such as computational logics, model check-
ing, constraint logic, game theory, and semantic models, along with evaluation
of declarative approaches and industrial experiences are the key issues DALT
aims to promote. Moreover, DALT has traditionally fostered the development of
declarative approaches to engineering agent-based systems. This theme is driven
by important application areas, such as the semantic web and service-oriented
computing, security, and electronic contracting. We are interested in the foun-
dations, methodologies and techniques for building such systems, in reports on
experiences gathered in using them, and in experimental studies analysing their
performance.

In the tradition of DALT, the 2009 meeting is being held as a satellite work-
shop of AAMAS 2009, the 8th International Joint Conference on Autonomous
Agents and Multiagent Systems, in Budapest, Hungary. Following the success
of DALT 2003 in Melbourne (LNAI 2990), DALT 2004 in New York (LNAI
3476), DALT 2005 in Utrecht (LNAI 3904), DALT 2006 in Hakodate (LNAI
4327), DALT 2007 in Honolulu (LNAI 4897), DALT 2008 in Estoril (LNAI 5397),
DALT will aim at providing a discussion forum to both (i) support the trans-
fer of declarative paradigms and techniques to the broader community of agent
researchers and practitioners, and (ii) to bring the issue of designing complex
agent systems to the attention of researchers working on declarative languages
and technologies.

This edition of DALT received seventeen high quality submissions, describing
works by researchers coming from 12 different countries, eleven of which have
been selected by the Programme Committee and are included in this volume.
Each paper received at least three reviews in order to supply the authors with
helpful feedback that could stimulate the research as well as foster discussion.
DALT 2009 post-proceedings will appear soon as a volume in the Lecture Notes
in Artificial Intelligence by Springer.

We would like to thank all authors for their contributions, the members of
the Steering Committee for the valuable suggestions and support, and the mem-

VI

bers of the Programme Committee for their excellent work during the reviewing
phase.

March 18th, 2009

Matteo Baldoni
Jamal Bentahar

John Lloyd
M. Birna van Riemsdijk

VII

Workshop Organisers

Matteo Baldoni University of Torino, Italy
Jamal Bentahar Concordia University, Canada
John Lloyd Australian National University, Australia
M. Birna van Riemsdijk Delft University of Technology, The Netherlands

Programme Committee

Thomas Agotnes Bergen University College, Norvey
Marco Alberti University of Ferrara, Italy
Natasha Alechina University of Nottingham, UK
Cristina Baroglio University of Torino, Italy
Rafael Bordini University of Durham, UK
Jan Broersen University of Utrecht, The Netherlands
Federico Chesani University of Bologna, Italy
Amit Chopra North Carolina State University, USA
Keith Clark Imperial College London, UK
James Harland RMIT University, Australia
Andreas Herzig Paul Sabatier University, France
Koen Hindriks Delt University of Technology, The Netherlands
Shinichi Honiden National Institute of Informatics, Japan
Yves Lespérance York University, Canada
Alessio Lomuscio Imperial College London, UK
Viviana Mascardi University of Genova, Italy
Nicolas Maudet University of Paris-Dauphine, France
John-Jules Ch. Meyer Utrecht University, The Netherlands
Peter Novak Clausthal university of Technology, Germany
Enrico Pontelli New Mexico State University, USA
Azzurra Ragone Polytechnic of Bari, Italy
Chiaki Sakama Wakayama University, Japan
Guillermo Simari Universidad Nacional del Sur, Argentina
Tran Cao Son New Mexico State University, USA
Eugenia Ternovska Simon Fraser University, Canada
Wamberto Vasconcelos University of Aberdeen, UK
Marina De Vos University of Bath, UK
Michael Winikoff University of Otago, New Zealand

VIII

Steering Committee

Matteo Baldoni University of Torino, Italy
Andrea Omicini University of Bologna-Cesena, Italy
M. Birna van Riemsdijk Delft University of Technology, The Netherlands
Tran Cao Son New Mexico State University, USA
Paolo Torroni University of Bologna, Italy
Pınar Yolum Bogazici University, Turkey
Michael Winikoff University of Otago, New Zealand

Additional Reviewers

Aaron Hunter
Tommaso Di Noia

Table of Contents

Unifying the Intentional and Institutional Semantics of Speech Acts 1
Carole Adam, Andreas Herzig, Dominique Longin, Vincent Louis

Tableaux for Acceptance Logic . 17
Mathijs de Boer, Andreas Herzig, Tiago de Lima, Emiliano Lorini

Ontology and Time Evolution of Obligations and Prohibitions using
Semantic Web Technology . 33
Nicoletta Fornara, Marco Colombetti

Prioritized Goals and Subgoals in a Logical Account of Goal Change –
A Preliminary Report . 49
Shakil M. Khan, Yves Lespérance

Microscopic Analysis of Edge Creation Process in Trust-based Social
Networks . 66
Babak Khosravifar, Maziar Gomrokchi, Jamal Bentahar

Computing Utility from Weighted Description Logic Preference Formulas 82
Azzurra Ragone, Tommaso Di Noia, Francesco M. Donini, Eugenio Di

Sciascio, Michael P. Wellman

Explaining and Predicting the Behavior of BDI-Based Agents in
Role-Playing Games . 98
Michal P. Sindlar, Mehdi M. Dastani, Frank Dignum, John-Jules

Meyer

Correctness Properties for Multiagent Systems . 114
Munindar P. Singh, Amit K. Chopra

Reasoning and Planning with Cooperative Actions for Multiagents
Using Answer Set Programming . 130
Tran Cao Son, Chiaki Sakama

Social Commitments in Time: Satisfied or Compensated (preliminary
report) . 147
Paolo Torroni, Federico Chesani, Paola Mello, Marco Montali

Verifying Dribble Agents . 162
Doan Thu Trang, Brian Logan, Natasha Alechina

Author Index . 178

X

Unifying the intentional and institutionalsemantis of speeh atsCarole Adam1, Andreas Herzig2, Dominique Longin2, and Vinent Louis
1 RMIT University, Melbourne, VIC, Australiaarole.adam.rmit�gmail.om

2 IRIT, Toulouse, Franefirstname.surname�irit.frAbstrat. Researh about the semantis of agent ommuniation lan-guages traditionally sees the opposition between the mentalist and soialapproahes. In this paper we adopt a mixed approah sine we propose alogial framework allowing us to express both the intentional and insti-tutional dimensions of a ommuniative ation. We use this frameworkto give a semantis for some speeh ats representing eah of Searle'sategories exept expressives. This semantis relaxes the ritiized on-straints imposed in FIPA-ACL and also extends this standard with newspeeh ats and new institutional features to haraterise them. It hasbeen implemented in an extension of the Semanti Add-on for the JADEagent development platform, and used in an industrial appliation in theontext of automated B2B exhanges.1 IntrodutionDesigning e�ient Agent Communiation Languages is an essential issue inMulti-Agent Systems in order to standardise exhanges between the agents.Researh about the semantis of agent ommuniation languages sees the sub-sribers of the soial approah [17, 8, 27℄ ritiize mentalist approahes [24, 15℄for only grounding on the agents' private mental attitudes. But one an sim-ilarly reproah to soial approahes to provide a semantis only based on theagents' publi ommitments, independently of their mental attitudes. Now these�soial attitudes� are mainly desriptive, while mental attitudes allow one topredit the agents' behaviour. Moreover mental attitudes allow agents to rea-son about soial notions. It is thus essential to onsider both mental and soialattitudes. Some researhers thus propose a mixed approah based both on pub-li and private aspets [18℄. But they do not formalise institutional speeh atslike delarations. Now suh speeh ats are essential in new appliation �eldsinvolving ommuniation about norms, roles or powers of agents, for instane ineletroni ommere or automated business to business exhanges.In this paper we thus want to propose an alternative to the well-known stan-dard of agent ommuniation language FIPA-ACL [16℄ through the followinghanges: relaxed feasibility preonditions to allow a more �exible utilisation of
1

the speeh ats in various ontexts; new institutional speeh ats like delara-tions and promises; and an institutional interpretation of speeh ats oupledwith their lassial intentional interpretation. Therefore we adapt an existinglogial framework for the formalisation of institutional notions like roles, powersand norms [10℄. We then formalise in this logial framework the institutional in-terpretation of some spei� ommuniative ations, eah one representing oneof Searle's ategories of speeh ats (exept expressive ones) [25℄. Our notionof institution is very large (it is a set of rules and fats adopted by a group ofagents, like the rules of a game, or the laws of a ountry) and overs formal,legal institutions as well as informal ones (soial rules in a group...).The paper is strutured as follow. Setion 2 disusses some other soial se-mantis of speeh ats. Setion 3 brie�y desribes the syntax, semantis andaxiomatis of our logial framework. The ore of the paper (Setion 4) is dedi-ated to the uni�ed semantis of speeh ats. We are then able to ompare oursemantis of ACL with some related ones in more details (Setion 5). Finally weonlude about the future prospets opened by this work (Setion 6).2 State of the artThe mentalist approah onsists in grounding the semantis of speeh ats onthe agents' internal mental attitudes. These are represented by belief, desire andintention modalities provided by BDI logis, that are lassially used to formalisethe reasoning of autonomous agents [23, 28℄. This resulted in the design of severalstandards of agent ommuniation languages like KQML [15℄ or FIPA [16℄, thislatter one grounding on Sadek's rational interation theory [24℄.These approahes were ritiised a lot for being only based on private on-epts (mental attitudes) instead of publi veri�able notions (like ommitments).Therefore some work exist aiming at enrihing BDI logis with deonti operatorslike obligation [13, 3℄ or with institutional operators like ount as or institutionalpower [21℄, in order to formalise the institutional interpretation of speeh atsexhanged by the agents. In previous work we used suh an extended BDI frame-work to express the semantis of speeh ats with institutional e�ets [11℄ butwe were limited to delarative speeh ats, and the intentional and institutionaldimensions were quite blended.Various other work aims at providing an institutional semantis for speehats. For example Dignum and Weigand [14℄ propose a logial framework om-bining illoutionary and deonti logi to study and model the norms result-ing from ommuniation between agents; however, they only onsider diretivespeeh ats. Boella et al. [1℄ propose a role-based semantis allowing them toombine soial ommitments and mental attitudes to express the semantis ofspeeh ats in the ontext of persuasion dialogues. Atually they rewrite theFIPA feasibility preondition and rational e�ets of speeh ats but replae theprivate mental attitudes involved by publi mental attitudes attributed to theagents' roles instead of the individual agents. This solves the �aw of mentalistapproahes, ritiised for grounding on unveri�able mental attitudes, but �nally
2

there is no distint institutional interpretation of speeh ats, that ould di�erfrom one institution to another. In the following subsetions we give some detailsabout two approahes: Fornara and Colombetti's approah based on the notionof ommitments, and Lorini et al. 's approah based on the notion of aeptane.2.1 Fornara and Colombetti: semantis in terms of soialommitmentsAs opposed to the mentalist approah, the soial one [26, 27, 8℄ assumes thatprivate mental attitudes are not veri�able and thus grounds on the onept ofpubli (thus veri�able) ommitments [7℄ to express the semantis of speeh ats.All the ommitments taken by the agents are stored for possible future referene.The semantis of speeh ats is expressed only in terms of suh ommitments.For example Fornara and Colombetti [17℄ ground on Castelfranhi's notionof ommitment [7℄ to de�ne a library of ommuniative ats. From the lassi�-ation of speeh ats into four ategories (assertives, diretives, ommissives anddelaratives) inspired from Searle's work [25℄, they rede�ne for eah ategorythe semantis of its speeh ats in terms of soial ommitments. Thanks to thislibrary, they provide a ommuniation tool based on soial ommitments, alter-native to the FIPA-ACL standard. This tools allows rational agents to reasonabout the underlying rules of ommuniation and to respet them in order forthe system to behave well.However they are limited to the institutional dimension of speeh ats andneglet their relations with the agents' mental attitudes. Yet agents must beable to reason autonomously about the institution before making their deisionto perform a given speeh at. Moreover no spei� institution is expliit intheir ommitments, making it impossible to have various ommitments in variousinstitutions; therefore it is also impossible for speeh ats to have di�erent e�etsdepending on the institution within whih they are interpreted. For example theation of nodding one's head is interpreted in the ontext of Frenh gesturallanguage as meaning �yes�, while in the ontext of Bulgarian gestural languageit is interpreted as meaning �no�.2.2 Lorini et al. : semantis in terms of group aeptaneLorini et al. [22℄ de�ne a new semantis for speeh ats using Gaudou et al. 'sAeptane Logi [19℄. A L is a modal logi extended with the notion of a-eptane, representing what a group of agents willingly aept to onsider astrue (even if some (or all) members of the group believe the opposite) in a giveninstitutional ontext (and that they an refuse in another ontext). Aeptanesin�uene the agents' behaviour and utteranes in this institutional ontext. Theyare represented with the operator [C : x]ϕ reading �agents in group C aept that
ϕ while funtioning as members of this group in the institutional ontext x�.Institutional notions are not primitive but de�ned from this notion of aep-tane. Thereby institutional fats (fats that are only valid in an institutionalontext, but not objetively valid) are onsidered to be equivalent to a group

3

aeptane in all groups of agents while they funtion in the onsidered institu-tional ontext. This strong link assumed between aeptane and institutionalfats may be a partiular rule of the spei� �ordinary ommuniation� institu-tion but annot be generalised to all institutions, partiularly legal ones.The authors then onsider the speeh at Promise in the institutional ontextof Ordinary Communiation (OC). Aording to them, if i informs j that he isgoing to perform ation α for him, and j intends i to perform this ation for him,this ounts as a promise at the next instant. The onsequene of this promiseis that i is obliged to perform ation α for j. Moreover the aeptane by thesetwo agents i and j while funtioning as a group in institution OC that i haspromised to perform ation α for j and that j intends him to do so impliesa soial ommitment of i towards j to perform α for him. This framework isinteresting but Lorini et al. have only formalised the promise yet. Moreover theydo not seem to make a lear distintion between the intentional and institutionalpreonditions to perform a speeh at.3 Our logial frameworkWe adapt here an existing logial framework for norms, institutional powers androles de�ned in [10℄. It is a multi-modal logi with modal operators of belief,intention, obligation, institutional fats and onsequenes, and ation.3.1 SyntaxLet AGT = {i, j, ...} be a �nite set of agents. Let ACT = {α, β...} be the setof ations. We suppose that some ations in ACT are of the form i:α, where iis the author of ation α (the agent who performs it). Let ATM = {p, q, ...}be the set of atomi formulas. Let INST = {s, t, ...} be the set of institutions.Complex formulas are denoted by ϕ, ψ... The language of our logi is de�ned bythe following BNF grammar:
ϕ ::= p|¬ϕ|ϕ ∨ ϕ|Biϕ|Chiϕ|Iiϕ|Dsϕ|ϕ⇒s ϕ|Oϕ|beforeαϕ|afterαϕwhere p ranges over ATM , α over ACT , i over AGT , and s over INST . Thelassial boolean onnetives ∧, →, ↔, ⊤ (tautology) and ⊥ (ontradition) arede�ned from ∨ and ¬ in the usual manner. The operators doneαϕ, happensαϕ,

Pϕ, Fϕ and power(i , s , ϕ, α, ψ) will be de�ned as abbreviations.3.2 Semantis and axiomatisWe only give here the informal meanings of our operators. It is su�ient to knowthat they have a Kripke semantis in terms of possible worlds. We also give someuseful axioms. This framework is adapted from Demolombe and Louis' logi ofnorms, roles and institutional powers [10℄. But please notie that atually, thedetails of the semantis of operators is not important, and any other institutionallogi would work.
4

Belief, intention and ation Bip means that agent i believes that p. Chipmeans that agent i prefers p to be true. These two normal operators have astandardKD45 axiomatis. Iip means that agent i intends that p. Its axiomatisis that de�ned for FIPA by Sadek [24℄. In partiular intention is linked with beliefby the following mix axioms:� introspetion: Iip↔ Bi Iip� automati dropping of ahieved intentions: Iip→ ¬Bip

beforeα and afterα are normal modal operators de�ned in standard tenselogi in linear time version [6℄. doneαϕ = ¬beforeα¬ϕ means that ation α hasjust been performed, and ϕ was true before. happensαϕ = ¬afterα¬ϕ meansthat ation α is about to be performed and ϕ will be true just after.Institutional modalities Finally this framework also provides some spei�operators to formalise institutional onepts. These operators have a parameter
s speifying the institution within whih they are valid. Here we onsider aninstitution as a set of institutional fats and rules that a group of agents (the�members� of this institution) adopt. This is a general view that an aountfor various institutional ontexts, be they formal institutions or informal ones:the law of a ountry, a ontrat between two parties in a business relationship,a soial struture, the rules of a game...An institutional fat is a fat that is reognised to be valid in the ontext ofa given institution, but that an make no sense in itself; i.e. it is not a physiallyobservable fat (what Searle alls a �brute fat�) but something written in theregistry of this institution. For example the fat that two people are married, orthat one is authorised to drive a truk, is only valid w.r.t. the law of a ountry;all deonti fat should also be enapsulated in an institutional fat to make theinstitution in whih they hold expliit. We represent these institutional fatswith the operator Dsϕ meaning that for institution s, it is o�ially establishedthat ϕ holds. In partiular if ϕ is an agent's mental attitude, then Dsϕ an beunderstood as this agent's ommitment (either a propositional ommitment if ϕis a belief, or a ommitment in ation if ϕ is an intention).Institutional fats an be dedued from other fats thanks to the rules ofthe institution. For example the presentation of an invoie by a provider to hislient ounts as an obligation for the lient to pay it. The existene of the invoieis physially observable, while the obligation is only valid in an institutionalontext. We represent these normative onsequenes with the primitive operator
p⇒s q, meaning that aording to the norms holding in institution s, p entails q.This operator is known in the literature as ount as, and has been �rst formalisedby Sergot and Jones [21℄. The following mix axioms expliit the link betweeninstitutional fats and normative onsequenes:

(ϕ⇒s ψ) → Ds(ϕ→ ψ) (SD)
(ϕ⇒s ψ) → (ϕ→ Dsϕ) (SC)

5

From these axioms and the properties of Ds (see [10, p.8℄ for details) we andedue:
(ϕ⇒s ψ) → (ϕ→ Dsψ) (SP)A partiular ase of normative onsequene onerns the onsequenes ofthe performane of an o�ial proedure. Atually some agents an have thepower when performing a given proedure under some onditions to reate newinstitutional fats. We represent these institutional powers as an abbreviation

power(i , s , cond , α, ϕ) = ((done i:α⊤∧cond) ⇒s ϕ). Intuitively this means that ihas the power in institution s, by performing ation α and if ondition cond holds,to see to it that ϕ beomes o�ially true in institution s. For example a mayorhas the power in the law of the Frenh Republi, by performing a delaration,and on ondition that the two people agree, to marry them. Obviously thesepowers result from the agent's role in the institution, but this is not the fousof this paper so we will not remind how roles are formalised in the originalframework (the interested reader an refer to [10℄ for details on this point).Deonti modalities We have a modality for impersonal obligation to be: Oϕreads �it is obligatory that ϕ�, and its axiomati is that of the Standard DeontiLogi [20℄, that is KD. Obligations to do an be expressed as obligations to be ina state where the obliged ation has been performed. Obligations are impersonalsine no agent is expliitly responsible for their ful�lment, but suh an agentan impliitly appear in their ontent. For instane Odone i:α⊤ means that it isobligatory (for no one in partiular) to be in a state where i has just performedation α; this an be understood as �i has the obligation to perform ation α�.Permissions and interdition are de�ned from obligations in a standard way:
Pϕ = ¬O¬p means that it is permitted that ϕ, and Fϕ = O¬ϕ means that itis forbidden that ϕ.Please notie that no institution is expliit as a parameter of this obligationmodality. But suh obligations will be enapsulated in institutional fats to ex-press the institution in whih they are valid. For example DsOϕ means that �ininstitution s, it is obligatory that ϕ�.4 Semantis of speeh ats4.1 Preliminary remarksIntentional and institutional dimensions The FIPA-ACL standard [16℄ de-�nes features allowing one to give an intentional dimension to the observationand interpretation of a ommuniative ation: the feasibility preondition (theappropriate mental attitudes to perform the speeh at) and the rational e�et(this is a formula ϕ representing the ontent of the speaker i's intention that heintends the reeiver j to know; so the performane of the speeh at allows anyobserver k to dedue this orresponding intentional e�et: Bk IiBj Iiϕ). Please

6

notie that the performane of the speeh at does not automatially allow oneto dedue its rational e�et, but only its intentional e�et, meaning that anyagent k believes that the speaker i intends the hearer j to reognize its (i's) in-tention to ahieve the rational e�et ϕ. However, nothing ensures that i indeedahieves ϕ, his speeh at may fail, for example the hearer may not obey anorder, or may not believe an assertion. Thus the rational e�et an only be de-dued under some onstraining hypotheses suh as the sinerity and ompetenehypotheses used in FIPA.In a similar way, we want to provide here the institutional dimension ofthe observation and interpretation of a ommuniative ation relative to one orseveral institutions. This institutional interpretation is omposed of the followingfeatures:� a permission ondition that is neessary and su�ient for the speaker to beallowed to perform this speeh at;� a power ondition that also needs to be true for the speeh at to have aninstitutional e�et;� an expliit institutional e�et that is obtained when the speeh at is per-formed while permission and power onditions were true.We will thus be able to ombine the intentional and institutional dimensionsof ommuniative ations (formalised as speeh ats [25℄), both essential to fullyharaterise their interpretation. Lorini et al. have also investigated suh a uni-�ed approah but they have only formalised the interpretation of a promise inthe ontext of ordinary ommuniation; we aim at being muh more generi.In partiular we formalise one speeh at from eah of Searle's ategories ofilloutionary fores, exept the expressive one.Atually we have relaxed some of the (widely ritiised) strong onstraintsimposed by FIPA-ACL semantis on the appropriate ontext of performane ofspeeh ats. Instead of imposing these onditions as strong onstraints, we havemoved them into the permission preonditions of the speeh at. The agentsare thus physially able to disobey these onstraints, but it is forbidden by theinteration norms, and they may inur santions for suh violations.Notations In the sequel we use the following abbreviations:� FP = feasibility preonditions� RE = rational e�et� PermC = (institutional) permission ondition� PowC = power ondition� EE = institutional expliit e�etSpeeh ats are ations of the form Force(sp, ad , inst , content) where sp ∈
AGT is the speaker, ad ∈ AGT is the addressee, inst ∈ INST is the institutionalontext, content is the propositional ontent and an be any formula of our lan-guage, and Force ∈ {inform, promise, command, declare} is the illoutionaryfore.

7

Ation laws We now explain how the intentional and institutional dimensionsof ations interat by providing the ation laws governing the performane ofspeeh ats.We notie that FP is a fatual exeutability preondition, while PermCis an ideal one. But even ideal worlds are submitted to physial world laws,i.e. PermC is not su�ient for the ation to be exeutable, FP also has to betrue. For example a mayor has the permission to marry people by making adelaration, but the delaration must be exeutable; thus if he is voieless oneday, he will be unable to marry anyone.We thus have the following exeutability laws. The fatual exeutability law(FELα) means that an ation happens i� its feasibility preondition is true andthe agent hooses to perform it. The ideal exeutability law (IELα) means thatideally, an ation should happen i� it is permitted and feasible.
happensα⊤ ↔ (FP(α) ∧ Chihappens i:α⊤) (FELα)

O(happensα⊤ → PermC (α)) (IELα)We also have the following e�et laws. The rational e�et law (RELα) meansthat if the power preondition of an ation is false, then only its rational e�etan be dedued after its performane. The power e�et law (PELα) means thatif the power ondition of an ation is true, then both its rational and institutionale�ets an be dedued after its performane.
¬PowC (α) → afterαRE (α) (RELα)

PowC (α) → afterαRE (α) ∧ EE (α) (PELα)From these laws we an dedue the following theorems larifying the fatualexeutability and e�ets of α depending on the di�erent ombinations of itsfeasibility and power preonditions. If FP(α) is false then α is not exeutable.
¬FP(α) → afterα⊥If FP(α) is true but PowC (α) is false, α is about to happen after whih itsrational e�et will be true.

(FP(α) ∧ ¬PowC (α)) → (happensα⊤ ∧ afterαRE (α))Finally if both FP(α) and PowC (α) are true, α is about to happen afterwhih both its rational and institutional e�ets will be true.
(FP(α) ∧ PowC (α)) → (happensα⊤ ∧ afterα(RE (α) ∧ EE (α)))4.2 Assertives: informThe assertive speeh at Inform ommits the speaker to the truth of a proposi-tion. The notation inform(i , j , s , ϕ) reads �agent i informs j in institution s that

ϕ is true�.
8

Intentional interpretation As we said before we have relaxed FIPA on-straints on the exeutability of speeh ats. We thus impose no feasibility pre-ondition here.
FP (inform(i , j , s , ϕ)) = ⊤The rational e�et (the ontent of the speaker i's intention that he intendsthe reeiver j to know) is that j believes the promised proposition ϕ to be true:
RE(inform(i , j , s , ϕ)) = BjϕInstitutional interpretation The permission preondition to inform j that

ϕ in institution s inludes the onstraints removed from the fatual feasibilitypreonditions: the speaker should not believe that the hearer already knows if
ϕ, and he should not be already ommitted on ¬ϕ in the same institution.

PermC (inform(i , j , s , ϕ)) = ¬DsBiBifjϕ ∧ ¬DsBi¬ϕNow the institutional e�et of Inform is to retrat possible opposite ommit-ments ontrated before and to assert a new ommitment on ϕ. Indeed, evenif agent i was previously ommitted on ¬ϕ (and therefore was not permittedto inform anyone that ϕ), he may violate that obligation. But these two om-mitments are inonsistent so the previous one must be retrated while assertingthe new ontraditory one. Though one an still detet that the opposite om-mitment was true when i performed the ation and that he has thus violatedthe rules of the institution. Atually due to the seriality of Ds we have that
DsBiϕ → ¬DsBi¬ϕ. So the expliit institutional e�et of inform is the newommitment:

EE (inform(i , j , s , ϕ)) = DsBiϕThis e�et is always obtained and does not depend on partiular powers of
i, so the power ondition is trivial.

PowC (inform(i , j , s , ϕ)) = ⊤Example For example in the ontext of B2B exhanges, if a provider sendshis atalogue to a lient, this ounts as information about the pries given inthis atalogue. As an e�et of this ation, the provider is thus ommitted tothese pries during the validity of his atalogue. In the spei� institution sonstituted by the ontrat between the provider and the lient, we assumethat we have a spei� rule forbidding to ontradit one's ommitments, whihtakes the form DsO(DsBip→ afterαDsBip), for every speeh at a, where p isthe proposition denoting that the prie is 100. This means that in institution
s, it is obligatory that if an agent i is ommitted to believe that the prieof an item is 100, then after any speeh at he is still ommitted to this (inother words it is forbidden to retrat this ommitment by any speeh at). Fromthis we an dedue that the provider is obliged to respet the given pries,i.e. DsO(DsBip→ after Inform(i,j,s,¬p)⊥) (it is obligatory that if i is ommittedto p, then the ation of informing any agent j that ¬p is not feasible).

9

4.3 Commissives: promise toThis ommissive speeh at ommits the speaker on a ourse of ation. Thenotation promise-to(i , j , s , α) reads �i promises to j in institution s to performation α�.Intentional interpretation We begin with speifying the intentional dimen-sion of this speeh at, that is not given in FIPA-ACL. A promise-to is feasibleif the speaker believes that the hearer intends him to perform the onernedation3. For example it makes no sense that a hild promises to his father toplay, while it makes sense to promise him to make his shoolwork. So:
FP (promise-to(i , j , s , α)) = BiIjdoneα⊤The rational e�et pursued by the speaker is that the hearer be aware of hisintention to perform the promised ation:
RE(promise-to(i , j , s , α)) = Bj Iidone i:α⊤Institutional interpretation In an institutional ontext s, this promise toperform an ation α is permitted on ondition that the ation i :α is not expliitlyforbidden itself. So the permission preondition is the following:

PermC (promise-to(i , j , s , α)) = ¬DsO¬happens i:α⊤The institutional e�et onsists in ratifying in institution s the speaker'sintention to perform ation α; so after promise-to(i , j , s , α) the speaker has storedin the registry of s its intention to perform α, whih is similar to him beingommitted in s to this ourse of ation.
EE (promise-to(i , j , s , α)) = DsIidone i:α⊤This is thus similar to the inform(i , j , s , ϕ) speeh at exept that a promisestores a ommitment in ation while an inform stores a propositional ommit-ment.There is no power preondition, so the institutional e�et of a promise isalways reahed.

PowC (promise-to(i , j , s , α)) = ⊤Example A lient c promises to pay his provider p one the ordered goodshave been delivered. The ation to pay is denoted by αpay This promise is validin the ontext of a B2B exhange ontrat, that is a partiular institution de-noted b2b here. So this promise is formalised as: promise(c, p, b2b, αpay). Thispromise is permitted sine obviously the promised ation to pay is not forbid-den: ¬Db2bO¬happensαpay
⊤. So when the lient reeives the delivery, his promiseallows to dedue his ommitment (rati�ed intention) to pay: Db2bIcdonec:αpay

⊤,that is the institutional e�et of this speeh at.3 Please notie that threats suh as �I promise that I will kill you� annot be onsideredas promises in the sense of Searle.
10

4.4 Diretives: ommandThis diretive speeh at is an attempt from the speaker to make the hearerperform some ation. The notation command(i , j , s , α, cond) reads �i orders to
j in institution s, in virtue of ondition cond, to perform ation α�.Intentional interpretation Aording to the FIPA-ACL semantis, a requestis feasible only if the speaker does not believe the hearer to already intend toperform the ommanded ation, and does believe that the part of the feasibilitypreonditions of the ommanded ation that onerns him (i.e. that are hismental attitudes) are valid. Here we onsider that when α is an ation of agent
j then FP(α) is of the form FPi(α) ∧ FP6=i(α) where the former is �i's part of
FP(α)� (similar to FIPA-ACL notation FP(α)[i\j], that is the part of FP(α)that are mental attitudes of agent i). But we do not impose this onstraint onthe feasibility of α as a feasibility preondition of the ommand, but rather as apermission preondition. So:

FP(command(i , j , s , α, cond)) = ⊤The rational e�et of a ommand (i.e. the e�et that i intends j to believe that
i intends to ahieve) is that j has performed the ommanded ation:

RE (command(i , j , s , α, cond)) = done j :α⊤Institutional interpretation The permission preondition to ommand some-one to perform an ation is to be empowered to do so, i.e. to dispose of theinstitutional power to reate the obligation to perform the ommanded ationby ommanding it, and to validate the ondition of this power, that is an expliitattribute cond of this diretive speeh at. An additional permission preondi-tion is the onstraint oming from FIPA feasibility preondition that we relaxed,that is that th part of the feasibility preonditions of α that depends on i hold(one should not ommand someone to perform an ation whose preonditionsare made false by his own mental attitudes).
PermC (command(i , j , s , α, cond)) =

cond ∧ power(i , s , cond , command(i , j , s , α, cond),Odone j :α⊤) ∧ FPi(α)The expliit institutional e�et of this power is to reate two new institutionalfats, orresponding to the obligation for j to perform α, and the reordingof j's knowledge of his obligation. Atually this obligation ould exist before,and in this ase the ommand orresponds to a noti�ation; but it an also bereated from srath by the ommand (see the examples in the next paragraphfor lari�ation).
EE (command(i , j , s , α, cond)) = DsOdonej :α⊤ ∧ DsBjOdonej :α⊤

11

Example For example a parent an ommand his hildren to lean his room.In this ase, the ation beomes obligatory through the ommand, beause ofthe parent's authority over his son (that is the ondition of his power). Simi-larly a professor ommanding his students to make some shoolwork reates theobligation for them to do so, on the strength of his role of professor.But an order does not neessarily reate an obligation, and may just put infous an existing one. For example a baili� an be sent to o�ially ommand anunooperative lient to pay an invoie. In this ase the obligation already exists(and is attested by the invoie) so the baili� only reminds the lient of it4. He ispermitted to perform suh a ommand in virtue of his role of baili� and beausehe is sent by the provider.4.5 Delaratives: delareThis delarative speeh at hanges the institutional reality by reating a newinstitutional fat. The notation declare(i , j , s , cond , ϕ) reads �i delares to j ininstitution s that given ondition cond, the fat ϕ is now established�. Theondition usually bears upon the speaker's role that empowers him to performsuh a delaration.Intentional interpretation This intentional interpretation is partly inspiredfrom the intentional interpretation of an inform(i , j , s ,Dsϕ). The feasibility pre-ondition of a delaration is that the speaker does not believe the delared fatto be already established (indeed a delaration must reate a new institutionalfat). The rational e�et (i.e. the intended e�et) is the same as an inform about
Dsϕ, i.e. to make the hearer aware of this information. So:

FP(declare(i , j , s , cond , ϕ)) = ¬BiDsϕ

RE (declare(i , j , s , cond , ϕ)) = BjDsϕInstitutional interpretation The permission preondition to perform
declare(i , j , s , cond , ϕ) is that i really has the power to establish the delaredfat ϕ by delaring it under the announed onditions cond. This power is lo-ally granted by eah spei� institution to some agents depending on their role.For example the Frenh republi grants the mayors the right to pronoune twopeople husband and wife, under the ondition that they both onsent to it. Thusan ordinary agent who is not mayor does not have this power, so that he is notallowed to pronoune marriages.

PermC (declare(i , j , s , cond , ϕ)) =

power(i , s , cond , declare(i , j , s , cond , ϕ), ϕ)4 Atually this seems to be a noti�ation rather than a ommand, but the aim is tomake the lient behave, while the aim of a noti�ation is only to make the reeivero�ially aware of what is noti�ed. In further work we expet to study into moredetails the links between delarations, ommands and noti�ations.
12

The expliit e�et of a delaration is to store the delared fat in the insti-tution, as well as the fat that the hearer is o�ially aware of this fat.
EE (declare(i , j , s , cond , ϕ)) = Dsϕ ∧ DsBjDsϕThis expliit e�et is only obtained under the additional ondition that condis valid:

PowC (declare(i , j , s , cond , ϕ)) = condExample For example a ountry an delare war to another one, by the voieof its representative that is empowered to do so, and under some onditionslike the agreement of some ounsellors. A mayor is empowered by its ountryto pronoune weddings under some onditions that the people are of age andonsenting.Citizens have to delare their inome to the publi treasury in order to al-ulate the amount of tax that they will pay. This is a delaration sine the e�etis a new institutional fat o�ially establishing one's delared inome as beingbelieved by him. Any itizen is empowered to do so. Moreover the law imposesa onstraint on the generated ommitment, that is an obligation to believe thisinome to be true. Thereby if the delared inome was false the itizen is liablefor proseution and santions.4.6 Example of reasoning with our ation lawsThis example is situated in the ontext of a B2B exhange (in institution b2b)between a buyer b and a seller s. The seller intends potential lients to know thepries of his produts, e.g. IsBbp. With our relaxed feasibility preondition, hean use an assertive speeh at whatever the ontext. Though if the buyer hasalready been informed of the pries before (Db2bBsBbp), the seller is not permit-ted to inform him again. Thus if he informs him anyway, aording to IELα heviolates an obligation. This an be deteted by other agents, and spei� rulesof the institution may speify santions to ompensate this. Being aware of suhpre-spei�ed santions, an agent an deliberately hoose to violate an obligationif the intended outome (here, that lients be aware of the seller's o�er) is moreimportant than the inurred santion. This shows the importane of having bothintentional and institutional semantis of speeh ats, to allow agents to reasonabout the relative importane of their goals and their obligations, in order tomake an appropriate deision.5 Detailed omparison with other workIn this setion we ompare our semantis of speeh ats with those proposed byFornara and Colombetti, and by Lorini et al. (that we have presented above).
13

5.1 Conept of ommitmentWe have shown before that what we mean by ommitment in this work is arati�ed mental attitude, i.e. a mental attitude (belief or intention) stored inthe institution. This notion is similar to Fornara and Colombetti's ommitmentthat is also a publi onept, exept that we have not made expliit its reditor.Atually the debtor is ommitted towards the whole institution, but an impliitreditor an sometimes be found in the ontent ϕ of the ommitment. For ex-ample if agent i promises to j to pay him, he ommits himself to a propositioninvolving agent j, expressing that j will be payed at some future instant. Thereditor an sometimes be found in the santion assoiated with the violation ofthe ommitment, too; for example the obligation to pay damages to an agent.Our notion of rati�ed mental attitude is also similar to Gaudou et al. 's notionof aeptane, beause it must in�uene the agent's behaviour and utteranes.Indeed, the agent's rati�ed mental attitudes are mental attitudes that he hasexpressed, that are stored in the institution, and to whih he must onformwhile subsequently ating and speaking, even if they are not onsistent with hisreal mental attitudes. For example an agent who promises that he has seen agiven movie must then be able to talk about it in order to be onsistent with hispromise; if he is unable to narrate the end of the movie one an notie that heis ontraditing his ommitment.5.2 Notion of institutionBy institution we mean a set of rules and fats that are adopted by a group ofagents (the members of the institution). This seems to be a more generi notionthan Lorini et al. 's onept of informal institution, sine it aounts for thispartiular kind of institutions but also for various other ones: laws of a ountry,rules of a game, ontrat between businesses, soial norms of a ulture... Inpartiular it allows to have institutional rules that are ignored by the membersof the institution, what is the ase for law for example, sine one annot be awareof the whole set of laws of his ountry, while he is one of its itizens. Fornara andColombetti do not make expliit the institutional ontext in whih their speehats are interpreted, so we believe that they also onsider a kind of �ordinaryommuniation� institutional ontext.In our view informal institutions are desribed by a spei� set of fats andrules, determining their spei� funtioning. In partiular the fat that all agentsmust aept a fat for it to beome institutional is a partiular institutional law.In other kinds of institutions, fats must be adopted by a majority of members(voting to reate a law or to elet the president for example), or the opinionof one single member an su�e (the referee is always right). Thus we annotadopt suh an hypothesis in our aount. Indeed on the ontrary we onsiderthe generi interpretation of speeh ats in any institution s. More spei� rulesan be additionally spei�ed in eah partiular interpretation, but the objet ofthis paper is to identify for eah ategory of speeh ats the features that areommon to their institutional interpretations whatever the institutional ontext.
14

6 ConlusionIn this work we have provided an expressive logial framework blending theagents' mental attitudes (beliefs, intentions) with their soial attitudes (obli-gations, institutional fats and powers...). To illustrate its expressivity, pleasenotie that our framework allows to represent some forms of ontrary-to-dutyobligations-to-do. Suh obligations take the form:
Oafterα⊥ → afterαOdonerepairα

⊤where repairα is the ontrary-to-duty obligation assoiated to the violation ofthe obligation to refrain from doing α. This means that if it is forbidden toperform α, then after α it is obligatory to perform a repairing ation repairα.We have then used this framework to provide a semantis for an agent om-muniation language based on FIPA-ACL but relaxing its widely ritiised tooonstraining feasibility onditions, and adding permission preonditions. Thisway, agents an hoose to perform forbidden speeh ats but would then beliable to santions in the orresponding institution. Our ACL semantis alsoinludes new speeh ats (ommissives and delaratives). It generalises existingapproahes by unifying the intentional and institutional dimensions in one singleframework, while strongly distinguishing them; moreover it allows to onsidervarious kinds of institutional ontexts; �nally it provides ation laws taking bothdimensions into aount.In future work we intend to improve the institutional and intentional se-mantis of speeh ats by aounting for deadlines. Various researhers [4, 12, 9℄have shown that an important feature of obligations to perform an ation is thedeadline before whih this ation must be performed, that is essential to be ableto assess the violation or ful�llment of suh obligations. Though for the sake ofsimpliity we have omitted deadlines in this paper. An idea to manage them infuture work ould be to use existing formalisations of norms with deadlines, orto ground on linear temporal logi with until and sine operators [5℄.Finally we would like to mention that our framework for the institutionalinterpretation of speeh ats has been suessfully implemented into institutionalagents that have been used in a prototype of industrial appliation: a multi-agentmediation platform for automated business to business exhanges [2℄.Referenes1. G. Boella, R. Damiano, J. Hulstijn, and L. van der Torre. Role-based semantisfor agent ommuniation: embedding of the 'mental attitudes' and 'soial ommit-ments' semantis. In AAMAS'06, Hakodate, Hokkado, Japon, 2006.2. F. Bourge, S. Piant, C. Adam, and V. Louis. A multi-agent mediation platformfor automati b2b exhanges. In ESAW, 2008. demonstration.3. J. Broersen, M. Dastani, and L. van der Torre. Beliefs, obligations, intentions, anddesires as omponents in an agent arhiteture. International Journal of IntelligentSystems, 20(9):893�919, 2005.
15

4. J. Broersen, F. Dignum, V. Dignum, and J.-J. C. Meyer. Designing a deonti logiof deadlines. In DEON, pages 43�56, 2004.5. J. Burgess. Logi and time. The Journal of Symboli Logi, 44(4):566�582, 1979.6. J. Burgess. Handbook of philosophial logi, volume 7, hapter Basi tense logi,pages 1�42. Kluwer Aademi Publishers, 2nd edition, 2002.7. C. Castelfranhi. Commitments : From individual intentions to groups and orga-nizations. In ICMAS-95, pages 41�48, San Franiso, 1995.8. B. Chaib-draa, M.-A. Labrie, M. Bergeron, and P. Pasquier. Diagal : An agentommuniation language based on dialogues games and sustained by soial om-mitments. Journal of Autonomous Agent and Multi-Agent Systems, 13:61�95, 2006.9. R. Demolombe, P. Bretier, and V. Louis. Norms with deadlines in dynami deontilogi. In ECAI'06, pages 751�752, 2006.10. R. Demolombe and V. Louis. Norms, institutional power and roles: towards a log-ial framework. In 16th International Symposium on Methodologies for IntelligentSystems (ISMIS'06), volume LNAI 4203, pages 514�523. Springer, 2006.11. R. Demolombe and V. Louis. Speeh ats with institutional e�ets in agent soi-eties. In DEON'06, 2006.12. F. Dignum and R. Kuiper. Obligations and dense time for speifying deadlines. InHICSS, volume 5, pages 186�195. IEEE Computer Soiety, 1998.13. F. Dignum, D. Morley, E. Sonenberg, and L. Cavedon. Towards soially sophisti-ated bdi agents. In ICMAS'2000, pages 111�118, 2000.14. F. Dignum and H. Weigand. Communiation and deonti logi. In R. Wieringaand R. Feenstra, editors, Information Systems, orretness and reusability, pages242�260, Singapore, 1995. World Sienti�.15. T. Finin, R. Fritzson, D. MKay, and R. MEntire. KQML as an agent ommuni-ation language. In Int. onf. Information and knowledge management, 1994.16. FIPA. The foundation for intelligent physial agents. http://www.fipa.org.17. N. Fornara and M. Colombetti. A ommitment-based approah to agent ommu-niation. Applied Arti�ial Intelligene, 18(9-10):853�866, 2004.18. B. Gaudou, A. Herzig, D. Longin, and M. Nikles. A new semantis for the �paagent ommuniation language based on soial attitudes. In G. Brewka, S. Corade-shi, A. Perini, and P. Traverso, eds, ECAI, pp. 245�249. IOS Press, 2006.19. B. Gaudou, D. Longin, E. Lorini, and L. Tummolini. Anhoring institutions inagents' attitudes: towards a logial framework for autonomous multi-agent systems.In AAMAS'08, 2008.20. A. Jones and J. Carmo. Handbook of philosophial logi, volume 8, hapter DeontiLogi and Contrary-to-duties, pages 265�343. Kluwer Aademi Publishers, 2002.21. A. Jones and M. Sergot. A formal haraterisation of institutionalised power.Journal of the interest group in pure and applied logis, 4(3), 1996.22. E. Lorini, D. Longin, and B. Gaudou. The institutional dimension of speeh ats: alogial approah based on the onept of aeptane. Researh report, IRIT, 2008.23. A. Rao and M. George�. Modeling rational agents within a BDI-arhiteture. InKR'91, 1991.24. D. Sadek. A study in the logi of intention. In KR'92, 1992.25. J. R. Searle. Speeh ats : An essay in the philosophy of language. In CambridgeUniv. Press, 1969.26. M. Singh. An ontology for ommitments in multiagent systems: Towards a uni�-ation of normative onepts. 1999.27. M. P. Singh. A soial semantis for agent ommuniation languages. In F. Dignumand M. Greaves, eds., Issues in Agent Communiation, pp. 31�45. Springer, 2000.28. M. Wooldridge. Reasoning about rational agents. MIT Press, 2000.
16

Tableaux for Acceptance Logic

Mathijs de Boer1, Andreas Herzig2, Tiago de Lima3, and Emiliano Lorini2

1 University of Luxembourg, Luxembourg
2 IRIT, University of Toulouse 3, France

3 Eindhoven University of Technology, The Netherlands

Abstract. We continue the work initiated in [1–3], where the acceptance
logic, a modal logic for modelling individual and collective acceptances
was introduced. This logic is aimed at capturing the concept of accep-
tance qua member of an institution as the kind of attitude that agents are
committed to when they are “functioning as members of an institution”.
Acceptance logic can also be used to model judgement aggregation: it
deals with how a collective acceptance of the members of an institution
about a certain fact ϕ is created from the individual acceptances of the
members of the institution. The contribution of this paper is to present
a tableau method for the logic of acceptance. The method automatically
decides whether a formula of the logic of acceptance is satisfiable thereby
providing an automated reasoning procedure for judgement aggregation
in the logic of acceptance.

Key words: Semantic tableaux method, acceptance logic, judgement
aggregation, discursive dilemma

1 Introduction

The notion of ‘acceptance’ has been extensively studied in philosophy and social
sciences where several authors have distinguished it from the classical notion of
belief (see [4–6] for instance). Other authors have been interested in studying the
foundational role of acceptance in the existence and in the dynamics of groups
and institutions. It has been stressed in [7] (see also [8]) that the existence and the
dynamics of an institution depend on the acceptances of the norms and the rules
of the institution by the members of the institution. For example, for a certain
norm to be a norm of institution x, all members of institution x must accept
such norm to be valid. This relationship between acceptance and institutions
was already emphasised in the philosophical doctrine of Legal Positivism [9].
According to Hart, the foundations of a normative system or institution consist
of adherence to, or acceptance of, an ultimate rule of recognition by which the
validity of any rule of the institution may be evaluated.4

In some recent works [1–3] we have presented a logical framework in which
such relationship between acceptances and institutions can be formally studied.

4 In Hart’s theory, the rule of recognition is the rule which specifies the ultimate
criteria of validity in a legal system.

17

We conceive institutions as rule-governed social practices on the background of
which the agents reason. For example, take the case of a game like Cluedo. The
institutional context is the rule-governed social practice which the agents con-
form to in order to be competent players and on the background of which agents
reason. In the context of Cluedo, an agent accepts that something has happened
qua player of Cluedo (e.g., the agent accepts that Mrs. Red is the murderer qua
player of Cluedo). Our logic is aimed at capturing the state of acceptance qua
member of an institution as the kind of acceptance one is committed to when
one is “functioning as a member of the institution” [7]. Moreover, it enables to
formalise the concept of ‘collective acceptance’ of groups of agents. Following [10,
7], we conceive a collective acceptance held by a set of agents G qua members of a
certain institution x as the kind of acceptance the agents in G are committed to
when they are “functioning together as members of this institution”. For exam-
ple, in the context of Greenpeace agents (collectively) accept that their mission
is to protect the Earth qua members of Greenpeace. The state of acceptance qua
members of Greenpeace is the kind of acceptance these agents are committed
to when they are functioning together as members of Greenpeace. Thus, in our
logical framework a collective acceptance by a set of agents G is based on the
identification of the agents in G as members of a certain institution (or group,
team, organisation, etc.) and on the fact that the agents in G recognise each
other as members of the same institution (or group, team, organisation, etc.).

More recently [11], we have shown that our logic of acceptance can also be
applied to modelling some interesting aspects of judgement aggregation. In the
logic of acceptance the problem of judgement aggregation is a particular case of
the problem of explaining how collective acceptance of the members of a certain
group about a certain fact ϕ is created from the individual acceptances of the
members of this group.

The contribution of this article is to present a tableau method for the logic of
acceptance we introduced in [1, 2]. The method automatically decides whether a
formula of the logic of acceptance is satisfiable thereby providing an automated
reasoning procedure for making judgement aggregation in modal logic.

The remainder of the paper is organised as follows. First, in Section 2 we
briefly present acceptance logic. Then, in Section 3 we present our tableau
method. In Section 4 we apply it to a classical scenario in judgment aggregation,
the so-called Discursive Dilemma [12, 13]. And finally, Section 5 concludes.

2 Acceptance logic

The logic AL (Acceptance Logic) was introduced in [1, 2]. It allows to express
that some agents identify themselves as members of a certain institution and
what (groups of) agents accept while functioning together as members of an
institution. The principles of AL clarify the relationships between individual
acceptance (acceptances of individual agents) and collective acceptance (accep-
tances of groups of agents).

18

2.1 Syntax

Assume a finite non-empty set X of labels denoting institutional contexts, a
finite non-empty set N of labels denoting agents and a countable set P of atomic
formulae. We use 2N⋆ to denote the set 2N \ ∅.

The language LAL of acceptance logic is the set of formulae ϕ defined by the
following BNF:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | AG:xϕ

where p ranges over P , G ranges over 2N⋆, and x ranges over X.
The other classical Boolean connectives ∧, →, ↔, ⊤ (tautology) and ⊥ (con-

tradiction) are defined using ∨ and ¬ in the usual manner. And for simplicity,
we write i:x instead of {i}:x.

The formula AG:xϕ reads ‘the agents in G accept that ϕ while functioning
together as members of institution x’. For example, AG:GreenpeaceprotectEarth
expresses that the agents in G accept that the mission of Greenpeace is to
protect the Earth while functioning as activists in the context of Greenpeace;
and Ai:CatholicPopeInfallible expresses that agent i accepts that the Pope is
infallible while functioning as a Catholic in the context of the Catholic Church.

The same agent may accept contradictory propositions in two different con-
texts. For example, while functioning as a Catholic, agent i accepts that killing
is forbidden, and while functioning as a soldier i accepts that killing is allowed.

The formula AG:x⊥ has to be read ‘agents in G are not functioning together
as members of institution x’. This means that we assume that functioning as a
member of an institution is, at least in this minimal sense, a rational activity.
Conversely, ¬AG:x⊥ has to be read ‘agents in G are functioning together as
members of institution x’. Thus, ¬AG:x⊥ ∧ AG:xϕ stands for ‘agents in G are
functioning together as members of institution x and they accept that ϕ while
functioning together as members of x’ or simply ‘agents in G accept that ϕ qua
members of institution x’. This is a case of group acceptance. For the individual
case, the formula ¬Ai:x⊥ ∧ Ai:xϕ has to be read ‘agent i accepts that ϕ qua
member of institution x’.

2.2 Semantics and axiomatisation

We use a standard possible worlds semantics. Let the set of all pairs of non-empty
sets of agents and institutional contexts be ∆ = {G:x | G ∈ 2N⋆ and x ∈ X}. An
acceptance model is a triple 〈W,A,V〉 where: W is a non-empty set of possible
worlds, A : ∆ → W × W maps every G:x ∈ ∆ to a relation A(G:x) between
possible worlds in W and V : P → 2W is valuation function associating a set of
possible worlds V(p) ⊆ W to each atomic formula p of P .

Instead of A(G:x) we write AG:x, and we use AG:x(w) to denote the set
{w′ | 〈w, w′〉 ∈ AG:x}. AG:x(w) is the set of worlds that is acceptable by the
agents in G while functioning together as members of institution x.

Given M = 〈W,A,V〉 and w ∈ W , the pair 〈M, w〉 is a pointed acceptance
model. The satisfaction relation |= between formulae of LAL and pointed accep-
tance models 〈M, w〉 is defined as usual for atomic propositions, negation and

19

disjunction. The satisfaction relation for acceptance operators is the following:

M, w |= AG:xϕ iff M,w′ |= ϕ for all w′ ∈ AG:x(w)

Validity of a formula ϕ (noted: |= ϕ) is defined as usual.
The axiomatisation of AL is presented in Figure 1. As usual, the K-principles

are the axioms and inference rules of the basic modal logic K.

(K) All K-principles for the operators AG:x

(4∗) AG:xϕ → AH:yAG:xϕ (if H ⊆ G)

(5∗) ¬AG:xϕ → AH:y¬AG:xϕ (if H ⊆ G)

(Inc) (¬AG:x⊥ ∧ AG:xϕ) → AH:xϕ (if H ⊆ G)

(Una) AG:x(
^

i∈G

Ai:xϕ → ϕ)

Fig. 1. Axiomatisation of acceptance logic.

Axioms 4∗ and 5∗ are introspection axioms: when the agents in a set G

function together as members of institution x then, for all y ∈ X and all H ⊆ G,
the agents in H have access to all the facts that are accepted (or that are not
accepted) by the agents in G. In particular, if the agents in G (do not) accept that
ϕ while functioning together as members of institution x then, while functioning
together as members of institution x, the agents of every subset H of G accept
that agents in G (do not) accept that ϕ.

Axiom Inc says that, if the agents in G accept that ϕ qua members of
institution x then every subset H of G accepts ϕ while functioning together as
members of institution x. This means that what is accepted by the agents in
G qua members of institution x are necessarily accepted by agents in all of G’s
subsets with respect to the same institutional context x. Axiom Inc describes
the top down process leading from G’s collective acceptance to the individual
acceptances of G’s members.

Axiom Una expresses a unanimity principle according to which the agents
in G, while functioning together as members of institution x, accept that if each
of them individually accepts that ϕ while functioning as member of x, then ϕ

is the case. This axiom describes the bottom up process leading from individual
acceptances of the members of G to the collective acceptance of the group G.

In order to make our axioms valid we impose the following constraints on
acceptance models, for any world w ∈ W , institutional context x ∈ X, and
groups G,H ∈ 2N⋆ such that H ⊆ G:

(C.4∗) if w2 ∈ AH:y(w1) and w3 ∈ AG:x(w2) then w3 ∈ AG:x(w1);

(C.5∗) if w2 ∈ AH:y(w1) and w3 ∈ AG:x(w1) then w3 ∈ AG:x(w2);

(C.Inc) if AG:x(w) 6= ∅ then AH:x(w) ⊆ AG:x(w);

(C.Una) if w2 ∈ AG:x(w1) then w2 ∈
⋃

i∈G

Ai:x(w2).

20

Axiom 4∗ corresponds to semantic constraint C.4∗, Axiom 5∗ corresponds
to C.5∗, Axiom Inc to C.Inc, and Una to C.Una (in the sense of correspon-
dence theory). We also note that C.4∗ and C.5∗ together are equivalent to the
following semantic constraint: if w2 ∈ AH:y(w1) then AG:x(w1) = AG:x(w2).
Thus, the acceptance models considered here are exactly the same as proposed
in [1–3]. The theorem below has been shown in [2].

Theorem 1. The axiomatisation in Figure 1 is sound and complete with respect
to the class of acceptance models satisfying constraints C.4∗, C.5∗, C.Inc and
C.Una.

2.3 Discussion about the monotonicity principle

One may think that the following principle would be desirable in Acceptance
Logic:

(Mon) ¬AG:x⊥ → ¬AH:x⊥ (if H ⊆ G)

which corresponds to semantic constraint: if AG:x(w) 6= ∅ then AH:x(w) 6= ∅.
Principle Mon expresses a property of monotonicity about institution member-
ship. It was also discussed from a different perspective in our previous works on
Acceptance Logic [1, 2].

We prefer not including Mon in the current version of AL because we are in-
terested in strong notions of ‘constituted group’ and ‘group identification’ which
are formally expressed by constructions ¬AG:x⊥. As we said above, ¬AG:x⊥
means “the agents in G are functioning together as members of the institution
x” or, stated differently, “G constitutes a group of members of the institution
x”. We suppose here that the latter sentences just express that: every agent in
G identifies himself as a member of institution x and recognizes G as a group of
members of institution x. Under this assumption, Mon is not valid. The follow-
ing example illustrates this point. Imagine that the eleven agents in {1, 2, . . . , 11}
constitute a football team (i.e. ¬A{1,2,...,11}:team⊥). This means that every agent
in {1, 2, . . . , 11} identifies himself as a member of the football team and recog-
nizes {1, 2, . . . , 11} as a football team. This does not entail that {1, 2, . . . , 10}
constitute a football team (i.e. ¬A{1,2,...,10}:team⊥). Indeed, it is not the case
that every agent in {1, 2, . . . , 10} recognizes {1, 2, . . . , 10} as a football team.
(Only ten players do not constitute a football team!).

It worth noting that Mon becomes a reasonable principle under a different
reading of the construction ¬AG:x⊥. Namely, suppose that ¬AG:x⊥ just means:
every agent in G identifies himself as a member of institution x and recognises
every agent in the set of agents G as a member of institution x. Under this
assumption, ¬AG:x⊥ should imply ¬AH:x⊥, for H ⊆ G.

3 The tableau method

In this section we present a proof method for AL that uses semantic tableaux. As
a typical tableaux method, given a formula ϕ, it systematically tries to construct
a model for it. When it fails, ϕ is inconsistent and thus, its negation is valid.

21

Each formula in the tableau is prefixed by a natural number that stands for
a possible world in the model under construction, similar to the notion used by
Fitting ([14, Chapter 8]).

Definition 1 (Labelled formula). A labelled formula is a pair of the form
〈n, ϕ〉 such that n ∈ N and ϕ ∈ LAL.

Our method also builds the relations AG:x between possible worlds that form
the model. These relations are represented in tableau by means of arrows between
possible worlds, which are represented as triples of the form 〈G:x, n, n′〉. That
is, the tableau contains a set of labelled formulae and also a set of such triples,
as defined in the sequel.

Definition 2 (Branch). A branch is a pair of the form 〈L, S〉 such that L is
a set of labelled formulae and S ⊆ (∆ × N × N).

Definition 3 (Tableau). Let ϕ ∈ LAL. A tableau for ϕ is a set of branches T

inductively defined as follows:

– T = {〈{〈0, ϕ〉}, ∅〉}. This is called the initial tableau for ϕ.
– T ′ = (T \ {〈L, S〉}) ∪ {〈L′

1, S
′
1〉, 〈L

′
2, S

′
2〉, . . . , 〈L

′
n, S′

n〉}, where T is a tableau
for ϕ containing the branch 〈L, S〉 and each 〈L′

i, S
′
i〉 is a branch generated

by one of the tableau rules defined below: (A more standard presentation of
some of these tableau rules is given in Figure 2.)
(R.¬) If 〈n,¬¬ϕ〉 ∈ L then generate L′

1 = L ∪ {〈n, ϕ〉} and S′
1 = S.

(R.∧) If 〈n, ϕ1 ∧ ϕ2〉 ∈ L then generate L′
1 = L ∪ {〈n, ϕ1〉, 〈n, ϕ2〉} and

S′
1 = S.

(R.∨) If 〈n,¬(ϕ1∧ϕ2)〉 ∈ L then generate L′
1 = L∪{〈n,¬ϕ1〉} and S′

1 = S;
and also L′

2 = L ∪ {〈n,¬ϕ2〉} and S′
2 = S.

(R.¤) if 〈n,AG:xϕ〉 ∈ L and 〈G:x, n, n′〉 ∈ S then generate L′
1 = L ∪

{〈n′, ϕ〉} and S′
1 = S.

(R.♦) if 〈n,¬AG:xϕ〉 ∈ L then generate L′
1 = L ∪ {〈n′,¬ϕ〉} and S′

1 =
S ∪ {〈G:x, n, n′〉}, for some n′ that does not occur in L.

(R.4∗) if H ⊆ G and 〈H:y, n, n′〉, 〈G:x, n′, n′′〉 ∈ S then generate L′
1 = L

and S′
1 = S ∪ {〈G:x, n, n′′〉}.

(R.5∗) If H ⊆ G and 〈H:y, n, n′〉, 〈G:x, n, n′′〉 ∈ S then generate L′
1 = L

and S′
1 = S ∪ {〈G:x, n′, n′′〉}.

(R.Inc) If H ⊆ G and 〈H:x, n, n′〉 ∈ S then generate L′
1 = L and S′

1 =
S ∪ {〈G:x, n, n′〉}; and also L′

2 = L ∪ {〈n,AG:x⊥〉} and S′
2 = S.

(R.Una) If G = {i1, . . . , ik} and 〈G:x, n, n′〉 ∈ S then generate L′
1 = L and

S′
1 = S ∪ {〈{i1}:x, n′, n′〉}; L′

2 = L and S′
2 = S ∪ {〈{i2}:x, n′, n′〉}; . . . ;

L′
k = L and S′

k = S ∪ {〈{ik}:x, n′, n′〉}.

Rules R.¬, R.∧ and R.∨ work exactly as for classical propositional logic.
Rules R.¤ and R.♦ work exactly as for modal logic K, as proposed, e.g., in
[14]. The other rules are meant to ensure that the model to be created will be
an acceptance model. Tableau Rule R.4∗ implements semantic constraint C.4∗,
Tableau Rule R.5∗ implements constraint C.5∗, Rule R.Inc implements C.Inc
and R.Una implements C.Una.

22

(R.¤)
〈n, AG:xϕ〉; 〈G:x, n, n′〉

〈n′, ϕ〉;

(R.♦)
〈n,¬AG:xϕ〉;

〈n′,¬ϕ〉; 〈G:x, n, n′〉
for a new n

′

(R.4∗)
; 〈H:y, n, n′〉, 〈G:x, n′, n′′〉

; 〈G:x, n, n′′〉
where H ⊆ G

(R.5∗)
; 〈H:y, n, n′〉, 〈G:x, n, n′′〉

; 〈G:x, n′, n′′〉
where H ⊆ G

(R.Inc)
; 〈H:x, n, n′〉

; 〈G:x, n, n′〉 〈n, AG:x⊥〉;
where H ⊆ G

(R.Una)
; 〈G:x, n, n′〉

; 〈{i1}:x, n′, n′〉 . . . ; 〈{ik}:x, n′, n′〉
where G = {i1, . . . , ik}

Fig. 2. Tableau rules

Definition 4 (Closed tableau). The set of labelled formulae L is closed if
and only if {〈n, ϕ〉, 〈n,¬ϕ〉} ⊆ L, for some n and ϕ. A branch is closed if and
only if its set of labelled formulae is closed. A tableau is closed if and only if all
its branches are closed. A tableau is open if and only if it is not closed.

Example 1. Now, let us see how the method can be used to show that the for-
mula: (Aij:xAi:xp ∧Aij:xAj:xp) → Aij:xp is valid in acceptance logic. As we will
see, if there is a closed tableau for ϕ, then no model satisfies ϕ, which means
that ¬ϕ is valid. Therefore, if we provide a closed tableau for the negation of
our formula above, we show its validity.

Such a tableau is given in Figure 3. Each line of the figure displays either
a labelled formula, an arrow or both, which are the elements of the tableau
branches. The number in parentheses on the left is used to identify the line.
On the right, also in parentheses, we find the rule that generated that line, and
what lines has been used in the application of such rule. For example, the labelled
formula and arrow in line 6 have been generated by the application of R.♦, using
the labelled formula in line 3. Also, lines 9 and 11 have been generated by the
application of R.Una, using the arrow in line 6.

The input formula is in line 1 (we spelt out the abbreviations). The construc-
tion of the closed tableau started with the initial tableau for the input formula.
The latter corresponds to line 1 alone. Then, a new tableau has been generated
by the application of R.∧ using the labelled formula in line 1. The latter cor-
responds to lines 1 and 2 together, and so on. When R.Una has been applied

23

using the arrow in line 6, it generated two branches. This is represented in the
figure by the vertical line dividing the tableau in two parts after line 8.

(1) 0, (Aij:xAi:xp ∧ Aij:xAj:xp) ∧ ¬Aij:xp

(2) 0, Aij:xAi:xp ∧ Aij:xAj:xp (R.∧ : 1)
(3) 0,¬Aij:xp (R.∧ : 1)
(4) 0, Aij:xAi:xp (R.∧ : 2)
(5) 0, Aij:xAj:xp (R.∧ : 2)
(6) 1,¬p ij:x, 0, 1 (R.♦ : 3)
(7) 1, Ai:xp (R.¤ : 4, 6)
(8) 1, Aj:xp (R.¤ : 5, 6)

(9) i:x, 1, 1 (R.Una : 6)
(10) 1, p (R.¤ : 7, 9)

closed (6, 10)

(11) j:x, 1, 1 (R.Una : 6)
(12) 1, p (R.¤ : 8, 11)

closed (6, 12)

Fig. 3. A tableau for Example 1

Example 2. On the other hand, if no closed tableau for ϕ exists, then ϕ is satis-
fiable. Let us see what happens when we try to generate a closed tableau for the
formula: ¬Ai:xp∧Aij:x¬Ai:xp which is satisfiable. This is done in Figure 4. Note
that one of the branches is closed. On the other hand, no rule can be applied
in the rightmost branch, which means that this tableau will remain open. On
the leftmost branch we have a rather different phenomenon. We can continue
applying the same set of rules indefinitely. This will generate more branches that
can be closed, but we can never close all of them. This means that we can also
consider such a branch as an open one.

We proceed by proving soundness of the method. But first we need yet an-
other definition.

Definition 5 (Satisfiable branch). The branch b = 〈L, S〉 is satisfiable if
and only if there exists an acceptance model M = 〈W,A,V〉 and a function
f : N → W such that:

1. 〈f(n), f(n′)〉 ∈ AG:x, for all 〈G:x, n, n′〉 ∈ S; and

2. M, f(n) |= ϕ, for all 〈n, ϕ〉 ∈ L.

Theorem 2 (Soundness). If there is a closed tableau for ¬ϕ then ϕ is valid.

Proof. We show that if ϕ is satisfiable then there is no closed tableau for ϕ. It is
enough to show that all tableau rules preserve satisfiability. That is, it is enough
to show that: if the branch b = 〈L, S〉 is satisfiable then the set of branches
B = {b′1, . . . , b

′
k} generated by any tableau rule contains a satisfiable branch.

24

(1) 0,¬Ai:xp ∧ Aij:x¬Ai:xp

(2) 0,¬Ai:xp (R.∧ : 1)
(3) 0, Aij:x¬Ai:xp (R.∧ : 1)
(4) 1,¬p i:x, 0, 1 (R.♦ : 2)

(5) ij:x, 0, 1 (R.Inc : 4)
(6) 1,¬Ai:xp (R.¤ : 3, 5)
(7) ij:x, 1, 1 (R.5∗ : 5)
(8) 2,¬p i:x, 1, 2 (R.♦ : 6)

(9) ij:x, 1, 2 (R.Inc : 8)
(10) ij:x, 0, 2 (R.4∗ : 4, 9)
(11) 2,¬Ai:xp (R.¤ : 3, 10)
(12) ij:x, 2, 2 (R.5∗ : 9)
(13) 3,¬p i:x, 2, 3 (R.♦ : 11)

...

(14) 1, Aij:x⊥ (R.Inc : 8)
(15) 1,⊥ (R.¤ : 14, 7)

closed (15)

(16) 0, Aij:x⊥ (R.Inc : 4)

Fig. 4. A tableau for Example 2

Indeed, and to see that it is enough, suppose that b′i is satisfiable and closed.
Then L′

i contains two labelled formulae 〈n, ϕ〉 and 〈n,¬ϕ〉. Because b′i is satisfi-
able, there exists an acceptance model M and a function f such that M, f(n) |= ϕ

and M, f(n) |= ¬ϕ, which is a contradiction.
Now, suppose that the branch b is satisfiable. The proof that the rules R.¬

and R.∧ preserve satisfiability is straightforward and thus, left as an exercise to
the reader. We proceed by showing that the modal rules preserve satisfiability.

R.¤: M, f(n) |= AG:xϕ and 〈f(n), f(n′)〉 ∈ AG:x (by hypothesis). Then
M,f(n′) |= ϕ (by definition).

R.♦: M, f(n) |= ¬AG:xϕ (by hypothesis). Then there exists w′ ∈ AG:x(f(n))
such that M, w′ |= ¬ϕ (again, by definition). Now, consider the function f ′ :
N → W such that f ′(n) = f(n), for all n occurring in L, and f ′(n′) = w′. Then
M,f ′(n′′) |= ϕ′′, for all 〈n′′, ϕ′′〉 ∈ L (because n′ does not occur in L), and
M,f ′(n′) |= ¬ϕ.

R.4∗: Let H ⊆ G. 〈f(n), f(n′)〉 ∈ AH:y and 〈f(n′), f(n′′)〉 ∈ AG:x (by hy-
pothesis). Then 〈f(n), f(n′′)〉 ∈ AG:x, since M is an acceptance model respecting
C.4∗. Then, the branch 〈L′

1, S
′
1〉 is satisfiable.

R.5∗: Let H ⊆ G. 〈f(n), f(n′)〉 ∈ AH:x and 〈f(n), f(n′′)〉 ∈ AG:x (by hy-
pothesis). Then, 〈f(n′), f(n′′)〉 ∈ AG:x, since M is an acceptance model respect-
ing C.5∗. Then, the branch 〈L′

1, S
′
1〉 is satisfiable.

R.Inc: Let H ⊆ G. M, f(n) |= AG:xϕ and 〈f(n), f(n′)〉 ∈ AH:x (by hy-
pothesis). Note that M, f(n′) 6|= ⊥ (because we assume that the branch is sat-
isfiable) then M,f(n) |= ¬AH:x⊥. The latter implies 〈f(n), f(n′)〉 ∈ AG:x or
AG:x(f(n)) = ∅, since M is an acceptance model respecting C.Inc. Therefore,
one of the branches generated by R.Inc is satisfiable.

R.Una: Let G = {i1, . . . , ik}. 〈f(n), f(n′)〉 ∈ AG:x (by hypothesis). Then,
〈f(n′), f(n′)〉 ∈ Aij :x for some 1 ≤ j ≤ k, since M is an acceptance model

25

respecting C.Una. Therefore, one of the branches generated by R.Una is satis-
fiable. ⊓⊔

In the sequel we prove completeness. First though, we need another auxiliary
definition.

Definition 6 (Saturated tableau). Let T be a tableau for ϕ containing the
branch b = 〈L, S〉. The branch b is ‘saturated under the tableau rule ρ’ if and
only if L contains L′

i and S contains S′
i for some branch 〈L′

i, S
′
i〉 generated by

the application of the rule ρ to b. A branch is (simply) ‘saturated’ if and only if
it is saturated under all tableau rules. A tableau is saturated if and only if all its
branches are saturated.

Theorem 3 (Completeness). If ϕ is valid then there exists a closed tableau
for ¬ϕ.

Proof. Let 〈L, S〉 be an open and saturated branch of the tableau. We build a
model M = 〈W,A,V〉 such that W = {n | 〈n, ϕ〉 ∈ L}, for some ϕ; AG:x(n) =
{n′ | 〈G:x, n, n′〉 ∈ S}; and V(p) = {n | 〈n, p〉 ∈ L}.

Clearly, M is an acceptance model, because the branch is saturated under
R.4∗, R.5∗, R.Inc and R.Una.

Now, we show that for all 〈n, ϕ〉 ∈ L, M, n |= ϕ. It is done by induction on
the structure of ϕ.

There are two cases in the induction base. (1) ϕ = p, i.e., 〈n, p〉 ∈ L. Then
n ∈ V(p), iff M, n |= p (by definition). (2) ϕ = ¬p, i.e., 〈n,¬p〉 ∈ L. Then
〈n, p〉 6∈ L, because L is open. Then n 6∈ V(p), iff M, n |= ¬p (by definition).

There are five cases in the induction step. (1) ϕ = ¬¬ϕ1, i.e., 〈n,¬¬ϕ1〉 ∈ L.
Then 〈n, ϕ1〉 ∈ L, because L is saturated under R.¬. Then M, n |= ϕ1, by
induction hypothesis, iff M, n |= ¬¬ϕ1, by definition. Cases (2) ϕ = ϕ1 ∧ ϕ2

and (3) ϕ = ¬(ϕ1 ∧ ϕ2), are shown analogously as case (1) using rules R.∧ and
R.∨, respectively. They are left as an exercise to the rader. (4) 〈n, AG:xϕ〉 ∈ L.
Then for all n′ ∈ W , if 〈G:x, n, n′〉 ∈ S, then 〈n′, ϕ〉 ∈ L (because L is saturated
under rule R.¤). Then for all n′ ∈ W , if n′ ∈ AG:x(n), then M,n′ |= ϕ, by
induction hypothesis. Therefore, M, n |= AG:xϕ. (5) 〈n,¬AG:xϕ〉 ∈ L. Then
there is n′ ∈ W such that 〈G:x, n, n′〉 ∈ S and 〈n′,¬ϕ〉 ∈ L (because L is
saturated under rule R.♦). Then there is n′ ∈ W such that n′ ∈ AG:x(n) and
M,n′ |= ¬ϕ, by induction hypothesis. Therefore, M, n |= ¬AG:xϕ. ⊓⊔

Theorem 4 (Termination). There exists an implementation of the tableau
method that halts for every input formula ϕ.

Proof (Sketch). We assume an implementation of the tableau method that em-
ploys a ‘loop-test’. That is, a procedure that, once the latest generated tableau is
saturated under all rules but R.♦, verifies whether the application of the latter
rule to the witness formula ψ will generate a world such that the set of labelled
formulae having this world as label and the set of arrows involving this world
will be included in the respective sets for a different world already present in the

26

branch. If it is the case, then ψ is marked and R.♦ will not be applied using this
formula any more.

Then, the argument for termination goes as for logic S4 (as used, e.g., in [15,
16]): the formulae generated by the rules are in a finite set S, and therefore only
a finite number of different nodes can be generated by the tableaux procedure.
The only difference is that here the finite set S is not just the set of sub-formulae
of the initial formula ϕ as for S4, but its closure, which is the set of sub-formulae
of ϕ union the set of AG:x⊥ such that G and x occur in ϕ (due to rule R.Inc).
Moreover, the set of labels of every arrow is finite. ⊓⊔

4 An example: The discursive dilemma

In the recent years many researchers in philosophy, computer science and po-
litical sciences have been working on the issue of judgement aggregation (e.g.,
[17–22]). The problem is: How can a group of individuals aggregate the group
members’ individual judgements on some interconnected propositions into cor-
responding collective judgements on these propositions? Such problems occur in
different social and legal contexts like committees, legislatures, judiciaries and
expert panels.

Our logic of acceptance is a formal framework in which some important as-
pects of judgement aggregation can be modelled. Moreover, the tableau method
for the logic of acceptance presented in Section 3 provides an interesting solution
for making automated reasoning about judgement aggregation.

In the logic of acceptance the problem of judgement aggregation is a partic-
ular case of the problem of explaining how collective acceptance of the members
of a certain group in an institutional context x about a certain fact ϕ is created
from the individual acceptances in x of the members of the same group.

We here consider a well-known problem in judgement aggregation called ‘doc-
trinal paradox’ or ‘discursive dilemma’ [12, 13]. The scenario of the discursive
dilemma is a three-member court which has to judge whether a defendant is
liable for a breach of contract. According to the legal doctrine, the defendant is
liable (lia) if and only if he did a certain action (act) and he had a contractual
obligation not to do this action (obl). This is expressed in propositional logic
by the connection rule lia ↔ (act ∧ obl). The three judges use majority rule to
decide on this issue. The opinions of the three judges are given in Table 1.

act obl lia ↔ (act ∧ obl) lia

Judge 1 yes yes yes yes
Judge 2 yes no yes no
Judge 3 no yes yes no
Majority yes yes yes no

Table 1. Discursive dilemma

27

It is supposed that all the judges accept the rule lia ↔ (act ∧ obl). Judge 1
accepts both act and obl and, by the connection rule, he accepts lia. Judge 2
accepts act and rejects obl and, by the connection rule, he rejects lia. Finally,
judge 3 rejects act and accepts obl and, by the connection rule, he rejects lia.
If the three judges apply a majority rule on each proposition then they face
a paradox. Indeed, a majority accepts act , a majority accepts obl , a majority
accepts the connection rule lia ↔ (act ∧ obl). But the majority rejects lia.
Thus, when majority voting is applied to each single proposition it yields an
inconsistent collective set of judgements (see the last row in Table 1). Note that
this inconsistency occurs even though the sets of judgements of the individual
judges are all consistent.

Let us now show how the discursive dilemma can be formalised in the logic
of acceptance.

We first suppose that 1, 2 and 3 qua judges of the court accept the connection
rule:

¬A123:c⊥ (1)

A123:c(lia ↔ (act ∧ obl)) (2)

Then, we have that judge 1 announces that, qua judge of the court, he accepts
act ∧obl . Judge 2 announces that, qua judge of the court, he accepts act ∧¬obl .
Judge 3 announces that, qua judge of the court, he accepts ¬act ∧ obl . This has
the following effect:

A123:cA1:c(act ∧ obl) (3)

A123:cA2:c(act ∧ ¬obl) (4)

A123:cA3:c(¬act ∧ obl) (5)

Finally, the three judges use a majority principle for each proposition act , obl and
lia. This majority principle is formally expressed by the following six hypotheses:

Maj = { A123:c

∧

i,j∈{1,2,3},i 6=j

((Ai:cact ∧ Aj:cact) → act),

A123:c

∧

i,j∈{1,2,3},i 6=j

((Ai:c¬act ∧ Aj:c¬act) → ¬act),

A123:c

∧

i,j∈{1,2,3},i 6=j

((Ai:cobl ∧ Aj:cobl) → obl),

A123:c

∧

i,j∈{1,2,3},i 6=j

((Ai:c¬obl ∧ Aj:c¬obl) → ¬obl),

A123:c

∧

i,j∈{1,2,3},i 6=j

((Ai:c lia ∧ Aj:c lia) → lia),

A123:c

∧

i,j∈{1,2,3},i 6=j

((Ai:c¬lia ∧ Aj:c¬lia) → ¬lia) }

28

It is possible to prove that 1, 2, 3, 4 and 5 together with Maj lead to a con-
tradiction using the axiomatisation of acceptance logic. Indeed, from hypotheses
3, 4 and 5 we infer

A123:c(A1:cact ∧ A2:cact) ∧ A123:c(A1:cobl ∧ A3:cobl).
By the first and third hypotheses in Maj, the latter implies

A123:cact ∧ A123:cobl
and by hypothesis 2 and standard modal principles the latter implies

A123:c lia.
From hypotheses 1 and 2, by axioms 4∗ and 5∗, we can infer

A123:c(A123:c(lia ↔ (act ∧ obl)) ∧ ¬A123:c⊥).
By Axiom Inc and standard modal principles, the latter implies

A123:c(A1:c(lia ↔ (act ∧ obl))∧
A2:c(lia ↔ (act ∧ obl)) ∧ A3:c(lia ↔ (act ∧ obl))).

From this, by hypotheses 3, 4 and 5 and standard modal principles, we can infer
A123:c(A1:c lia ∧ A2:c¬lia ∧ A3:c¬lia)

and by the sixth hypothesis in Maj the latter implies
A123:c¬lia.

Thus, we have A123:c⊥, and by hypothesis 1 we can infer ⊥.
However, if one slightly changes the hypotheses, the proof may change com-

pletely. This means that the axiomatisation does not provide a straightforward
way to automatise the process of finding such kind of inconsistency. On the other
hand, a tableau method is meant to provide a systematic way to search for mod-
els and, thereby, an easy way to automatise the process of deciding whether a
formula is inconsistent or not.

As an illustration, we show a closed tableau for this example (schematically)
in Figure 5. On that figure, the lines identified by H.1–5 correspond to hypothe-
ses 1–5 above, respectively. The line identified by H.6 corresponds to the first
hypothesis in Maj, H.7 to the third hypothesis, and H.8 to the sixth. The branch
containing lines 13 and 14 is already closed. The other branches are not com-
pletely displayed. But it is easy to see that all branches generated from line 12
on can be closed, since lines 8, 9 and 12 together are inconsistent in propositional
logic. The branches generated from line 15 on can be closed in an analogous way
as the latter. And the branches generated from line 5 on need more effort, but
they can be closed too, in a similar way as the latter by using lines H.2, H.3,
H.6 and H.7.

5 Conclusion

The contribution of this paper is a semantic tableau method for acceptance logic.
The method consists in a procedure to check satisfiability of formulae, that can
be easily automatised. Given that acceptance logic can be used to formalise
some aspects of judgement aggregation, our method also provides an automated
reasoning procedure for making judgement aggregation in modal logic.

It is to be noted that, differently from [21, 22], in which logical approaches
specialised for judgement aggregation have been proposed, in the logic of accep-

29

(H
.1

)
0
,¬

A
1
2
3
:c ⊥

(H
.2

)
0
,A

1
2
3
:c (lia

↔
(a

c
t
∧

o
b
l))

(H
.3

)
0
,A

1
2
3
:c A

1
:c (a

c
t
∧

o
b
l)

(H
.4

)
0
,A

1
2
3
:c A

2
:c (a

c
t
∧
¬
o
b
l)

(H
.5

)
0
,A

1
2
3
:c A

3
:c (¬

a
c
t
∧

o
b
l)

(H
.6

)
0
,A

1
2
3
:c ((A

1
:c
a
c
t
∧

A
3
:c
a
c
t)

→
a
c
t)

(H
.7

)
0
,A

1
2
3
:c ((A

1
:c
o
b
l
∧

A
2
:c
o
b
l)

→
o
b
l)

(H
.8

)
0
,A

1
2
3
:c ((A

2
:c ¬

lia
∧

A
3
:c ¬

lia
)
→

¬
lia

)
(1

)
1
,¬

⊥
1
2
3
:c

,0
,1

(R
.♦

:
H

.1
)

(2
)

1
,A

2
:c (a

c
t
∧
¬
o
b
l)

(R
.¤

:
H

.4
,1

)
(3

)
1
,(A

2
:c ¬

lia
∧

A
3
:c ¬

lia
)
→

¬
lia

(R
.¤

:
H

.8
,1

)
(4

)
1
2
3
:c

,1
,1

(R
.5

∗
:
1
)

(5
)

1
,¬

lia
(R

.∨
:
3
)

...clo
sed

(H
.2

,H
.3

,H
.6

,H
.7

)

(6
)

1
,¬

(A
2
:c ¬

lia
∧

A
3
:c ¬

lia
)

(R
.∨

:
3
)

(7
)

1
,¬

A
2
:c ¬

lia
(R

.∨
:
6
)

(8
)

2
,¬

¬
lia

2
:c

,1
,2

(R
.♦

:
7
)

(9
)

2
,
a
c
t
∧
¬
o
b
l

(R
.¤

:
2
,8

)

(1
0
)

1
2
3
:c

,1
,2

(R
.In

c
:
8
)

(1
1
)

1
2
3
:c

,0
,2

(R
.4

∗
:
1
,1

0
)

(1
2
)

2
,
lia

↔
(a

c
t
∧

o
b
l)

(R
.¤

:
H

.2
,1

1
)

...clo
sed

(8
,9

,1
2
)

(1
3
)

1
,A

1
2
3
:c ⊥

(R
.In

c
:
8
)

(1
4
)

1
,⊥

(R
.¤

:
1
3
,4

)
clo

sed
(1

4
)

(1
5
)

1
,¬

A
3
:c ¬

lia
(R

.∨
:
1
3
)

...clo
sed

(H
.2

,H
.5

,1
5
)

F
ig

.
5
.
A

clo
sed

ta
b
lea

u
fo

r
th

e
d
iscu

rsiv
e

d
ilem

m
a

30

tance judgement aggregation is just an application. We have shown in [2, 3] that
the logic of acceptance is a much general formal framework in which the static
and dynamic aspects of institutions can be studied (e.g., static and dynamic
aspects of social roles, norms and rules).

Moreover, this method uses a rather different set of rules. For instance, rules
for axioms 4∗ and 5∗ (which are nothing but a variation of the usual axioms
4 and 5) are similar to the so-called “structural rules” proposed in [23]. Our
tableau rules are also modular. This means that it is possible to provide a sound,
complete and terminating satisfiability checking method for a logic without one
of the semantic constraints, by just removing the corresponding tableau rule.
The addition of rules is also possible. For example, one could add the tableau
rule:

(R.Mon)
; 〈G:x, n, n′〉
; 〈H:x, n, n′〉

which corresponds to Axiom Mon, thus, obtaining a tableau method for the
acceptance logic with Axiom Mon proposed in [1, 2].

As possible future works, we intend to investigate computational complexity,
and also possible extensions of our method able to address acceptance logic with
dynamic operators, such as the logic proposed in [24].

6 Acknowledgements

The contribution by Tiago de Lima is part of the research program Moral Re-
sponsibility in R&D Networks, supported by the Netherlands Organisation for
Scientific Research (NWO), under grant number 360-20-160.

References

1. Gaudou, B., Longin, D., Lorini, E., Tummolini, L.: Anchoring institutions in
agents’ attitudes: Towards a logical framework for autonomous MAS. In Padgham,
L., Parkes, D.C., eds.: Proceedings of AAMAS’08. (2008) 728–735

2. Lorini, E., Longin, D., Gaudou, B., Herzig, A.: The logic of acceptance: Ground-
ing institutions on agents’ attitudes. Journal of Logic and Computation (2009)
doi:10.1093/logcom/exn103.

3. Lorini, E., Longin, D.: A logical account of institutions: From acceptances to norms
via legislators. In Brewka, G., Lang, J., eds.: Proceedings of KR’08. (2008) 38–48

4. Bratman, M.E.: Practical reasoning and acceptance in context. Mind 101(401)
(1992) 1–15

5. Cohen, L.J.: An essay on belief and acceptance. Oxford University Press, New
York, USA (1992)

6. Tuomela, R.: Belief versus Acceptance. Philosophical Explorations 2 (2000) 122–
137

7. Tuomela, R.: The Philosophy of Social Practices: A Collective Acceptance View.
Cambridge University Press, Cambridge (2002)

8. Boella, G., van der Torre, L.: Norm negotiation in multiagent systems. Interna-
tional Journal of Cooperative Information Systems 16(1) (2007) 97–122

31

9. Hart, H.L.A.: The concept of law. Clarendon Press, Oxford (1992) new edition.
10. Gilbert, M.: On Social Facts. Routledge, London and New York (1989)
11. Herzig, A., de Lima, T., Lorini, E.: On the dynamics of institutional agreements.

Manuscript (2009)
12. Pettit, P.: Deliberative democracy and the discursive dilemma. Philosophical Issues

11 (2001) 268–99
13. Kornhauser, L.A., Sager, L.G.: Unpacking the court. Yale Law Journal 96 (1986)

82–117
14. Fitting, M.: Proof Methods for Modal and Intuitionistic Logics. Springer (1983)
15. Halpern, J., Moses, Y.: A guide to completeness and complexity for modal logics

of knowledge and belief. Artificial Intelligence 54 (1992) 311–379
16. Goré, R.: Tableau methods for modal and temporal logics. In D’Agostino, M., Gab-

bay, D.M., Hahnle, R., Posegga, J., eds.: Handbook of Tableau Methods. Springer
(1999) 297–396

17. Pauly, M., van Hees, M.: Logical constraints on judgment aggregation. Journal of
Philosophical Logic 35(6) (2006) 569–585

18. List, C., Pettit, P.: Aggregating sets of judgments: An impossibility result. Eco-
nomics and Philosophy 18 (2002) 89–110

19. Goldman, A.: Group knowledge versus group rationality: Two approaches to social
epistemology. Episteme 1(1) (2004) 11–22

20. List, C.: Group knowledge and group rationality: A judgment aggregation per-
spective. Episteme 2(1) (2005) 25–38

21. Ågotnes, T., van der Hoek, W., Wooldridge, M.: Reasoning about judgment and
preference aggregation. In: Proceedings of AAMAS’07. (2007) 566–573

22. Pauly, M.: Axiomatizing collective judgment sets in a minimal logical language.
Synthese 158 (2007) 233–250

23. Castilho, M.A., Fariñas del Cerro, L., Gasquet, O., Herzig, A.: Modal tableaux
with propagation rules and structural rules. Fundamenta Informaticae 20 (1998)
1–17

24. Herzig, A., de Lima, T., Lorini, E.: What do we accept after an announcement?
In Meyer, J.-J.Ch., Broersen, J. eds.: Pre-proceedings of the KR’08-Workshop
KRAMAS, pages 81–94, (Available at: http://www.cs.uu.nl/events/kramas2008/
PreProceedingsKRAMAS2008.pdf) (2008)

32

Ontology and Time Evolution of Obligations and

Prohibitions using Semantic Web Technology

Nicoletta Fornara1 and Marco Colombetti1,2

1 Università della Svizzera italiana, via G. Buffi 13, 6900 Lugano, Switzerland
{nicoletta.fornara, marco.colombetti}@lu.unisi.ch,

2 Politecnico di Milano, piazza Leonardo Da Vinci 32, Milano, Italy
marco.colombetti@polimi.it

Abstract. The specification and monitoring of conditional obligations
and prohibitions with starting points and deadlines is a crucial aspect
in the design of open interaction systems. In this paper we regard such
obligations and prohibitions as cases of social commitment, and pro-
pose to model them in OWL, the logical language recommended by
the W3C for Semantic Web applications. In particular we propose an
application-independent ontology of the notions of social commitment,
temporal proposition, event, agent, role and norms that can be used in
the specification of any open interaction system. We then delineate a hy-
brid solution that uses the ontology, SWRL rules, and a Java program to
dynamically monitor or simulate the temporal evolution of social com-
mitments, due to the elapsing of time and to the actions performed by
the agents interacting within the system.

1 Introduction

The specification of open interaction systems, where heterogeneous, autonomous,
and self-interested agents can interact by entering and leaving dynamically the
system, is widely recognized to be a crucial issue in the development of dis-
tributed applications on the Internet, like e-commerce applications, or collabo-
rative applications for the automatic creation of virtual organizations. An im-
portant aspect of the specification of open systems is the possibility to define
the actions that agents should or should not perform in a given interval of time,
that is, the possibility to define social commitments with starting points and
deadlines, and to monitor and react to their fulfilment or violation.

As we discussed in our previous works [9, 10, 8] in our OCeAN meta-model
for the specification of artificial institutions, commitments for the interacting
agents can be created by the activation of norms associated to the agents’ roles,
or by the performance of agent communicative acts, like promises. In this paper
we explore how to use OWL (in its OWL 2 DL version3), the logical language
recommended by W3C for Semantic Web applications, to specify the deontic
part of the OCeAN meta-model. More precisely, we show how it is possible to

3 http://www.w3.org/2007/OWL/wiki/OWL/Working Group/

33

specify social commitment to express conditioned obligations and prohibitions
on time intervals, in OWL.

There are many advantages in using a decidable logical language like OWL
to specify an open interaction system, and in particular that: (i) Semantic Web
technologies are increasingly becoming a standard for Internet applications; (ii)
the language is supported by reasoners (like Fact++4, Pellet5, and the rule
reasoner of the Jena Semantic Web framework6) that are more efficient than
available alternatives (like the Discrete Event Calculus Reasoner7); (iii) it is
possible to achieve a high degree of interoperability of data and applications,
which is indeed a crucial precondition for the development of open systems.

The idea of using OWL for modelling and monitoring the dynamic evolution
of open artificial institutions can be developed following different approaches. A
first option would be to implement an institutional model in a object oriented
language like Java, and use OWL only to specify the ontology of the content of
communicative acts and norms. As a result reasoning may be used to deduce,
for example, that the performance of a certain act implies the performance of
another act, and thus the fulfillment of a given commitment. An alternative
approach, which we investigate in this paper, consists in using OWL to express,
as far as possible, the normative component of the OCeAN meta-model. As we
shall see, this requires the use of SWRL (Semantic Web Rule Language8) and
Java code to overcome certain expressiveness limitations of OWL. Indeed, with
both OWL 1 (the current standard) and OWL 2 there are at least two major
problems:

– The treatment of time. OWL has no temporal operators; on some occasions it
is possible to bypass the problem by using SWRL rules with temporal built-
ins, but in any case this does not provide full temporal reasoning capabilities.

– The open-world assumption. In many applications, nor being able to infer
that an action has been performed is sufficient evidence that the action
has not been performed; one would then like to infer, for example, that
an obligation to perform the action has been violated. As standard OWL
reasoning is carried out under the open world assumption, inferences of this
type cannot be drawn. However, it is often possible to simulate a closed
world assumption by adding closure axioms to an ontology.

The main contribution of this paper, with respect to our previous works, is to
show how obligations and prohibitions can be formalized in OWL and SWRL for
monitoring and simulation purposes with significant performance improvements
with respect to the solution based on the Event Calculus that we presented else-
where [8]. Another contribution of this work is a hybrid solution of the problem
of monitoring the temporal evolution of obligations and prohibition, based on a

4 http://owl.man.ac.uk/factplusplus/
5 http://clarkparsia.com/pellet
6 http://jena.sourceforge.net/inference/
7 http://decreasoner.sourceforge.net
8 http://www.w3.org/Submission/SWRL/

34

higher ontology of interaction, a set of SWRL rules, and a Java program imple-
mented using suitable OWL libraries (like the Jena Semantic Web Framework
for Java9 or OWL API10).

The paper is organized as follows. In the next section we briefly introduce
OWL and SWRL, that is, the Semantic Web languages that we use to formally
specify the normative component of an open interaction system. In Section 3 we
specify the algorithms that we plan to use to simulate or monitor the temporal
evolution of an interaction system. Then in Section 4 we define the classes,
properties, axioms, and rules that we take to underlie the normative specification
of every interaction system. In Section 5 we present an actual example of a system
specified using our meta-model. Finally in Section 6 we compare our approach
with other proposals and draw some conclusions.

2 OWL and SWRL

OWL is a practical realization of a Description Logic system known as SHOIN (D).
It allows one to define classes (also called concepts in the DL literature), prop-
erties (also called roles), and individuals. An OWL ontology consists of: a set
of class axioms to describe classes, which constitute the Terminological Box
(TBox); a set of property axioms to describe properties, which constitute a Role
Box (RBox); and a collection of assertions to describe individuals, which con-
stitute an Assertion Box (ABox).

Classes can be viewed as formal descriptions of sets of objects (taken from
a nonempty universe), and individuals can be viewed as names of objects of
the universe. Properties can be either object properties or data properties. The
former describe binary relations between objects of the universe; the latter, bi-
nary relationships between objects and data values (taken from X ML Schema
datatypes).

A class is either a basic class (i.e., an atomic class name) or a complex class
build through a number of available constructors that express Boolean opera-
tions and different types of restrictions on the members of the class.

Through class axioms one may specify subclass or equivalence relationships
between classes, and that certain classes are disjoint. Property axioms allow one
to specify that a given property is a subproperty of another property, that a
property is the inverse of another property, or that a property is functional or
transitive. Finally, assertions allow one to specify that an individual belongs to
a class, that an individual is related to another individual through an object
property, that an individual is related to a data value through a data property,
or that two individuals are equal or different.

OWL can be regarded as a decidable fragment of First Order Logic (FOL).
The price one pays for decidability, which is considered as an essential precondi-
tions for exploiting reasoning in practical applications, is limited expressiveness.

9 http://jena.sourceforge.net/
10 http://owlapi.sourceforge.net/

35

Even in OWL 2 (the more expressive version currently under specification) cer-
tain useful first-order statements cannot be formalized.

Recently certain OWL reasoners, like Pellet, have been extended to deal
with SWRL rules. SWRL is a Datalog-like language, in which certain universally
quantified conditional axioms (called rules) can be stated. To preserve decidabil-
ity, however, rules have to be used in the safe mode, which means that before
being exploited in a reasoning process all their variables must be instantiated
by pre-existing individuals. An important aspect of SWRL is the possibility of
including built-ins, that is, Boolean functions that perform operations on data
values and return a truth value.

Conventions

In what follows we use the notation p : C →O D to specify an object property
p (not necessarily a function) with class C as domain and class D as range, and
the notation q : C →D T to specify a data property q with class C as domain
and the datatype T as range. We use capital initials for classes, and lower case
initials for properties and individuals.

3 Specification and simulation or monitoring of an open

interaction system

Our approach is to model an open interaction system using one or more artificial
institutions. The definition of a specific artificial institution consists of: (i) a first
component, called meta-model, which includes the definition of basic entities
common to the specification of every institution, like the concepts of temporal
proposition, commitment, institutional power, role, and norm, and the actions
necessary for exchanging messages; (ii) a second component, pertaining to the
institution in exam, which includes the definition of specific powers and norms
that apply to the agents playing roles in the institution, and the definition of the
concepts pertaining to the domain of the interaction (for example the actions of
paying or delivering a product, bidding in an auction, etc.).

We start from the specification of a system, formalized as an application-
independent OWL ontology (including a TBox, an RBox, and an ABox as de-
tailed in Section 4). We then add an application-dependent ontology (as exem-
plified in Section 5) and use a Java program to let such ABox evolve in time,
with the goal of monitoring the fulfilment or violation of obligations and prohibi-
tions, and of simulating the evolution of the state of the system against different
possible history of events.

In particular, when the system is used for monitoring, a Java program up-
dates the state of the system, that is, it updates the ABox with new assertions to
model the elapsing of time, to allow for closed-world reasoning on certain classes,
and to model the actions performed by the interacting agents. When such up-
dating is completed, a reasoner can be used to deduce the state of obligations
and prohibitions. After that, when the ontology has reached a stable state (in
the sense that all closed-world reasoning has been completed), the agents may

36

perform queries to know what are their pending obligations or prohibitions or to
react to their violation or fulfillment. We assume that the events or actions that
happen between two phases of update (that is, between two discrete instant of
time) are queued in the data structure ActionQueue to be managed by the Java
program subsequently.

When the system is used for simulation, the set of events that happen at run-
time are known since the beginning, and are represented in the initial version of
the ABox. In such a case the Java program simply updates the state of the system
to represent the elapsing of time and to allow closed-world reasoning on certain
classes; then the reasoner deduces the state of obligations and prohibitions at
each time instant.

Temporal evolution of the ontology

An external Java program is used to model the elapsing of time, the actions
performed by the interacting agents at run-time (in the monitoring usage), and
to allow for closed-world reasoning on certain classes (see Section 4.1 for details).
The program performs the following operations:

1. initialize the simulation/monitoring time t equal to 0 and close the extensions
of the classes C on which it is necessary to perform closed-world reasoning
(by asserting that the class KC is equivalent to the enumeration of all indi-
viduals that can be proved to be members of the class C retrieved with the
retrieve(C) query command);

2. insert in the ABox the assertion happensAt(elapse, t);
3. insert in the ABox the events or actions that happen in the system between

t − 1 and t and that are cached in a queue (this involves creating new indi-
viduals of the class Event);

4. run a reasoner (more specifically, Pellet 2.0) to deduce all assertions that can
be inferred (truth values of temporal propositions, states of commitments,
etc.);

5. update the closure of the relevant classes;
6. increment the time of simulation t by 1 and go to the point 2.

After point 5, given that the ontology has reached a stable state it is possible
to let agents perform queries about pending, fulfilled, or violated commitments
in order to plan their subsequent actions. When the ontology is used for mon-
itoring purposes, and given that internal time (i.e., the time as represented in
the ontology) is discrete, it is necessary to wait the actual number of seconds
that elapse between two internal instants.

The corresponding Java pseudo code is as follows:
t=0

for each class C that has to be closed

assert KC ≡ {i1, ...in} with {i1, ...in} = retrieve(C)

while t<timeSimulation {

assert happensAt(elapse,t)

for each event en in ActionQueue

assert happensAt(en,t)

37

run Pellet reasoner

for each class C that has to be closed

remove equivalent class axioms of class KC

assert KC ≡ {i1, ...in} with {i1, ...in} = retrieve(C)

run agents queries

t=t+1

}

4 The ontology of obligations and prohibitions

In this section we present the TBox, the RBox, and part of the Abox that
have to be included in the ontology of any interaction system modelled using
the OCeAN concepts of temporal proposition, commitment, role, and norm. In
particular we specify the classes, the properties and the axioms for modelling
those concepts and introduce some SWRL rules to deduce the truth value of
temporal propositions. Social commitments are a crucial concept in our approach
because they are used to model obligations and prohibitions due either to the
activation of norms or created by the performance of communicative acts, like
promises. Thanks to their evolution in time, commitments can be used to monitor
the behavior of autonomous agents by detecting their violation or fulfilment, as
a precondition for reacting with suitable passive or active sanctions or with a
reward [8].

Some general classes of our ontology are used as domain or range of the
properties used to describe temporal propositions and commitments; they are
class Event, class Action and class Agent. In particular, an event may have as a
property its time of occurrence. Class Action is a subclass of Event, and has a
further property used to represent the actor of the action. Such properties are
defined as follows:

Event ⊓ Agent ⊑ ⊥; Action ⊑ Event;
hasActor : Action →O Agent;
happensAt : Event →D integer;

To represent the elapsing of time we introduce in the ABox the individual
elapse, that is asserted to be a member of class Event : Event(elapse).

4.1 Temporal propositions

Temporal propositions are used to represent the content and condition of social
commitments. They are a construct used to relate in two different ways a propo-
sition to an interval of time. In the current OWL specification, we distinguish
between positive temporal propositions used in commitments to represent obli-
gations (when an action has to be performed within a given interval of time),
and negative temporal propositions used to model prohibitions (when an action
must not be performed during a predefined interval of time).

The classes necessary to model temporal propositions are TemporalProp, with
the two subclasses TPPos and TPNeg used to distinguish between positive and

38

negative temporal propositions. The classes IsTrue and IsFalse are used to model
the truth values of temporal propositions. All this is specified by the following
axioms:

TemporalProp ⊓ Agent ⊑ ⊥; TemporalProp ⊓ Event ⊑ ⊥;
TPPos ⊑ TemporalProp; TPNeg ⊑ TemporalProp;
TPPos ⊓ TPNeg ⊑ ⊥;
TemporalProp ≡ TPPos ⊔ TPNeg;
IsTrue ⊑ TemporalProp; IsFalse ⊑ TemporalProp;
IsTrue ⊓ IsFalse ⊑ ⊥;

The class TemporalProp is the domain of the following object and data prop-
erties:

hasAction : TemporalProp →O Action;
hasStart : TemporalProp →D integer;
hasEnd : TemporalProp →D integer;
TemporalProp ⊑= 1 hasAction ⊓ = 1 hasStart ⊓ = 1 hasEnd

The classes IsTrue and IsFalse are used to keep track of the truth value
of temporal propositions by means of two SWRL rules, that are different on the
basis of the type of temporal proposition. A positive temporal proposition (i.e., a
member of class TPPos) is used to represent an obligation to do something in a
given interval of time, with starting points tstart and deadline tend. We therefore
introduce a rule that deduces that the truth value of the temporal proposition is
true (i.e., the temporal proposition becomes member of the class IsTrue) if the
action associated to the temporal proposition is performed between the tstart

(inclusive) and the tend (exclusive) of interval of time associated to the same
proposition. In the following SWRL rule we use two built-ins to compare the
current time with the interval of time associated to the temporal proposition:

RuleTPPos1:
happensAt(elapse,?t) ∧ happensAt(?a,?t) ∧ TPPos(?tp) ∧ hasAction(?tp,?a) ∧
hasStart(?tp,?ts) ∧ hasEnd(?tp,?te) ∧ swrlb:lessThanOrEqual(?ts,?t) ∧
swrlb:lessThan(?t,?te) → IsTrue(?tp)

We then have to define a rule that, when the time tend of a positive temporal
proposition elapses, and such a temporal proposition is not true, deduces that
the temporal proposition is member of the class IsFalse. Here closed-world
reasoning comes into play, because we cannot assume the ABox to contain an
explicit assertion that an action has not been performed: rather, we want to
deduce that an action has not been performed by the lack of an assertion that
it has been performed. Clearly, an SWRL rule like

happensAt(elapse,?te) ∧ hasEnd(?tp,?te) ∧ TPPos(?tp) ∧(not IsTrue)(?tp)
→ IsFalse(?tp)

would not work, given that OWL/SWRL reasoners operate under the open
world assumption. This means that the conclusion that a temporal proposition
is false can only be reached for those propositions that can be definitely proved

39

not to be members of IsTrue. On the contrary, if a temporal proposition is not
deduced to be IsTrue by RuleTp1, even if its deadline has been reached it will
not be deduced to be IsFalse.

To solve this problem we first assume that our ABox contains complete in-
formation on the performance of actions. This allows us to adopt a closed-world
perspective as far as the performance of actions is concerned. More specifically,
we assume that the program specified in Section 3 will always update the ABox
when an event has happened (i.e. the program can only inset in the ABox the
information that an event has happened at current time t); we then want to de-
duce that all temporal propositions, that cannot any longer become true because
their deadline has elapsed, are false.

To get this result we need to perform some form of closed world reasoning
on class IsTrue. As stated in [14] “the DL ALCK [5] adds a non-monotonic
K operator (which is a kind of necessity operator) to the DL ALC to provide
the ability to “turn on” the Closed World Assumption (CWA) when needed.
The reasoning support for ALCK language has been implemented in Pellet to
answer CWA queries that use the K operator”. However, our ontology uses a
more expressive DL than ALC; moreover, the use of the K operator in SWRL
rules is not supported.

We therefore take a different approach, based on an explicit closure of class
IsTrue. More precisely, we introduce a new class, KIsTrue, which is meant to
contain all temporal propositions that, at a given time, are known to be true.
Class KIsTrue therefore represents, at any given instant, the explicit closure of
class IsTrue. Given its intended meaning, class KIsTrue has to be a subclass
of IsTrue (and, as a consequence, of TemporalProp):

KIsTrue ⊑ IsTrue

To maintain class KIsTrue as the closure of class IsTrue, we define it peri-
odically as equivalent to the enumeration of all individuals that can be proved
to be members of IsTrue. This can be done by the Java program used to up-
date the ABox to keep trace of the elapsing of time (described in Section 3) by
executing the operations described in the following pseudo-code:

assert KIsTrue ≡ {tp1, ...tpn} with {tp1, ...tpn} = retrieve(IsTrue)

We now introduce a new class, NotKIsTrue, which is intended to contain
all temporal propositions whose deadline is elapsed, and that are not members
of KIsTrue. Such a class is defined as the difference between the set of all
individuals that belong to TemporalProp, and the set of all those individuals
that are members of KIsTrue:

NotKIsTrue ≡ TemporalProp ⊓ ¬KIsTrue

We are now ready to write a rule to deduce that the truth value of a positive
temporal proposition is false if the deadline of the temporal proposition has
elapsed, and it is not known that the associated action has been performed:

RuleTPPos2:
happensAt(elapse,?te) ∧ hasEnd(?tp,?te) ∧ TPPos(?tp) ∧ NotKIsTrue(?tp)
→ IsFalse(?tp)

40

We now turn to negative temporal propositions, that is, temporal proposi-
tions that are members of the class TPNeg and are used to represent the prohi-
bition to do something in a given interval of time. Such propositions belong to
class IsFalse when the associated action is performed in the interval between
tstart (inclusive) and tend (exclusive). This can be deduced by the following rule:

RuleTPNeg1:
happensAt(elapse,?t) ∧ happensAt(?a,?t) ∧ TPNeg(?tp) ∧ hasAction(?tp,?a) ∧
hasStart(?tp,?ts) ∧ hasEnd(?tp,?te) ∧ swrlb:lessThanOrEqual(?ts,?t) ∧
swrlb:lessThan(?t,?te) → IsFalse(?tp)

Similarly to what we did for RuleTPPos2, we now use the closure of class
IsFalse, that we call KIsFalse, to deduce that a negative temporal proposition
IsTrue when its tend has been reached and it has not yet been deduced that the
proposition IsFalse:

KIsFalse ⊑ IsFalse

NotKIsFalse ≡ TemporalProp ⊓ ¬KIsFalse

RuleTPNeg2:
happensAt(elapse, ?te) ∧ hasEnd(?tp,?te) ∧ TPNeg(?tp) ∧ NotKIsFalse(?tp)
→ IsTrue(?tp)

4.2 Commitment

In the OCeAN meta-model of artificial institutions, commitments are used to
model a social relation between a debtor a creditor, about a certain content and
under a condition. Our idea is that by means of the performance of communica-
tive acts, or due to the activation of norms, certain agents become committed
with respect to another agent to perform a certain action within a given dead-
line (an obligation), or not to perform a given action during a given interval of
time (a prohibition). Such commitments can be conditional on the truth of some
proposition. In our model we assume that if an action is neither obligatory nor
prohibited, then it is permitted.

In order to detect and react to commitment violation and fulfilment we need
to deduce a commitments state (in our previous works [8] we also introduced
precommitments to define the semantics of requests, but this is not relevant in
the current work). We introduce in the ontology the class Commitment, disjoint
from Event, Agent and TemporalProp.

Commitment ⊓ Agent ⊑ ⊥; Commitment ⊓ Event ⊑ ⊥;
Commitment ⊓ TemporalProp ⊑ ⊥;

The Commitment class is the domain of the following object properties:

hasDebtor : Commitment →O Agent;
hasCreditor : Commitment →O Agent;
hasContent : Commitment →O TemporalProp;
hasCondition : Commitment →O TemporalProp;

41

hasSource : Commitment →O Norm;
Commitment ⊑ ∃hasDebtor⊓ ∃hasCreditor⊓ =1hasContent⊓ =1hasCondition;

The hasSource property is used to keep trace of the norm that generated a
commitment, as explained in Section 4.3. Obviously the debtor of a commitment
has to be the actor of the action to which it is committed, as expressed by the
following axiom:

hasContent ◦ hasAction ◦ hasActor ⊑ hasDebtor

In some situations it is necessary to create unconditional commitments. To
avoid writing different rules for conditional and for unconditional commitments,
we introduce a temporal proposition individual, tpTrue, whose truth value is
initially true; that is, we assert: IsTrue(tpTrue). An unconditional commitment
is then defined as a conditional commitment whose condition is tpTrue.

Our next problem is deducing whether a given commitment is:

– pending, when its condition is satisfied but its content is not known to be
IsTrue or to be IsFalse;

– fulfilled, when is content is known to be IsTrue;
– violated, when its content is known to be IsFalse and its condition is known

to be IsTrue.

Knowing the state of a commitment may be important for the interacting agents
to plan their actions on the basis of the advantages of fulfilling certain commit-
ments. We therefore introduce classes IsPending, IsFulfilled, and IsV iolated,
defined by the following axioms:

IsFulfilled ⊓ IsV iolated ⊑ ⊥;
IsPending ⊑ Commitment; IsFulfilled ⊑ Commitment;
IsV iolated ⊑ Commitment;

We define the following axiom to deduce that a commitment is member of
the class IsPending:

Axiom1:
IsPending ≡ (∃ hasContent.NotKIsTrue) ⊓ (∃ hasContent.NotKIsFalse)⊓
(∃ hasCondition.IsTrue))

Note that as classes NotKIsTrue and NotKIsFalse are updated after run-
ning the reasoner, as soon as the content of a commitment becomes true the
commitment is member of both class IsPending and class IsFulfilled.

Lists of fulfilled and of violated commitments can be obtained by retrieving
the individuals that are respectively members of class IsFulfilled or IsV iolated,
defined by the following axioms:

Axiom2:
IsFulfilled ≡ ∃ hasContent.IsTrue

Axiom3:
IsV iolated ≡ (∃ hasContent.IsFalse) ⊓ (∃ hasCondition.IsTrue)

42

4.3 Norms and Roles

In OCeAN, norms are introduced to model obligations and prohibitions that,
contrary to those created at run time by the performance of communicative
acts, are implied by an institutional setting and can be specified at design time.
For example, norms can be used to state the rules of an interaction protocol,
like the protocol of a specific type of auction, or the rules of a seller-buyer
interaction. Given that norms are usually specified at design time, when it is
impossible to know which agents will actually interact in the system, one of their
distinctive features is that they have to be expressed in term of the roles played
by the agents. Therefore at run-time, when a norm becomes active (i.e., when
its activating event happens), the actual debtor and creditor of the obligation
or prohibition generated by the norm have to be computed on the basis of the
roles played by the agents in the system at that moment.

Another important aspect of norms is that to enforce their fulfillment in
an open system, it must be possible to specify sanctions or rewards. In [7] we
suggested that a satisfactory model of sanctions has to distinguish between two
different type of actions: the action that the violator of a norm has to perform to
extinguish its violation (which we call active sanction), and the action that the
agent in charge of norm enforcement may perform to deter agents from violating
the norm (which we call passive sanction). Active sanctions can be represented
in our model through a temporal proposition, whereas passive sanctions can be
represented as new specific powers that the agent entitled to enforce the norm
acquires when a norm is violated. As far as passive sanctions are concerned,
another norm (that in [13]) is called enforcement norm) may oblige the enforcer
to punish the violation. Due to space limitations, in this paper we do not model
the notion of power ; thus passive sanctions are not treated in this paper. An
obligation or prohibition generated by a norm can in turn violated; it will there-
fore be necessary to monitor the fulfillment or violation of such obligations or
prohibition t punish the violation.

Role

Typically, artificial institutions provide for different roles. In a run of an
auction, for example, we may have the roles of auctioneer and of participant; in
a company, like an auction house, we may have the roles of boss or employee; and
so on. More generally, also the debtor and the creditor of a commitment may be
regarded as roles. Coherently with these examples, a role is identified by a label
(like auctioneer, participant, etc.) and by the institutional entity that provides
for the role. Such an institutional entity may be an organization (like an auction
house), an institutional activity (like a run of an auction), or an institutional
relationship (like a commitment). For example an agent may be the auctioneer
of run 01 of a given auction, or an employee of IBM, or the creditor of a specific
commitment.

We introduce class Role to represent the set of possible labels that represent-
ing roles and class InstEntity to represent the institutional entity within which
a given role is played. Elements of class AgentInRole are used to reify the fact

43

that an agent plays a given role in a given institutional entity. Those classes are
related by the following object properties:

isP layedBy : AgentInRole →O Agent;

hasRole : AgentInRole →O Role;

isIn : AgentInRole →O InstEntity;

Norm

Summarizing, a norm has: a content and a condition, modelled using tempo-
ral propositions; a debtor and a creditor, expressed in term of roles; an activating
event ; and a collection of active and passive sanctions. Norms are represented
in our ontology using class Norm and the following object properties:

hasRoleDebtor : Norm →O Role; hasRoleCreditor : Norm →O Role;

hasNContent : Norm →O TemporalProp;

hasNCondition : Norm →O TemporalProp;

hasActivation : Norm →O Event;

hasASanction : Norm →O TemporalProp;

hasPSanction : Norm →O Power;

When a norm is activated it is necessary to create as many commitments as
there are agents playing the role associated to the debtor property of the norm.
For example, the activation of a norm that applies to all the agents playing
the role of participant of an auction, creates a commitment for each participant
currently taking part to the auction. The creditors of these commitments are the
agents that play the role reported in the creditor property of the norm. All these
commitments have to be related by the hasSource object property (defined in
Section 4.2) to the norm that generated them; this is important to know which
norm generated a commitment and what sanctions apply for the violation of
such commitment.

As every commitment is an individual of the ontology, the activation of a
norm involves the generation of new individuals. However, the creation of new
individuals in an ABox cannot be performed using OWL or SWRL. There are
at least two possible solutions to this problem, which we plan to investigate in
our future work. The first consists in defining a set of axioms in the ontology
that allows the reasoner to deduce the existence of those commitments as anony-
mous objects with certain properties. With this solution, an agent that needs to
know its pending commitments instead of simply retrieving the corresponding
individuals will have to retrieve their contents, conditions and debtors. Another
possible solution consists in defining a new built-in that makes it possible for
SWRL rules to create new individuals as members of certain classes and with
given properties. A similar problem will have to be solved to manage the cre-
ation of a sanctioning commitment generated by the violation of a commitment
related to a norm, which has as content the temporal proposition associated to
the active sanction of the norm.

44

5 Example

In this section we show how it is possible to specify the state of an interac-
tion system and to simulate or monitor its evolution in time. To do so it is
necessary to integrate the ontology defined in the previous sections with an
application-dependent ontology, and to insert a set of individuals for represent-
ing commitments and temporal propositions in the ABox. In a real application
these commitments and their temporal propositions will be created by the per-
formance of communicative acts (defined in the OCeAN agent communication
library [8]) or by the activation of norms. If the system is used for monitoring
purposes, we assume that there is a way of mapping the actions that are actually
executed onto their counterparts in the ontology.

Here we describe an example of interaction where a seller agent, Bob, promises
to deliver a product (a book) to a buyer agent, Ann, on condition that the buyer
agent pays a certain amount of money for the product. We also represent the
prohibition for the seller to deliver a different product (a CD). Different possible
evolution of the state of the interaction are possible on the basis of the agents’
actions.

The ontology described in the previous sections has to be integrated as fol-
lows: pay and deliver are two different types of actions; both of them have a
receiver and an object; the pay action also has an amount of money. In a more
realistic application these concepts would be described in a detailed domain-
dependent ontology.

The agents are represented with the following assertions:

Agent(ann);Agent(bob); 6= (ann, bob);

The actions that we are interested to model in the ontology are represented by
the following assertions:

Action(payBook1); Action(deliverBook1); Action(deliverCD1);
hasActor(payBook1, ann); hasActor(deliverBook1, bob);
hasActor(deliverCD1, bob);
6= (payBook1, deliverBook1, deliverCD1, elapse);

Temporal propositions are represented by the following assertions:

TPPos(tpPayBook1); TPPos(tpDeliverBook1); TPNeg(tpNotDeliverCD1);
hasAction(tpPayBook1, payBook1); hasStart(tpPayBook1, 1);
hasEnd(tpPayBook1, 3);
hasAction(tpDeliverBook1, deliverBook1); hasStart(tpDeliverBook1, 1);
hasEnd(tpDeliverBook1, 2);
hasAction(tpNotDeliverCD1, deliverCD1); hasStart(tpNotDeliverCD1, 0);
hasEnd(tpNotDeliverCD1, 3);
6= (tpPayBook1, tpDeliverBook1, tpTrue); 6= (tpNotDeliverCD1, tpTrue);

Commitments are represented by the following assertions:

Commitment(c1); Commitment(c2); Commitment(c3);
hasDebtor(c1, ann); hasCreditor(c1, bob);
hasContent(c1, tpPayBook1); hasCondition(c1, tpDeliverBook1);

45

hasDebtor(c2, bob); hasCreditor(c2, ann);
hasContent(c2, tpDeliverBook1); hasCondition(c2, tpTrue);
hasDebtor(c3, bob); hasCreditor(c3, ann);
hasContent(c3, tpNotDeliverCD1); hasCondition(c3, tpTrue);
6= (c1, c2, c3);

The history of the system is represented by the following assertions:

happensAt(deliverBook1, 1)

We created the ontology of the interaction system with the free, open source
ontology editor Protege 4.0 beta11. As this version of Protege does not support
the editing of SWRL rules, we created them with Protege 3.4 and inserted their
RDF/X ML code in the ontology file.

In Table 1 we report the evolution of the ontology ABox in time, with par-
ticular regard to the truth value of the temporal propositions and the state of
commitments. As the extension of classes KIsTrue and KIsFalse is computed
by an external program, when the reasoner runs their extensions are specified in
the axiom relative to the previous state. In the table we abbreviate the assertion
happensAt(elapse, n) with the expression t = n.

time t = 0 t = 1 t = 2 t = 3

tpPayBook1 [1, 3] IsFalse

tpDeliverBook1 [1, 2] IsTrue IsTrue IsTrue

tpNotDeliverCD1 [0, 3] IsTrue

c1(ann, bob, tpPayBook1, IsPending IsPending IsV iolated

tpDeliverBook1)

c2(bob, ann, IsPending IsFulfilled IsFulfilled IsFulfilled

tpDeliverBook1, tpTrue)

c3(bob, ann, IsPending IsPending IsPending IsFulfilled

tpNotDeliverCD1, tpTrue)

Classes updated by the external program

KIsTrue {tpTrue} {tpTrue, {tpTrue, {tpTrue,

tpDeliverBook1} tpDeliverBook1} tpDeliverBook1,

tpNotDeliverCD1}

KIsFalse nothing nothing nothing {tpPayBook1}
Table 1. Dynamic evolution of the state of the system

6 Conclusions and Related Works

The main contributions of this paper, with respect to our previous works and
with respect to other approaches, are as follows. We show how conditional obli-
gations and prohibitions with stating points and deadlines may be specified and

11 http://protege.stanford.edu/

46

monitored using OWL and SWRL with significant advantages with respect to
other approach that use other formal languages. Moreover we propose a hybrid
solution, based on an OWL ontology, SWRL rules, and a Java program, of the
problem of monitoring the time evolution of obligations and prohibitions.

In particular if we compare this specification with another one that we pre-
sented elsewhere based on Event Calculus [8] we observe significant improvement
in performance (even if a complete comparison will be possible only when the
complete OCeAN meta-model will be formalized with Semantic Web Technol-
ogy). Moreover semantic web technologies are becoming an international stan-
dard for web applications and numerous tools, reasoners, and libraries are avail-
able to support the development and usage of ontologies. This is a crucial ad-
vantage with respect to other languages used in the multiagent community for
the specification of norms and organizations, like as we already mentioned the
Event Calculus [15, 1], or other specific formal languages like the one required
by the rule engine Jess [11, 4].

In literature there are few approaches that use semantic web languages for
the specification of multiagent systems. For example in [12] prohibited, obliged
and permitted actions are represented as object properties from agents to ac-
tions. But without the reification of the notion of obligation and prohibition
that we propose here, it is very difficult to find a feasible solution to express
conditional commitments with deadlines. Moreover the approach proposed for
detecting violations is based on the external performance of SPARQ L queries
and on the update of the ABox to register that an obligation/prohibition re-
sulted violated; however SPARQ L queries do not exploit the semantics specified
by the ontology. In [2] a hybrid approach is presented: they define a communica-
tion acts ontology using OWL and express the semantics of those acts through
social commitments that are formalized in the Event Calculus. This work is com-
plementary with respect to our approach, in fact we specify also the semantics
of social commitments using semantic web technologies. Semantic web technolo-
gies in multiagent systems can be used also to specify domain specific ontologies
used in the content of norms like in [6]. Another interesting contribution is due
also to the exemplification of a solution to the problem to performing closed
world reasoning on certain classes in OWL. Another work that tackles a similar
problem in a different domain, the ontology of software models, is [3].

Indeed this model is still incomplete e we plan to investigate how it is possible
to manage the creation of commitments to model norm activations, and to model
active sanctions, moreover we plan to study how to formalize the notion of
power to express the semantics of declarative communicative acts and of passive
sanctions.

References

1. A. Artikis, M. Sergot, and J. Pitt. Animated Specifications of Computational
Societies. In C. Castelfranchi and W. L. Johnson, editor, Proceedings of the 1st
International Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS 2002), pages 535–542. ACM Press, 2002.

47

2. I. Berges, J. Bermdez, A. Goi, and A. Illarramendi. Semantic web technology for
agent communication protocols. In The Semantic Web: Research and Applications
5th European Semantic Web Conference, ESWC 2008, Tenerife, Canary Islands,
Spain, June 1-5, 2008 Proceedings, pages 5–18, 2008.

3. M. Bräuer and H. Lochmann. An ontology for software models and its practical
implications for semantic web reasoning. In S. Bechhofer, M. Hauswirth, J. Hoff-
mann, and M. Koubarakis, editors, ESWC, volume 5021 of LNCS, pages 34–48.
Springer, 2008.

4. V. T. da Silva1. From the specification to the implementation of norms: an au-
tomatic approach to generate rules from norms to govern the behavior of agents.
Autonomous Agents and Multi-Agent Systems, 17(1):113–155, August 2008.

5. F. M. Donini, M. Lenzerini, D. Nardi, A. Schaerf, and W. Nutt. An epistemic
operator for description logics. Artificial Intelligence, 200(1-2):225274, 1998.

6. C. Felicissimo, J.-P. Briot, C. Chopinaud, and C. Lucena. How to concretize norms
in NMAS? An operational normative approach presented with a case study from
the television domain. In International Workshop on Coordination, Organization,
Institutions and Norms in Agent Systems (COIN@AAAI’08), 23rd AAAI Confer-
ence on Artificial Intelligence, Chicago, IL, Etats-Unis, 2008. AAAI, AAAI Press.

7. N. Fornara and M. Colombetti. Specifying and enforcing norms in artificial in-
stitutions. In M. Baldoni, T. Son, B. van Riemsdijk, and M. Winikoff, editors,
Declarative Agent Languages and Technologies VI 6th International Workshop,
DALT 2008, Estoril, Portugal, May 12, 2008, Revised Selected and Invited Papers,
volume 5397 of LNCS, pages 1–17. Springer Berlin / Heidelberg, 2009.

8. N. Fornara and M. Colombetti. Specifying Artificial Institutions in the Event
Calculus, chapter XIV, page to appear. Information science reference. IGI Global,
2009.

9. N. Fornara, F. Viganò, and M. Colombetti. Agent communication and artificial
institutions. Autonomous Agents and Multi-Agent Systems, 14(2):121–142, April
2007.

10. N. Fornara, F. Viganò, M. Verdicchio, and M. Colombetti. Artificial institutions:
A model of institutional reality for open multiagent systems. Artificial Intelligence
and Law, 16(1):89–105, March 2008.

11. A. Garćıa-Camino, J. A. Rodŕıguez-Aguilar, C. Sierra, and W. Vasconcelos. Con-
straint rule-based programming of norms for electronic institutions. Autonomous
Agents and Multi-Agent Systems, 18(1):186–217, 2009.

12. J. S.-C. Lam, F.Guerin, W. Vasconcelos, and T. J. Norman. Representing and rea-
soning about norm-governed organisations with semantic web languages. In Sixth
European Workshop on Multi-Agent Systems Bath, UK, 18-19 December 2008,
2008.

13. F. López y López, M. Luck, and M. d’Inverno. A Normative Framework for Agent-
Based Systems. In Proceedings of the First International Symposium on Normative
Multi-Agent Systems, Hatfield, 2005.

14. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
owl-dl reasoner. Web Semantics: Science, Services and Agents on the World Wide
Web, 5(2):51–53, 2007.

15. P. Yolum and M. Singh. Reasoning about commitment in the event calculus:
An approach for specifying and executing protocols. Annals of Mathematics and
Artificial Intelligence, 42:227–253, 2004.

48

Prioritized Goals and Subgoals in a Logical Account of

Goal Change – A Preliminary Report

Shakil M. Khan and Yves Lespérance

Department of Computer Science and Engineering

York University, Toronto, ON, Canada M3J 1P3

{skhan, lesperan}@cse.yorku.ca

Abstract. Most previous logical accounts of goal change do not deal with pri-

oritized goals and do not handle subgoals and their dynamics properly. Many

are restricted to achievement goals. In this paper, we develop a logical account

of goal change that addresses these deficiencies. In our account, we do not drop

lower priority goals permanently when they become inconsistent with other goals

and the agent’s knowledge; rather, we make such goals inactive. We ensure that

the agent’s chosen goals/intentions are consistent with each other and the agent’s

knowledge. When the world changes, the agent recomputes her chosen goals and

some inactive goals may become active again. This ensures that our agent max-

imizes her utility. We also propose an approach for handling subgoals and their

dynamics. We prove that the proposed account has some intuitively desirable

properties.

1 Introduction

There has been much work on modeling agent’s mental states, beliefs, goals, and in-

tentions, and how they interact and lead to rational decisions about action. As well,

there has been a lot of work on modeling belief change. But motivational attitudes

and their dynamics have received much less attention. Most formal models of goals

and goal change [1–7] assume that all goals are equally important and many only deal

with achievement goals (one exception to this is the model of prioritized goals in [7]).

Moreover, most of these frameworks do not guarantee that an agent’s goals will prop-

erly evolve when an action is performed or an event occurs, e.g. when the agent’s be-

liefs/knowledge changes or a goal is adopted or dropped. Also, they do not model the

dependencies between goals and the subgoals and plans adopted to achieve these goals.

For instance, subgoals and plans adopted to bring about a goal should be dropped when

the parent goal becomes impossible, is achieved, or is dropped. Dealing with these is-

sues is important for developing effective models of rational agency. It is also important

for work on BDI agent programming languages, where handling declarative goals is an

active research topic [8, 9].

In this paper, we present a formal model of prioritized goals and their dynamics that

addresses some of these issues. Specifically, we propose a framework, where an agent

can have multiple goals at different priority levels, possibly inconsistent with each other.

We define intentions as the maximal set of highest priority goals that is consistent given

the agent’s knowledge. Our formalization of goals and goal dynamics ensures that the

49

agent strives to maximize her utility. Our model supports the specification of general

temporally extended goals, not just achievement goals, and handles subgoals and their

dynamics.

We start with a (possibly inconsistent) initial set of prioritized goals or desires that

are totally ordered according to priority, and specify how these goals evolve when ac-

tions/events occur and the agent’s knowledge changes. We define the agent’s chosen

goals or intentions in terms of this goal hierarchy. Our agents maximize their utility;

they will abandon a chosen goal φ if an opportunity to commit to a higher priority but

inconsistent with φ goal arises. To this end, we keep all prioritized goals in the goal base

unless they are explicitly dropped. At every step, we compute an optimal set of chosen

goals given the hierarchy of prioritized goals, preferring higher priority goals, such that

chosen goals are consistent with each other and with the agent’s knowledge. Thus at any

given time, some goals in the hierarchy are active, i.e. chosen, while others are inactive.

Some of these inactive goals may later become active, e.g. if a higher priority active

goal that is inconsistent with the inactive goal becomes impossible. We also show how

the dependencies between goals and subgoals can be modeled. Finally, we prove some

interesting properties about the dynamics of chosen goals.

As mentioned above, our formalization of prioritized goals ensures that the agent

always tries to maximize her utility, and as such a limitation of our framework is that

it displays an idealized form of rationality. In Section 5, we discuss how this relates

to Bratman’s theory of practical reasoning [10]. We use an action theory based on the

situation calculus [11] along with our formalization of paths in the situation calculus as

our base formalism.

The paper is organized as follows: in the next section, we outline our base frame-

work. In Section 3, we formalize paths in the situation calculus to support modeling

goals. In Section 4, we present our model of prioritized goals. In section 5, we present

our formalization of goal dynamics and discuss some of its properties. In Section 6,

we discuss what it means for an agent to have a subgoal and how subgoals change as

a result of changes to their parent goals. Then in the last section, we summarize our

results, discuss previous work in this area, and point to possible future work.

2 Action and Knowledge

Our base framework for modeling goal change is the situation calculus [11] as formal-

ized in [12]. In the situation calculus, a possible state of the domain is represented by

a situation. There is a set of initial situations corresponding to the ways the agents be-

lieve the domain might be initially, i.e. situations in which no actions have yet occurred.

Init(s) means that s is an initial situation. The actual initial state is represented by a spe-

cial constant S 0. There is a distinguished binary function symbol do where do(a, s)

denotes the successor situation to s resulting from performing the action a. Thus the sit-

uations can be viewed as a set of trees, where the root of each tree is an initial situation

and the arcs represent actions. Relations (and functions) whose truth values vary from

situation to situation, are called relational (functional, resp.) fluents, and are denoted by

predicate (function, resp.) symbols taking a situation term as their last argument. There

is a special predicate Poss(a, s) used to state that action a is executable in situation s.

50

Our framework uses a theory Dbasic that includes the following set of axioms:1 (1)

action precondition axioms, one per action a characterizing Poss(a, s), (2) successor

state axioms (SSA), one per fluent, that succinctly encode both effect and frame axioms

and specify exactly when the fluent changes [12], (3) initial state axioms describing

what is true initially including the mental states of the agents, (4) unique name axioms

for actions, and (5) domain-independent foundational axioms describing the structure

of situations [14].

Following [15, 16], we model knowledge using a possible worlds account adapted

to the situation calculus. K(s′, s) is used to denote that in situation s, the agent thinks

that she could be in situation s′. Using K, the knowledge of an agent is defined as:2

Know(Φ, s)
def

= ∀s′. K(s′, s) ⊃ Φ(s′), i.e. the agent knows Φ in s if Φ holds in all of her

K-accessible situations in s. K is constrained to be reflexive, transitive, and Euclidean

in the initial situation to capture the fact that agents’ knowledge is true, and that agents

have positive and negative introspection. As shown in [16], these constraints then con-

tinue to hold after any sequence of actions since they are preserved by the successor

state axiom for K. We also assume that all actions are public, i.e. whenever an action

(including exogenous events) occurs, the agent learns that it has happened. Note that,

we work with knowledge rather than belief. Although much of our formalization should

extend to the latter, we leave this for future work.

3 Paths in the Situation Calculus

To support modeling temporally extended goals, we introduce a new sort of paths, with

(possibly sub/super-scripted) variables p ranging over paths. A path is essentially an

infinite sequence of situations, where each successor situation along the path can be

reached by performing some executable action in the preceding situation. We introduce

a predicate OnPath(p, s), meaning that the situation s is on the path p. Also, Starts(p, s)

means that s is the starting situation of path p. A path p starts with the situation s iff s

is the earliest situation on p:3

Axiom 1 Starts(p, s) ≡ OnPath(p, s) ∧ ∀s′. OnPath(p, s′) ⊃ s ≤ s′.

In the standard situation calculus, paths are implicitly there, and a path can be

viewed as a pair (s, F) consisting of a situation s representing the starting situation

of the path, and a function F from situations to actions (called Action Selection Func-

tions (ASF) or strategies in [5]), such that from starting situation s, F defines an infinite

1 We will be quantifying over formulae, and thus we assume Dbasic includes axioms for encoding

of formulae as first order terms, as in [13]. We will also be using lists of integers, and assume

that Dbasic includes axiomatizations of integers and lists.
2 A state formula Φ(s) takes a single situation as argument and is evaluated with respect to that

situation. Φ may contain a placeholder constant now that stands for the situation in which

Φ must hold. Φ(s) is the formula that results from replacing now by s. Where the intended

meaning is clear, we sometimes suppress the placeholder.
3 In the following, s < s′ means that s′ can be reached from s by performing a sequence of

executable actions. s ≤ s′ is an abbreviation for s < s′ ∨ s = s′.

51

sequence of situations by specifying an action for every situation starting from s. Thus,

one way of axiomatizing paths is by making them correspond to such pairs (s, F):

Axiom 2

∀p. Starts(p, s) ⊃ (∃F. Executable(F, s) ∧ ∀s′. OnPath(p, s′) ≡ OnPathASF(F, s, s′)),

∀F, s. Executable(F, s) ⊃ ∃p. Starts(p, s) ∧ ∀s′. OnPathASF(F, s, s′) ≡ OnPath(p, s′).

This says that for every path there is an executable ASF that produces exactly the se-

quence of situations on the path from its starting situation. Also, for every executable

ASF and situation, there is a path that corresponds to the sequence of situations pro-

duced by the ASF starting from that situation.

OnPathASF(F, s, s′)
def

= s ≤ s′ ∧ ∀a, s∗. s < do(a, s∗) ≤ s′ ⊃ F(s∗) = a,

Executable(F, s)
def

= ∀s′. OnPathASF(F, s, s′) ⊃ Poss(F(s′), s′).

Here, OnPathASF(F, s, s′) [6] means that the situation sequence defined by (s, F) in-

cludes the situation s′. Also, the situation sequence encoded by a strategy F and a start-

ing situation s is executable iff for all situations s′ in this sequence, the action selected

by F in s′ is executable in s′.

In our framework, we will use both state and path formulae. A state formula is a

formula that has a free situation variable in it, whereas a path formula is one that has

a free path variable. State formulae are used in the context of knowledge while path

formulae are used in that of goals. We use Φ(s), Ψ (s), · · · and φ(p), ψ(p), · · · possibly

with decorations to represent state and path formulae, respectively. Note that, by incor-

porating infinite paths in our framework, we can evaluate goals over these and handle

arbitrary temporally extended goals; thus, unlike some other situation calculus based

accounts where goal formulae are evaluated w.r.t. finite paths (e.g. [7]), we can handle

for example unbounded maintenance goals.

We next define some useful constructs. A state formula Φ eventually holds over the

path p if Φ holds in some situation that is on p, i.e. ^Φ(p)
def

= ∃s′. OnPath(p, s′)∧Φ(s′).

Other Temporal Logic operators can be defined similarly, e.g. always Φ: �Φ(p).

An agent knows in s that φ has become inevitable if φ holds over all paths that start

with a K-accessible situation in s, i.e. KInevitable(φ, s)
def

= ∀p. Starts(p, s′) ∧ K(s′, s) ⊃

φ(p). An agent knows in s that φ is impossible if she knows that ¬φ is inevitable in s,

i.e. KImpossible(φ, s)
def

= KInevitable(¬φ, s).

Thirdly, we define what it means for a path p′ to be a suffix of another path p w.r.t.

a situation s:

Suffix(p′, p, s)
def

= OnPath(p, s) ∧ Starts(p′, s)

∧ ∀s′. s′ ≥ s ⊃ OnPath(p, s′) ≡ OnPath(p′, s′).

Finally, SameHistory(s1, s2) means that the situations s1 and s2 share the same his-

tory of actions, but perhaps starting from different initial situations:

Axiom 3 SameHistory(s1, s2) ≡ Init(s1) ∧ Init(s2)

∨ (∃a, s′1, s
′
2. s1 = do(a, s′1) ∧ s2 = do(a, s′2) ∧ SameHistory(s′1, s

′
2)).

52

4 Prioritized Goals

Most work on formalizing goals only deals with static goal semantics and not their dy-

namics. There are two main categories of motivational attitudes, namely goal [1, 17]

(AKA choice [2], wish [10] or preference), and intention. While goals are sometimes

allowed to be inconsistent [10], intentions are mostly required to be consistent. Another

difference is that agents are committed to their intentions, but not necessarily to their

goals [10]. Intention is sometimes primitive [17, 3] and sometimes a defined concept,

specified in terms of goals [1, 2, 4]. In this section, we formalize goals or desires with

different priorities, which we call prioritized goals (p-goals, henceforth). These p-goals

are not required to be mutually consistent and need not be actively pursued by the agent.

Using this, we define the consistent set of chosen goals or intentions (c-goals, hence-

forth) that the agent is committed to. In the next section, we formalize goal dynamics

by providing a SSA for p-goals. The agent’s c-goals are automatically updated when

her p-goals change. We deal with subgoals and their dynamics in Section 6.

Not all of the agent’s goals are equally important to her. Thus, it is useful to sup-

port a priority ordering over goals. This information can be used to decide which of the

agent’s c-goals should no longer be actively pursued in case they become mutually in-

consistent. Following [6], we specify each p-goal by its own accessibility relation/fluent

G. A path p is G-accessible at priority level n in situation s (denoted by G(p, n, s)) if all

the goals of the agent at level n are satisfied over this path and if it starts with a situation

that has the same history (in terms of the actions performed so far) as s. The latter re-

quirement ensures that the agent’s p-goal-accessible paths reflect the actions that have

been performed so far. A smaller n represents higher priority, and the highest priority

level is 0. Thus in this framework, we assume that the set of p-goals are totally ordered

according to priority. We say that an agent has the p-goal that φ at level n in situation s

iff φ holds over all paths that are G-accessible at n in s:

PGoal(φ, n, s)
def

= ∀p. G(p, n, s) ⊃ φ(p).

To be able to refer to all the p-goals of the agent at some given priority level, we

also define only p-goals.

OPGoal(φ, n, s)
def

= PGoal(φ, n, s)

∧ ∀p, s′. Starts(p, s′) ∧ SameHist(s′, s) ∧ φ(p) ⊃ G(p, n, s).

An agent has the only p-goal that φ at level n in situation s iff φ is a p-goal at n in s,

and any path over which φ holds and that starts with a situation that has the same action

history as in s is G-accessible at n in s.

A domain theory for our framework D includes the axioms of a theory Dbasic as

in the previous section, the axiomatization of paths i.e. axioms 1-3, domain dependent

initial goal axioms (see below), the domain independent axioms 4-7 and the definitions

that appear in this section and the next. The modeler must provide initial goal axioms

of the following form:

INITIAL GOAL AXIOMS (a) Init(s) ⊃ ((G(p, 0, s) ≡ Starts(p, s′) ∧ Init(s′) ∧ φ0(p))

∧ (G(p, 1, s) ≡ Starts(p, s′) ∧ Init(s′) ∧ φ1(p)) ∧ · · ·

53

∧ (G(p, k − 1, s) ≡ Starts(p, s′) ∧ Init(s′) ∧ φk−1(p))),

(b) ∀n, p, s. Init(s) ∧ n ≥ k ⊃ (G(p, n, s) ≡ Starts(p, s′) ∧ Init(s′)),

(c) Init(s) ⊃ NPGoals(s) = k.

The p-goals φ0, φ1, · · · , φk−1 (from highest to lowest priority) of the agent in the initial

situations are specified by the Initial Goal Axiom (a); each of them defines a set of initial

goal paths for a given priority level, and must be consistent. We assume that the agent

has a finite number k of initial p-goals. For n ≥ k, we make G(p, n, s) true for every path

p that starts with an initial situation in (b). Thus at levels n ≥ k, the agent has the trivial

p-goal that she be in an initial situation. We also have a distinguished functional fluent

NPGoals(s) that represents the number of prioritized goals that the agent has (i.e. the

location of the first empty slot after the last p-goal). Initially NPGoals is set to k in (c).

Later, we will specify the dynamics of p-goals by giving SSAs for G and NPGoals.

We use the following as a running example. We have an agent who initially has

the following three p-goals: φ0 = �BeRich, φ1 = ^GetPhD, and φ2 = �BeHappy at

level 0, 1, and 2, respectively (see second column of Table 1). Assume that while all

G-Level S 0, S ′
1

S 1 S 2 S 3

4 TRUE TRUE �BeRich ∧ �WorkHard ∧ �BeEnergetic TRUE

3 TRUE �BeRich ∧ �WorkHard �BeRich ∧ �WorkHard TRUE

2 �BeHappy �BeHappy �BeHappy �BeHappy

1 ^GetPhD ^GetPhD ^GetPhD ^GetPhD

0 �BeRich �BeRich �BeRich �BeRich

Table 1. Example of an Agent’s PGoals and their Dynamics

of her p-goals are individually achievable initially, her p-goal ^GetPhD is inconsis-

tent with her highest priority p-goal �BeRich as well as with her p-goal �BeHappy,

while the latter are consistent with each other. It is straightforward to specify a domain

action theory such that it entails this. Also assume that, after the action goBankrupt

happens in S 0, the p-goal �BeRich becomes impossible. Thus in our example, we have

OPGoal(φi(p) ∧ Starts(p, s) ∧ Init(s), i, S 0), for i = 0, 1, 2. Also, for any n ≥ 3, we have

OPGoal(Starts(p, s) ∧ Init(s), n, S 0).

Using p-goals, we next define c-goals. While p-goals or desires are allowed to be

known to be impossible to achieve, an agent’s c-goals or intentions must be realistic. Not

all of the G-accessible paths are realistic in the sense that they start with a knowledge

accessible situation. To filter these out, we define realistic p-goal accessible paths:

GR(p, n, s)
def

= G(p, n, s) ∧ Starts(p, s′) ∧ K(s′, s),

i.e., a path p is GR-accessible at level n in situation s if it is G-accessible at n in s, and

if p starts with a situation that is K-accessible in s. Thus GR prunes out the paths from

G that are known to be impossible. We will define c-goals in terms of realistic p-goals,

so this ensures that agents’ c-goals are realistic.

The idea of how we compute c-goal-accessible paths is as follows: the set of GR-

accessibility relations represents a set of prioritized temporal propositions that are can-

54

didates for the agent’s c-goals. Given GR, in each situation we want to compute the

agent’s c-goals such that it is the maximal consistent set of higher priority realistic p-

goals. We do this iteratively starting with the set of all possible paths (i.e. paths that

starts with a K-accessible situation). At each iteration we compute the intersection of

this set with the next highest priority set of GR-accessible paths. If the intersection is

not empty, we thus obtain a new chosen set of paths at level i. We call a p-goal chosen

by this process an active p-goal. If on the other hand, the intersection is empty, then it

must be the case that the p-goal represented by this level is either in conflict with an-

other active higher priority p-goal/a combination of two or more active higher priority

p-goals, or known to be impossible. In that case, that p-goal is ignored (i.e. marked as

inactive), and the chosen set of paths at level i is the same as at level i − 1. We repeat

this until we reach i = NPGoals. Axiom 4 computes this intersection:4

Axiom 4 G∩(p, n, s) ≡ if (n = 0) then Starts(p, s′) ∧ K(s′, s)

else if ∃p′.(GR(p′, n − 1, s) ∧G∩(p′, n − 1, s))

then (GR(p, n − 1, s) ∧G∩(p, n − 1, s))

else G∩(p, n − 1, s).

C-goal accessible paths are the result of this intersection after all priority levels have

been considered:

GC(p, s)
def

= G∩(p,NPGoals(s), s).

We define an agent’s c-goals in terms of the GC-accessible paths:

CGoal(φ, s)
def

= ∀p. GC(p, s) ⊃ φ(p),

i.e., the agent has the c-goal that φ if φ holds over all of her GC-accessible paths.

We also define what it means for an agent to have a c-goal at some level n:

CGoal(φ, n, s)
def

= ∀p. G∩(p, n + 1, s) ⊃ φ(p),

i.e. an agent has the c-goal at level n that φ if φ holds over all paths that are in the

prioritized intersection of the set of GR-accessible paths up to level n.

In our example, the agent’s p-goals are �BeRich,^GetPhD, and �BeHappy in order

of priority. The G∩-accessible paths at level 1 in S 0 are the ones that start with a K-

accessible situation and where �BeRich holds. The G∩-accessible paths at level 2 in

S 0 are the same as at level 1, since there are no K-accessible paths over which both

^GetPhD and �BeRich hold. Finally, the G∩-accessible paths at level 3 in S 0 and hence

the GC-accessible paths are those that start with a K-accessible situation and over which

�BeRich∧�BeHappy holds. Also, it can be shown that initially our example agent has

the c-goals that �BeRich and �BeHappy, but not ^GetPhD.

Note that by our definition of c-goals, the agent can have a c-goal that φ in situation

s for various reasons: 1) φ is known to be inevitable in s; 2) φ is an active p-goal at

some level n in s; 3) φ is a consequence of two or more active p-goals at different levels

in s. To be able to refer to c-goals for which the agent has a primitive motivation, i.e. c-

goals that result from a single active p-goal at some priority level n, in contrast to those

4 ifφ then δ1 else δ2 is an abbreviation for (φ ⊃ δ1) ∧ (¬φ ⊃ δ2).

55

that hold as a consequence of two or more active p-goals at different priority levels, we

define primary c-goals:

PrimCGoal(φ, s)
def

= ∃n. PGoal(φ, n, s) ∧ ∃p. GC(p, s) ∧G(p, n, s).

That is, an agent has the primary c-goal that φ in situation s, if φ is a p-goal at some

level n in s, and if there is a GC-accessible path p in s that is also G-accessible at n in s.

Thus if an agent has a primary c-goal that φ, then she also has the c-goal that φ, but not

necessarily vice-versa. It can be shown that initially our example agent has the primary

c-goals that �BeRich and �BeHappy, but not their conjunction.

5 Goal Dynamics

An agent’s goals change when her knowledge changes as a result of the occurrence of an

action (including exogenous events), or when she adopts or drops a goal. We formalize

this by specifying how p-goals change. C-goals are then calculated using (realistic) p-

goals in every new situation as explained above.

We introduce two actions for adopting and dropping a p-goal, adopt(φ) and drop(φ),

and a third for adopting a subgoal ψ w.r.t. a supergoal φ, adopt(ψ, φ). The action pre-

condition axioms for these are as follows:

Axiom 5 Poss(adopt(φ), s) ≡ ¬∃n. PGoal(φ, n, s),

Poss(adopt(ψ, φ), s) ≡ ¬∃n. PGoal(ψ, n, s) ∧ ∃n′. PGoal(φ, n′, s),

Poss(drop(φ), s) ≡ ∃n. PGoal(φ, n, s).

That is, an agent can adopt the p-goal that φ, if she does not already have φ as her p-goal

at some level. An agent can adopt a subgoal ψ w.r.t. the parent goal that φ if she does

not already have the p-goal that ψ at some level, and if at some level she currently has

the parent goal that φ. The drop(φ) action is possible in s if φ is a p-goal at some level

n in s.

In the following, we specify the dynamics of p-goals by giving the SSA for G and

then discuss each case one at a time:

Axiom 6 (SSA for G) G(p, n, do(a, s)) ≡

∀φ, ψ. (a , adopt(φ) ∧ a , adopt(ψ, φ) ∧ a , drop(φ) ∧ Progressed(p, n, a, s))

∨ ∃φ. (a = adopt(φ) ∧ Adopted(p, n, a, s, φ))

∨ ∃φ, ψ. (a = adopt(ψ, φ) ∧ SubGoalAdopted(p, n, a, s, ψ, φ)

∨ ∃φ. (a = drop(φ) ∧ Dropped(p, n, a, s, φ)).

The overall idea of the SSA for G is as follows. First of all, to handle the occurrence

of a non-adopt/drop (i.e. regular) action a, we progress all G-accessible paths to reflect

the fact that this action has just happened; this is done using the Progressed(p, n, a, s)

construct, which replaces each G-accessible path p′ with starting situation s′, by its

suffix p provided that it starts with do(a, s′):

Progressed(p, n, a, s)
def

= ∃p′. G(p′, n, s) ∧ Starts(p′, s′) ∧ Suffix(p, p′, do(a, s′)).

56

Any path over which the next action performed is not a is eliminated from the respective

G accessibility level.

Secondly, to handle adoption of a p-goal φ, we add a new proposition containing

the p-goal to the agent’s goal hierarchy. We assume that the newly adopted p-goal φ has

the lowest priority. Thus in addition to progressing the G-accessible paths at all levels

as above, we eliminate the paths over which φ does not hold from the NPGoals(s)-th

G-accessibility level, and the agent acquires the p-goal that φ at level NPGoals(s).

Adopted(p, n, a, s, φ)
def

= if (n = NPGoals(s)) then (Progressed(p, n, a, s) ∧ φ(p))

else Progressed(p, n, a, s).

The third case of subgoal adoption is discussed in the next section.

Finally, to handle dropping of a p-goal φ, we replace the propositions that imply the

dropped goal in the agent’s goal hierarchy by the “trivial” proposition that the history

of actions in the current situation has occurred. Thus in addition to progressing all G-

accessible paths as above, we add back all paths that share the same history with do(a, s)

to the existing G-accessibility levels where the agent has the p-goal that φ, and thus these

G-accessibility levels now amounts to the “trivial” p-goal that CorrectHist(s, path).5

Dropped(p, n, a, s, φ)
def

= if PGoal(φ, n, s) then Starts(p, s′) ∧ SameHistory(s′, do(a, s))

else Progressed(p, n, a, s).

The SSA for NPGoals(s) is as follows:

Axiom 7 (SSA for NPGoals) NPGoals(do(a, s)) = k ≡

a , adopt(φ) ∧ a , adopt(ψ, φ) ∧ NPGoals(s) = k ∨

a = adopt(φ) ∧ NPGoals(s) + 1 = k ∨

a = adopt(ψ, φ) ∧ AdjustSubGoalAdopt(φ, s) = k.

That is, when the agent adopts a p-goal, her current NPGoals is incremented by one. We

discuss the adjustment of NPGoals required for subgoal adoption in the next section.

Finally, NPGoals is not affected by any other action.

Returning to our example, recall that our agent has the c-goals/active p-goals in S 0

that �BeRich and �BeHappy, but not ^GetPhD, since the latter is inconsistent with

her higher priority p-goal �BeRich. On the other hand, in S ′
1
= do(goBankrupt, S 0),

the agent has the c-goal that ^GetPhD, but not �BeRich nor �BeHappy; �BeRich is

excluded from the set of c-goals since it has become impossible to achieve (i.e. unre-

alistic). Also, since her higher priority p-goal ^GetPhD is inconsistent with her p-goal

�BeHappy, the agent will make �BeHappy inactive.

Note that, while it might be reasonable to drop a p-goal (e.g. ^GetPhD) that is in

conflict with another higher priority active p-goal (e.g. �BeRich), in our framework we

keep such p-goals around. The reason for this is that although �BeRich is currently

inconsistent with ^GetPhD, the agent might later learn that �BeRich has become im-

possible to bring about (e.g. after goBankrupt occurs), and then might want to pursue

5 CorrectHist(s, path) is defined as Starts(path, s′) ∧ SameHistory(s′, s); here path is a place-

holder that stands for a path and s represents the current situation.

57

^GetPhD. Thus, it is useful to keep these inactive p-goals since this allows the agent to

maximize her utility (that of her chosen goals) by taking advantage of such opportuni-

ties. As mentioned earlier, c-goals are our analogue to intentions. Recall that Bratman’s

model of intentions limits the agent’s practical reasoning – agents do not always opti-

mize their utility and don’t always reconsider all available options in order to allocate

their reasoning effort wisely. In contrast to this, our c-goals are defined in terms of the

p-goals, and at every step, we ensure that the agent’s c-goals maximizes her utility so

that it is the set of highest priority goals that is consistent given the agent’s knowledge.

Thus, our notion of c-goals is not as persistent as Bratman’s notion of intention [10].

For instance as mentioned above, after the action goBankrupt happens in S 0, the agent

will lose the c-goal that �BeHappy, although she did not drop it and it did not become

impossible or achieved. In this sense, our model is that of an idealized agent. There

is a tradeoff between optimizing the agent’s chosen set of prioritized goals and being

committed to chosen goals. In our framework, chosen goals behave like intentions with

an automatic filter-override mechanism [10] that forces the agent to drop her chosen

goals when opportunities to commit to other higher priority goals arise. In the future, it

would be interesting to develop a logical model that captures the pragmatics of intention

reconsideration by supporting control over it.

We now show that our formalization of prioritized goals has some desirable prop-

erties. Some of these (e.g. Proposition 3a) are analogues of the AGM postulates; others

(e.g. adopting logically equivalent goals has the same result, etc.) were left out for space

reasons. First we show that c-goals are consistent:

Proposition 1 (Consistency) D |= ∀s. ¬CGoal(False, s).

Thus, the agent cannot have both φ and ¬φ c-goals in a situation s and there is a path that

is GC-accessible in s. Even if all of the agent’s p-goals become known to be impossible,

the set of GC-accessible paths will be precisely the ones that starts with a K-accessible

situation, and thus the agent will only choose the propositions that are known to be

inevitable.

We also have the property of realism [1], i.e. if an agent knows that something has

become inevitable, then she has this as a c-goal:

Proposition 2 (Realism) D |= KInevitable(φ, s) ⊃ CGoal(φ, s).

Note that this is not necessarily true for p-goals and primary c-goals – an agent may

know that something has become inevitable and not have it as her p-goal/primary c-

goal, which is intuitive. In fact, this is the reason why we define p-goals in terms of

G-accessible paths rather than GR. A consequence of Proposition 1 and 2 is that an

agent does not have a c-goal that is known to be impossible, i.e. D |= CGoal(φ, s) ⊃

¬KImpossible(φ, s).

We next discuss some properties of the framework w.r.t. goal change. Proposition

3 says that (a) an agent acquires the p-goal at some level n that φ after she adopts it,

and (b) an agent acquires the primary c-goal (and c-goal) that φ after she adopts it in s,

provided that she does not have the c-goal that ¬φ in s.

Proposition 3 (Adoption) (a) D |= ∃n. PGoal(φ, n, do(adopt(φ), s)),

(b) D |= ¬CGoal(¬φ, s) ⊃ PrimCGoal(φ, do(adopt(φ), s)).

58

We can also show that after dropping the p-goal that φ in s, an agent does not have

the p-goal (and thus the primary c-goal) that φ.

Proposition 4 (Drop) D |= ¬∃n. PGoal(φ, n, do(drop(φ), s)).

Note that, this does not hold for CGoal, as φ could still be a consequence of two or more

of her remaining primary c-goals.

The next few properties concern the persistence of these motivational attitudes. In

the following, we prove a persistence property for achievement p-goals:

Proposition 5 (Persistence of Achievement PGoals)

D |= PGoal(^Φ, n, s) ∧ Know(¬Φ(now), s) ∧ ∀ψ. a , drop(ψ) ⊃ PGoal(^Φ, n, do(a, s)).

This says that if an agent has a p-goal that ^Φ in s, then she will retain this p-goal

after some action a has been performed in s, provided that she knows that Φ has not yet

been achieved, and a is not the action of dropping a p-goal. Note that, we do not need

to ensure that ^Φ is still known to be possible or consistent with higher priority active

p-goals, since the SSA for G does not automatically drop such incompatible p-goals

from the goal hierarchy.

For achievement chosen goals we have the following:

Proposition 6 (Persistence of Achievement Chosen Goals)

D |= OPGoal(^Φ ∧ CorrectHist(s), n, s) ∧ CGoal(^Φ, s)

∧ Know(¬Φ(now), s) ∧ ∀ψ. a , drop(ψ) ∧ ¬CGoal(¬^Φ, n − 1, do(a, s))

⊃ CGoal(^Φ, n, do(a, s)).

Thus, in situation s, if an agent has the only p-goal at level n that ^Φ and the correct

history of actions in s has been performed, and if ^Φ is also a c-goal in s (and thus she

has the primary c-goal that ^Φ), then she will retain the c-goal that ^Φ at level n after

some action a has been performed in s, provided that:

– she knows that Φ has not yet been achieved,

– that a is not the action of dropping a p-goal,

– and that at level n − 1 the agent does not have the c-goal that ¬^Φ, i.e. ^Φ is

consistent with higher priority c-goals.

Note that this property also follows if we replace the consequent with CGoal(^Φ, do(a, s))

or PrimCGoal(^Φ, do(a, s)), and thus it deals with the persistence of (primary) c-goals.

Note however that, it does not hold if we replace the OPGoal in the antecedent with

PGoal; the reason for this is that the agent might have a p-goal at level n in s that φ and

the c-goal in s that φ, but not have φ as a primary c-goal in s, e.g. n might be an inactive

level because another p-goal at n has become impossible, and φ could be a c-goal in s

because it is a consequence of two other primary c-goals. Thus even if ¬φ is not a c-goal

after a has been performed in s, there is no guarantee that the level n will be active in

do(a, s) or that all the active p-goals that contributed to φ in s are still active.

We believe that the dropping of an unrelated p-goal will not affect persistence, and

hence it should be possible to strengthen Proposition 5 and 6. Also, in the future we

would like to generalize these two propositions to deal with arbitrary temporally ex-

tended goals.

59

6 Handling Subgoals

In this section, we deal with the dynamics of subgoals. As mentioned earlier, a sub-

goal must be dropped when the parent goal is dropped or becomes impossible. When

adopting a subgoal ψ with respect to a supergoal φ, in addition to recording the newly

adopted goal ψ, we need to model the fact that ψ is a subgoal of φ. This information can

later be used to drop the subgoal when the parent goal is dropped. One way of modeling

this is to ensure that the adoption of a subgoal ψ w.r.t. a parent goal φ adds new p-goals

that contain both this subgoal and this parent goal i.e. ψ ∧ φ at a lower priority than

the parent goal φ. This ensures that when the parent goal is dropped, the subgoal is also

dropped. To see this, recall that to handle the dropping of a goal φ, we drop the p-goals

at all G-accessibility levels that imply φ. Thus, if we drop the parent goal φ, it will also

drop all of its subgoals including ψ, since the G-accessibility levels where the parent

goal φ holds include the G-accessibility levels where the subgoal ψ holds. Note that, if

there are more than one level where the supergoal φ is a p-goal, then we copy all these

levels, i.e. for each level n where φ is a p-goal, we add a (lower priority) level to the

goal hierarchy. As we will see, this ensures that the sub-subgoals and sub-sub-subgoals

etc. are also properly dropped when the supergoal is dropped. Also, this means that

dropping a subgoal does not necessarily drop the supergoal.

Before going over the formal details, let us mention some useful bookkeeping tools

that we will use: Length(l) returns the number of elements in list l; Nth(l, i) returns the

i-th element in list l, and -1 if i > Length(l); Sort(l) returns a sorted version of list l. The

part of the SSA for G that handles subgoal adoption is defined as follows:

SubGoalAdopted(p, n, a, s, ψ, φ)
def

= (n < NPGoals(s) ∧ Progressed(p, n, a, s))) ∨

(NPGoals(s) ≤ n < NPGoals(s) + Length(AddList(φ, s))

∧ ∃i,m. (n = NPGoals(s) + i ∧ m = Nth(AddList(φ, s), i)

∧ Progressed(p,m, a, s) ∧ ψ(p))) ∨

(n ≥ NPGoals(s) + Length(AddList(φ, s)) ∧ Progressed(p, n, a, s)).

That is, if the action involves the adoption of a subgoal ψ w.r.t. a supergoal φ, we adjust

G to incorporate (possibly several) new p-goals. We will discuss each case in turn. First,

note that the existing p-goals are just carried over by progressing them; this is handled

by the first disjunct.

Secondly, we adjust G starting at level NPGoals(s). We add a number of new levels

that include the conjunction of the only p-goal and the subgoal at a lower priority for

all the current only p-goals that imply the parent goal φ. For example, say at level i

we have an OPGoal that φi and it implies the parent goal that φ; then we add at a

lower priority the conjoined goal of the progressed version of φi and the subgoal ψ.

Our formalization of this uses the abbreviation AddList(φ, s) which is a sorted list of

levels such that the parent goal is implied by the only p-goal at this level. AddList is

defined as: AddList(φ, s)
def

= Sort([n | PGoal(φ, n, s)]). The length of this list indicates

the number of lower priority goals that needs to be added. As discussed above, this

ensures that the agent will drop the subgoal when the parent goal is dropped (but not

necessarily vice-versa). Note that if this process adds two or more new p-goals to the

60

agent’s goal hierarchy, we maintain the original ordering; e.g. suppose that the agent

adopted ψ w.r.t. φ, that there are two G-accessibility levels m and n such that the agent

has the only p-goal that φm at m and φn at n, that φm implies φ and φn implies φ, and that

n > m. In that case, the SSA for G will add the p-goal φm ∧ φ at level NPGoals(s) and

the p-goal φn ∧ φ at level NPGoals(s) + 1.

Finally, all the remaining levels involving trivially true goals are just carried over

by progressing them.

The part of the SSA for NPGoals that handles subgoal adoption is defined as fol-

lows:

AdjustSubGoalAdopt(φ, s)
def

= NPGoals(s) + Length(AddList(φ, s)).

That is, when the agent adopts a subgoal w.r.t. a parent goal, her current NPGoals is

incremented by the number of new p-goals adopted in this process.

Let us go back to our example. Suppose that the agent knows that one way of always

being rich is to always work hard, which in turns can be fulfilled by always being ener-

getic. Assume that with this in mind, our agent adopts the subgoal that �WorkHard

w.r.t. the p-goal that �BeRich, and then adopts the sub-subgoal that �BeEnergetic

w.r.t. the subgoal that �WorkHard starting in S 0. Then the agent’s goal hierarchy in

S 1 = do(adopt(�WorkHard,�BeRich), S 0) should include the p-goal that �WorkHard

and in S 2 = do(adopt(�BeEnergetic, �WorkHard), S 1) should also include the p-goal

that �BeEnergetic. According to the SSA for G, our agent’s goal hierarchy in S 1 and

in S 2 will be as in Table 1.6 In S 0, the supergoal �BeRich holds at level 0 and thus

AddList(�BeRich, S 0) = [0]. Similarly in S 1, the supergoal �WorkHard holds at level

3 and thus AddList(�WorkHard, S 1) = [3]. Now, suppose that in S 2 the agent wants to

drop the p-goal that �WorkHard. Then in S 3 = do(drop(�WorkHard), S 2), she should

no longer have �BeEnergetic as a p-goal, but should retain the supergoal that �BeRich.

After the agent drops the p-goal that �WorkHard, by the SSA for G we can see that all

the G-accessible levels where �WorkHard holds will be replaced by the only p-goal that

CorrectHist(S 2, path) (see S 3 in Table 1). This shows that dropping �WorkHard results

in the dropping of all of its subgoals (in this case �BeEnergetic), but that its parent goal

�BeRich is retained.

We define the SubGoal relation as follows:

SubGoal(ψ, φ, s)
def

= ∃n. PGoal(φ, n, s) ∧ ¬PGoal(ψ, n, s)

∧ ∀n. PGoal(ψ, n, s) ⊃ PGoal(φ, n, s).

This says that ψ is a subgoal of φ in situation s iff there exists an G-accessibility level

n in s such that φ is a p-goal at n while ψ is not, and for all G-accessibility levels in s

where ψ is a p-goal, φ is also a p-goal. Note that, while our formalization of subgoal

dynamics allows a subgoal to have multiple parents, in this definition we assume that

a subgoal can’t have more than one parent. In the future, we will work on relaxing this

constraint.

We now discuss some properties concerning the dynamics of subgoals and the de-

pendencies between a subgoal and its parent goal. Proposition 7 states that (a) an agent

6 For simplicity in Table 1, we only show the agent’s relevant p-goals rather than its only p-goals

(which in addition reflect the actions that have been performed so far, i.e. CorrectHist(s)).

61

acquires the p-goal that ψ after she adopts it as a subgoal of another goal φ in s, provided

that she has the p-goal at some level in s that φ, and (b) she also acquires the primary

c-goal that ψ after she adopts it as a subgoal of φ in s, provided that she has the primary

c-goal in s that φ, and that she does not have the c-goal that ¬ψ in s.

Proposition 7 (Subgoal Adoption)

(a) D |= ∃m. PGoal(φ,m, s) ⊃ ∃n. PGoal(ψ, n, do(adopt(ψ, φ), s)),

(b) D |= PrimCGoal(φ, s) ∧ ¬CGoal(¬ψ, s) ⊃ PrimCGoal(ψ, do(adopt(ψ, φ), s)).

The next property says that after dropping the p-goal that φ in s, an agent does not

have the p-goal (and thus the primary c-goal) that ψ, provided that ψ is a subgoal of φ

in s.

Proposition 8 (Supergoal Drop)

D |= SubGoal(ψ, φ, s) ⊃ ¬∃n. PGoal(ψ, n, do(drop(φ), s)).

As with Proposition 4, this does not hold if we replace PGoal in the consequence with

CGoal since ψ could be a consequence of a combination of other active p-goals.

The next two properties say that dropping a subgoal does not effect the parent goal.

Proposition 9 (Subgoal Drop)

(a) D |= SubGoal(ψ, φ, s) ⊃ ∃n. PGoal(φ, n, do(drop(ψ), s)),

(b) D |= SubGoal(ψ, φ, s) ∧ PrimCGoal(φ, s) ⊃ PrimCGoal(φ, do(drop(ψ), s)).

That is, (a) an agent retains the p-goal that φ after she drops a subgoal ψ of φ, and (b)

she also retains the primary c-goal that φ after she drops a subgoal ψ of φ in s, provided

that she has the primary c-goal that φ in s.

Finally, it can be shown that the SubGoal relation is transitive, i.e. if ψ1 is a subgoal

of φ in s, and if ψ2 is a subgoal of ψ1 in s, then ψ2 must also be a subgoal of φ in s.

7 Discussion and Future Work

In this paper, we presented a formalization of prioritized goals, subgoals, and their

dynamics. Our formalization ensures that an agent’s chosen goals are always consistent

and that goals and subgoals properly evolve as a result of actions and as a result of

adopting and dropping goals. Although we made some simplifying assumptions, in

this paper we have focused on developing an expressive framework that captures an

idealized form of rationality without worrying about tractability. In would be desirable

to study restricted fragments of the logic where reasoning is tractable. Also, before

defining more limited forms of rationality, one should have a clear specification of what

ideal rationality really is so that one understands what compromises are being done.

While in our account chosen goals are closed under logical consequence, primary

c-goals are not. To this end, our formalization of primary c-goals is related to the non-

normal modal formalizations of intentions found in the literature [3], and as such it does

not suffer from the side-effect problem [1]. For instance, in our framework an agent can

have the primary c-goal to get her teeth fixed and know that this always involves pain,

but not have the primary c-goal to have pain.

62

Also, since we are using the situation calculus, we can easily represent procedural

goals/plans, e.g. the goal to do a1 and then a2 can be written as: PGoal(Starts(p, s1) ∧

OnPath(p, s) ∧ s = do(a2, do(a1, s1)), 0, S 0). Golog [12] can be used to represent com-

plex plans/programs. So we can model the adoption of plans as subgoals.

Recently, there have been a few proposals that deal with goal change. Shapiro et

al. [18] present a situation calculus based framework where an agent adopts a goal

when she is requested to do so, and remains committed to this goal unless the requester

cancels this request; a goal is retained even if the agent learns that it has become im-

possible, and in this case the agent’s goals become inconsistent. Shapiro and Brewka

[7] modify this framework to ensure that goals are dropped when they are believed to

be impossible or when they are achieved. Their account is similar to ours in the sense

that they also assume a priority ordering over the set of (in their case, requested) goals,

and in every situation they compute chosen goals by computing a maximal consistent

goal set that is also compatible with the agent’s beliefs. However, their model has some

unintuitive properties: the agent’s chosen set of goals in do(a, s) may be quite different

from her goals in s, although a did not make any of her goals in s impossible or incon-

sistent with higher priority goals, because inconsistencies between goals at the same

priority level are resolved differently (this can happen because goals are only partially

ordered). Note that, while one might argue that a partial order over goals might be more

general, allowing this means that additional control information is required to obtain

a single goal state after the agent’s goals change. Also, we provide a more expressive

formalization of prioritized goals – we model goals using infinite paths, and thus can

model many types of goals that they cannot. Finally they model prioritized goals by

treating the agent’s p-goals as an arbitrary set of temporal formulas, and then defining

the set of c-goals as a subset of the p-goals. But our possible world semantics has some

advantages over this: it clearly defines when goals are consistent with each other and

with what is known. One can easily specify how goals change when an action a occurs,

e.g. the goal to do a next and then do b becomes the goal to do b next, the goal that

^Φ ∨ ^Ψ becomes the goal that ^Ψ if a makes achieving Φ impossible, etc.

There has been much work on agent programming languages with declarative goals

where the dynamics of goals and intentions and the dependencies between goals and

sub-goals are modeled (e.g. [19], [9] and the references therein). However, most of

these are not based on a formal theory of agency, and to the best of our knowledge,

none maintains the consistency of (chosen) goals (e.g. when adopting a plan to achieve

a goal, these frameworks do not ensure that this plan is consistent with the agent’s

other concurrent goals/plans). Also, most of these do not deal with temporally extended

goals, and as a result they often need to accommodate inconsistent goal-bases to al-

low the agent to achieve conflicting states at different time points (e.g. the default logic

based framework in [20]); chosen goals are required to be consistent. In [6], the au-

thors present a situation calculus based agent programming language where the agent

executes a program while maximizing the achievement of a set of prioritized goals.

However, they do not formalize goal dynamics.

One limitation of our account is that we assume that the agent’s p-goals are totally

ordered in terms of priority. Also, newly adopted p-goals are assigned the lowest pri-

ority. A consequence of this is that an agent’s c-goals depend on the adoption order of

63

her p-goals. For instance, given a fixed starting situation, an agent can end up with two

different sets of c-goals by adopting φ followed by ψ, and by adopting ψ followed by

φ. This has very different results when φ and ψ conflict with each other. We would like

to address this by incorporating the priority of the p-goal as an argument to the adopt

action, and handling this in the framework. Finally, one can argue that our agent spends

too much resources trying to optimize her c-goals at every step. It would be interesting

to develop an account where the agent is strongly committed to her chosen goals, and

where the filter override mechanism is only triggered under specific conditions.

References

1. Cohen, P.R., Levesque, H.J.: Intention is Choice with Commitment. Artificial Intelligence

42(2–3) (1990) 213–361

2. Sadek, M.D.: A Study in the Logic of Intention. In: Third Intl. Conf. on Principles of

Knowledge Representation and Reasoning (KR&R-92), Cambridge, MA (1992) 462–473

3. Konolige, K., Pollack, M.E.: A Representationalist Theory of Intention. In: Thirteenth Intl.

J. Conf. on Artificial Intelligence (IJCAI-93), Chambéry, France (1993) 390–395

4. Singh, M.P.: Multiagent Systems: A Theoretical Framework for Intentions, Know-How, and

Communications. Volume 799 of LNAI. Springer-Verlag, Germany (1994)

5. Shapiro, S., Lespérance, Y., Levesque, H.J.: Goals and Rational Action in the Situation Cal-

culus - A Preliminary Report. In: Working Notes of the AAAI Fall Symposium on Rational

Agency: Concepts, Theories, Models, and Applications, Cambridge, MA (November 1995)

117–122

6. Sardina, S., Shapiro, S.: Rational Action in Agent Programs with Prioritized Goals. In: Sec-

ond Intl. J. Conf. on Autonomous Agents and Multi-Agent Sys. (AAMAS-03), Melbourne,

Australia (2003) 417–424

7. Shapiro, S., Brewka, G.: Dynamic Interactions Between Goals and Beliefs. In: Twentieth

Intl. J. Conf. on Artificial Intelligence (IJCAI-07), India (2007) 2625–2630

8. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative and Procedural Goals

in Intelligent Agent Systems. In: Eighth Intl. Conf. on Principles and Knowledge Represen-

tation and Reasoning (KR&R-02), Toulouse, France (2002) 470–481

9. Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E., eds.: Multi-Agent Program-

ming: Languages, Platforms and Applications. Springer (2005)

10. Bratman, M.E.: Intentions, Plans, and Practical Reason. Harvard University Press, Cam-

bridge, MA (1987)

11. McCarthy, J., Hayes, P.J.: Some Philosophical Problems from the Standpoint of Artificial

Intelligence. Machine Intelligence 4 (1969) 463–502

12. Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Implementing

Dynamical Systems. MIT Press, Cambridge, MA (2001)

13. DeGiacomo, G., Lespérance, Y., Levesque, H.J.: ConGolog, a Concurrent Programming

Language Based on the Situation Calculus. Artificial Intelligence 121 (2000) 109–169

14. Levesque, H.J., Pirri, F., Reiter, R.: Foundations for a Calculus of Situations. Electronic

Transactions of AI (ETAI) 2(3–4) (1998) 159–178

15. Moore, R.C.: A Formal Theory of Knowledge and Action. In Hobbs, J.R., Moore, R.C.,

eds.: Formal Theories of the Commonsense World. Ablex (1985) 319–358

16. Scherl, R., Levesque, H.: Knowledge, Action, and the Frame Problem. Artificial Intelligence

144(1–2) (2003) 1–39

64

17. Rao, A.S., Georgeff, M.P.: Modeling Rational Agents with a BDI-Architecture. In Fikes,

R., Sandewall, E., eds.: Second Intl. Conf. on Principles of Knowledge Representation and

Reasoning (KR&R-91), San Mateo, CA, Morgan Kaufmann Publishers (1991) 473–484

18. Shapiro, S., Lespérance, Y., Levesque, H.J.: Goal Change in the Situation Calculus. J. of

Logic and Computation 17(5) (2007) 983–1018

19. Sardina, S., deSilva, L., Padgham, L.: Hierarchical Planning in BDI Agent Programming

Languages: A Formal Approach. In: Fifth Intl. J. Conf. on Autonomous Agents and Multi-

Agent Systems (AAMAS-06), Hakodate, Japan (2006) 1001–1008

20. van Riemsdijk, M.B., Dastani, M., Meyer, J.J.C.: Semantics of Declarative Goals in

Agent Programming. In: Fourth Int’l J. Conf. on Autonomous Agents and Multiagent Sys.

(AAMAS-05). (2005) 133–140

65

Microscopic Analysis of Edge Creation Process

in Trust-based Social Networks

Babak Khosravifar1, Maziar Gomrokchi2, and Jamal Bentahar3

b khosr@encs.concordia.ca, m gomrok@encs.concordia.ca,

bentahar@ciise.concordia.ca

1Department of Electrical and Computer Engineering, 2Computer Science,
3Concordia Institute for Information System Engineering, Concordia University,

Montreal, Canada

Abstract. In last years, online social networks are enjoying drastic in-
crease in their population and connectivity. Meanwhile, trust is known
as essential factor in quality of the connections between diverse nodes in
the network. To address the efficiency in the interactions of nodes, we
propose in this paper a trust-based architecture applicable to maintain
interactions in multi-agent-based social network. We provide a detailed
discussion over the network formation by taking into account the edge
creation factors classified as homophily, confounding and influence. We
systematically inspire different involving factors to observe evolution of
the network of trust-based interconnections in a microscopic manner. We
also provide a theoretical analysis of the proposed model assessment and
discuss the system implementation, along with simulations obtained from
a number of executions compared with the broadly known frameworks.
General Terms. Human Factors, Measurement, Experimentation.
Keywords. Trust establishment , Edge Creation, Multi-Agent Systems,
Agent Communication, Social Networks.

1 Introduction

Online social networks are drastically being enlarged. Facebook, Flicker, Yahoo!
Answers are among very popular social networks that are gaining a very high
traffic in terms of the users and their conductivities. In general, the impact
of the features of these networks and analysis on how they form the behavior
of the users have been a hot interest during the very recent years. A number of
theoretical and empirical works have been proposed analyzing the users behavior
in forming the connection between them. For example, the analysis on the edge
creation process [10, 6] related to the sociality of a node led to hypothesis to
observe the distribution of a heavy-traffic degree of popular nodes in the network.
In [1], the authors address the source of the correlation between agents that led
them to extend their activity and create edges. In [2], the correlation between
agents are analyzed in an online large scale community. In fact, the relation
between the agents that just joined the community and the agents that are
already in the community is discussed.

66

Here we take a different perspective over the social correlation of agents. In
edge creation process, we analyze diverse impacts upon the trust that is already
established between two nodes and consequently, we generalize to analyze the
socializing of the agents that use different trust evaluation systems. To this
end, we first discuss the trust evaluating method and upon that, we analyze
the activity area extension of agents in a microscopic approach. To maintain a
trust-based network, different computational frameworks have been proposed in
the literature. Some models consider the direct interaction of two parties [15,
14, 8]. Some models rely, to some extent, on the suggested rating provided by
other agents [12, 9, 13]; and some others also consider the suggested rating of the
agent being evaluated [4, 8]. Since agents are self-interested, it is hard to analyze
an agent’s likely behavior based on previous direct interactions given the fact
that the collected information from other agents may be non-reliable and could
lead to a non-accurate trust assessment. So far, these frameworks do not act
properly if selfish agents tend to change their behaviors. Therefore, agents do
not properly initiate a social activity in the sense that they cannot maintain a
strong control on the adjacent environment.

In this paper, we use the proposed model that is fully presented in [11] and
discuss the social network-related affects (classified in [1]) such as influence,
confounding, and homophily on the edge creation process of the distributed
agents. In the proposed model, we provide an efficient assessment process in a
twofold contribution. In the first contribution, agents mutually interact and rate
each other based on the interaction done (either satisfactory or dissatisfactory).
The obtained ratings are accumulated to assess the direct interaction rating of
a particular agent. In the evaluation process, we call the evaluator agent as the

trustor and refer to him as Aga, and the evaluated agent as the trustee and refer
to him as Agb. Also we refer to the involved agents in the trust assessment process
as consulting agents. In the proposed framework, Aga evaluates the credibility
of Agb by combining his own direct trust rating with the ratings provided by the
consulting agents. The computed trust value is used as a doubt to extend the
connection between the trustor and the trustee agent. In the second contribution
of the proposed model, the trustor agent after a period of direct interaction with
the trustee agent performs a retrospect trust adjustment (so-called maintenance)
in order to update his belief set about the credibility of the consulting agents that
provided information regarding to the trust level of trustee agents. Depending
on the accuracy of the consulting agents, the trustor agent would either increase
or decrease his trust ratings about consulting agents. By updating the trust
values, agents basically would recognize the adjacent agents that are worth to
extend the connection with. On the other hand, agents would stay apart from
bad agents in terms of social activities. Doing so, gradually agents recognize
more reliable consulting agents around in the network, which would form a more
efficient social correlation between adjacent agents. This assessment is used in
microscopic analysis of edge creation between the interacting agents.

The remainder of this paper is organized as follows. In Section 2, we briefly
define our proposed framework as comprehensive trust assessment process, which

67

is composed of evaluation and maintenance process. In Section 3, we define the
social network parameters, and environment that the interactions are initiated.
In Section 4, we elaborate the affects of the discussed network properties in the
experimental environment. Representing the testbed, we compare our model re-
sults with two well-known trust models in terms of efficiency in trust assessment
and finally Section 5 concludes the paper.

2 Trust Evaluation Method

In this section, we formalize the trust assessment between interacting parties
(customer and provider agents) in the social network. Since the proposed trust
assessment model is fully described in [11], in this paper we only refer to the
assessment formulation. In general, each customer agent ci is linked to a set of
customers it knows and a set of provider agents it has interacted within the past.
Without loss of generality, a customer ci has to evaluate correlating agents in
the environment (could be consumers or providers) in any case of interaction.
For instance, a direct evaluation of a provider pj is possible if the customer
had enough transactions with that provider. In the trust model that we use for
evaluation [3], three elements are used to characterize the relationship between
the trustor Aga and trustee agents Agb: 1) how much the trustor agent trusts

the trustee: Tr
Agb

Aga
; 2) the number of past transactions: NT

Agb

Aga
; and 3) the time

recency of the last transactions: TiR
Agb

Aga
. The transactions could taken place

caused from homophily, confounding or influence of any other agents in the net-
work. Formally, we define a social network for service selection as follows:

Definition 1. A social network for service selection is a tuple 〈C, P,−→cc,−→cp〉
where C is a set of customer services, P a set of provider services, −→cc⊆
C × R

3 × C is a ternary relation (for labelled edges linking customers) and
−→cp⊆ C ×R

3 × P is a ternary relation (for labelled edges linking customers to
providers).

We use the usual notation for the labelled edges: if ci, ck ∈ C and v ∈ R
3, then

(ci, v, ck) ∈−→cc is written as ci
v

−→cc ck. Likewise, we write ci
v

−→cp pj instead of
(ci, v, pj) ∈−→cp. Our social network for service selection has two types of nodes:
type 1 for customers and type 2 for providers and two types of edges: type 1 for
edges between customers and type 2 for edges linking customers to providers. The
edges of type 1 represent friendship relations in the network, while edges of type
2 capture business relationships. The existence of an edge of type 1 ci

v
−→cc ck

means that ci knows (is friend of) ck such that: v = (Trck
ci

, NIck
ci

, T iRck
ci

). The

existence of an edge of type 2 ci
v

−→cp pj means that ci had transactions with
pj such that: v = (Tr

pj
ci , NT

pj
ci , T iR

pj
ci). We note that there is no edges in this

social network between providers. This does not mean that there is no social link
between providers, but only the existing links (which could be collaborations or
competitions) are not used in our framework.

68

The direct evaluation of a provider pj by a customer ci is based on the
ratings ci gave to pj for each past interaction (rl) combined with the importance
of that interaction (λl) and its time recency. Let n be the number of total
transactions between ci and pj (n = NT

pj
ci), equation 1 gives the formula to

compute this evaluation. To perform the indirect evaluation, the customer ci

solicits information about the provider pj from other customers ck such that

there is an edge ci
v

−→cc ck in the social network. The set of these customers
ck is denoted Tci

. The equation computing the indirect estimation is given by
equation 2, where αTrck

ci
= Trck

ci
.NIck

ci
.T iRck

ci
.

DTrpj
ci

=

∑n

l=1(λl.T iR
pj
ci .rl)∑n

l=1(λl.T iR
pj
ci)

(1)

ITrpj
ci

=

∑
ck∈Tci

αTrck
ci

.T r
pj
ck .T iR

pj
ck .NT

pj
ck∑

ck∈Tci
αTrck

ci .T iR
pj
ck .NT

pj
ck

(2)

To compute Tr
pj
ci , the direct and indirect evaluations are combined according

to their proportional importance. The idea is that the customer relies, to some
extent, on its own history (direct trust evaluation) and on consulting with its
network (indirect trust evaluation). This merging method considers the propor-
tional relevance of each trust assessment, rather than treating them separately.
To this end, ci assigns a contribution value for the trust assessment method (ω
for direct trust evaluation and 1 − ω for indirect trust evaluation when ω < 1).
The value ω is obtained from equation 3. Basically, the contribution of each
approach in the evaluation of pj is defined regarding to: (1) how informative
the history is in terms of the number of direct transactions between ci and pj

(NT
pj
ci) and their time recency (TiR

pj
ci); and (2) how informative and reliable the

consulting customers are from ci’s point of view (DTr
pj
ci). Therefore, consulta-

tion with other agents is less considered if the history represents a comparatively
higher entropy value ω, which reflects lower uncertainty. Respecting the contri-
bution percentage of the trust assessments, ci computes the trust value for pj

using equation 4.

ω =
ln(DTr

pj
ci .NT

pj
ci .T iR

pj
ci)∑

ck∈Tci
ln(DTrck

ci .NIck
ci .T iRck

ci)
(3)

Trpj
ci

=

{
ω.DTr

pj
ci + (1 − ω).ITr

pj
ci if ω < 1

DTr
pj
ci if ω ≥ 1

(4)

Generally, the merging method is used to obtain the most accurate trust as-
sessment. However, after a number of transactions, customers should analyze the
quality of the received services regarding to what is expected (represented here

by Tr
pj
ci) and what is actually performed (so-called observed trust value T̂ r

pj

ci
).

To this end, an adjustment trust evaluation should be periodically performed.
The idea is to learn from past experiences, so that witnesses providing bad trust
values, which are far from the observed one, will be removed from the list of

69

potential witnesses in the future. In addition, over the recent interactions, high
quality providers are recognized and thus distributed to the adjacent agents. In
general, using the maintenance process (for full description of algorithms, see
[11]), correlated agents could increase their rate of influence to one another,
which eventually would approach to a more active social network. This can be
represented by the following equation:

min
ck∈Tci

|Trpj
ck

− T̂ r
pj

ci
| (5)

3 Social Network Representation

To analyze our social network for service selection, many parameters described
in the literature about social networks could be considered. A detailed list of
such parameters are presented in [5]. For space limit, we consider only the fol-
lowing parameters and provide equations to compute them in our context of
trust for service selection. Without loss of generality, we would like to measure
the probability (likelihood) of edge creation between a customer and a provider
agent. The focus of this paper is on the study of edge-by-edge evaluation of the
social network in microscopic manner. We compare the network formation of
different types of agents that are using different trust establishment method and
use different strategies. Hence, we effectively analyze the effect of different trust
models in socializing a particular agent that joins a network and seeks to increase
his overall outcome (so-called utility). We basically distinguish between differ-
ent models based on their strategy of network formation in agent arrival, edge
arrival and interaction maintenance process (how after-interaction parameters
affect the strategies that are used in the further actions of agents).

3.1 Outdegree

Outdegree is a parameter for the extent to which an agent in the network conveys
information regarding some other agents. Outdegree value from the customer
point of view, is to what extent a customer agent knows the providers. The idea
is to reflect the fact that a customer that is connected to more reliable providers
has a higher outdegree than a customer linked to less reliable ones. In other
words, the outdegree value reflects the extent to which an agent tries to set up
and strengthen more edges connecting him to other agents. Equation 6 computes
this parameter for a generalized agent Ag, that could be a customer or a provider
agent, where αTrck

Ag = Trck

Ag.NIck

Ag.T iRck

Ag and αTr
pj

Ag = Tr
pj

Ag.NI
pj

Ag.T iR
pj

Ag.

Dout(Ag) =
∑

ck∈TAg

αTrck

Ag +
∑

pj∈T ′

Ag

αTr
pj

Ag (6)

where T ′
Ag = {pj ∈ P | ∃ ci

v
−→cp pj in the social network}

70

3.2 Indegree

Indegree is a parameter for the extent to which a customer in the network receives
information regarding to a particular agent from some other agents. Indegree
value from the customer point of view, is the extent that the agent is known by
the close agents in the network. The idea is to reflect the fact that a customer that
is connected to more reliable providers has a higher indegree than a customer
linked to less reliable ones. Indegree value from a provide point of view, is the
extent that a provider agent is popular in the social network that causes higher
number of requests from the customer agents. In other words, the indegree value
reflects the popularity of an agent in the sense that any agent would like to
increase it and thus cares not to distract it. Although the agents that are known
by many agents are supposed to be supported by them, however, regarding to
their accuracy and quality of service, they may expect a portion of the adjacent
agents for support. Equation 7 computes this parameter for a generalized agent
Ag, that could be a customer or a provider agent.

Din(Ag) =
∑

ck∈SAg

αTrAg
ck

(7)

where SAg = {ck ∈ C | ∃ ck
v

−→cc Ag in the social network}

3.3 Homophily

Homophily is a parameter for the extent to which a customer in the network
chooses to interact with a provider that is known and is already evaluated (this
is concept is derived from [1]). This basically raises to strengthen the correlation
of adjacent agents. In the social network, agents that are known from previous
interactions may tend to request for a service, which is expected to be satisfac-
tory. This is the affect of being friend in a network. In general, it is likely that
a customer agent re-selects a particular provider agent aiming to request for a
new service. Thus, provider agents normally try to provide a quality service to
keep their customers. The homophily of agents in the network is a factor that
is not directly compared to other choices of the customer agent, that is seeking
for a service. Basically it is the matter of how well-quality the provider agent
would provide the new service. This means that, the customer agent’s concern
is to measure the probability of gaining the expected quality in the service given
the fact that the provider agent is already provided a similar service to the same
customer. This possibility measurement is mainly related to the indegree value of
the provider agent in the sense that a provider with high indegree value is known
to be popular, so there is less chance of disturbing its popularity by providing a
not promised service quality. In Section 4, we analyze this effect in more details
showing that the trust models with the after interaction policies could lead to a
more accurate friendship evaluations.

Equation 8 computes the probability of selecting a provider with Din(Pj) as
indegree value. In this equation, we do not involve the trust measurement that

71

the customer agent Ci performs for evaluating the provider agent Pj (Tr
Pj

Ci
).

The reason is that since the customer agent Ci is already in relation with the
provider pj , then based on the previous evaluation, could decide whether it
worths to select this provider again. If by any chance, the previous history does
not reflect the efficiency of the provider Pj , there is no point for investigating
the probability of the provider’s efficiency if being selected. In equation 8, the
value ω is set to be the entropy value (see equation 3) of the history between
the customer agent Ci and the provider agent Pj . And the value β represents
the coefficient set for the system inconsistency. In the trust models with after
interaction strategies, this value is dynamically modified reflecting the system
accuracy level, however without maintenance process, the value is set initially
and remains fixed.

p(Din(Pj)) =
eωln(Din(Pj)+1)+β

1 + eωln(Din(Pj)+1)+β
(8)

3.4 Confounding

Confounding is a parameter for the extent to which a provider as an external
agent influences a customer agent to request for a particular service (this is con-
cept is derived from [1]). This influence affects some close agents in the network
to set up an edge with an unknown provider under the promising conditions that
the provider defines. In general, the providers that join the network, seek for the
agents that are more likely to request for their providing service. In other words,
when a provider agent is being activated, tries to socialize himself in the network.
Thus, starting from very close customer agents, the provider agent encourages
them to request for his service. To this end, the provider at the beginning acts
generously in order to attract the customers and gain more popularity. More-
over, upon high quality service, the customer agents may influence their adjacent
agents to request for the same service. So, the provider agent takes the outdegree
value of the customer agents into account and based on the interaction span of
the customer agents, provides high quality services.

In confounding factor, the probability of activating an agent with a provider
agent is computed in equation 9. As it is assumed that the provider Pj is un-
known to the customer Ci, so the customer agent would evaluate the social
trustworthiness value of the provider. Given the fact that the trust measure-
ment requires some information from the other adjacent agents, the customer
agent takes the entropy value into account in order to partially consider the in-

direct trust value (ITr
Pj

Ci
) and the rest for the popularity of the provider agent.

Thus, the customer Ci first evaluates the provider Pj and then considers the Pj ’s
indegree value together with the network inconsistency level. If the information
obtained for evaluating Pj is not enough, the entropy value ω would be high, so
that mostly the trust evaluation part would be considered. This would normally
cause to lower the overall probability of activation.

72

p(Din(Pj)) = ω × ITr
Pj

Ci
+ (1 − ω) ×

eln(Din(Pj)+1)+β

1 + eln(Din(Pj)+1)+β
(9)

3.5 Influence

Influence is a parameter for the extent to which an agent is prompted to initiate
a request caused by an adjacent agent (this is concept is derived from [1]).
This could taken place in a friendship of agents that they distribute the idea of
some services to be requested. When an agent in encouraged to think about a
particular service from a provider, the agent may have already a set up edge with
the provider, by which can evaluate the provider, or may need to set up a new
edge upon which could obtain a service. This is the affect of getting encouraged
by a friend in a network. In general, it is likely that a person does action because
his friend is already done it. Thus it is the matter of activation of a new edge,
which is set up between a customer agent and the provider agent, that is already
been requested for a service by the customer agent’s adjacent agent (friend).

In the confounding factor, we mentioned that when a typical provider adver-
tises his service to a couple of adjacent customer agents, he considers that some
of the customers may propagate his quality of service to their adjacent agents,
which could lead to more service requests. On the other hand, the customer agent
that is being prompted to take a service produced by a particular provider, needs

to evaluate both the advertising adjacent agent Cj (DTr
Cj

Ci
) and the provider

itself Pj (ITr
Pj

Ci
). Equation 10 computes the influence-based probability of ac-

tivation of a customer agent Ci regarding to taking the service produced by a
provider agent Pj . In this equation, ωCj

is the entropy value regarding to the
information Ci has and thus could rely on, and ωPj

is the entropy value that Ci

has regarding to the provider Pj and would consider for interaction.

p(Din(Pj)) = ωCj
× DTr

Cj

Ci
+ (1 − ωCj

) × Θ (10)

where

Θ = ωPj
× ITr

Pj

Ci
+ (1 − ωPj

) ×
eln(Din(Pj)+1)+β

1 + eln(Din(Pj)+1)+β

4 Experimental Results and

Related Work

In this section, we describe the implementation of proof of concept prototype.
In the implemented prototype, agents are implemented as Jadex c©TM agents.
Like in [7], the testbed environment is populated with two agent types: (1) ser-

vice provider agents; and (2) service consumer agents. The simulation consists
of a number of consequent Runs in which agents are activated and build their
private knowledge, keep interacting with one another, and enhance their overall
knowledge about the environment. Depending on the agent interactions, agent
may extend their connections hoping to be more socialized. However, there is

73

always the chance of investing on wrong agents that lead to no outcome. Here
we distinguish agents by the service (or information) quality that they provide
and agents do not know about that. Table 1 represents four types of the service
providers we consider in our simulation: good, ordinary, bad and fickle. The first
three provide the service regarding to the assigned mean value of quality with
a small range of deviation. Fickle providers are more flexible as their range of
service quality covers the whole possible outcomes. Upon interaction with ser-
vice providers, service consumer agents obtain utilities and consequently rate the
quality of the providers (for simplicity, we assume only the consumers are in-
terconnected to the provider agents). In the simulation environment, agents are
equipped with different trust models in the sense that their edge creation policies
are different. In the proposed model, we try to establish a trust mechanism where
an agent, firstly can maintain an effective trust assessment process and secondly,
accurately updates his belief set, which reflects the other agents likely accuracy.
In order to confirm the mentioned characteristics, we compare the proposed
model with other trust models in two perspectives. In former comparison view,
we use the agents that only perform a direct trust assessment process. We refer
to this group of agents as Direct Trust Group (DTG). In later overview, we use
the agents that (in addition to the direct trust assessment mechanism), perform
maintenance process for evaluating the consulting agents in order to increase
their information accuracy. We refer to this group of agents as Maintenance-

based Trust Group (MTG). The reason of decomposing the proposed model to
two groups is to focus on the efficiency of each model, which enables us to analyze
the impact of each contribution on the accuracy of the agent in edge creation
process. In order to discuss the proposed model’s overall performance, we com-
pare it with BRS 1 [9] and Travos 2 [13] trust models. These models are similar
to the proposed model in the sense that they do consider other agents’ sugges-
tions while evaluating the trust of some specific agents and discard inaccurate
suggestions aiming to perform best edge creation. The detailed description of
these models is provided in [4]. Here we basically distinguish [10] between differ-
ent models based on their strategy of network formation in agent arrival, edge
arrival and interaction maintenance process (how after-interaction parameters
affect the strategies that are used in the further actions of agents).

We start the discussion by the probability of selecting the providers over
their different popularity values. As we discussed earlier, the indegree value of
a node reflects their popularity in the social network. Thus we could conclude
that the chance of selection for a particular service provider agent would be pro-
portionally relevant to its indegree value (ordinary selection attitude). However,
the trust evaluation method together with its distribution process would affect

1 BRS trust model collects the after-interaction ratings and estimates the trust using
beta distribution method. This trust model ignores the ratings from such agents that
deviate the most from the majority of the ratings.

2 Travos trust model is similar to BRS in collecting the after-interaction ratings and
estimating the trust using beta distribution method. But Travos ignores the ratings
from agents that provide intermittent reports in the form of suggestions.

74

Table 1. Simulation summarization over the obtained measurements.

Service provider type Density in the network Utility range Utility SD

Good 15.0%] + 5, +10] 1.0
Ordinary 30.0%]− 5, +5] 2.0

Bad 15.0%]− 10,−5] 2.0
Fickle 40.0%]− 10, +10] −

Fig. 1. Probability of edge creation with provider agent vs. the provider’s indegree
value.

this probability of selection. Illustrated in figure 1, the BRS agents act inde-
pendently of the mentioned probability as strategically, the BRS agents do not
consider the popularity of the provider. Travos agents also do not consider such
value, however, the probability of selection of the popular providers increase,
as they take less risk of changing their behaviors and thus perform satisfactory
services, which would lead to their selection. In general, because of inaccuracy
detection feature of Travos agents, the percentage of selection of provider agents
with high indegree value increase in a gentle manner. At some certain point, the
selection of popular providers are coming down (see plot b). This is explained
by the fact that a popular provider has large number of recommenders that
provide diverse range of information to the agent, that is trying to evaluate the
provider. So this diversity would cause to confusion state (the state that this
system would generalize the majority of the information that is obtained and
could be inaccurate), which in Travos would cause the drop of the suggestions
and thus the selection would be less. The proposed model agents (DTG and
MTG) follow the information propagation feature as the adjacent agents influ-
ence each other to select the high quality providers. There is a difference in the
slope of selection graph in MTG and DTG models. This is explained by the
fact that the MTG group are characterized by the maintenance process that
enable them to recognize high quality provider agents and thus their accuracy in
influencing adjacent agents are more than regular DTG agents. In general, since

75

the maintenance feature does not exist in DTG group, the customer agents loose
the track of high quality provider agents, and thus the probability of selection
would not increase so fast.

In general in the defined testbed, the agents that are obtaining a high qual-
ity service are encouraged to distribute their experience to other adjacent agents
(influence others). This activity of agents would basically get increased over the
time, or say over the age of the agent. In figure 2, we have compared the activity
of different groups of agents by comparing edge extension of the agents (out-
degree value). Without loss of generality, the edge extension is proportionally
related to the accuracy of agent in detecting the high quality providers. In BRS
model, the extension over the time is not increasing as the agent gets involved
with high number of adjacent agents and would be difficult to effectively extend
the social activity, so more or less would be independent of the age of the agent.
Travos and DTG models are increasing, however relatively with small slope.
In MTG group, because of the maintenance process the agents would be en-
couraged to initiate a request to high quality service providers and thus extend
their activity. In this graph, the slope is relatively large as over the time, the
agent could manage to categorize the providers that could possibly act benefi-
cially for the agent, and thus would enlarge his activity area. In figure 2, the
second line represents how fast the agents would drop the previous data and use
the recent data for their analysis. This dropping factor is also relevant to how
active an agent is and thus, to what extent there would be available resource
that agents could drop obsolete data. DTG and MTG group use the same drop-
ping feature (TiR(∆t

Agb

Aga
)), which is derived in equation 11. Variable λ is an

application-dependent coefficient. In some applications, recent interactions are
more desirable to be considered (λ is set to relatively large number). In contrast,
in some other applications, even the old interactions are still valuable source of
information. In that case, a relatively smaller value to λ is used.

TiR(∆t
Agb

Aga
) = e−λ ln(∆t

Agb
Aga

) λ ≥ 0 (11)

We would like to go further into the details of the selection history in terms of
the microscopic social network affects (homophily, confounding, and influence)
and illustrate them in figure 3. in this section, we observe the diverse impacts of
homophily, confounding and influence features on each group in the sense that
we would capture their edge creation reasons. Note that the edge creation is not
the important issue, however, the concern is to extend to the agents that are
known to be trustworthy. Therefore, we elaborate the overall outcome of different
agents at the following. The homophily aspect would be caused by the friendship
relation of the agents that have history interaction between them. This is a very
general case in the sense that consumer agents over the time would get to know
and select the provider agents. If the interacted service is satisfactory for the
agent, then the consumer agent may re-select the same provider agent in some
future. BRS agents are the ones that mostly rely on the homophily affect in the
sense that they keep the history of the interaction in order to re-evaluate the
provider agent. The providers that remain trustworthy would be selected over

76

Fig. 2. Agent edge extension vs. the agents age.

the time. As it is clear from plot a1, once the providers change their policies,
the selection of them would be affected so fast, as the BRS agents recognize that
they should start seeking for the appropriate friends. Travos agents also rely
on the previous history and re-select the previously interacted service providers
(see plot b1). However, over the time the reports regarding to the accuracy
of the providers would be divergent, which would lead to refuse the selection.
The same reason is the case for DTG and MTG group (shown in plots c1 and
d1). These agents to some extent rely on the previous history and select the
providers. After some certain time, these agents also recognize the inconsistency
in the evaluation process of the history interacted providers. Overall, DTG and
MTG agents evaluate the providers in a very accurate manner. The accuracy
that Travos, DTG and MTG agents have cause the decremented manner after
some certain time.

Confounding factor reflects the extent to which the provider agents adver-
tise their service to the consumers (could be new or previously serviced ones).
This feature also affects BRS group, as they start evaluating the advertising
provider, and thus extend their activation area. Plot a2 indicates that the BRS
group are easy to involve in interaction with the advertising provider agent.
Travos agents act in the same way as the provider agents could induce them
to take their service. However, Travos agents are considering this case less, be-
cause they investigate the previous reports related to the advertising provider
and doubt on the inconsistent ones (see plot b2). In general, the BRS and Travos
agents accept the confounding-related interactions over the time, and thus their
graph has an increasing manner. But in DTG and specially MTG, the agents
would not accept this service all the time, as over the time, once the network
inconsistency level increases, these agents would have confusion in accepting the
confounding-related affect caused by unknown service providers (see plots c2 and
d2). MTG agents would accept this option from the providers, but since they are
equipped with a maintenance process, they would distribute the performance of

77

Fig. 3. Overall comparison of the proposed model with BRS and Travos in terms of
(a) Homophily; (b) confounding; and (c) influence factors.

the providers to the adjacent agents, which would lead them to get to know the
network faster than the other models. This would let the MTG agents to select
the best providers, and thus would drop the request from most of the unknown
agents while they are already in a good accuracy level.

Influence factor is mostly used by active agents, while they obtain service and
tend to distribute the efficiency of the interaction to the adjacent agents. Since
BRS agents independently select the providers, the influence is not a factor for
these agents (plot a3). Treavos agents would act almost independently, however
the Travos agents are encouraged by the reports they obtain for the evaluation of
a particular provider agent (plot b3). DTG group would be encouraged with the
same factor as Travos agents. Upon evaluating provides, the DTG agents would
consider the reports obtained from adjacent agents and recognize outstanding
service provided by the provider that is just served an adjacent agent (see plot
c3). The influence-related interactions are mostly initiated among MTG group,
shown in plot d3. This is explained by the fact that the MTG group are equipped
with maintenance feature, which enables them to reason about the accuracy and
efficiency of the obtained services and propagate the information to the adjacent
information.

Considering all the involved features, at the end we compare the models in
general perspective, starting good provider selection efficiency. In such a biased
environment, the number of good providers are comparatively low. Therefore,

78

Fig. 4. Overall comparison of the proposed model with BRS and in terms of (a) good
selection percentage; (b) fickle selection percentage; and (c) cumulative utility gained.

the agents need to perform an accurate trust assessment to recognize the best
providers. As it is clear from the Figures 4, plots a1, b1, and c1, DTG agents
function better than other models (Travos and BRS). The reason is that in this
model, agents are assessing the credibility of the providers using other agents
suggestions depending on their credibility and to what extent they know the
provider. Afterwards these agents rate the provider, which would be distributed
to other agents upon their request (relatively in plots a2, b2, and c2 the compar-
ison of fickle selection percentage, and in a2, b2, and c2, the gained cumulative
utility is shown). Not excluding the fact that DTG agents are considering par-
tial ratings for consulting agents, we state that they weakly function when the
environment contains agents that do not truthfully reveal their believes. MTG

agents in addition to the direct trust assessment, provide incentives for consult-
ing agents, which encourages them to effectively provide the information aiming
to gain more utility. Plot d1 shows that MTG agents outperform other models
in best provider selection. This is expressed by the fact that MTG agents rec-
ognize the best providers ensuring that the best selected provider would provide
the highest utility. Relatively plot d2 shows an outperform in fickle selection and
consequently higher cumulative utility in plot d3.

In BRS model, the trustor agent in the assessment process uses beta distri-
bution method and discards the ratings that deviate the most from the majority
of the ratings. Concerning this, BRS is comparatively a static trust method,

79

which causes a low-efficient performance in very dynamic environment. In gen-
eral, if a BRS agent decides to evaluate an agent that he is not acquainted with,
he considers the majority of ratings, which are supposed to be truthfully re-
vealed about the trustee agent. In such a case that the trustee agent has just
changed his strategy, the trustor agent would loose in trust assessment and does
not verify the accuracy of the gained information. Therefore, as illustrated in
figure 4, plots a1, the BRS agents would have less percentage of good providers
selection, relatively higher percentage of fickle providers selection (plot a2), and
consequently lower gained cumulative utility (plot a3).

Travos [13] trust model is similar to BRS in using beta distribution to esti-
mate the trust based on the previous interactions. Travos model also does not
have partial rating. Hence, the trustor agent merges his own experience with
suggestions from other agents. However, unlike BRS model, Travos filters the
surrounding agents that are fluctuating in their reports about a specific trustee
agent. To some extent, this feature would cause a partial suggestion considera-
tion and thus, Travos agents would adapt faster comparing to BRS agents. Rates
concerning the good and fickle selection percentage shown in figures 4, plots b1
and b2 reflect higher efficiency of Travos compared to BRS. However, Travos
model considers that agents do not change their behavior towards the elapsing
time. These missing assumptions affect the accuracy of trust estimation in a very
biased environment (lower gained cumulative utility in plot b3).

5 Conclusion

The contribution of this paper is the detailed investigation of a trust-based multi-
agent architecture in edge creation and correlation formation in social network.
The established trust is provided by the proposed framework, that is briefly ex-
plained here. The trust assessment procedure is based on integrating suggestion
of consulting agents, objectively enhancing the accuracy of agents to make use
of the information communicated to them. The surveillance over the surround-
ing environment, makes distributed agents eager to extend their activity area
by interacting to high quality agents. In the proposed framework, maintenance
process considers the communicated information to judge the accuracy of the
consulting agents in the previous trust evaluation process. The ex-interacted
analysis, makes the agents to propagate the recent and accurate information to
their adjacent agents, which is considered as homophily and influence factors in
edge creation analysis.

Our model has the advantage of being computationally efficient as it takes
into account the important factors involved in extending the activity zone of
agents. Moreover, we have done a detailed empirical analysis over the edge cre-
ation and behavior of agents over their age, while they are equipped with different
trust mechanism protocols. The proposed mechanism efficiency is compared with
other related models to prove the capabilities of the proposed model. Our plan for
future work is to advance the assessment model to enhance the model efficiency.
In the maintenance process we need to elaborate more on the optimization part,

80

trying to formulate it in the sense to be adaptable to diverse situations. Finally,
we plan to maintain more detailed analysis in comparison with other models to
capture more results reflecting the proposed model capabilities.

References

1. A. Anagnostopoulos, R. Kumar, and M. Mahdian. Influence and correlation in so-
cial networks. Proceedings of the 14’th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Las Vegas, USA, KDD2008.

2. L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in large
scale networks: membership, growth, and evolution. Proceedings of the 12’th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining ,
pp.44-54, KDD2006.

3. J. Bentahar, B. Khosravifar, and M. Gomrokchi. Social network-based trust for
agent-based services. Proceedings of the 5’th IEEE International Symposium on
Web and Mobile Information Services, Bradford, UK, WAMIS2009 (in press).

4. J. Bentahar, B. Khosravifar. Using trustworthy and referee agents to secure multi-
agent systems. Proceedings of the 5’th IEEE International Conference on Informa-
tion Technology: New Generations, pp. 477-482, Las Vegas, USA, ITNG 2008.

5. V. Buskens. Social networks and trust. Kluwer Academic Publishers. 2002.
6. N. A. Christakis, and J. H. Fowler. The spread of obesity in a large social network

over 32 Years. The new England Journal of Medicine, 357(4):370-379, 2007.
7. T. Dong-Huynh, N.R. Jennings and N.R. Shadbolt. Fire: an integrated trust and

reputation model for open multi-agent systems. Journal of Autonomous Agents and
Multi-Agent Systems 13(2):119-154, 2006.

8. T. Dong-Huynh, N.R. Jennings and N.R. Shadbolt. Certified reputation: how an
agent can trust a stranger. In Proceedings of the 5’th International Joint Conference
on Autonomous Agents and Multiagent Systems, pp. 1217-1224, Japan, 2006.

9. A. Jesang and R. Ismail. The beta reputation system. 15’th Bled Electronic Com-
merce Conference e-Reality: Constructing the e-Economy, June 2002.

10. J. Leskovec , L. Backstrom , R. Kumar, and A. Tomkins. Microscopic evolution of
social networks. In Proceedings of the 14’th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 462-470, 2008.

11. B. Khosravifar, M. Gomrokchi, J. Bentahar, and Ph. Thiran. A maintenance-based
trust for Open multi-agent systems. Accepted in the 8’th International Confer-
ence on Autonomous Agents and Multiagent Systems, AAMAS, Budapest, Hungary
2009.

12. J. Sabater, M. Paolucci and R. Conte, Repage: REPutation and ImAGE among
limited autonomous partners. Journal of Artificial Societies and Social Simulation
9(2), 2006.

13. W. T. Teacy, J. Patel, N.R. Jennings, and M. Luck. Travos: trust and reputation in
the context of inaccurate information sources. Autonomous Agentsand Multi-Agent
Systems, 12(2):183-198, 2006.

14. Y. Wang, and M.P. Singh. Formal trust model for multiagent ststems. Proceedings
of the 20’th International Joint Conference on Artificial Intelligence (IJCAI), pp.
1551-1556, 2007.

15. L. Xiong and L. Liu. PeerTrust: supporting reputation-based trust for peer-to-
peer electronic communities. Journal of IEEE Transactions on Knowledge and Data
Engineering, 16(7):843-857, 2004.

81

Computing Utility from Weighted Description Logic

Preference Formulas

Azzurra Ragone1, Tommaso Di Noia1, Francesco M. Donini2, Eugenio Di Sciascio1,

Michael P. Wellman3

1 SisInfLab, Politecnico di Bari, Bari, Italy

{a.ragone,t.dinoia,disciascio}@poliba.it
2 Università della Tuscia , Viterbo, Italy

donini@unitus.it
3 Artificial Intelligence Laboratory–University of Michigan, Ann Arbor, USA

wellman@umich.edu

Abstract. We propose a framework to compute the utility of a proposal w.r.t.

a preference set in a negotiation process. In particular, we refer to preferences

expressed as weighted formulas in a decidable fragment of First-order Logic.

Specifically, we refer to expressive Description Logics (DL) endowed with dis-

junction.

DLs offer expressivity advantages over propositional representations, and allow

us to relax the often unrealistic assumption of additive independence among at-

tributes. We provide suitable definitions of the problem and present algorithms to

compute utility in our setting. We also study complexity issues of our approach

and demonstrate its usefulness with a running example in a multiattribute negoti-

ation scenario.

1 Introduction

Effective and expressive specification of preferences is a particularly challenging re-

search problem in knowledge representation. Preference representation is essential, for

example, to instruct a software agent to act on behalf of the objectives of a human be-

ing. One common approach to preference representation appeals to multiattribute utility

theory [1], which concerns the construction of utility functions mapping vectors of at-

tributes to real values. Given that the size of a multiattribute domain is exponential in

the number of attributes, applications typically exploit independence relations among

the attributes, in the most extreme case to assume that all attributes are additively inde-

pendent, so that the multiattribute utility function is a weighted sum of single-attribute

utility functions.

However, most real-world domains pose significant preferential dependencies, ruled

out by the fully additive model. For example, referring to the desktop computer realm,

we could not with an additive value function capture the fact that the value of some

combination of attributes it is not simple the sum of the single attribute values. Indeed,

some operating systems performs very poorly without a minimum amount of memory,

therefore the value (utility) given to a specific operating system will depend on the

amount of memory available.

82

Some recent approaches support relaxation of the fully additive assumption, for

example by providing generalized versions [2] or exploiting graphical models of de-

pendence structure [3–5], while remaining within the multiattribute framework.

Logical languages likewise provide a means to express interdependencies, but un-

like multiattribute formulations they do not necessarily require that we explicitly de-

compose the domain into an orthogonal set of attributes. Furthermore, logical languages

support integration of preference knowledge with domain knowledge modeled through

an ontology. Using an ontology, indeed, it is possible to model relations among at-

tributes in the domain (e.g., a Centrino is an Intel processor with a 32-bit CPU), as

well as the fact that some combination of features may be infeasible (therefore of min-

imal or undefined preference) due to constraints in the ontology itself (e.g., a Centrino

processor is not compatible with a processor with a 64-bit architecture).

In decision making problems, preferences are expressed over a set of possible al-

ternatives, in order to rank them. In many cases, such as e.g., bilateral negotiation,

auctions, resource allocation, it is important to compute a utility value for, respectively,

an agreement, an offer, an allocation w.r.t. the set of preferences expressed by the agent.

If preferences are expressed using Propositional Logic, then the utility can be computed

considering a particular propositional model (agreement, offer, allocation), taking into

account formulas satisfied by that model.

While for Propositional Logic it is possible to refer directly to models (interpreta-

tions) in order to compute utility, this computation for First-order Logic (FOL) is less

straightforward, as the number of possible models is infinite.

The main contribution of this paper is an approach that, given a set of preferences,

represented as weighted DL formulas w.r.t. a shared ontology, computes the utility of

a formula (agreement, offer, allocation, etc.) based on its possible models (interpre-

tations). To our knowledge, the only prior method proposed in the literature for this

problem is subsumption, which has some limitations, as we show in Section 4.

We point out that even though the results we show in this paper can be easily applied

to whatever decidable logic with a model-theoretic semantics, we ground our approach

on DLs because of their importance in the development of the Semantic Web.

The remainder of the paper proceeds as follows. First, we introduce Description

Logics, then we give a brief overview of the problem of preference representation in

the field of logic languages. In Section 4, we first introduce the problem of computing

utility of a concept w.r.t. a preference set, showing how, sometime, subsumption leads

to counterintuitive results. Then we analyze some complexity issues. In Section 5 we

illustrate our framework for the computation of utility for a set of weighted DL formulas

with the help of a running example. Finally, we discuss some considerations about the

computational properties of the framework. Conclusion closes the paper.

2 Description Logic Basics

Description logics (DLs) are a family of formalisms well-established in the field of

knowledge representation. Readers familiar with DLs may safely skim this section,

attending mainly to the notation and examples. Those interested in learning more may

refer to the Description Logic Handbook [6] for a much more comprehensive treatment.

83

The basic syntax elements of Description Logics are concept names, properties,

and individuals. Concept names stand for sets of objects in the domain4 (Windows,

Intel, LCDMonitor), and properties link (sets of) such objects (hasOS, hasCPU,

hasMonitor). Individuals correspond to special named elements belonging to con-

cepts (HP Pavilion, Apple iMac). When we do not use proper names, we denote

concepts by symbols A, B,C, D, . . . ,⊤,⊥.

Description logics are usually endowed with a model-theoretic formal semantics. A

semantic interpretation is a pair I = (∆I , ·I), where ∆ represents the domain and ·I

is the interpretation function. This function maps every concept to a subset of ∆, and

every property to a subset of ∆ × ∆. Then, given a concept name CN and a property

name R we have: CNI ⊆ ∆I and RI ⊆ ∆I × ∆I . The symbols ⊤ and ⊥ are used

to represent the most generic concept and the most specific concept respectively. Hence

their formal semantics correspond to ⊤I = ∆I and ⊥I = ∅.

Properties and concept names can be combined using existential role quantifica-

tion. For example, PC ⊓ ∃netSupport.WiFi describes the set of PCs supporting a

wireless connection. Similarly, we can use universal role quantification, as in PC ⊓
∀hasCPU.AMD, to describe the set of PCs having only AMD processors on board. The

formal semantics of universal and existential quantification is as follows:

∃R.C = {x ∈ ∆I |∃y, (x, y) ∈ RI ∧ y ∈ CI}

∀R.C = {x ∈ ∆I |∀y, (x, y) ∈ RI → y ∈ CI}

Concept expressions can be written using constructors to write concept and property

expressions. Based on the set of allowed constructors we can distinguish different de-

scription logics. Essentially every DL allows one to form a conjunction of concepts,

usually denoted as ⊓; some DLs include also disjunction ⊔ and complement ¬ to close

concept expressions under boolean operations.

(C ⊓ D)I = CI ∩ DI

(C ⊔ D)I = CI ∪ DI

(¬C)I = ∆I\CI

Constructs involving number restriction enable us to define concepts in terms of the

numbers of roles with specified properties. For example, Mac ⊓ (≥ 4hasUSBport)
describes a Macintosh PC with at least four USB ports. An example of concrete domain

restrictions appears in the expression PC ⊓ ∃hasRam.(≥2 GB), which describes a PC

with at least 2 GB of memory. Notice that while properties, such as hasUSBport,

are mapped to a subset of of ∆ × ∆, concrete properties, such as GB are mapped to a

subset ∆ × D where D is a concrete domain.

(≥ n R)I = {x ∈ ∆I | |{b ∈ ∆I |(a, b) ∈ RI}| ≥ n}

(≤ m R)I = {x ∈ ∆I | |{b ∈ ∆I |(a, b) ∈ RI}| ≤ m}

(≤k R)I = {x ∈ ∆I |RI(x) ≤ k}

(≥h R)I = {x ∈ ∆I |RI(x) ≥ h}

4 We illustrate the main points here (and throughout the paper) using the domain of desktop

computers.

84

In general, the expressiveness of a DL depends on the type of constructors allowed.

Given a generic concept C, we use the notation m |= C to say that m is a model of

c, i.e., m ∈ CI .

In order to formally represent domain knowledge and constraints operating among

elements of the domain, we employ a set of background axioms, that is, an ontology.

Formally, ontology T (for Terminology) comprises axioms of the form D ⊑ C, where

D and C are well-formed formulas in the adopted DL, and R ⊑ S, where both R and

S are properties. The formal semantics of such axioms is: (C ⊑ D)I = CI ⊆ DI ,

(R ⊑ S)I = RI ⊆ SI . We write C ≡ D to represent both C ⊑ D and D ⊑ C. In the

rest of the paper we refer to the Ontology T depicted in Figure 1.

DesktopComputer ⊑ ∃hasCPU ⊓ ∃hasRam

CPUArchitecture ≡ 64BitCPU ⊔ 32BitCPU

32BitCPU ⊑ ¬64BitCPU

Intel ⊔ AMD ⊑ CPU

Intel ⊑ ¬AMD

hasUSBport ⊑ hasPeripheralPort

Athlon64 ⊑ AMD ⊓ ∃arch ⊓ ∀arch.64BitCPU

Centrino ⊑ Intel ⊓ ∃arch ⊓ ∀arch.32BitCPU

∃hasCPU.Centrino ⊑ ∃netSupport.WiFi

IntelDuo ⊑ Intel ⊓ ∃arch ⊓ ∀arch.32BitCPU

Sempron ⊑ AMD ⊓ ∃arch ⊓ ∀arch.64BitCPU

Fig. 1. Reference ontology.

Description Logics are considered to be highly expressive representation languages,

corresponding to decidable fragments of first-order logic. Reasoning systems based on

DLs generally provide at least two basic inference services: satisfiability and subsump-

tion.

Satisfiability: a concept expression C is satisfiable w.r.t. an ontology T when T 6|=
C ⊑ ⊥, or equivalently C 6⊑T ⊥;

Subsumption: a concept expression C is subsumed by a concept expression D w.r.t.

T when T |= C ⊑ D, or equivalently C ⊑T D.

85

In our setting satisfiability is useful, for example, to catch inconsistencies among

a buyer’s expressed preferences or, analogously, among sellers’ offered configurations.

On the other hand, subsumption can be employed to verify if a particular seller’s offer

satisfies one or more buyer’s preferences.

3 Preference Representation Using Description Logics

The problem of preference representation deals with the expression and evaluation of

preferences over a set of different alternatives (outcomes). This problem can be chal-

lenging even for a small set of alternatives, involving a moderate number of features, as

the user has to evaluate all possible configurations of feature values in the domain.

In this work, we deal with this problem by a combination of expressive language,

to facilitate preference specification, and preference structure exploitation, justified by

multiattribute utility theory.

Several approaches to negotiation have exploited logic languages in order to express

preferences, most of them using propositional logic [7–9], however only few of the ap-

proaches proposed in the literature have explored the possibility to use also an ontology

to model relations among attributes [10] or the use of more expressive logics as DLs

[11, 12]. Lukasiewicz and Schellhase [13] propose a framework to model conditional

preferences in DLs for matchmaking. In their framework they refer to set of concepts

and the formal semantics of implication is defined in terms of set membership. Such a

formulation well suits their target matchmaking task. Indeed, they are not interesed in

computing a utility value for a concept, e.g. an agreement, but they focus on ranking a

set of results w.r.t. a query.

We point out the importance to refer to a background knowledge, i.e., having an on-

tology T , in order to model not only interdependencies among attributes in preference

statements, but also to model inner relations among attributes that cannot be disregarded

e.g., is-a, disjoint or equivalence relations. In order to lay out the importance of an on-

tology and why we cannot abstract from it, we use a simple example involving one

perspective buyer and two sellers.

Example 1. Let us suppose the buyer has among her preferences:

P = ∃hasCPU.(AMD ⊓ ∃arch ⊓ ∀arch.64BitCPU) ⊓ ∃hasRam.(≥2 GB)

(PC with a 64-bit AMD processor and at least 2 GB of memory)

and there are two sellers, A and B, that can provide the respective configurations:

A = ∃hasCPU.Athlon64 ⊓ hasRam(=2 GB)
B = ∃hasCPU.Centrino ⊓ hasRam(=1 GB)

If we refer to the ontology T in Figure 1 we can state that seller A can satisfy the

preference expressed by the buyer —from T we know that Athlon64 is a 64-bit AMD

processor. Conversely, seller B cannot satisfy buyer’s preference, because Centrino is

not a 64-bit AMD processor.
a

86

We extend the well-known approach of weighted propositional formulas [7–9], rep-

resenting preferences as DL formulas, where at each formula we associate a value v

representing the relative importance of that formula.

Definition 1. Let T be an ontology in a DL. A Preference is a pair φ = 〈P, v〉 where

P is a concept such that P 6⊑T ⊥ and v is a real number assigning a worth to P . We

call a set P of preferences a Preference Set.

Example 2 (Desktop Computer Negotiation). Imagine a negotiation setting where buyer

and seller are negotiating on the characteristics of a desktop computer. The buyer will

have some preferences, while the seller will have some different configurations to of-

fer to the buyer in order to satisfy her preferences. Let us hence suppose the buyer is

looking for a desktop PC endowed with an AMD CPU. Otherwise, if the desktop PC

has an Intel CPU, it should only be a Centrino one. The buyer also wants a desktop

PC supporting wireless connection. Following Definition 1 the buyer’s Preference set

is P = {〈P1, v1〉, 〈P2, v2〉, 〈P3, v3〉}, with:

P1 = ∀hasCPU.Centrino ⊓ ∃hasCPU
P2 = ∃hasCPU.AMD

P3 = ∃netSupport.WiFi

On the other side, the seller could offer a Desktop computer supporting either a wire-

less connection or an AMD CPU, specifically a Sempron one, and he does not have a

desktop PC endowed with a Centrino CPU.

A = DesktopComputer ⊓ ¬∃hasCPU.Centrino ⊓ (∃netSupport.WiFi ⊔
∀hasCPU.Sempron)

Therefore, given a preference set P and a proposal A, how to evaluate the utility of

this proposal w.r.t. buyer’s preferences? Intuitively, the utility value should be the sum

of the value vi of the preferences satisfied by the seller’s proposal. Next sections will

adress this problem, showing a computation method for weighted DL-formulas. a

4 Utility

Weighted formulas have been introduced for propositional logic to assign a utility value

to a propositional model representing e.g., the final agreement. The computation of the

model and its corresponding utility is quite easy since in propositional logic we deal

with a finite set of models. Following Chevaleyre et al. [9] utility is computed as:

∑

{v | 〈P, v〉 ∈ P and m |= P}

Where P is a propositional Preference Set, m is a propositional interpretation (model)

e.g., representing the final agreement. 5. We call this approach model-based. Less straight-

forward is the case of more expressive logics. Some attempts in this direction have been

5
P

{·} indicates the summation over all the elements in the set {·}.

87

made by Ragone et al. [11, 12] adapting the weighted formulas framework to Descrip-

tion Logics. There, they do not consider models as final agreements but formulas, and

the utility value is computed as:

∑

{v | 〈P, v〉 ∈ P and A ⊑T P}

Where P is a DL preference set, T is a DL ontology and A is a concept e.g., repre-

senting a proposal in a negotiation process. We call this approach implication-based.

Although very simple to compute and immediate, this basic approach may lead to

counter-intuitive examples when dealing with logic languages allowing disjunction in

the final agreement.

Example 3. Consider the following preference set P (here for the sake of clarity we do

not consider the ontology T)

φ1 = 〈A1, v1〉
φ2 = 〈A2, v2〉
φ3 = 〈A3, v3〉

and a concept A.

A = (A1 ⊔ A3) ⊓ A2

a

In Example 3, following an implication-based approach the final utility is

uimpl(A) = v2

Indeed, only A ⊑ P2 holds.

On the other hand, if we use a model-based approach we can say that the final utility

value is:

umodel(A) ∈ {v1 + v2, v2 + v3, v1 + v2 + v3}

If we consider models m of A we may have that only one of the conditions below holds:

m |= A1 ⊓ ¬A3 ⊓ A2

m |= ¬A1 ⊓ A3 ⊓ A2

m |= A1 ⊓ A3 ⊓ A2

Using a model-based approach, if we want to be as conservative as possible we may

consider:

umodel(A) = min{v1 + v2, v2 + v3, v1 + v2 + v3}

Conversely, in the most optimistic case we consider:

umodel(A) = MAX{v1 + v2, v2 + v3, v1 + v2 + v3}

In the rest of the paper we will refer to the conservative situation but all the results can

be easily adapted to the optimistic case. Consequently, we give a definition of Minimal

Model and of its corresponding Minimal Utility Value.

88

Definition 2 (Minimal Models – Minimal Utility Value). Given an ontology T , a

concept A, such that T 6|= A ⊑ ⊥, and a set of preferences P , a Minimal Model is a

model m such that:

1. m |= {A} ∪ T
2. the value uc(A) =

∑

{v | 〈P, v〉 ∈ P and m |= P} is minimal

We call uc(A) a Minimal Utility Value for A w.r.t. to P .

4.1 Complexity

In this section, we give some consequences on the complexity of computing the utility

of a formula A, when utility is attached to models. In what follows, we abstract from the

particular logic language L, which gives our results the maximum attainable generality.

Lemma 1. Given two concepts A, P ∈ L, and an ontology T , we have A ⊑T P

iff there exists a minimal model assigning value v to A when preferences are P =
{〈P, v〉}.

Proof. Given a singleton set of preferences P = {〈P, v〉}, then uc(A) can be equal to

either 0, or v. Now if there exists a minimal model with value 0, then such a model is

a model of T and A, and it must be not a model of P ; hence, when the minimal model

has utility 0, T 6|= A ⊑ P . On the other hand, there exists a minimal model assigning

utility value v to A, then every model of T and A is also a model of P . But this is just

the condition expressing semantically that A ⊑T P . ✷

A consequence of the above lemma is that computing a minimal model is at least as

hard as computing subsumption in a DL L; below we can even generalize this result to

logical implication.

Theorem 1. Given a language L in which deciding logical implication is C-hard, de-

ciding the existence of a minimal model with a given utility value is C-hard, too.

We observe that the result is the same (by definition) when utilities are directly assigned

to formulas, as done e.g., by Ragone et al. [11].

We now move to upper bounds on computing utilities over formulas by minimal

models. We first assess the upper bound of the decision problem corresponding to com-

puting the utility of a concept.

Theorem 2. Let L be a language in which the satisfiability problem belongs to the

complexity class C, and such that NP ⊆ C; moreover, let v be a positive real number, P
be a set of preferences, T be a Terminology and A a concept, all expressed in L. Then,

deciding whether uc(A) < v is a problem in C.

Proof. Let P = {〈P1, v1〉, . . . , 〈Pn, vn〉}. Then, for each integer m between 0 and

2n − 1, let (m)2 = b1b2...bn be the binary representation of m, and let Dm be the

concept defined as A ⊓ B1 ⊓ · · · ⊓ Bn, where for each i = 1, ..., n, if bi = 0 then

Bi = ¬Pi, else Bi = Pi. Intuitively, the i-th bit of (m)2 decides whether Pi appears

positively or negatively in Dm. Now let S = {m | 0 ≤ m ≤ 2n−1 and Dm 6⊑T ⊥},

89

i.e., the set of all integers m ∈ [0, 2n−1] such that Dm be satisfiable in T . Then, the

utility of A can be expressed as

min

{

n
∑

i=1

bi ∗ vi

∣

∣ m ∈ S and (m)2 = b1b2...bn

}

(1)

Intuitively, one searches the minimum of the objective function (1) over a subset S
of the hypercube {0, 1}n, where the vertices in S are only the ones which define a

satisfiable combination of A and (possibly negated) preferences in P . Clearly, for ev-

ery satisfiable conjunction at least one model M exists, and when the utility computed

by (1) is minimum, M is a minimal model.

Finally, observe that a “right” number m between 0 and 2n−1—i.e., a number indi-

viduating a minimal model—can be guessed nondeterministically in polynomial time.

Hence, a nondeterministic Turing machine deciding uc(A) < v guesses a number m,

checks the satisfiability of Dm (a problem in C), computes u = sumn
i=1

bi ∗ vi, and

halts with “yes” if u < v, otherwise “no”. Therefore, when C = NP, the overall deci-

sion problem is in NP; when NP ⊂ C, the satisfiability check in C dominates the overall

complexity. ✷

For languages such that PSPACE ⊆ C, the above theorem yields also an upper bound on

the complexity of computing the utility of a concept. For instance, for L = ALC, and

simple Terminologies, satisfiability is a problem PSPACE-complete [14]. Then comput-

ing (1) is a problem in PSPACE, too.

For languages such that C = NP, the above theorem yields an NPO upper bound on

the complexity of computing the utility of a concept. We discuss this case in more detail,

for L=Propositional Logic (PL). For this case, Theorem 1 implies that the decision prob-

lem is NP-hard; yet it does not tell us whether the computation of uc(A) admits some

approximation schema, or not. We can show also NPO-hardness of computing (1),

through a (not difficult) reduction from MAX-2-SAT, which is the problem of finding a

model maximizing the number of clauses in a CNF of 2-literals (a.k.a. Krom) clauses.

For convenience, we use the dual problem of finding a model that minimizes the num-

ber of unsatisfied conjunctions in a DNF of 2-literals conjunctions D = D1 ∨ · · ·∨Dn.

Then such a model minimizes also the utility of any (unused) literal C w.r.t. the set

of preferences PD = {〈D1, 1〉, . . . , 〈Dn, 1〉}. Since computing such a model is NPO-

hard, our claim follows.

Observe that the above theorem does not hold for classes below NP, which need sep-

arate discussions. The case C=PTIME covers the most simple logics, such as L=Conjun-

ctions of Literals, or the DL L=FL− [6]. In fact, satisfiability of a conjunction amounts

to check the absence of a literal and its negation in the conjunction. Yet, observe that

if P ⊇ {〈A, v1〉, 〈¬A, v2〉}, then for every formula C, uc(C) ≥ min(v1, v2). In gen-

eral, deciding if uc(C) ≤ k is NP-complete, based on a simple reduction from 3-TAUT:

given a DNF D = D1∨· · ·∨Dn, where each Di is a conjunction, D is not a tautology iff

uc(A) ≤ k (A being any literal) w.r.t. the preferences P = {〈D1, 2k〉, . . . , 〈Dn, 2k〉}.

Less obviously, the same reduction holds for L=FL−, using a role Ri for every proposi-

tional atom Ai, and letting the encoding γ be: γ(∧) = ⊓, γ(Ai) = ∃Ri, and γ(¬Ai) =
∀Ri.B (for some concept name B). Then the previous DNF D is not a tautology iff

uc(B) ≤ k w.r.t. P = {〈γ(D1), 2k〉, . . . , 〈γ(Dn), 2k〉}. The fact that deciding the util-

90

ity of an FL−concept w.r.t. a set of FL−preferences is NP-hard is remarkable, since

satisfiability in FL−is trivial (every FL−concept is satisfiable).

5 Computation of Minimal Utility Value

In this section we show how the computation of the minimal utility value for a set of

preferences P w.r.t. a concept A can be turned out in solving an optimization problem.

Given the set P = {φ1, φ2, φ3} of preferences and the concept A as in Example 3,

we note that:

(a) A is more specific than the simple preference specification A2;

(b) A is more specific than a disjunction of preference specification (that, in the most

general case, may appear even negated).

(a) A ⊑T A2 −→ T I ∩ AI ⊆ T I ∩ (A2)
I

(b) A ⊑T A1 ⊔ A3 −→ T I ∩ AI ⊆ T I ∩ (A1)
I ∩ (A3)

I

On the other hand, due to constraints modeled within the ontology we may have some

interrelations among elements of P . For instance, it might result that:

(c) two preferences φ1 and φ2 cannot be satisfied at the same time;

(d) the conjunction of the former with the complement of the latter could be unsatisfi-

able;

(e) the combination of the complement of φ1 and φ2 is more specific than (i.e., it im-

plies) a third preference φ3.

In other words, (c) no model of A1 can be also a model of A2, (d) no model of A1 can

be also a model of ¬A2, (e) all models of both ¬A1 and A2 are also models of A3.

(c) A1 ⊓ A2 ⊑T ⊥ −→ T I ∩ (A1)
I ∩ (A2)

I = ∅
(d) A1 ⊓ ¬A2 ⊑T ⊥ −→ T I ∩ (A1)

I ∩ (∆ \ (A2)
I) = ∅

(e) ¬A1 ⊓ A2 ⊑T A3 −→ T I ∩ (∆ \ (A1)
I) ∩ (A2)

I ⊆ T I ∩ (A3)
I

Actually, if we consider also a concept A it is easy to see that whenever (c), (d) or (e)

hold, then also the corresponding relations represented below are true (while the vice

versa is not true).

(f) A ⊓ A1 ⊓ A2 ⊑T ⊥ −→ T I ∩ AI ∩ (A1)
I ∩ (A2)

I = ∅
(g) A ⊓ A1 ⊓ ¬A2 ⊑T ⊥ −→ T I ∩ AI ∩ (A1)

I ∩ (∆ \ (A2)
I) = ∅

(h) A ⊓ ¬A1 ⊓ A2 ⊑T A3 −→ T I ∩ AI ∩ (∆ \ (A1)
I) ∩ (A2)

I ⊆ T I ∩ (A3)
I

In fact, in order to compute a Minimal Utility Value, if A represents e.g., a final agree-

ment, we are more interested in those models satisfying the latter equations rather than

the ones satisfying (c), (d) and (e) because they are also models of A (as the Minimal

Model is). Obviously, (a),(b),(f),(g),(h) can be generalized to whatever Preference Set.

Noteworthy is that, since we use an ontology T , the above observations apply to

preference specifications represented as general concept expressions C and not only as

concept names. We illustrate the above ideas with the help of an example.

91

Example 4 (Desktop Computer Negotiation cont’d). We again refer to the ontology T
depicted in Figure 1.

We recall that the buyer’s Preference Set is P = {〈P1, v1〉, 〈P2, v2〉, 〈P3, v3〉}, with:

P1 = ∀hasCPU.Centrino ⊓ ∃hasCPU
P2 = ∃hasCPU.AMD

P3 = ∃netSupport.WiFi

while the seller proposal is:

A ≡ DesktopComputer ⊓ ¬∃hasCPU.Centrino ⊓ (∃netSupport.WiFi ⊔
∀hasCPU.Sempron)

Notice that, because of the axioms in ontology T :

Intel ⊑ ¬AMD
Centrino ⊑ Intel ⊓ ∃arch ⊓ ∀arch.32BitCPU

preferences P1 and P2 cannot be satisfied at the same time, and, moreover, due to

the axiom

∃hasCPU.Centrino ⊑ ∃netSupport.WiFi

in the ontology T , preference P1 is more specific than preference P3.
a

Definition 3 (Preference Clause). Given a set of preferences P = {〈Pi, vi〉}, i =
1 . . . n, an ontology T and a concept A such that A 6⊑T ⊥, we say that P is constrained

if the following condition holds:

A ⊓ P̂1 ⊓ . . . P̂n ⊑T ⊥ (2)

Where P̂i ∈ {Pi,¬Pi}. We call (2) a Preference Clause if there is no strict subset

Q ⊂ P such that Q is constrained.

Note that with a Preference Clause one can represent not only relations (f) and (g) but

also relations (a),(b) and (h) thanks to the well known equivalence:

C ⊑T D ⇐⇒ C ⊓ ¬D ⊑T ⊥

We may say that a Preference Clause contains the minimal set of preferences such that

Equation (2) holds.

Definition 4 (Preference Closure). Given a Preference set P = {φi}, i = 1 . . . n, an

ontology T and a concept A 6⊑T ⊥, we call Preference Closure, denoted as CL, the

set of Preference Clauses built, if any, for each set in 2P .

In other words, a Preference Closure represents the set of all possible Preference Clauses

over P . It represents all possible (minimal) interrelations occurring between A and pref-

erence descriptions in P w.r.t. an ontology T .

92

Proposition 1. Given a concept A, a Preference Closure CL and an ontology T , if m

is a Minimal Model of A then

m |= CL (3)

Proof. We denote with P
m

the set of preferences satisfying point 2 of Definition 2

and with (P
m

)I the interpretation ∩〈P,v〉∈P
mP I . By construction of CL we have

T I ∩ AI ⊆ CLI while by Definition 2 it results m ∈ {T I} ∩ {AI} ∩ {(P
m

)I}.

Hence, m ∈ CLI . ✷

In order to compute Minimal Utility Value uc(A) we reduce to an optimization problem

(OP). Usually, in an OP we have a set of constrained numerical variables and a function

to be maximized/minimized. In our case we will represent constraints as a set χ of

linear inequalities over binary variables, i.e., variables whose value is in {0, 1}, and

the function to be minimized as a weighted combination of such variables. In order to

represent χ we need some pre-processing steps.

1. Compute the Preference Closure CL for P;

2. For each Preference Clause A⊓P̂1⊓ . . . P̂n ⊑T ⊥ ∈ CL, compute a corresponding

preference constraint set CL = {¬P̂1, . . . ,¬P̂n}. We denote with CL
c

= {CL} the

set of all preference constraint sets.

Observation 1 The reason why we do not consider ¬A when computing CL is that

in order to compute a Minimal Utility Value we are looking for Minimal Models, i.e.,

models of A (and T) satisfying properties of Definition 2. Each Preference Clause can

be rewritten as T |= ¬A ⊔ ¬P̂1 ⊔ . . .¬P̂n. If we rewrite the right hand side of the

relation in terms of interpretation functions, from the semantics of ⊔ operator, we have

(¬A)I ∪ (¬P̂1)
I ∪ . . . (¬P̂n)I (4)

Since a Minimal Model is a model in AI , then all the models we are looking for are such

that (¬A)I = ∅. As a consequence, for our computation, the term (¬A)I in Equation

(4) is meaningless. We will clarify further this point in Observation 2 while discussing

the OP we build to compute the Minimal Utility Value in the following.

Example 5 (Desktop Computer Negotiation cont’d). Consider again the Desktop Com-

puter negotiation of Example 2. Given the set of preference P = {〈P1, v1〉, 〈P2, v2〉, 〈P3, v3〉}
and the proposal A, if we compute the Preference Closure CL we find:

CL =

{

A ⊓ P1 ⊑T ⊥;
A ⊓ ¬P1 ⊓ ¬P2 ⊓ ¬P3 ⊑T ⊥

}

hence, the two corresponding preference constraint sets in CL
c

are:

CL1 = {¬P1}
CL2 = {P1, P2, P3}

93

a

Based on well-known encoding of clauses into linear inequalities (e.g., [15, p.314])

we transform each set CL ∈ CL
c

in a set of linear inequalities χ and then define a

function to be minimized in order to solve an OP.

Definition 5 (Minimal Utility Value OP). Let P be a set of preferences and CL
c

be the

set of all preference constraint sets. We define a Minimal Utility Value OP, represented

as 〈χ, u(p)〉, the optimization problem built as follows:

1. define numerical variables – for each preference 〈Pi, vi〉 ∈ P , with i = 1, . . . , n

introduce a binary variable pi and define the corresponding array p = (p1, . . . , pn)
(see Example 6);

2. define χ as a set of linear inequalities – pick up each set CL ∈ CL
c

and build the

linear inequalities
∑

{(1 − p) | ¬P ∈ CL} +
∑

{p | P ∈ CL} ≥ 1

3. define the function to be minimized – given the array p of binary variables

u(p) =
∑

{v · p | p is the variable mapping 〈P, v〉}

Observation 2 If we considered also ¬A when computing the sets CL ∈ CL
c

we would

have had inequalities in the form:

(1 − a) +
∑

{(1 − p) | ¬P ∈ CL} +
∑

{p | P ∈ CL} ≥ 1

Since we are interested in models where A is interpreted as true, then variable a has to

be equal to 1. Hence the first element of the above summation is always equal to 0. In

other words, we can omit ¬A when computing a preference constraint set CL.

The solution to a Minimal Utility Value OP will be an assignment ps for p, i.e., an array

of {0, 1}-values, minimizing u(p).

Example 6 (Desktop Computer Negotiation cont’d). Back to the Desktop Computer

negotiation of Example 2, after the computation of Preference Closures and set CL
c
,

we build the corresponding optimization problem in order to find the model with the

minimal utility value:

p = (p1, p2, p3)

χ =

{

1 − p1 ≥ 1
p1 + p2 + p3 ≥ 1

u(p) = v1 · p1 + v2 · p2 + v3 · p3

Possible solutions are:

p
′
s = (0, 1, 0) , u(p′

s) = v2

p
′′
s = (0, 0, 1) , u(p′′

s) = v3

p
′′′
s = (0, 1, 1) , u(p′′′

s) = v2 + v3

The minimal solution will be either p
′
s or p

′′
s , depending of the value of v2 and v3.

a

94

Given a a solution ps to a Minimal Utility Value OP 〈χ, u(p)〉, we call Minimal Pref-

erence Set P
m

and Minimal Assignment Am, respectively, the set and the formula built

as in the following6:

P
m

= {〈Pi, vi〉 | pi = 1 in the solution ps}

Am =
l

{Pi | pi = 1 in the solution ps} ⊓
l

{¬Pi | pi = 0 in the solution ps}

Theorem 3. Given a solution ps to a Minimal Utility Value OP 〈χ, u(P)〉 and a Min-

imal Assignment Am:

1. if m is a Minimal Model then m |= Am;

2. u(ps) is a Minimal Utility Value.

Proof. First we show that there exists at least one model m |=T Am. If m does not exist,
then T I ∩AI ∩ (Am)I = ∅. We can easily rewrite the latter relation as A⊓Am ⊑T ⊥
or, in other words, A and Am are inconsistent with each other w.r.t. T . But this is
not possible. In fact, if A and Am were inconsistent with each other w.r.t. T then,
by Proposition 1 we should have the corresponding Preference Clause in CL and the
related inequality in χ:

X

{(1 − p) | P appears in A
m} +

X

{p | ¬P appears in A
m} ≥ 1

In order to be satisfied, the latter inequality must have either (a) at least one variable

assigned to 0 in the first summation or (b) at least one variable assigned to 1 in the

second one. Case (a) means that the corresponding preference is not satisfied by Am

while case (b) means that the corresponding preference is satisfied by Am. Both cases

are conflicting with the definition of Am. Hence (Am)I ∩ T I 6= ∅.

By construction of χ, we have that all models of Am w.r.t. T are also models of A

w.r.t. to T . In formulas Am ⊑T A. Since Am comes from the minimization of u(ps)
then (Am)I ∩ T I represents all those models m ∈ AI ∩ T I such that

∑

{v | 〈P, v〉 ∈ P and m |= P}

is minimal.

It is straightforward to show that u(ps) is a Minimal Utility Value. ✷

5.1 Computational properties of the method

We now relate the computation method proposed in this section with the computational

complexity results of the previous section. First of all, we observe that the size of the

Preference Closure |CL| can be—in the worst case—exponential in n, the size of the

preference set. Since Linear Integer Programming is an NPO-complete problem[15],

overall our problem can be solved nondeterministically in exponential time and space.

6 with
d
{·} we denote the conjunction of all the concepts in the set {·}

95

However, we observe that |CL| does not depend on the size of the ontology T ,

which typically is much larger than the size of P . In some sense, CL compiles out all

the complexity due to the satisfiability problem in the chosen DL, leaving the OP of the

combinatorics related to compatibility of preferences among each other, and with the

formula C whose minimal utility value has to be computed. This is perfectly reasonable

when Satisfiability in the chosen DL is a PSPACE-complete problem, or harder, since

the best known procedures for solving PSPACE-complete problems use exponential time

anyway, and the space used is exponential only in the number of preferences, not in the

size of T .

For the cases in which the language for preferences has a low-complexity satisfiabil-

ity problem, say, NP, or PTIME , though, preprocessing into CL the complete structure

of preference compatibilities may be an overshoot. In such cases, it would seem more

reasonable to devise specialized procedures that compute on demand the satisfiability

of a conjunction of preferences.

An orthogonal analysis can be done on the scalability of the method when the utili-

ties of several offers C1, . . . , Cm must be compared. Here it seems that one has to solve

m separate OPs of size exponential in |P|. While this is the worst case, some optimiza-

tion based on the logic for offers is possible. In fact, observe that Ci ⊑T Cj implies

uc(Cj) ≤ uc(Ci) (a model of Ci is also a model of Cj). Hence, when searching for

the offer with the maximum least utility, Cj can be safely disregarded. Intuitively, more

specific offers are preferred over more generic ones, with the intuition that a generic

offer Cj has a worst-case utility uc(Cj) which is less than the worst-case utility uc(Ci)
of a more specific offer Ci.

6 Conclusion

Logic languages have been proposed here as a natural and powerful preference repre-

sentation tool for automated negotiation purposes. We have shown how it is possible

to compute a utility value for a concept (agreement, proposal, allocation), when prefer-

ences are expressed as weighted DL formulas w.r.t. a shared ontology T . Although we

ground our framework in the DLs realm, we point out that the framework itself is com-

pletely general and suitable for whatever decidable fragment of FOL. We also reported

complexity results and showed the applicability and benefits of our approach with the

help of a meaningful example. Currently, we are studying how to combine this approach

with graphical models, and in particular GAI (Generalized Additive Independence) [16,

3], in order to model multiattribute auctions.

References

1. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Trade-

offs. John Wiley & Sons, New York (1976)

2. Gonzales, C., Perny, P.: GAI networks for utility elicitation. In: Ninth Intl. Conf. on Princi-

ples of Knowledge Representation and Reasoning, Whistler, BC, Canada (2004) 224–234

3. Bacchus, F., Grove, A.: Graphical models for preference and utility. In: Eleventh Conf. on

Uncertainty in Artificial Intelligence, Montreal (1995) 3–10

96

4. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A tool for

representing and reasoning about conditional ceteris paribus preference statements. Journal

of Artificial Intelligence Research 21 (2004) 135–191

5. Engel, Y., Wellman, M.P.: CUI networks: A graphical representation for conditional utility

independence. Journal of Artificial Intelligence Research 31 (2008) 83–112

6. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: The De-

scription Logic Handbook. Cambridge Univ. Press (2002)

7. Pinkas, G.: Propositional non-monotonic reasoning and inconsistency in symmetric neural

networks. In: Twelfth Intl. Joint Conf. on Artificial Intelligence. (1991) 525–531

8. Lafage, C., Lang, J.: Logical representation of preferences for group decision making. In:

Seventh Intl. Conf. on Principles of Knowledge Representation and Reasoning. (2000) 457–

468

9. Chevaleyre, Y., Endriss, U., Lang, J.: Expressive power of weighted propositional formulas

for cardinal preference modelling. In: Tenth Intl. Conf. on Principles of Knowledge Repre-

sentation and Reasoning. (2006) 145–152

10. Ragone, A., Di Noia, T., Di Sciascio, E., Donini, F.: A logic-based framework to compute

Pareto agreements in one-shot bilateral negotiation. In: Seventeenth European Conference

on Artificial Intelligence. (2006) 230–234

11. Ragone, A., Di Noia, T., Di Sciascio, E., Donini, F.M.: Description logics for multi-issue

bilateral negotiation with incomplete information. In: Twenty-Second AAAI Conference on

Artificial Intelligence. (2007) 477–482

12. Ragone, A., Di Noia, T., Di Sciascio, E., Donini, F.M.: Alternating-offers protocol for multi-

issue bilateral negotiation in semantic-enabled marketplaces. In: 6th International Semantic

Web Conference (ISWC’07). Volume 4825 of Lecture Notes in Computer Science., Springer-

Verlag (2007) 395–408

13. Lukasiewicz, T., Schellhase, J.: Variable-strength conditional preferences for matchmaking

in description logics. In: Tenth Intl. Conf. on Principles of Knowledge Representation and

Reasoning. (2006) 164–174

14. Baader, F., Hollunder, B.: KRIS: Knowledge Representation and Inference System.

SIGART Bulletin 2(3) (1991) 8–14

15. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity.

Prentice-Hall (1982)

16. Fishburn, P.C.: Interdependence and additivity in multivariate, unidimensional expected util-

ity theory. International Economic Review 8 (1967) 335–342

97

Explaining and Predicting the Behavior of

BDI-Based Agents in Role-Playing Games⋆

M.P. Sindlar, M.M. Dastani, F. Dignum, and J.-J.Ch. Meyer
{michal,mehdi,dignum,jj}@cs.uu.nl

University of Utrecht
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

Abstract. Virtual characters in games operate in a social context in-
volving other characters and human players. If such socially situated
virtual characters are to be considered believable, they should be able to
adjust their behavior based on beliefs about the mental states of other
characters and human players. Autonomous BDI-based agents are suit-
able for modeling characters that exhibit such intentional behavior. In
this paper, it is illustrated how agent-based characters can infer the men-
tal state of other players by observing those other players’ actions in the
context of a declarative game specification. The game specification can
be utilized in explanation and prediction of agents’ behavior, and as such
can form the basis for developing socially aware characters.

1 Introduction

For games and simulations with interactive virtual characters to provide users
with a satisfying experience, it is of vital importance that those characters are
believable to the user. Appearing to pursue goals and to be responsive to social
context are determining factors for believability [1], and interaction with virtual
characters is richer and more enjoyable if these anticipate the behavior of other
characters [2]. Believable characters that operate in a social context should ex-
hibit social awareness and not only pursue their own interests, but also be able
to take the mental states of other characters into account if they believe these
to conflict or coincide with their own goals and beliefs.

Statistical approaches to game-based plan recognition exist [3] but require
large amounts of gameplay data to be processed, which might not always be
available. Recent work in the agent programming community has focused on
recognizing an agent’s plan on grounds of its program and observed actions,
and inferring the mental state of the agent that plausibly explains observed be-
havior [4,5]. This offers promising directions for developing socially aware virtual
characters, as characters which can infer other characters’ mental states have the
possibility to incorporate attributed mental states into their own decision-making

⋆ This research has been supported by the GATE project, funded by the Netherlands
Organization for Scientific Research (NWO) and the Netherlands ICT Research and
Innovation Authority (ICT Regie).

98

process. This allows for plausibly misguided behavior and thus contributes to be-
lievability [6]. However, current approaches ignore the setting in which agents
operate and inferred explanations are independent of social context. If charac-
ters in games are designed to behave as autonomous agents, then a game can
be regarded as an agent society [7]. The behavior of characters in such a game
takes place in the context of the society, which can be captured and specified by
means of an organizational model [8].

This paper gives a declarative solution to abducing the mental state of vir-
tual characters implemented as BDI-based agents, which takes into account the
context in which these characters operate. In Sect. 2 mental state abduction is
reviewed. Sect. 3 introduces the game-related context in terms of scenes and
roles, and in Sect. 4 it is shown how this context can be utilized in explaining
and predicting agent behavior. Sect. 5 ties things together in an example, and
Sect. 6 concludes with a brief discussion and ideas for future research.

2 Mental State Abduction

In this section it is described how the observed behavior of agents can be related
to an explanation in terms of a description of their mental state, recapitulating
our work in [5]. In Defs. 1–2 the behavior of agents is described, and in the
remainder of this section it is shown how behavior is observed and explained.

Let L be a propositional domain language with negation and conjunction
over propositions. Lit ∈ L is the set of literals in this language, and LΓ ⊆ L a
simple language allowing only (conjuncted) literals. Let Act be a set of action
names. The behavior of an agent can be described as an expression consisting of
actions, which are either atomic observable actions α ∈ Act, or tests φ? on propo-
sitions φ ∈ L. Actions can be composed by means of operators for sequential
composition (;) and choice (+).

Definition 1 (behavioral description) Let α ∈ Act be an atomic observable
action, and φ? the test action on proposition φ ∈ L. The set of behavioral de-
scriptions LΠ with typical element π is then defined as follows.

π : := α | φ? | π1;π2 | π1 + π2

Note that there is no notion of iteration in LΠ . It is assumed, though, that
behavior can be iteratively performed if an agent reapplies a behavioral rule of
the type defined in Def. 2. Such a rule states that the behavior described by π
is appropriate for achieving the goal γ if the condition β is believed to hold, and
is taken to be interpreted in the operational context of an agent program [9,10].

Definition 2 (behavioral rules) Behavioral rules specify a relation between
behavior π ∈ LΠ and a mental state consisting of achievement goals γ ∈ LΓ and
beliefs β ∈ L. The set of behavioral rules LBR has br as its typical element.

br : := γ ← β ↑ π

99

The atomic actions α ∈ Act of an agent are taken to be publicly observable,
such that a perceived action can be directly related to the performed action.
Because behavioral descriptions do not allow for concurrent actions and inter-
pretation of the agent program is assumed to do so neither, the perception of
multiple actions performed by a single agent is taken to be sequential. To dis-
tinguish sequential perception of actions — which is an incremental process —
from actions in sequence as part of a plan, percepts are presented as a list.

Definition 3 (percepts) Let α ∈ Act be an observable action and ǫ a special
empty (null) action, such that (ǫδ) = (δ) = (δǫ). The set of percept expressions
L∆ , with typical element δ, is then defined as follows.

δ : := α | ǫ | δ1δ2

In order to explain perceived actions in intentional terms, a relation has
to be established between perceived actions, descriptions of behavior, and the
behavioral rules that connect a mental state (goals and beliefs) to behavior. This
relation should be defeasible, because on grounds of observed actions alone it
is not necessarily possible to analytically infer the mental state that caused the
agent to perform those actions. For this reason the behavioral rules of Def. 2
are described as the logical implications defined in Def. 4, which state that a
precondition consisting of a goal and belief description implies a certain behavior.

Definition 4 (rule description) Let (γ ← β ↑ π) ∈ LBR be a behavioral rule.
The set of rule descriptions LRD , with typical element rd, is defined as follows.

rd : := goal(γ) ∧ belief(β)⇒ behavior(π)

The function desc : LBR −→ LRD maps rules to their description, such that
desc(br) = (goal(γ) ∧ belief(β)⇒ behavior(π)) for any br = (γ ← β ↑ π) ∈ LBR .

Because behavioral rules, as defined in Def. 2, are interpreted in an opera-
tional context, the implications in the rule descriptions defined in Def. 4 do not
hold in a classical logical way with respect to describing agent operation. How-
ever, if perceived actions δ ∈ L∆ can be related to the behavioral descriptions
π ∈ LΠ , then logical abduction — which states that on grounds of an obser-
vation ψ and a logical implication φ ⇒ ψ, the defeasible explanation φ can be
abduced — can be used to infer the preconditions of logical rule descriptions.
To relate action sequences to descriptions of behavior, a function is defined that
maps behavioral descriptions to sets of observable traces of behavior by filtering
out internal tests, which are taken to be unobservable, and branching observ-
able traces at points where choice occurs. The operator ∪ is standard set union,
and ◦ : ℘(L∆)× ℘(L∆) −→ ℘(L∆) is a non-commutative composition operator
defined as ∆1 ◦∆2 = { δ1δ2 | δ1 ∈ ∆1 and δ2 ∈ ∆2 }, where ∆1, ∆2 ⊆ L∆ .

Definition 5 (observable trace function) Let α ∈ Act, φ ∈ L and π ∈ LΠ .
The function τ : LΠ −→ ℘(L∆) is then defined as follows.

τ(α) = {α} τ(π1 + π2) = τ(π1) ∪ τ(π2)

τ(φ?) = {ǫ} τ(π1;π2) = τ(π1) ◦ τ(π2)

100

In order to abduce mental state preconditions of the logical rule descriptions
in Def. 4 on grounds of observed actions, a relation must be established between
an observed action sequence and the traces that represent the observable aspect
of the behavior described in the behavioral description part of a rule. If every
action of the agent is observed and the rules completely describe an agent’s
possible behavior, then an observed sequence of actions can be related to the
(non-strict) prefix of an observable trace of behavior described by some π ∈ LΠ .

Definition 6 (structural relations) Let 4 ⊆ L∆ ×L∆ be the prefix relation
on sequences δ, δ′ ∈ L∆ and < ⊆ L∆×L∆ the suffix relation, defined as follows.

δ 4 δ′ iff ∃δ′′ ∈ L∆ : (δ′ = δδ′′) δ < δ′ iff ∃δ′′ ∈ L∆ : (δ′ = δ′′δ)

Note that every δ is a prefix and suffix of itself iff δ′′ is the empty action ǫ.

Defining different structural relations, as shown in [5], may allow for relating
observed actions to observable traces also in the case that not every action is
observed. It was proven that this leads to an increase in abduced explanations,
and that the set of explanations inferred on grounds of complete observation is
a subset of explanations in case of partial observation. In order to focus on the
way contextual information can be used to facilitate the process of mental state
abduction, it is assumed here that observation is complete.

An agent’s behavior is to be explained in terms of a description of its mental
state. In order to refer to these preconditions, let the set LΩ with typical element
ω be defined as LΩ = { goal(γ)∧belief(β) | γ ∈ LΓ , β ∈ L }. An explicit ‘lifting’
notation for functions is used, such that for any ê : D −→ D′, the lifted version
of ê is ℘ê : ℘(D) −→ ℘(D′), such that for Φ ⊆ D, ℘ê(Φ) = { ê(φ) | φ ∈ Φ }.

An explanatory function is now defined that maps observed action sequences
δ ∈ L∆ to preconditions of rule descriptions of the type rd ∈ LRD , such that δ
is a (partial) trace of the behavior ‘implied’ by the rule description.

Definition 7 (explanatory function) The function χ : LRD −→ ℘(LΩ ×
L∆) maps a rule description to a set of tuples of precondition and trace.

χ(ω ⇒ behavior(π)) = { (ω, δ) | δ ∈ τ(π) }

Let δ ∈ L∆ be a percept and RD ⊆ LRD a set of rule descriptions. The explana-
tory function explain : L∆ × ℘(LRD) −→ ℘(LΩ) is then defined as follows.

explain(δ,RD) = { ω | ∃(ω, δ′) ∈ ℘χ(RD) : [δ 4 δ′] }

Somewhat less formally, the explanatory function defined in Def. 7 states that
the precondition of a rule description is in the set of explanations for a certain ob-
served sequence of actions, if the observed sequence is a (non-strict) prefix of any
trace of the behavioral description which is described in the postcondition of the
rule description. The function as defined here is not intended to be computation-
ally efficient. It can be proven, though, that explain(δδ′,RD) ⊆ explain(δ,RD)
for any δ, δ′ ∈ L∆ , allowing for an efficient implementation.1

1 The authors express their thanks to Henry Prakken for pointing out this stronger
and more concise version of their proofs in [5].

101

3 Agents Playing Games

Agents in a multi-agent system each have their mental state and (inter)act in
pursuit of their private goals, taking into account their beliefs and the means
provided by their environment(s) [9]. An agent-based game, must be more than
a regular multi-agent system, as the latter lacks particular qualities that a game
might be required to have. When implementing game characters as autonomous
agents, a designer gives away part of the behavioral control that a scripting-
based approach to character design provides [11]. In return, the daring move
of the designer is rewarded with emergent stories that take unexpected turns
because of decisions made by the autonomous characters. However, there are
certain aspects of the game’s ‘flow of events’ that the game designer wants to
ensure, without having to rely on providence or agents’ good insight.

In this section declarative game-related concepts are defined, inspired by
organizational principles, that are used to illustrate how an agent-based game can
be designed that respects some storyline marked out by the designer. Moreover,
the same concepts can be used as a guideline with respect to agents’ expected
behavior, as will be shown in Sect. 4.

3.1 A Declarative Game Specification

The general concept ‘game’ is hard to define, so that in the present approach a
particular kind of game is considered, namely the agent-based role-playing game.
Such a game is considered to be populated by virtual characters implemented
as autonomous BDI-based agents, which play roles similar to the way actors do
in a movie. Autonomous agents, however, may be allowed more freedom in the
way they enact their role than movie actors are. Such role-enacting agents can
be allowed to have private goals that supercede or conflict with those specified
by their role, which will show in the behavior they exhibit [12,7].

Most definitions of the concept ‘role’ recognize that a role comes with obli-
gations, permissions, authority, or the right to perform certain actions. As such,
a role describes behavior which can be expected of the role-enacting agent [13].
Roles are therefore defined in a way that encompasses both the descriptive and
prescriptive aspect by providing an agent with goals to achieve, information
made available to the role-enacting agent, and behavioral rules. These concepts
correspond to the B(eliefs), D(esires), and I(intentions) of the BDI-paradigm,
and as such can form the basis for design of the role-enacting agent. Note that
the relation of role-derived goals and goal-directed rules is taken to be not nec-
essarily one-to-one; multiple rules for a single goal can exist, or a conjuctive goal
may be provided by the role where only rules for literal goals exist. To be able
to refer to roles and other entities uniquely, a set of constants ID is introduced.

Definition 8 (role) Let Γ≤ = (Γ ,≤Γ) be an ordered set of goals Γ ⊆ LΓ , with
≤Γ ⊆ LΓ × LΓ a partial order on Γ . Let I ⊆ L be role-accessible informa-
tion, and BR ⊆ LBR a set of behavioral rules. A role R, identified by a unique
identifier r ∈ ID, is then defined as R = 〈r, Γ≤ , I,BR〉.

102

A typical role, featured in many games of the role-playing game (RPG) genre,
is that of the thief. Unsurprisingly, the thief-role may provide the goal to take
possession of a particular item by stealing it. Moreover, a thief could have the
goal to steal the item whilst double-checking that nobody is near. If the thief
assesses a particular situation to be risky, the goal to steal the item but also
ensure that nobody is around might supercede the goal to just steal the item.

Roles do not per definition remain unchanged throughout a game. The con-
text in which a role is enacted influences the way it should be enacted, and this
context may change as things happen in the game. Autonomous agents can be
given the liberty to enact their role as they see fit, resulting in different types
of behavior given the same role specification. Nevertheless, agents are restricted
in their actions by the opportunities provided by their environment, and by the
norms of the agent society in which they operate. To formalize the norms that
regulate behavior, a language of normative expressions LN is defined which cap-
tures prima facie norms, with typical element N, such that N : := F (α) | O(α).
The expression F (α) states that the action α ∈ Act is forbidden, O(α) states
that the action is obligatory.

In [14], prima facie norms are defined to be norms [which] usually do not
arise from actions, but arise in certain situations [and remain] valid as long as
the situation in which they arise stays valid. Scenes are taken to constitute the
norm-governed context in which roles remain unchanged. The scene definition
includes the roles figuring in the scene, a set of norms pertaining to the scene,
and a set of literals denoting an initial environment state.

Definition 9 (scene) Let R be a set of roles as defined in Def. 8, N ⊆ LN a
set of norms, and E ⊆ Lit the initial environment state. Scene S, with unique
identifier s, is then defined as S = 〈s,R,N,E〉.

Take a scene in an RPG that features the thief and a store owner in some
store where goods can be purchased. In this scene it is most likely forbidden to
take items without paying for them, or to damage the merchandise.2 Now take
a scene in which the thief and the store owner are joined in the store by a city
guard. The same norms may apply as in the previous scene, but the thief now
gives priority to ensuring nobody is around before stealing anything because of
the presence of the guard, whereas the store owner might be more at ease in
knowing that the eyes of the law are keeping watch over her belongings.

3.2 The Multi-Agent Game

A game is taken to be a composition of scenes. The way scenes are composed
(the ‘storyboard’ of the game) is defined in a game specification, which identifies
the scenes occurring in a game, and specifies when a specific scene makes a
transition to another scene. Such transitions might depend on conditions being

2 Note that the prima facie norms of LN do not allow for conditional statements, and
it is therefore not possible to express statements such as the fact that it is obligatory
to pay for an item after taking it.

103

fulfilled with respect to the environment of the scene, on specific actions being
(jointly) executed by agents, or even some condition becoming true with respect
to agents’ mental states. To have a system of agents obey this specification,
scene transition has to be operationalized in the semantics of the agent system.
Because a detailed presentation of how the scene transition is realized does not
contribute to the scope of the present approach, this is left unspecified and the
game is taken to simply be a set of scenes, of the type defined in Def. 9.

Agents in 2APL [9] are defined by a configuration, which specifies their men-
tal state in terms of goals, belief, plans, and rules. In this paper, we do not
commit ourselves to an assumption about the specific language in which the
agents are implemented, but do require that the behavior of agents is in accor-
dance with the declarative specification of the role they enact, which contains
elements that can be directly related to elements of agents’ mental states, such
as goals, information (beliefs) and behavioral rules. Specifically, the following
assumptions and restrictions are enforced.

– Every agent in the multi-agent game behaves in accordance with a role, such
that the behavior of agents is completely described by the behavioral descrip-
tion which is part of the rules accompanying their role.

– The role of agents prescribes specific partially ordered goals, and the rules
accompanying the role are taken to enable achievement of all these goals.
However, it is not necessarily the case that every goal which the agent may
have on grounds of its rules is part of the goals that the agent’s role prescribes.

– It is assumed that agents do not interleave plans, even if they have multiple
goals. If an agent has adopted multiple goals and has selected a plan based
on the application of a behavioral rule for one of its goals, it will not apply
a new rule until its selected plan is completed.

The first scene of the multi-agent game is determined by the game’s initial
state, and consecutive scenes are determined as the game evolves; ie. as agents
act in pursuit of their goals and ‘things happen’ in the game. Because it is not in
the interest of the topic at hand, which is explanation and prediction of agents’
behavior in the context of a multi-agent role-playing game, the operational tran-
sition of configurations of the multi-agent game will not be presented formally.
Instead, it is assumed that the game takes place in some (known) scene, which
provides a guideline with respect to behavior that can be expected of the agents
populating the scene, as the behavior of each of them is based on some role.

4 Explaining and Predicting Agent Behavior

Mental state abduction can be used to abduce the mental state of BDI-based
agents whose behavior can be observed. If this behavior is performed in the
context of a multi-agent game, then information about the scene of the game
and the role which agents enact helps improve the abduction process. If an
agent’s role is known, the set of rules the agent is taken to have at its disposition
is reduced to the set of rules provided by the role, as the behavior descriptions
in the rules of the roles completely describes behavior of the agents.

104

4.1 Explaining Agent Behavior

In the approach to mental state abduction as described in Sect. 2 (and in [5]
in more detail), the behavior of an agent is explained on grounds of all rules
this agent can be assumed to have if context is not considered. In the present
setting, only the rules which are ascribed to the agent on account of its role in
a particular scene are considered in the explanatory process. This ensures that
the explanations provided for its behavior are contextually grounded, and that
the set of rules which need to be considered is restricted in size.

The role of the agent contains behavioral rules and a partially ordered set
of goals. There might exist agents which dutifully pursue the goals their role
prescribes, and others which don’t care about their role in the least. To cap-
ture these aspects of role conformance, two refined versions of the explanatory
function are defined. Because the role-prescribed goals do not necessarily have
a one-to-one correspondence with the goals that form the head of behavioral
rules, a relation between the two has to be established. The functions g and ă

are defined, such that for ω = (goal(γ) ∧ belief(β)), it holds that g(ω) = {γ}
and ă(ω) = {β}. Cn(Φ) denotes the closure of the set Φ under the consequence
operator Cn, defined as Cn(Φ) = {φ | Φ |= φ}.

Definition 10 (loosely role-conformant explanation) Let δ ∈ L∆ be a per-
cept and 〈r, (Γ ,≤Γ), I,BR〉 a role, as defined in Def. 8. The function explainlrc

for loosely role-conformant explanation is then defined as follows.

explainlrc(δ,〈r, (Γ ,≤Γ), I,BR〉) = (Ω,≤Ω)

where Ω = explain(δ, ℘desc(BR)), and for any ω, ω′ ∈ Ω

≤Ω = { (ω, ω′) | [Cn(g(ω)) 6⊆ Cn(Γ)] ∧ [Cn(g(ω′)) ⊆ Cn(Γ)] }

∪ { (ω, ω′) | [Cn(g(ω)) ∩ Cn(Γ) = ∅] ∧ [Cn(g(ω′)) 6⊆ Cn(Γ)] }

∪ { (ω, ω) }

A rule can be said to be relevant to a role, if the goal for which this rule
applies is in the closure of the role-derived goals. Thus, the rules for goals φ and
ψ are both relevant to a role that prescribes the goal φ ∧ ψ, just as the rule for
φ ∧ ψ is relevant to a role that prescribes φ and ψ independently. The function
explainlrc maps to a poset of explanations, where the explanations are ordered
on grounds of an ordering that ranks explanations containing role-derived goals
over those with goals that derive from behavioral rules only. Explanations which
contain exclusively role-derived goals rank over those with some role-derived
goals, which in turn rank over explanations without role-derived goals.

Definition 11 (strictly role-conformant explanation) The definition of the
function explainsrc is based on explainlrc, but takes into account the order on Γ .

explainsrc(δ,〈r, (Γ ,≤Γ), I,BR〉) = (Ω,≤Ω)

where explainlrc(δ, 〈r, (Γ ,≤Γ), I,BR〉) = (Ω,≤′
Ω), and for any ω, ω′ ∈ Ω

≤Ω = { (ω, ω′) | ∃γ ∈ Cn(g(ω)),∃γ′ ∈ Cn(g(ω′)) : [γ <Γ γ′] ∧

¬∃γ ∈ Cn(g(ω)),∃γ′ ∈ Cn(g(ω′)) : [γ′ <Γ γ] } ∪ ≤′
Ω

105

Strictly role-conformant agents are taken to also obey the priority ordering
on goals specified by their role, and therefore explainsrc takes this ordering into
account this as well. Because not all goals need to be explicitly ordered, it is
defined that some explanation ω is preferred to ω′ on grounds of explainsrc if
and only if some goal γ, derived from ω, has explicit priority over some goal γ′,
derived from ω′, and no goal derived from ω′ has explicit priority over any goal
derived from ω.

Instead of conforming to their role, agents might rebel against their role.
Also, as explained in [12], agents which are allowed to have private objectives
along with role-derived objectives can enact their roles in a selfish or social
manner. This could imply an ordering which is the reverse of that seen in loose
role conformance, or even of strict role conformance. Although it is not further
dealt with, the fact that our approach allows for modeling explicit rebellion and
different types of role enactment deserves pointing out.

4.2 Predicting Agent Behavior

An observed and explained sequence of actions can be regarded as the performed
part of a trace. Given that the goal for which this plan was selected is still
active, the agent can be expected to perform the remaining actions, which are
the suffix of the trace of which the observed actions are the prefix. In explaining
an agent’s behavior, it was defined that a description of the agent’s mental
state can be regarded as an explanation. When predicting the behavior of the
agent with respect to actions it has been observed to perform, multiple (distinct)
action sequences may be predicted based on different assumed mental states. A
predictive function is defined, taking these aspects into account.

Definition 12 (predictive function) Let δ, δ′ ∈ L∆ be percepts, ω ∈ LΩ a
mental state description and RD ∈ LRD a set of rule descriptions. The function
predict : L∆ × LRD −→ ℘(LΩ × L∆) is then defined as follows.

predict(δ,RD) = { (ω, δ′) | (ω, δδ′) ∈ ℘χ(RD) }

Agents in a norm-governed society can be assumed to take norms into ac-
count in choosing their actions, either by design or by deliberation [15]. Similar
to the explanatory functions taking into account role conformance of the agent
(Defs. 10 & 11), one can consider norm obedience when predicting agent be-
havior. The norms of LN were defined to state about actions whether these are
either forbidden (F) or obligatory (O). Informally, F (α) is taken to mean that
the action α ∈ Act is forbidden and that agents may be punished if they per-
form the action, whereas O(α) states that agents are obliged to perform action
α and that may be punished if they do not perform it. Note that it is not defined
what it means that the agent “may be punished”, but the explanation that the
behavior of the agent is somehow monitored (possibly by law-enforcing agents
in the game), and that this monitoring is not infallible, should suffice.

106

Thus, it may occur that the agent performs a forbidden action, but gets away
with it. The predicates forb and obl are defined on δ ∈ L∆ , such that

N |= forb(δ) iff ∃α, δ′, δ′′ ∈ L∆ : [(δ = δ′αδ′′) ∧ (F (α) ∈ N)]

N |= obl(δ) iff ∃α, δ′, δ′′ ∈ L∆ : [(δ = δ′αδ′′) ∧ (O(α) ∈ N)]

Based on the above, a predictive function is defined which takes norm obedience
into account. This function predicts a sequence of actions on grounds of an
observed sequence of actions and behavioral rules, and relates it to the presumed
mental state which would account for observed behavior if it were the agent’s
actual mental state. Moreover, this predictive function takes into account that
norms may exist which forbid or oblige the agent to perform specific actions, as
expressed in the ordering that ranks pairs with an action sequence containing
some obliged but no forbidden actions above all others, and pairs with sequences
that contain some forbidden but no obliged actions below all others.3

Definition 13 (norm-obedient prediction) Let δ ∈ L∆ be a percept, the
tuple 〈r, Γ≤ , I,BR〉 a role as defined in Def. 8 and 〈s,R,N,E〉 a scene as defined
in Def. 9. The predictive function predictno is then defined as follows.

predictno(δ,〈r, Γ≤ , I,BR〉, 〈s,R,N,E〉) = (Θ, ≤Θ)

where Θ = predict(δ, ℘desc(BR)), and for any (ω, δ), (ω′, δ′) ∈ Θ

≤Θ = { ((ω, δ), (ω′, δ′)) | N |= [obl(δ′) ∧ ¬forb(δ′)] }

∪ { ((ω, δ), (ω′, δ′)) | N |= [forb(δ) ∧ ¬obl(δ)] }

∪ { ((ω, δ), (ω, δ)) }

In Sect. 4.1 the remark was made that agents can explicitly rebel against their
role. Similarly, agents might rebel against ‘society’, which can be modeled by
means of explicitly presumed norm disobedience, such that traces with forbidden
actions are considered to be preferred by the agent.

4.3 The Observer

To explain and predict behavior, an abstract external Observer is proposed (in
line with our approach in [5]) which perceives the atomic observable actions
performed by agents, attempting to explain those actions in context of the game
and making predictions about actions it expects agents to perform next. The
Observer maintains a model of each of the agents it observes, which contains the
role the Observer attributes to the agent and a sequence of actions the agent
has been observed to perform, along with explanations and predictions based on
observed behavior in context of the attributed role.

Definition 14 (agent model) Let R be a role of the type in Def. 8, δ ∈ L∆ a
list of perceived actions, Ω ⊆ LΩ a set of explanations and Θ ⊆ LΘ . An agent
model, with a unique identifier i ∈ ID, is then defined as A = 〈i,R, δ, Ω,Θ〉.

3 Note that a sequence with forbidden as well as obligatory actions is treated no
differently than one that has only ‘neutral’ actions.

107

The Observer is assumed to have perfect observation of the environment and
the actions agents perform. In many games, the roles of characters are evident
from their external characteristics. The role might be indicated by the color of
a suit, or simply by a label hovering over the character. In the following, it is
assumed that agent i’s role r can be deduced from the state of the environment,
such that E |= enacts(i, r). As scene transitions are taken to depend only on
changes in the environment, the Observer always knows the scene in which the
game takes place if it is made aware of the initial scene when the game starts,
and is always correct about roles it attributes to agents.

Relaxing these assumptions — either by introducing more uncertainty on
part of the Observer by design or because the game does not allow for perfect
observation of the environment, scene transitions, or agents’ roles — leads to
interesting scenarios. Instead of just performing mental state abduction, the
Observer is forced to perform role abduction and/or scene abduction as well. If
observation of the environment or agents’ actions is imperfect as well, yet more
defeasibility is introduced. Given that our goal is to allow for designing agent-
based game characters which have uncertainty about other characters’ mental
states, it is not in our interest to introduce any more uncertainty than necessary.
Partial observation was discussed in [5], but here perfect observation is assumed.

Definition 15 (Observer) Let G be a set of scenes as defined in Def. 9, and
s ∈ ID a scene identifier such that 〈s, . . .〉 ∈ G. The set of literals E ⊆ Lit is the
environment state and for every (perceived) agent i, Ai is an agent model. The
Observer is then defined as 〈G, s,E, {Ai, . . . ,Aj}〉.

The Observer as defined in this approach is an abstract entity, which serves
to illustrate the explanatory and predictive process ultimately to be used by
agents that observe other agents’ behavior in some environment. For this reason
the details of how the Observer configuration evolves with successive action
observations and scene transitions are left to the imagination of the reader, and
instead the focus is on the procedures defined in Sect. 4.1 and 4.2. Given a single
sequence of observed actions for some agent i, the Observer can explain as well
as predict this sequence of actions. Prop. 1 shows that each explanation — in
terms of an agent’s mental state — is accompanied by a matching prediction.

Proposition 1 (explanation matches prediction). Given an agent model
〈i, 〈r, Γ≤ , I,BR〉, δ, Ω,Θ〉, where ℘desc(BR) = RD, explain(δ,RD) = Ω, and
predict(δ,RD) = Θ, it holds that ∀ω ∈ Ω : [∃θ ∈ Θ, δ′ ∈ L∆ : [θ = (ω, δ′)]].

Proof. Def. 7 and Def. 12 show that explain and predict are both based on ℘χ.
In case of explain(δ,RD) = Ω, some ω ∈ Ω iff ∃(ω, δ′′) ∈ ℘χ(RD) : [δ 4 δ′′].
For predict(δ,RD) = Θ, some (ω, δ′) ∈ Θ iff (ω, δδ′) ∈ ℘χ(RD). It follows from
Def. 6 that if δ 4 δ′′, then δ′′ = δδ′ for some δ′ (possibly δ′ = ǫ), and therefore
(ω, δ′) ∈ Θ. By definition of ∀, the proposition holds for Ω = ∅. ⊓⊔

Note that Prop. 1 extends to explainlrc, explainsrc and predictno, as these are
directly based on explain and predict. This is a very welcome fact, because it en-
sures that for every explanation a corresponding prediction can be made, also in

108

the case of the context-dependent explanatory and predictive functions. Based
on role-conformant explanation some explanation may come out as ‘top-ranked’.
This can be considered the best explanation for the agent’s behavior, and corre-
sponding predicted behavior be regarded as the most probable. Prediction of ǫ —
possibly indicating goal achievement — is outside of the scope of this approach,
but very well worth further investigation.

It can occur that traces have overlapping segments. In such a case, the pos-
sibility exists that the Observer is able to explain a sequence of actions, but at a
certain point observes an action that can neither be considered coherent with the
currently presumed trace, nor as being the start of a new trace. This situation is
visualized in Fig. 1, where δ′ is the suffix of some trace δδ′, as well as the prefix
of another trace δ′δ′′. Let α be the first action of δ′′, and δ′′′ = δδ′α. If the Ob-
server explains δδ′ as a coherent whole, then after perceiving α, it may be that
explain(δ′′′,RD) = ∅ because δ′′′ is not the prefix of any trace. It may, however,
also be that α itself is not the prefix of any trace, such that explain(α,RD) = ∅.

�
δ

�
δ
′

_____ �
α

�

�
δ
′

�
δ
′′

�

Fig. 1. Two traces, δδ
′ and δ

′
δ
′′, with an overlapping part δ

′. The start of actual traces
is denoted by � and the end by �, explainable (segments of) potential traces end with
�, and � denotes a non-matching segment (ie. failure of explanation).

If the situation sketched in the previous paragraph occurs and explanation
fails, then the Observer can backtrack along δ′, starting at the end, until it finds a
suffix δ′′′′ < δ′ that can be explained in coherence with the last observed action α,
such that explain(δ′′′′α,RD) 6= ∅. Given the assumption that agents are assumed
to be able to completely execute their plans, the maximum overlap of any two
traces of an agent’s plans can be computed and used to give a measure of the
maximum amount of backtracking the Observer has to perform. Let len : L∆ −→
N be a function that maps a percept to its length, such that len(α1, . . . , αn) = n,
and let binds be predicate denoting that some sequence δ ‘binds’ the sequences
δ′ and δ′′ together with overlapping action sequences, defined as

binds(δ, δ′, δ′′) iff [(δ < δ′ ∧ δ 4 δ′′) ∨ (δ < δ′′ ∧ δ 4 δ′)]

Given the definitions of len and binds, let overlap : L∆ ×L∆ −→ N be a function
that computes the overlap between two (distinct) action sequences, defined as

overlap(δ′, δ′′) =

len(δ) if ∃δ ∈ L∆ : binds(δ, δ′, δ′′), and δ′ 6= δ′′, and
¬∃δ′′′ ∈ L∆ : [binds(δ′′′, δ′, δ′′) ∧ (len(δ′′′) > len(δ))]

0 otherwise

109

Proposition 2 (backtrack with maximum trace overlap). Given an agent
model 〈i, 〈r, Γ≤ , I,BR〉, δ, Ω,Θ〉, where ℘desc(BR) = RD and δ = δ′α1 · · ·αn,
for which it is the case that explain(δ,RD) = ∅, explain(δ′α1 · · ·αn−1,RD) 6= ∅,
and δ′ is the complete trace of an actual plan executed by the agent, there exists
a non-empty suffix δ′′ < δ such that explain(δ′′,RD) 6= ∅ and len(δ′′) is smaller
than or equal to one, plus the maximum overlap of any two traces of any plan
which is part of the rules in BR.

Proof. Let ∆ =
⋃

{ τ(π) | (γ ← β ↑ π) ∈ BR } be the set of all (finite) observable
traces of all plans part of the rules in the agent model. Because δ′ is a complete
plan trace, explain(δ′,RD) 6= ∅ and δ′ ∈ ∆. Let δ′′ < δ such that δ′′ is the prefix
of a trace of the agent’s latest plan and it holds that δ′′ < α1 · · ·αn. Then either
∃δ′′′ ∈ L∆ : [(δ′′′ 4 α1 · · ·αn) ∧ (δ′δ′′′ ∈ ∆)] such that the actual ‘old’ trace δ′

is also the prefix of a misleading ‘false’ trace δ′δ′′′, or not. If not, then δ = δ′α

such that α < δ, explain(α) 6= ∅, and len(α) = 1.
If ∃δ′′′ ∈ L∆ : [(δ′′′ 4 α1 · · ·αn) ∧ (δ′δ′′′ ∈ ∆)], then δ′′′ is the suffix of a

‘false’ trace δ′δ′′′ and the strict prefix of α1 · · ·αn, such that len(δ′′′) < n. The
‘new’ trace, of which δ′′ is the prefix, is started somewhere after the plan of
which δ′ is a complete trace has finished, such that δ′′ < δ′α1 · · ·αn. If the ‘new’
trace of which δ′′ is the prefix is not started directly after δ′, because inbetween a
complete trace of yet another plan was executed which together with δ′ could be
matched to a misleading trace, then δ′′ is a strict suffix of α1 · · ·αn, such that
len(δ′′) > n. If δ′′ is started directly after δ′, then the sequence δ′δ′′′ and the
sequence δ′′ = α1 · · ·αn have an overlap of n − 1, which is the overlap of δ′δ′′′

and the trace of which δ′′ is the prefix, such that len(δ′′) = n.
Let x be the maximum overlap of any two traces δ1, δ2 ∈ ∆, such that

(overlap(δ1, δ2) = x) ∧ (¬∃δ3, δ4 ∈ ∆ : [(overlap(δ3, δ4) = y) ∧ (y > x)]). Given
that the trace δ′δ′′′ and the ‘new’ trace of which δ′′ is the prefix are both in ∆

and have an overlap of n− 1, it holds that 0 ≤ n− 1 ≤ x. ⊓⊔

Prop. 2 can be guaranteed if the Observer does ‘forget’ any percepts and
agents complete their plans. Especially the latter condition is unmaintainable in
certain environments. If agents can drop their plans, ‘freak’ scenarios can arise.
Take, for example, the case where α1 · · ·αn is a plan trace, but the individual
actions α1, . . . , αn are also the initial actions of individual plans. If an agent
selects those plans in order, executing only the first action and then dropping
the plan, the resulting sequence is indistinguishable from the trace.4 However,
because traces are finite and actions perfectly observable, Coroll. 1 still applies.

Corollary 1. If agents drop their plans, then the Observer backtracks at most
up to the length of the longest trace to find an explanation if explain(δ,RD) = ∅.

Proof. Let α1 · · ·αn ∈ ∆ be the longest trace. As explain(δ,RD) = ∅, it must be
that ∃δ′ ∈ L∆ : [δ′ < δ] and δ′ is the prefix of the agent’s current plan. In worst
case, δ = δ′′α1 · · ·αn for some δ′′, such that explain(δ′′α1 · · ·αn−1) 6= ∅. After
backtracking len(α1 · · ·αn) = n actions, Observer finds explain(α1 · · ·αn) 6= ∅. ⊓⊔

4 One might ask whether explaining and predicting behavior has any benefit at all if
such situations abound in some scenario, but that is not the point now.

110

5 Example

To illustrate the present approach, an example inspired by the popular role-
playing game Oblivion [16] is introduced. Because of space limitations, some
shorthand notation will be used. Lowercase predicate arguments represent ground
atoms, and uppercase arguments represent variables. Our propositional language
of course does not allow for variables, and therefore these are to be interpreted
as a finite number of ground expressions, as should be clear from the context
in which the notation is used. Spatial environments require moving around, and
therefore goto(Loc) is defined, where the variable Loc stands for any valid loca-
tion in the environment, and (φ?;π) + (¬φ?;π′) means if φ then π else π′.

goto(Loc) ≡ (¬nearby(Loc)?; walk towards(Loc)) + (nearby(Loc)?)

The scene S takes place in a store and features ‘thief’ and ‘store owner’ roles.
The norm in this scene forbids stealing any item, as expressed in shorthand nota-
tion, such that S = 〈s, {Rt,Rso}, {F (steal(Item))},E〉. The ‘thief’ role prescribes
the goal to have a particular item of interest (γ = have(item)), and provides
rules to achieve this goal. Also, a rule for exploring the store is provided.

Rt = 〈thief , ({have(item)}, {(γ, γ)}), I, {br1t
, br2t

, br3t
, br4t

}〉

br1t
= have(item)← distracted(owner) ∧ in(Cabinet , item) ↑

goto(Cabinet); open(Cabinet); steal(item); close(Cabinet)

br2t
= have(item)← ¬distracted(owner) ↑ goto(owner); distract(owner)

br3t
= explored(store)← ¬explored(cabinet1) ∧ . . . ∧ ¬explored(cabinetn) ↑

goto(cabinet1); inspect(cabinet1); . . . ; goto(cabinetn); inspect(cabinetn)

br4t
= ensured(safety)← ¬nearby(Person) ↑ double− check if nearby(Person)

The ‘store owner’ role Rso is left unspecified, except that it is stated she
wants to protect her merchandise. In this paper procedural rules have not been
discussed, but they may be allowed if only used for goal generation on grounds
of events. If a customer breaks an object in the store, the perception of this fact
prompts the store owner to adopt the goal to demand money from the culprit.
This high-level approach remedies shortcomings in scripted character behavior
in a natural way; in the game Oblivion it is possible, for example, to jump on
the store counter or to smash objects without repercussions, because the store
owner is only scripted to react to theft, and apparently not to vandalism.

The scene S transitions to some new scene S′ upon entry of a city guard, as
mentioned in Sect. 3.1, such that S′ = 〈s′, {R′

t,R
′
so,Rcg}, {F (steal(Item))},E′〉.

The ‘city guard’ role Rcg is left unspecified, but it should suffice to say that the
guard has merely come into the store to buy some item or chat with the store
owner. If he becomes aware that someone is breaking the law (possibly the thief
stealing the item), he may come into action and arrest the perpetrator. In the
new scene the thief shows more cautious behavior because of the presence of
the guard. This is illustrated by a change in the thief’s role specification, such

111

that R′
t = 〈thief ′, ({γ, γ′}, {(γ, γ), (γ′, γ′), (γ, γ′)}), I, {br1t

, br2t
, br3t

, br4t
}〉. In

this slighty changed role specification, it still is the case that γ = have(item),
but there is another role-prescribed goal γ′ = have(item) ∧ ensured(safety) for
which it is the case that γ′ >Γ γ.

Various possibilities exist for improvement, but lack of space forces us to skim
over subtleties. More interesting is it to see how the Observer comes into play.
Let G be the scenes of the game, and Agent = 〈gent,Rt,walk towards(cabinet1)〉
the model of some agent called gent, such that the Observer has observed gent,
in its role of thief, to perform the action of walking towards a certain cabinet.
Let the Observer configuration for the first scene be 〈G, s, {Agent}〉. Given the
rules BRt for the thief role, explain(walk towards(cabinet1),BRt) maps to a set of
explanations Ω = {ω1, ω2}, such that g(ω1) = {goal(have(item))} and g(ω2) =
{goal(explored(store))}. Based on role-conformant explanation, either loose or
strict, ω1 > ω2 because having the item is a role-derived goal.

Prop. 1 states that every explanation is matched by a prediction. For ω1,
the tuples (ω1, [open(Cabinet), steal(item), close(Cabinet)]) (with the percept in
Prolog-style list notation) are in the set of predictions. Given the small scenario
and limited set of rules, this is the only possible prediction for the goal of having
the item. If the thief is assumed not to be norm-obedient, the prediction that
he will open the cabinet and steal the item comes out, which is plausible in this
context. Assuming the thief actually is norm-obedient (which would be plausible
in the scene S′ where the guard is also present) gives a different picture. In that
case another explanation for walking towards the cabinet can be considered best,
if the corresponding predicted action sequence doesn’t contain any forbidden
actions. In this example only the goal to explore the store qualifies, but in a
more extensive case this could include the goal to choose and purchase some
item located in the cabinet.

The example in this section is inspired by an actual commercial role-playing
game. It serves mainly to illustrate some of the focal points of the approach
presented in this paper, and is necessarily limited in its scope and detail. Nev-
ertheless, it should be sufficently rich to convince the reader of the fact that the
high-level concepts of organizational modeling and agent programming apply
transparently to the complex world of role-playing games. Moreover, the use of
high-level social/intentional concepts has the additional benefit that these con-
cepts can be reused for modeling, programming, and inter-character explanation
and prediction of behavior.

6 Conclusion and Future Work

In this paper mental state abduction in the context of an agent-based game was
described. A declarative game specification based on organizational principles
such as roles, norms, and scenes, was introduced, and it was mentioned how it
can be employed to have a system of autonomous agents behave in accordance
with an intended storyline. An abstract Observer was said to observe the behav-
ior of agents and provide explanations that take into account role-conformant

112

behavior, making the abduction process more efficient because it is based on
a subset of rules, and ensuring that explanations are relevant to context. The
Observer can also predict agents’ future actions based on previously observed
behavior, taking norm-obedience into account if the situation warrants this as-
sumption. Role-conformant explanation and norm-obedient prediction have been
shown to be complementary.

Future research should focus on explicitly taking models of the environment
and agents’ presumed mental states into account in the abductive process. De-
pending on the nature of the environment, it could be possible for an observer,
be it an abstract entity or stiuated agent, to actively check whether specific
(predicted) actions are possible, or whether an agent has achieved its goal or has
some particular belief. Also, making use of norms in the explanatory process as
well as the predictive process is to be considered. Finally, the path of formally
investigating the multi-agent game as an operational system seems promising.

References

1. Loyall, A.B.: Believable Agents. PhD thesis, Carnegie Mellon University (1997)
2. Laird, J.E.: It knows what you’re going to do: Adding anticipation to a Quakebot.

In: AGENTS. (2001)
3. Albrecht, D.W., Zukerman, I., Nicholson, A.E.: Bayesian models for keyhole plan

recognition in an adventure game. User Modeling & User-Adapted Interaction
8(1-2) (1998) 5–47

4. Goultiaeva, A., Lespérance, Y.: Incremental plan recognition in an agent program-
ming framework. Proceedings of PAIR (2007)

5. Sindlar, M.P., Dastani, M.M., Dignum, F., Meyer, J.-J.Ch.: Mental state abduction
of BDI-based agents. In: Proceedings of DALT. (2008) 110–125

6. Scott, B.: Architecting a Game AI. In: AI Game Programming Wisdom. Charles
River Media (2002) 285–289

7. Dignum, V.: A Model for Organizational Interaction. PhD thesis, SIKS Disserta-
tion Series (2004)

8. Coutinho, L.R., Sichman, J.S., Boissier, O.: Modeling organization in MAS. In:
SEAS. (2005)

9. Dastani, M.: 2APL: A practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16 (2008) 214–248

10. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In
Dastani, M., Dix, J., El Fallah Seghrouchni, A., eds.: Multi-Agent Programming.
Springer (2005) 149–174

11. Tozour, P.: The Perils of AI Scripting. In: AI Game Programming Wisdom. Charles
River Media (2002) 541–547

12. Dastani, M., Dignum, V., Dignum, F.: Role-assignment in open agent societies.
In: Proceedings of AAMAS. (2003)

13. Dastani, M., Riemsdijk, M.B.V., Hulstijn, J., Meyer, J.-J.Ch.: Enacting and de-
acting roles in agent programming. In: Proceedings of AOSE. (2004) 189–204

14. Dignum, F.: Autonomous agents with norms. Artificial Intelligence and Law 7(1)
(1999) 69–79

15. Castelfranchi, C., Dignum, F., Jonker, C.M., Treur, J.: Deliberative normative
agents: Principles and architecture. In: ATAL. (1999) 364–378

16. Bethesda Game Studios: The Elder Scrolls IV: Oblivion (2006)

113

Correctness Properties for Multiagent Systems

Munindar P. Singh1 and Amit K. Chopra2

1 North Carolina State University, Raleigh, USA

singh@ncsu.edu
2 Università degli Studi di Trento, Trento, Italy

akchopra.mail@gmail.com

Abstract. What distinguishes multiagent systems from other software systems

is their emphasis on the interactions among autonomous, heterogeneous agents.

This paper motivates and characterizes correctness properties for multiagent sys-

tems. These properties are centered on commitments, and capture correctness at

a high level. In contrast to existing approaches, commitments underlie key cor-

rectness primitives formalized in terms of meaning; for example, commitment

alignment maps to interoperability; commitment discharge maps to compliance.

This paper gives illustrative examples and characterizations of these and other

properties. The properties cover the specification of protocols, roles, and agents,

the principal artifacts of an interaction-based approach to designing multiagent

systems, and thus provide the formal underpinnings of any such approach.

1 Introduction

Interaction is the key distinguishing feature of multiagent systems. We investigate the

science of interaction as it underlies the engineering of multiagent systems whose con-

stituent agents are heterogeneous (independently designed) and autonomous (indepen-

dently motivated). In such systems, the internal workings of the agents take backstage

to the interactions among them.

We begin from a simple yet profound question: How may we treat interactions as

first-class citizens in modeling and analyzing multiagent systems? The usual objectives

of engineering—modularly specifying, developing, composing, verifying, and validat-

ing parts—apply for interactions just as for traditional software approaches. However,

existing solutions, which are designed for components such as objects, do not readily

lift to interactions: an interaction somehow must simultaneously accommodate more

than one perspective. Thus, importantly, the novelty of the interactive setting yields

fresh and crucial technical challenges, which offer a great opportunity for multiagent

systems research.

Of the many applications of multiagent systems, those in cross-organizational busi-

ness processes provide the happy mix of practical value, theoretical subtlety, and oppor-

tunity (in the form of interest in industry) that our research community needs to sustain

this research effort. Cross-organizational processes fundamentally differ from conven-

tional software in that they are naturally modeled via interactions among heterogeneous

and autonomous agents [1]. The interactions of interest are of an arms-length nature,

and thus naturally understood as communications. In our study, we assume the existence

114

of suitable approaches for the transmittal of information and therefore concentrate on

communication understood at the level of meaning.

To engineer a multiagent system based on interactive principles presupposes a no-

tion of the correctness of interactions among agents—in particular, here, of communi-

cations. Given such a notion, we ask if an agent is compliant with its expected behavior.

Further, we can ask if the given agents are interoperable meaning that they are able

to work together as expected. We can ask the above questions from the perspective of

the system as a whole or of any of the participants. To formalize interoperability and

compliance in interactive terms requires that we develop a theory of types using which

we might modularize communications into protocols. We might then create repositories

of protocols; determine if one protocol refines another or aggregates two or more pro-

tocols; modularly validate the protocols; modularly verify agents with respect to each

relevant protocol; and so on. Notice that interfaces in object-oriented computing corre-

spond to protocols and support constructs such as refinement and aggregation as well

as the usual forms of type inference.

1.1 Approach

The meaning of an interaction thus lies at the crux of the question of its correctness.

When we think at levels above the transmission of information, the meaning of com-

munication is grounded in the relationships among the parties involved. Communica-

tion then is based on conventions by which such relationships are created, progressed

(or otherwise altered), and ended. We concentrate on the contractual relationships ex-

pressed through the notion of commitments. A commitment involves a debtor, a creditor,

an antecedent, and a consequent; it is represented as C(debtor , creditor , antecedent ,

consequent). Roughly, the debtor stakes a claim or makes a promise to the creditor

about the specified consequent provided that the antecedent holds (Section 2 explains

this further). Commitments naturally express the what of business relationships, and

minimally constrain the how. For example, a commitment to pay for goods received

may be discharged by paying directly, or delegated to someone who would discharge or

delegate it, and so on (for any finite sequence of delegations).

In our approach, a protocol specifies business interactions primarily by stating how

messages affect the participants’ commitments. For example, returning purchased goods

unopened may release the buyer from a commitment to pay. Thus many possible enact-

ments may result from the same protocol. This is how commitments yield both rigor and

flexibility. Because of its naturalness, the commitment-based approach has attracted the

attention of finance and health care industry groups [2].

Protocols are interfaces: they constrain how agents interact, not how they are imple-

mented. Protocols are doubly modular: in terms both of functionality and autonomy.

For example, for functionality, an ORDER protocol between a customer and a merchant

would specify only interactions dealing with order placement, leaving other function-

alities to separate protocols, e.g., one for INVENTORY FULFILLMENT. Our approach

enables composing protocols to yield more complex protocols, of enhanced function-

ality. Further, for autonomy, ORDER would specify the interactions, leaving to each the

autonomous decision making of whether and how to interact, which could depend on

115

its goals [3]. We define a process as the aggregation of the behaviors of the parties

involved, including both their interactions and their local reasoning.

To model a process, we identify the protocols using which the different participants

interact [1]. For example, a merchant and a customer may interact with each other using

a NEGOTIATION protocol; the merchant, customer, and payment agency may interact

via an ESCROW protocol; and, the merchant, customer, and shipper may interact through

some specialized LOGISTICS protocol. When each participant acts according to its local

reasoning but respecting the stated protocols, they jointly enact a multiparty business

process. The contractually significant parts of the process would have been encoded in

the commitments specified in the protocols; the other parts may feature only in the local

policies of the participants and need not be visible externally. An agent’s policies could

be geared to optimize its outcomes. For example, policies would help decide what item

to order, what price to quote, and so on.

Notice that the above approach obviates defining a monolithic global flow that spec-

ifies the actions of each party. Each protocol could be refined to capture additional re-

quirements, e.g., adding receipts or guarantees to SHIPPING or PAYMENT to produce

new refined protocols. Notice that protocols can involve more than two parties; in typi-

cal usage, one partner would play multiple roles in multiple protocols [4]. For example,

a purchase process may be defined as a composition of ORDER, SHIPPING, and PAY-

MENT protocols where the buyer in ORDER is the receiver in SHIPPING and the payer

in PAYMENT.

The potential benefits of our protocol-based approach over traditional approaches (re-

viewed in Section 4) include the following. One, for process design, protocols are nat-

urally reusable whereas complete processes are not. More importantly, protocols lend

themselves to modeling abstractions such as refinement and aggregation. Two, for pro-

cess implementation, implementations of agents playing multiple roles can be more

readily assembled from specifications of the roles. Three, for process enactment, flexi-

ble protocols enable each agent to exercise discretion via its policies or preferences even

as it follows a protocol. For example, a merchant may accept only cash for discounted

goods and a customer may prefer to pay for goods early or late depending upon private

considerations such as of fiscal year accounting. This flexibility also enables us to cap-

ture and handle business exceptions and opportunities in a natural manner at the level of

protocols. Four, for process monitoring, protocols provide a clean basis for determining

that the interacting agents are complying with their roles in the given protocols.

1.2 Contributions

We motivate and characterize the key properties that would enable engineering mul-

tiagent systems with a special emphasis on applications such as cross-organizational

processes. Compared to traditional formal approaches, the emphases on communica-

tions and commitments give us a novel start. By assigning meaning to communications

in terms of commitments, we accomplish the following. First, we reconstruct the cor-

rectness of behaviors by characterizing compliance as the eventual discharge of com-

mitments. Second, we characterize the interoperability of agents as the alignment of

their commitments, meaning that a creditor’s expectations about a commitment are met

116

by the debtor. Third, we expand the treatment of design artifacts such as protocols by

viewing them as communication types and showing how to refine and aggregate them.

Using the above, we characterize the conformance of an agent with a role in a protocol.

Further, we characterize important properties of a protocol such as its transparency in

terms of the ability of the parties involved to verify each other’s compliance. By con-

trast, traditional approaches (formal or otherwise) are largely confined to details such as

message ordering and occurrence, and thus miss the forest for the trees. Throughout the

paper, we discuss the properties with appropriate rigor, but without introducing formal

notation.

Importantly, unlike most other multiagent systems work, our approach is under-

girded by key ideas of distributed computing, especially dealing with the fact that key

information is not immediately shared by all parties (even if they wish to share it). In

fact, this is why protocols are important beyond plain commitments. This paper char-

acterizes the above concepts under realistic assumptions, including multiparty settings

with asynchronous communication (which aren’t accommodated even in fairly recent

interoperability research, e.g., [5–7]). Hence, this paper reflects crucial basic research

not being addressed elsewhere. Its relevance to declarative agent languages and tech-

niques arises from the fact that declarative representations for interaction are central to

engineering robust, flexible multiagent systems, and this paper introduces and illustrates

correctness criteria based on such declarative representations.

The rest of this paper is organized as follows. Section 2 introduces commitments

and protocols in greater detail. Section 3 characterizes the correctness properties for

interactions. Section 4 describes our contributions in relation to the most relevant liter-

ature.

2 Background on Protocols and Commitments

In classical software engineering methodologies, information modeling involves the ap-

plication of key abstractions such as classification, aggregation, and association among

components. It would be valuable to develop similar abstractions for interactions. No-

tice that traditional flow-based process models don’t readily support such abstractions.

One, existing work imposes severely limiting assumptions to support such abstractions—

refinement is specified for Petri nets restricted to one input and one output place [8],

which are not as expressive as general Petri nets needed to express real processes. Two,

absent a business-level semantics, the models are rigid and any deviation would be po-

tentially erroneous, thus making it difficult to refine or generalize processes.

By contrast, protocols focus on interactions, not on implementations. Our commit-

ment-based semantics of protocols enables us to determine if a protocol refines another

protocol, and how protocols may be aggregated into other protocols. Further, we spec-

ify a protocol primarily in terms of the vocabulary for communication that it defines

and only secondarily in terms of (generally, ad hoc) constraints on the ordering and

occurrence of messages. By basing correctness on the discharge of commitments, we

enable agents to behave flexibly. For example, a merchant may ship before receiving

payment if it wishes; a customer may pay directly or via a third party; and so on. On

occasion, an application may impose an otherwise ad hoc constraint. For example, in a

117

(sit-down) restaurant, the protocol is to pay after food has been received and consumed;

in a drive-through, payment precedes delivery. Such constraints often are merely guide-

lines for the participants and have no bearing on correctness unless they are enshrined

in commitments. For example, a restaurant patron may pay early; a drive-through clerk

may hand over the food before taking payment from the customer.

Flexible enactment and modeling in terms of refinement and aggregation are possi-

ble only because our formal semantics establishes the correctness criteria by which le-

gitimate enactments, refinements, and aggregations can be identified [4]. Commitments

express how contractual relationships form and progress during the agents’ interactions.

The commitment-based semantics is readily grounded via operational or messaging-

level constraints [9].

Commitments. Contracts are key to flexible interoperation. Hohfeld [10] clarified a

legal notion of contracts. Commitments, as introduced on Page 2, cover the relevant

aspects of Hohfeld’s notions [11], and thus naturally represent the contractual relation-

ships of interest.

Two main forms of commitments arise [12]: practical commitments are about bring-

ing about a future condition (i.e., oriented toward tasks), whereas dialectical commit-

ments [13] are about staking a claim (as in argumentation) about the past, present, or

future (i.e., oriented toward assertions). The distinction between them is significant even

when directed to the future. For example, I might commit dialectically that the postman

will ring twice, without committing practically to ensure that the postman rings twice.

This paper deals with practical commitments except where specified otherwise. For ex-

ample, the customer’s agreement to pay the price for the book after it is delivered is

a practical commitment that the customer (as debtor) has towards the bookstore (as

creditor) to ensure the price is paid.

Using commitments enables us to model interactions computation independently

(using this term as in Model-Driven Architecture (MDA) [14]). On the one hand, com-

mitments describe the evolving state of the ongoing business interaction and how it

evolves due to the participants’ communications. On the other hand, commitments help

express the expectations that participants have of one another: this is the fundamen-

tal purpose of a protocol. Jointly, these enable us to readily detect and accommodate

business exceptions and opportunities. Consequently, commitments lend coherence to

interactions [15].

Commitments can be manipulated through a small set of operations, including cre-

ate, discharge, cancel, release, assign, and delegate [11], which we lack the space to

discuss here. With additional assumptions, commitments can be enforced—by penal-

izing agents who do not comply with their commitments. Commitments have a formal

semantics [12], and reasoning about commitment operations in distributed settings is

addressed in [9].

Protocols and commitments. An advantage of incorporating commitments in our mod-

els is that they directly represent contractual relationships, are flexible, and lend coher-

ence to the interactions of the participants in a process. The formalization of the spe-

cialization and generalization hierarchy of protocols is made the more interesting and

118

useful because of the presence of commitments and roles in our model. Instead of con-

sidering uninterpreted runs (of actions and states), we consider how the commitments

of the various roles evolve over different runs. The use of commitments enables more

sophisticated reasoning about meaning than in traditional approaches. In particular, it

enables us to characterize the similarity of states and refinement protocols in potentially

subtle ways. An example is when a participant from its local perspective considers two

states as interchangeable simply because it features as the creditor and debtor in the

same commitments regardless of the other parties. For instance, in some settings, Alice

may care only of her total accounts receivable, and not care if it is Bob or Charlie who

is committed to paying her the money. In other words, instead of merely considering

raw computations, it makes sense to “normalize” them in terms of commitments so as

to make more precise judgments about how protocols relate to one another.

Table 1. A purchase protocol (customer is c and merchant is m)

Offer(m, c, payment , book) means Create(m, c, payment , book)
Accept(c,mpayment , book) means Create(c,m, book , payment)
Reject(c,m, payment , book) means Release(m, c, payment , book)
Deliver(m, c, book) means Inform(m, c, book)
Pay(c,m, payment) means Inform(c,m, payment)

Fig. 1. Three possible enactments of protocol in Table 1

Table 1 shows the key messages in a purchase protocol and their meanings. Figure 1

shows some possible enactments of the protocol between a customer Alice and a mer-

chant EBook (in the figure, cA is C(Alice,EBook ,BNW , $ 12); cUA is C(Alice,EBook ,

⊤, $ 12); cB is C(EBook ,Alice, $ 12,BNW); cUB is C(EBook ,Alice,⊤,BNW)). The

meanings of the messages are crucial, because they help characterize the protocol declar-

atively. The meanings are systematically formalized in a declarative action language.

Our language and technique are introduced in [16–18].

Traditional approaches force a tradeoff: checking compliance is simple with rigid

automaton-based representations and difficult with flexible unconstrained reasoning

agents. Commitments help us find the happy middle: protocols maximize flexibility

by constraining the participants’ interactions at the business level, yet provide a crisp

notion of compliance: a party complies if its commitments are discharged, no matter if

delegated or otherwise manipulated.

119

Protocols and computations. In essence, each protocol allows a set of computations or

runs, each run being an alternative that requires a specific sequence of executions upon

the participants. Two basic intuitions about protocol refinement are that (1) a more

general protocol includes additional runs (more ways to satisfy) beyond those in a less

general protocol; and (2) a more general protocol includes shorter runs (fewer steps to

satisfy) than a less general protocol.

Our commitment-based semantics yields a rigorous basis for protocol refinement

and aggregation [19]. In principle, these properties enable reusing protocols from a

repository. For example, PAYMENT BY CHECK refines PAYMENT. Further, ORDER, PAY-

MENT, and SHIPPING can be combined into a new protocol for PURCHASE. This com-

posed protocol would capture the reusable interactions and service agreements that un-

derlie a business process. For example, PURCHASE would specify how orders may be

placed, payments made, and shipping arranged. When protocols are composed, so are

the roles; e.g., the payer in PAYMENT may be composed with the receiver in SHIPPING.

Multiple copies of the same protocol may be composed: in an ARBITRAGE protocol,

the arbitrageur role would compose the seller role in one copy of PAYMENT with the

buyer role in the second copy.

As in other formal semantics, the runs are merely abstract entities used to establish

logical properties. We would never explicitly enumerate the potentially infinite number

of possible runs, but we can use the abstract definition to show important algebraic

relationships. Mallya & Singh [19] show important progress, but their approach is far

from complete. Specifically, it deals with sets of runs, but does not apply directly on

protocol specifications as one would find in a repository.

3 Correctness Properties

We begin by motivating some key definitions. Notice that although the above discussion

uses protocols as design artifacts, compliance and interoperability apply without regard

to any protocol. Although our main definitions and methods are oriented toward com-

mitments, they are undergirded by considerations of distributed computing, especially

of asynchrony in messaging.

3.1 Interoperability

The interoperability of a set of roles or agents, regardless of protocol, means that they

jointly meet the expectations they jointly place on each other. Some aspects of interop-

erability depend on meanings; others on the messaging system that underlies commu-

nications.

We assume that messaging is asynchronous, reliable, and pairwise (for each sender

and receiver) order-preserving: this matches what emerging middleware standards [20]

offer. Thus in two-party cases, each party would eventually learn of the relevant moves

and expectations of the other: the only kind of pathology possible is that the parties

may view some pairs of messages in opposite orders. In multiparty cases, the messaging

conditions can become more subtle: e.g., a party would lack direct information about

120

messages exchanged among other parties. Mostly, this is a good thing because the par-

ties can proceed with minimal mutual dependencies. However, when such information

materially affects a desired property, we would need to change either the requirements

(so information about remote events becomes irrelevant) or the specification (so that the

necessary information flows to the appropriate parties).

Interoperation classically is treated as a conjunction of liveness and safety. To these

we add alignment.

Liveness means that progress will take place: desirable states will be visited infinitely

often. Liveness can fail if a receiver blocks (awaiting a message that is never sent). For

example, let Buyer-A demand delivery before payment and Seller-A demand payment

before delivery. Now, Buyer-A and Seller-A would deadlock, each awaiting the other’s

message.

Safety means that the system doesn’t enter an undesirable state: agents must be ready

to receive the messages being sent to them. Safety is best understood in a multiparty

setting. If a buyer expects to receive a confirmation before a shipment but receives them

in the opposite order, its resultant state is not defined. We should ensure the messages

occur in only those orders that the buyer accepts.

We apply causality [21] to model the above concepts. The sending of a message is

causally prior to its receipt; for any two locally ordered events (sends or receives), the

first is (potentially) causally prior to the second: “potential” because from external ob-

servations we cannot infer if the two events are truly related. We can infer true causality

from the agents’ specifications, in settings where the specifications are available. We

can characterize liveness and safety in terms of the compatibility among causal orders

involving receives and sends. We conjecture that the above will yield superior solu-

tions to those in the recent distributed computing literature, e.g., [5–7]. The literature

considers two-party cases or violates substitutability: that substituting an agent with a

conforming agent must preserve interoperability.

Alignment is interoperability with respect to expectations at the level of meaning: do

the participants agree about the states of their commitments to each other? A set of

agents or roles is aligned provided throughout any enactment, whenever one concludes

it is the creditor of a commitment, the corresponding debtor x concludes that x is the

debtor of the commitment [22]. In other words, the debtor recognizes a commitment that

the creditor expects of it. How commitments are created, discharged, and manipulated

depends on the messages sent and received.

From the point of view of interoperability, interesting agent specifications are of

two kinds: constitutive and regulative [22]. An agent’s constitutive specification deals

only with the meaning of messages. In other words, it specifies what messages count as

for the agent. An agent’s regulative specification, in contrast, describes agent behavior;

i.e., it describes the conditions under which the agent sends and receives particular

messages. Regulative specifications are thus closer to implementations.

Judging the constitutive alignment of a set of agents by statically analyzing their

specifications is nontrivial because message meanings are conditional, and thus poten-

tially affected by how other messages change the relevant conditions. For example, if

one message constitutes an authorization and the meaning of a second message relies

121

upon that authorization, the commitments resulting from the second message would de-

pend upon whether the first message precedes it. For a two-party example, if a buyer

and seller interpret the above quote message as different commitments, they would be

misaligned [22] even though they satisfy safety.

In multiparty situations, a debtor and creditor’s conclusions about a commitment

may conflict because they see different messages occurrences or orders. Delegations

and assignments of commitments inherently involve three parties: thus these cases are

crucial. We propose to extract causality information from the specifications to use as

explained above.

A specification may fail safety or liveness without failing alignment. For example,

let protocol FLEXIBLE PURCHASE allow a payment to occur before or after the delivery

of goods. It is easy to see that Buyer-A and Seller-A (introduced above), respectively,

conform to the customer and merchant roles in FLEXIBLE PURCHASE. We saw above

that Buyer-A and Seller-A fail liveness. However, they never disagree about their com-

mitments and hence would satisfy alignment.

3.2 Conformance and Operability

Conformance and operability apply to each interoperability property: liveness, safety,

and alignment. A role conforms to, i.e., is a subtype of, another role provided the first

role meets all expectations placed on the second and holds no expectations of others

beyond what the second does. Similarly, an agent conforms to, i.e., instantiates, a role.

Conformance is important because it helps us build a library of roles without which

engineering would lapse into one-off solutions. To handle conformance properly would

require considering the semantics of protocols not in terms of simple runs, but in terms

of the choices they afford each role. Echoing the intuition of alternating refinement [23],

expectations placed on a role correspond to “external” choices; expectations held by a

role correspond to “internal” choices.

A protocol is operable, i.e., potentially enactable, if the roles it specifies are interop-

erable. A protocol may fail to be operable when it requires a role to act based on events

that the role cannot observe. Operability is an important quality criterion for protocols:

ideally, the protocols in a library should be operable, so developers may implement

selected roles conformantly, and be assured of interoperation.

Recall that Buyer-A and Seller-A together fail liveness even though they conform

to roles in FLEXIBLE PURCHASE. Hence FLEXIBLE PURCHASE is not operable for live-

ness. Conversely, let PREPAID PURCHASE require payment to occur before delivery.

Then, any pair of conforming customer and merchant would be live and safe. Hence,

PREPAID PURCHASE is operable. Buyer-A is nonconformant with the customer role,

whereas Seller-A is conformant with the merchant role of PREPAID PURCHASE. Seller-

A and Buyer-A failing liveness doesn’t mean PREPAID PURCHASE is inoperable: it is

Buyer-A that is messed up.

3.3 Compliance and Transparency

Compliance means that each agent performs as expected by others, by discharging its

commitments. We can prove compliance only when we know each agent’s specifica-

122

tion and relevant assumptions about the environment hold. That is, compliance can be

verified for specific runs but not proved in general for open systems [24]. Notice that

alignment and compliance are independent of each other: e.g., an interoperable buyer

may be committed to pay, but may refuse to do so. An agent may verify a debtor’s com-

pliance based on its observations in a specific enactment. Assuming that the discharge

of a commitment is observable (e.g., occurs via a message), verifying compliance is

simple in two-party cases. If a debtor complies, the creditor would eventually know. If

a debtor does not comply, then the creditor would eventually know—provided the com-

mitment includes a deadline. In multiparty cases, a creditor may lack some important

observations, and hence special techniques would be required to verify alignment.

A protocol is transparent if each role in it can verify the compliance of its debtors.

However, not all protocols enable each role to verify compliance at runtime: a protocol

may be such that “news” relevant to a commitment might not be propagated to the

creditor. Transparency is an important quality criterion for protocols: it ensures that

participants can verify if others are not complying.

3.4 Refinement and Compatibility

The refinement of a protocol by another protocol means that the second protocol gener-

ates only computations that are allowed by the first. Modeling via commitments enables

us to finesse the intuitions about protocol refinement. For example, a simple PAYMENT

protocol might require that the payer transfer funds to the payee. A particular refinement

of this might be PAYMENT WITH A CHECK. To pay with a check, the payer would send

a check to the payee, who would deposit the check at his bank, which would present

it to the payer’s bank, which would send the funds to the payee’s bank, which would

make those funds available to the payee. Thus PAYMENT BY CHECK is a specialization

of PAYMENT, but it involves additional roles and steps, and skips some of the steps of

PAYMENT, e.g., direct transfer. With a commitment-based definition, we can formally

establish that PAYMENT BY CHECK refines PAYMENT—something that would not be

possible with traditional approaches because of the above differences between the two

protocols. The key intuition is that the commitments at critical states line up correctly.

This is a significant departure from traditional notions of refinement which, because

they lack commitments, insist upon the computations to match in their detailed steps.

Notice that an agent designed to play a role in a refined protocol may not com-

ply with any role in the original protocol. This is because the agent may not interpret

messages in a way compatible with the original protocol. For example, in PAYMENT

BY CHECK, a merchant may interpret a check as being adequate as a receipt (once it

is cleared and returned to the customer by the customer’s bank), but the customer may

not interpret it like that and may continue to expect a separate receipt as in PAYMENT.

Further, the agent may fail to interoperate with roles defined in the original protocol.

This is because it may send messages that are not defined in the original protocol. In

general we would not be able to substitute a role from a refined protocol for a role in the

original protocol. The foregoing is motivation for the property of compatibility, which

determines if roles in one protocol conform to roles in another protocol.

Table 2 summarizes the above properties. With the exception of compliance, these

properties can be verified by a static analysis of the appropriate declarative specifica-

123

Table 2. The properties summarized

Property Of What?

Refinement, compatibility, operability, transparency Protocols

Interoperability (safety, liveness, or alignment) Agents and roles

Conformance Roles

Compliance Agents

tions. Compliance can realistically be determined only at runtime: we expect that for

even the simplest practically useful agents, the complexity of checking agent specifica-

tions for compliance would make it infeasible.

4 Discussion: Relevant Literature

Our main contribution in this paper is in characterizing the key correctness proper-

ties that would support an interaction-oriented approach to building software systems,

particularly cross-organizational business processes. In particular, the correctness prop-

erties reflect high-level requirements of such systems.

Interestingly, Parnas [25] proposed early in the study of software architectures that

connectors be treated not as control or data flow constructs but as assumptions made by

each component about the others. Arguably, much of the subsequent work on software

architecture regressed from Parnas’ insight: it has primarily considered connectors at

the level of flow, e.g., dealing exclusively with message order and occurrence [26]. In

formulating the assumptions at a high level, we see a great opportunity for multiagent

systems research to address some of the long-standing challenges in software.

Conventional formal methods. Current modeling formalisms, such as finite state ma-

chines and Petri Nets, originated in distributed computing and apply at lower levels

of abstraction than needed for flexible business interactions [27, 8]. When applied to

business protocols, these formalisms result in specifications that are over-constrained

to the level of specific sequences of actions. Recent approaches have sought to express

scheduling requirements declaratively, via temporal logic [28–30]. Although they are

more flexible and modular than operational representations, these approaches do not

express business semantics.

FIPA, the Foundation for Intelligent and Physical Agents (now part of IEEE) recog-

nized the importance of reusable interaction protocols in the late 1990s [31]. Odell et al.

[32] give one of the earliest uses of UML for protocols. They show how various UML

diagrams can be applied for modeling agent interactions. This work shows about how

far you can go in a conventional software framework, and has inspired our work. The

present paper is about fundamental enhancements to conventional models to capture

protocols and their commitment-based semantics.

Leading approaches model conversations via finite-state machines and establish

properties such as how roles may realize a protocol or a protocol subsumes another [33,

34]. Dastani et al. [35] show how to model a rich family of coordination connectors for

124

multiagent systems. Honda et al. [36] develop a type theory that would support multi-

party sessions: in essence this would help robustly generate roles. The above works are

valuable but lack the business-level semantics that distinguishes our work.

The term “protocol” sometimes refers to the constraints on one agent’s behavior

[5]—this is a role in our terminology. Because existing approaches do not characterize

the business semantics as such, they do not address the challenges described above.

However, their treatment of messages and computations at a low level is useful, and

complementary to our work.

Whereas deontic logic only deals with what is obligatory or permissible and thus

disregards an agent’s obligations to another agent, commitments are directed and con-

text sensitive. Commitments include support for a variety of operations [11, 37]. Foster

et al. [38] seek to capture the semantics of process interactions via the notion of obli-

gation policies. They represent choreographies via message sequence charts and state

machines. Obligations are rather weak in their formulation, however. Specifically, obli-

gations are not reified, and cannot be manipulated to capture flexible interactions among

independent parties. However, Foster et al.’s work illustrates an encouraging trend in

software engineering, namely, the expression of richer semantics in understanding in-

teractions among autonomous components. The present paper contributes to this trend.

Lomuscio et al. [39] formalize correctness properties in a temporal logic and show how

to verify them. They consider obligations but do not consider commitments as here. Lo-

muscio et al. also do not consider the rich set of properties defined above, concentrating

on only one, which is somewhat like compliance.

Business processes. The MIT Process Handbook (MITPH) [40] is of great relevance in-

tellectually. MITPH includes an extensive classification and systematic organization of

business processes based on two dimensions of process hierarchies, one that composes

the uses of a process out of its constituent parts, and another that subclasses generaliza-

tions of a process into specializations. Our work can provide the rigorous underpinnings

for work such as the MITPH. Grosof and Poon [41] develop a system to represent and

execute business rules from MITPH. Wyner and Lee [42] study specialization for data

flow diagrams. Their approach can form the basis of the processes identified in MITPH.

These concepts turn out to be complex and not readily applied to entire business pro-

cesses. Further, since Wyner and Lee do not capture the content through a high-level

representation such as commitments, the results are not intuitive.

Our approach agrees with the newer declarative forms of artifacts-based process

modeling [43] in terms of deemphasizing low-level operational details in favor of busi-

ness semantics. However, these approaches do not have a central organizing principle

on par with commitments, and thus do not offer a generic and flexible basis for deter-

mining the properties we introduced above.

Agent communications. Fornara and Colombetti [44] describe how commitments relate

to FIPA messages, demonstrating this with an example. Rovatsos [45] proposes a formal

operational semantics for communications based on commitments under synchronous

messaging. His approach violates autonomy by legislating agent behaviors from within

the language specification: this level of prescription is ill-suited to most multiagent

applications.

125

Yolum and Singh [46] [47] offer one of the first accounts of the use of commit-

ments in modeling protocols to improve flexibility for participating agents, which was

enhanced by Winikoff et al. [48]. Johnson et al. [49] develop a scheme for identifying

when two commitment-based protocols are equivalent. Their scheme, however, is sim-

plistic, classifying protocols based solely on their syntactic structure. Our work provides

stronger results from an application point of view and relates better to Web services.

Commitments have found application in formalizing argumentation, e.g., [50, 51].

Usually, though, this work makes simplifying assumptions such as (1) maintaining a

unique commitment store; (2) informally specifying the meanings of communicative

acts as effects on the store; (3) assuming synchronous two-party communications.

Agent-oriented software engineering (AOSE). A number of useful software method-

ologies for building multiagent systems for IT applications have emerged that incor-

porate rich metamodels and describe how to build a series of software artifacts [52,

53, 3]. Garcia-Ojeda et al. [54] synthesize existing metamodels into a comprehensive

metamodel of organizations geared toward process modeling. We recently developed

Amoeba, a protocol-based methodology compatible with the ideas of this paper [1].

The above methodologies address the challenges of autonomy and heterogeneity

by giving prominence to communication. Such works are clearly valuable and worth-

while. However, current approaches do not consider the full subtleties both of meaning

and of distribution. By contrast, this paper addresses the foundations for business in-

teractions understood in terms of commitments. The proposed definitions will offer a

foundations for building a new family of tools that, in principle, could be used within

any of the above methodologies, because they all support aspects of interaction and of

agents playing roles in interactions.

5 Conclusions and Directions

This paper presents a key step in our program of research to develop underpinnings

of multiagent systems—and indeed, of all software—on interactive grounds with an

emphasis on declarative formulations. The main point to take away is the richness of the

correctness properties. These properties echo well-known conventional properties but

their formulation in a declarative, interactive setting adds a lot of subtlety that traditional

approaches cannot express. The foregoing leads to two broad questions.

– Theory. What are practical decision algorithms for these properties? How can we

specify agents who may play specified roles (while applying their local policies)?

How can we determine that agents (supposedly) enacting a protocol are comply-

ing with the protocol? What are practical algorithms for judging the varieties of

interoperability, conformance, operability, compliance, and transparency?

– Suitability and applicability. Does representing meaning via commitments provide

a sufficiently natural basis for business interoperation? How readily can meaning be

associated with tools to engineer and use protocols? Can we specify commitments

sufficiently precisely in real-life business settings? How can we use the above prop-

erties and algorithms to enable protocol design and agent implementation?

Our future work lies in answering the above questions.

126

References

1. Desai, N., Chopra, A.K., Singh, M.P.: Amoeba: A methodology for modeling and evolution

of cross-organizational business processes. ACM Transactions on Software Engineering and

Methodology (TOSEM) (2009) To appear.

2. Desai, N., Chopra, A.K., Arrott, M., Specht, B., Singh, M.P.: Engineering foreign exchange

processes via commitment protocols. In: Proceedings of the 4th IEEE International Confer-

ence on Services Computing (SCC), IEEE Computer Society Press (2007) 514–521

3. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-

oriented software development methodology. Journal of Autonomous Agents and Multi-

Agent Systems 8 (2004) 203–236

4. Desai, N., Mallya, A.U., Chopra, A.K., Singh, M.P.: Interaction protocols as design ab-

stractions for business processes. IEEE Transactions on Software Engineering 31 (2005)

1015–1027

5. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: A priori conformance verification for guar-

anteeing interoperability in open environments. In: Proceedings of the 4th International Con-

ference on Service-Oriented Computing (ICSOC). Volume 4294 of LNCS., Springer (2006)

339–351

6. Fournet, C., Hoare, C.A.R., Rajamani, S.K., Rehof, J.: Stuck-free conformance. In: Proceed-

ings of the 16th International Conference on Computer Aided Verification (CAV). Volume

3114 of LNCS., Springer (2004) 242–254

7. Giordano, L., Martelli, A.: Verifying agent conformance with protocols specified in a tempo-

ral action logic. In: Proceedings of the 10th Congress of the Italian Association for Artificial

Intelligence (AI*IA). Volume 4733 of LNCS., Springer (2007) 145–156

8. van der Aalst, W., van Hee, K.: Workflow Management Models, Methods, and Systems.

MIT Press, Cambridge, MA (2002)

9. Chopra, A.K., Singh, M.P.: Multiagent Commitment Alignment. Proceedings of the 8th

International Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS),

(2009)

10. Hohfeld, W.N.: Fundamental Legal Conceptions as Applied in Judicial Reasoning and other

Legal Essays. Yale University Press, New Haven, CT (1919).

11. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a unification of

normative concepts. Artificial Intelligence and Law 7 (1999) 97–113

12. Singh, M.P.: Semantical considerations on dialectical and practical commitments. In: Pro-

ceedings of the 23rd Conference on Artificial Intelligence (AAAI), (2008) 176–181

13. Walton, D.N., Krabbe, E.C.W.: Commitment in Dialogue: Basic Concepts of Interpersonal

Reasoning. State University of New York Press, Albany (1995)

14. OMG: The Object Management Group’s Model Driven Architecture (MDA) (2006)

http://www.omg.org/mda/.

15. Jain, A.K., Aparicio IV, M., Singh, M.P.: Agents for process coherence in virtual enterprises.

Communications of the ACM 42 (1999) 62–69

16. Chopra, A.K., Singh, M.P.: Contextualizing commitment protocols. In: Proceedings of the

5th International Joint Conference on Autonomous Agents and Multiagent Systems. (2006)

1345–1352

17. Desai, N., Singh, M.P.: A modular action description language for protocol composition. In:

Proceedings of the 22nd Conference on Artificial Intelligence (AAAI), (2007) 962–967

18. Desai, N., Singh, M.P.: On the enactability of business protocols. In: Proceedings of the

23rd Conference on Artificial Intelligence (AAAI), (2008) 1126–1131

19. Mallya, A.U., Singh, M.P.: An algebra for commitment protocols. Journal of Autonomous

Agents and Multi-Agent Systems 14 (2007) 143–163

127

20. AMQP: Advanced message queuing protocol (2007) http://www.amqp.org.

21. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communica-

tions of the ACM 21 (1978) 558–565

22. Chopra, A.K., Singh, M.P.: Constitutive interoperability. In: Proceedings of the 7th Interna-

tional Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS). (2008)

797–804

23. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement relations.

In: Proceedings of the 9th International Conference on Concurrency Theory (CONCUR).

Volume 1466 of LNCS., Springer (1998) 163–178

24. Venkatraman, M., Singh, M.P.: Verifying compliance with commitment protocols: Enabling

open Web-based multiagent systems. Autonomous Agents and Multi-Agent Systems 2

(1999) 217–236

25. Parnas, D.L.: Information distribution aspects of design methodology. In: Proceedings of the

International Federation for Information Processing Congress. Volume TA-3., Amsterdam,

North Holland (1971) 26–30

26. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying

Messaging Solutions. Signature Series. Addison-Wesley, Boston (2004)

27. Harel, D., Gery, E.: Executable object modeling with statecharts. IEEE Computer 30 (1997)

31–42

28. Singh, M.P.: Distributed enactment of multiagent workflows: Temporal logic for service

composition. In: Proceedings of the 2nd International Joint Conference on Autonomous

Agents and MultiAgent Systems (AAMAS), (2003) 907–914

29. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-based work-

flow models: Change made easy. In: Proceedings of the On the Move to Meaningful Internet

Systems (Confederated International Conferences CoopIS, DOA, ODBASE, GADA, and

IS), Part I. Volume 4803 of LNCS., Springer (2007) 77–94

30. Wu, Q., Pu, C., Sahai, A., Barga, R.S.: Categorization and optimization of synchronization

dependencies in business processes. In: Proceedings of the 23nd International Conference

on Data Engineering (ICDE), IEEE (2007) 306–315

31. FIPA: FIPA interaction protocol specifications (2003) FIPA: The Foundation for Intelligent

Physical Agents, http://www.fipa.org/repository/ips.html.

32. Odell, J., Parunak, H.V.D., Bauer, B.: Representing agent interaction protocols in UML.

In: Proceedings of the 1st International Workshop on Agent-Oriented Software Engineering

(AOSE). (2001)

33. Benatallah, B., Casati, F., Toumani, F.: Representing, analysing and managing web service

protocols. Data & Knowledge Engineering 58 (2006) 327–357

34. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: A new approach to design and

analysis of e-service composition. In: Proceedings of the Twelfth International World Wide

Web Conference (WWW). (2003) 403–410

35. Dastani, M., Arbab, F., de Boer, F.S.: Coordination and composition in multi-agent sys-

tems. In: Proceedings of the 4rd International Joint Conference on Autonomous Agents and

Multiagent Systems (AAMAS), (2005) 439–446

36. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: Pro-

ceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL), ACM (2008)

37. Singh, M.P., Chopra, A.K., Desai, N.: Commitment-based SOA. IEEE Computer 42 (2009)

Accepted; available from http://www.csc.ncsu.edu/faculty/mpsingh/papers/.

38. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based analysis of obligations in web ser-

vice choreography. In: Proceedings of the Advanced International Conference on Telecom-

munications and International Conference on Internet and Web Applications and Services

(AICT-ICIW). (2006) 149–156

128

39. Lomuscio, A., Qu, H., Solanki, M.: Towards verifying compliance in agent-based web ser-

vice compositions. In: Proceedings of the 7th International Joint Conference on Autonomous

Agents and MultiAgent Systems (AAMAS) (2008) 265–272

40. Malone, T.W., Crowston, K., Herman, G.A., eds.: Organizing Business Knowledge: The

MIT Process Handbook. MIT Press, Cambridge, MA (2003)

41. Grosof, B.N., Poon, T.C.: SweetDeal: Representing agent contracts with exceptions using

XML rules, ontologies, and process descriptions. In: Proceedings of the 12th International

Conference on the World Wide Web. (2003) 340–349

42. Wyner, G.M., Lee, J.: Defining specialization for process models. In: [40]. MIT Press (2003)

131–174

43. Hull, R.: Artifact-centric business process models: Brief survey of research results and chal-

lenges. In: On the Move to Meaningful Internet Systems. Volume 5332 of LNCS., Springer

(2008) 1152–1163

44. Fornara, N., Colombetti, M.: Defining interaction protocols using a commitment-based agent

communication language. In: Proceedings of the 2nd International Joint Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS), (2003) 520–527

45. Rovatsos, M.: Dynamic semantics for agent communication languages. In: Proceedings

of the 6th international Joint Conference on Autonomous Agents and Multiagent Systems

(AAMAS). (2007) 1–8

46. Yolum, P., Singh, M.P.: Commitment machines. In: Proceedings of the 8th International

Workshop on Agent Theories, Architectures, and Languages (ATAL-01). Volume 2333 of

LNAI., Springer-Verlag (2002) 235–247

47. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: Applying event calcu-

lus planning using commitments. In: Proceedings of the 1st International Joint Conference

on Autonomous Agents and MultiAgent Systems (AAMAS), (2002) 527–534

48. Winikoff, M., Liu, W., Harland, J.: Enhancing commitment machines. In: Proceedings of

the 2nd International Workshop on Declarative Agent Languages and Technologies (DALT).

Volume 3476 of LNAI., Berlin, Springer-Verlag (2005) 198–220

49. Johnson, M.W., McBurney, P., Parsons, S.: When are two protocols the same? In Huget,

M.P., ed.: Communication in Multiagent Systems: Agent Communication Languages and

Conversation Policies. Volume 2650 of LNAI. Springer-Verlag, Berlin (2003) 253–268

50. Amgoud, L., Maudet, N., Parsons, S.: An argumentation-based semantics for agent commu-

nication languages. In: Proceedings of the 15th European Conference on Artificial Intelli-

gence (ECAI), IOS Press (2002) 38–42

51. Norman, T.J., Carbogim, D.V., Krabbe, E.C.W., Walton, D.N.: Argument and multi-agent

systems. In Reed, C., Norman, T.J., eds.: Argumentation Machines. Kluwer (2004)

52. Bergenti, F., Gleizes, M.P., Zambonelli, F., eds.: Methodologies and Software Engineering

for Agent Systems. Kluwer, Boston (2004)

53. Henderson-Sellers, B., Giorgini, P., eds.: Agent-Oriented Methodologies. Idea Group, Her-

shey, PA (2005)

54. Garcia-Ojeda, J.C., DeLoach, S.A., Robby, Oyenan, W.H., Valenzuela, J.: O-MaSE: A cus-

tomizable approach to developing multiagent processes. In: Proceedings of the 8th Interna-

tional Workshop on Agent Oriented Software Engineering (AOSE 2007). (2007)

129

Reasoning and Planning with Cooperative Actions for

Multiagents Using Answer Set Programming

Tran Cao Son1 and Chiaki Sakama2

1 Dept. of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA

tson@cs.nmsu.edu
2 Computer and Communication Sciences, Wakayama University, Wakayama 640-8510, Japan

sakama@sys.wakayama-u.ac.jp

Abstract. In this paper, we investigate the multiagent planning problem in the

presence of cooperative actions and agents, which have their own goals and are

willing to cooperate. To this end, we extend the action language A in [12] to

represent and reason about plans with cooperative actions of an individual agent

operating in a multiagent environment. We then use the proposed language to for-

malize the multiagent planning problem and the notion of a joint plan for multia-

gents in this setting. We discuss a method for computing joint plans using answer

set programming and provide arguments for the soundness and completeness of

the implementation.

1 Introduction

Cooperative actions are actions of an agent which can be executed only if the agent

is operating in a multiagent environment. They can be actions for soliciting something

from other agents or actions for setting up some conditions for other agents. They differ

from individual actions in that they might affect other agents. Cooperative actions are

important not only in situations where multiple agents have to work together to accom-

plish a common goal but also in situations where each agent has its own goal. This can

be seen in the following story, a modified version of the story in [21]:

Example 1. Three new students A, B, and C are moving in a shared apartment and

planning to decorate their rooms. Each would like to hang one of their objects on the

wall, e.g.,A would like to hang a mirror,B a diploma, and C a painting.A andB know

how to use either a nail or a screw to complete their job but C knows to use the screw

only. A has neither a nail or a screw. B has both. C has only a nail. To use a nail, one

will need a hammer. Among three, only B has a hammer.

Do the students have a joint-plan that allows each of them to achieve his/her goal?

Intuitively, we can see that only B can accomplish her job independent of A and

C. The three can achieve their goals if B uses the hammer and the nail to hang her

diploma then gives A the hammer and C the screw, respectively. C, on the other hand,

gives A the nail and uses the screw to hang her painting. A uses the nail (from C) and

the hammer (from B) to hang her mirror. Of course, to avoid unpleasant moments, A

should ask for the nail (from C) and the hammer (from B) and C should ask for the

screw (from B).

130

However, it is easy to see that if either B or C does not want to give out anything,

then only B can achieve her goal. Furthermore, if B decides to use the screw instead of

using the nail in hanging her diploma, then C has no way of achieving her goal. ✷

In the above example, the action of giving a nail, a hammer, or a screw between the

students can be considered as cooperative actions. The action of requesting something

from others can also be considered as cooperative actions. It is obvious that without

some cooperative actions, not all students can achieve their own goals. Even with the

cooperative actions at their disposal, the students might still need to coordinate in cre-

ating their corresponding plans.

In Example 1, agents (the students) maintain their own local worlds and their actions

do generally not affect others’ worlds. It should be emphasized that the fact that agents

have their own world representation does not exclude the situations in which the worlds

of different agents overlap and the execution of one agent’s individual actions might

affect others as well or the execution of their joint-action.

Example 2. Let us consider A and B who are in one room and studying at their tables.

Each of them sits next to a switch which can control the lamp in the room. Flipping

either switch will change the status of the light.

Assume that A and B maintain their world representation separately. (They might

use the same theory for this purpose but we will not impose this.) Obviously, if A flips

the switch next to her, the world in which B is in will also change.

Similarly, if A and B lift a table and place it at different location, their joint-action

change the world of both as well. ✷

In this paper, we will consider multiagent planning problems in which each agent main-

tains its own representation about the world and its capabilities, which includes individ-

ual actions and cooperative actions; and has its own goal. We are mainly interested in

the process of creating a joint plan prior to its execution. We will begin by extending the

languageA in [12] to allow cooperative actions for a single agent. The semantics of the

new language is defined by a transition function which maps pairs of actions and states

to states. We then define the multiagent planning problems and the notion of a joint

plan for multiagents in presence of cooperative actions. Finally, we discuss a method

for computing joint plans using answer set programming [18, 19].

2 An action language with cooperative actions

In this section, we present a language for representing and reasoning about plans for

an agent in the multiagent environment with cooperative actions. To this end, we ex-

tend the language A in [12] to allow cooperative actions1. In this paper, we consider

cooperative actions as actions that an agent would not have if she were in a single

agent environment. Specifically, we consider two types of cooperative actions, one that

requests the establishment of a condition in an agent’s world and another establishes

some conditions in the world of another agent. We will assume an arbitrary but fixed

set of agent identifiers AG. A planning problem of an agent in AG is defined over a set

of fluents (or state variables) F, a set of individual actions A, and a set of cooperative

1 The choice of A will be discussed in Section 5.

131

actions C. We will assume that A always contains a special action wait which does not

have any effect on the agent’s world2. Furthermore, we will require that actions in C do

not appear in A. This highlights the fact that the cooperative actions are presented due

to the presence of other agents.

A fluent literal (or literal) is either a fluent or its negation. Fluent formulas are

propositional formulas constructed from literals and propositional connectives.

2.1 Specifying Individual Actions

A domain specification DI over F and A describes the individual actions of an agent

and consists of laws of the following form:

a causes l if φ (1)

a executable φ (2)

where a is an individual action (in A), l is a fluent literal and φ is a set of fluent literals.

A law of the form (1), called a dynamic law, states that if a is executed when φ

is true then l becomes true. (2) is an executability condition and says that a can be

executed only if φ is true. The semantics of a domain specification is defined by the

notion of state and by a transition function Φ, that specifies the result of the execution

of an action a in a state s.

A set of literals S satisfies a literal l (l holds/is true in S), denoted by S |= l, if

l ∈ S. For a set of literals φ, S |= φ if S |= l for every l ∈ φ. A state s is a set of fluent

literals that is consistent and complete, i.e., for every f ∈ F, either f ∈ s or ¬f ∈ s but

{f,¬f} 6⊆ s. In the following, l denotes the negation of l, i.e., if l = f and f ∈ F, then

l = ¬f ; if l = ¬f for some f ∈ F, then l = f . For a set of literals S, S = {l | l ∈ S}.
An action a is executable in a state s if there exists an executability condition

(a executable φ) in DI such that s |= φ.

Let ea(s) = {l | ∃(a causes l if φ) ∈ DI.[s |= φ]}. The result of the execution of

a in s is defined by

• Φ(a, s) = fails if a is not executable in s; and

• Φ(a, s) = (s \ ea(s)) ∪ ea(s) if a is executable in s.

A domain specificationDI is consistent if Φ(a, s) 6= fails holds for every pair of action

a and state s such that a is executable in s.

Φ is extended to reason about effect of a sequence of actions as follows.

Definition 1 (Transition function). Let DI be a domain specification, s be a state,

and α = [a1; . . . ; an] be a sequence of actions.

• Φ̂(α, s) = s if n = 0;

• Φ̂(α, s) = Φ(an, Φ̂([a1; . . . ; an−1], s)), otherwise

where Φ(a, fails) = fails .

An agent can use the transition function to reason about effects of its actions and to

planning. An action sequence α is a plan achieving a set of literals O from a state I iff

O is true in Φ̂(α, I).

2 We envision a multiagent environment where agents may have to wait for other agents to finish

some actions before they can go on with their course of actions.

132

Example 3. The domain specification DIA for A in Example 1 is defined over FA =
{h nail, h screw,mirror on, h ham} and AA = {hw nail, hw screw} with the set

of laws3:

hw nail causes mirror on hw screw causes mirror on

hw nail causes ¬h nail hw screw causes ¬h screw
hw nail executable h nail, h ham hw screw executable h screw

In all of the above, the prefix “hw” stands for “hang with” and “h” stans for “has.” ✷

2.2 Specifying Cooperative Actions

The specification of the set of cooperative actions of an agent, denoted byDC, is defined

over C and F and consists of laws of the following form:

r requests γ from Ai may cause φ if ψ and (3)

p provides γ for Ai causes φ if ψ (4)

r and p are action names in C, γ, φ, and ψ are sets of literals and γ ⊆ φ, and Ai is a set

of agent identifiers in AG. r is called a request for γ and p an offer for γ. Since these

actions are intended to address other agents, we require that the identifier of the agent

having r and/or p does not belong to Ai. Furthermore, for a request-action, we require

that φ̄∩ψ 6= ∅ which indicates that an agent will only request for something that he/she

does not have.

Intuitively, (3) represents a set of requests that can be made by the agent; if the agent

makes the request for γ (which is the action r) directed to an agent in Ai then φ might

become true. The condition γ ⊆ φ guarantees that requested literals (γ) are true if the

request is satisfied (φ). Furthermore, the action can only be executed if ψ is true. For

this reason, we call r(γ, i), i ∈ Ai, an instance of a request (3). Similarly, (4) represents

the set of offers p(γ, i), i ∈ Ai. This offer addresses a request made to the agent by

establishing γ (for the requestor). This action is similar to the individual actions in A of

an agent. The main difference is that they also change the worlds of other agents. It can

only be executed if ψ is true and its effects is φ.

For simplicity of the presentation, we will assume that each action in C occurs in

at most one law of the form (3) or (4). We use cooperative action to refer to either a

request- or an offer-action. WhenAi is the set of all other agents, we often omit the part

’from Ai’ from (3) and ’for Ai’ from (4).

Example 4. In Example 1, it is reasonable for A to request and/or offer other agents

on the literal h nail. An action for requesting for (offering of) h nail for A can be

specified by

give me nail requests h nail from {B,C} may cause h nail if ¬h nail
get this nail provides h nail for {B,C} causes ¬h nail if h nail

where give me nail is a request-action and get this nail is an offer-action. If the

agent A wants to ask for help, then her set of cooperative actions needs to include the

3 To simplify the representation, we often write l1, . . . , ln instead of {l1, . . . , ln} in describing

the domain.

133

action give me nail. On the other hand, if she wants to help others, then it should

include the action get this nail. ✷

Definition 2 (Planning problem with cooperative actions). A planning problem with

cooperative actions4 P is a tuple 〈DI, I,O,DC〉 where DI is a domain specification,

I is a state representing the initial state, O is a set of literals representing the goal, and

DC is a set of laws of the form (3) and (4).

Given a planning problem P = 〈DI, I,O,DC〉, we need to specify what is a “plan”

achieving O in the presence of the cooperative actions. Intuitively, we could consider

these actions as the actions of the agent and use the notion of a plan mentioned in

the previous subsection. This is, however, not enough since an agent, when executes

a request, might or might not receive an offer satisfying his/her request. For example,

a request for a nail from A to C might not result in A having the nail because C has

already given the nail to B.

We will therefore extend the transition function Φ of the domain specification DI

to consider cooperative actions. We will use ΦD to denote the transition function of

DI∪DC. By assuming that cooperative actions are different from the individual actions

(i.e., A∩C = ∅), it suffices to specify what is the result of the execution of a request/offer-

action in a given state.

For simplicity of the presentation, we assume that each individual agent executes

only one action at a time. The method presents in this paper can be easily extended to

the case where individual agents can execute parallel actions.

Let s be a state. We say that an instance r(γ, i) of a request-action specified by the

law

r requests γ from Ai may cause φ if ψ

in DC is executable in s if ψ is true in s. Executing the action r(γ, i) in s does not

guarantee that the agent will obtain φ in the resulting state. This is because the agent,

whom the request was made to, might not have the capability to establish φ for the

requestor. We say that the execution of r(γ, i) in s might or might not succeed. As

such, the result of executing r(γ, i) in s is either s, representing the case when the

request is not satisfied (by the agent whom the request was made to); or (s \ φ) ∪ φ,

representing the case when the request is satisfied.

Remark 1. Observe that under the assumption that an agent will execute a request-

action only when it is necessary (i.e., φ̄∩ψ 6= ∅), we have that s 6= (s\φ)∪φ for every

instance r(γ, i). This allows us to recognize when a request is satisfied.

An instance p(γ, i) of an offer-action specified by the law

p provides γ for Ai causes φ if ψ

in DC is executable in s if ψ is true in s. The state resulting from executing p(γ, i) in s

is given by (s \ φ) ∪ φ.

4 For simplicity of presentation, we will use planning problem instead of planning problem with

cooperative actions whenever no confusion is possible.

134

Definition 3 (Transition function). The transition function ΦD overDI∪DC, a map-

ping from pairs of actions and states to sets of states, is defined as follows. Let s be a

state.

• For a ∈ A, ΦD(a, s) = {Φ(a, s)} if Φ(a, s) 6= fails; otherwise, ΦD(a, s) = ∅.

• For an instance of an offer-action p(γ, i), ΦD(p(γ, i), s) = {(s \ φ) ∪ φ} if p is

executable in s; otherwise, ΦD(p, s)=∅.

• For an instance of a request-action r(γ, i), ΦD(r(γ, i), s) = {s, (s \ φ) ∪ φ} if

r(γ, i) is executable in s; otherwise, ΦD(r(γ, i), s) = ∅.

Remark 2. The definition of ΦD assumes that each cooperative action occurs in only

one law of the form (3) or (4). The definition can be extended to remove this restriction

by (i) defining a set ecr(γ,i)(s) (resp. ecp(γ,i)(s)), similar to the definition of the set of

effects of an action ea(s) and (ii) changing the definition accordingly.

The transition function is extended to reason about plans as follows.

Definition 4 (Plan with cooperative actions). LetP be a planning problem 〈DI, I,O,DC〉.
We define

• A sequence s0, a0, s1, . . . , an−1, sn, where si’s are states and aj’s are actions, is

a trajectory if si+1 ∈ ΦD(ai, si) for 0 ≤ i < n.

• A trajectory s0, a0, s1, . . . , an−1, sn is a possible plan achieving O (or a solution

of P) if s0 = I and sn |= O.

• An occurrence of a request r(γ, i) = aj in a trajectory s0, a0, s1, . . . , an−1, sn is

satisfied if sj+1 6= sj; otherwise, the request is said to be unsatisfied.

Notice that the third item in the above definition is sensible due to Remark 1. A tra-

jectory satisfying the goal O of the planning problem is a solution of P if all satisfied

requests assumed in the trajectory indeed materialized, i.e., for each satisfied r(γ, i) in

the trajectory, the agent i executes the action p(γ, j) (j is the identifier of the agent

issuing the request). The topic of coordination between agents will be discussed in the

next section.

Example 5. Let PA = 〈DIA, IA, OA, DCA〉 be the planning problem for A with DIA
(Example 3), IA = {¬h nail,¬h screw,¬h ham,¬mirror on} andOA = {mirror on},
andDCA is the set of actions give me nail and get this nail whose specifications are

given (Example 4) and the two actions

give me ham requests h ham from {B,C} may cause h ham if ¬h ham,

get this ham provides h ham for {B,C} causes ¬h ham if h ham.

We can easily check the following:

• for n ≤ 2, the problem has no possible plan.

• for n = 3, PA has a possible plan which is the following trajectory:

sA
0 , give me nail(h nail, C), sA

1 , give me ham(h ham,B), sA
2 , hw nail, sA

3

where sA
0 = {¬h nail,¬h ham,¬h screw,¬mirror on},

sA
1 = {h nail,¬h ham,¬h screw,¬mirror on},
sA
2 = {h nail, h ham,¬h screw,¬mirror on},
sA
3 = {¬h nail, h ham,¬h screw,mirror on}. ✷

135

3 Planning for Multiagents

In a multiagent environment, each agent needs to know her capabilities. She also needs

to know from whom she can ask for some favors or to whom she could offer helps.

Furthermore, it is also common that groups of agents need to know about their joint

capabilities. It is also possible that agents might talk the same language. This can be

summarized as follows.

• Each agent has its own planning problem, which is described in the previous section.

• The agent might or might not share the same world representation. By default, the

world representation of the agent is local. For example, the three agents in Exam-

ple 1 can use the same set of fluents and actions; and A has ¬h nail in her initial

state whereas B has h nail in hers, yet this is not a contradictory statement about

the world since the fluents are local. On the other hand, the two agents in Exam-

ple 2 share certain features (e.g. the light) and therefore the fluents encoding these

features should have the same value in their representations.

• An agent might request another agent to establish certain conditions in her own

world. For example, A might request B to establish h nail to be true for her.

• An agent might execute some actions that change the local world of another agent.

For example, B can give A the nail, thus establishing h nail in the world of A.

• There might be actions that a set of agents should not execute in parallel. For ex-

ample, two cars– one goes north-south and another east-west– cannot cross an in-

tersection at the same time.

• There might be actions that a set of agents need to execute in parallel. For example,

the action of lifting a table by two agents need to be done in parallel.

It turns out that the language developed in the previous section can be extended to

represent and reason about plans/actions of agents in a multiagent environment. With

the help of the notion of a planning problem with cooperative actions, a multiagent

planning problem can be defined as follows.

Definition 5 (Multiagent planning problem). A multiagent planning problemM is a

tuple 〈AG, {Pi}i∈AG ,F , IC, C〉 where

• AG is a set of agents,

• Pi is a planning problem with cooperative actions for each agent i ∈ AG,

• F is the set of tuples of the form (i, j, fi, fj) where i, j ∈ AG and fi ∈ Fi and

fj ∈ Fj , and

• IC and C are sets of sets of agent action pairs of the form (i, ai) where i is an

agent and ai is an action in Ai.

Intuitively, each tuple (i, j, fi, fj) indicates that fi and fj represent the same state vari-

able in the worlds of two agents i and j and can be changed by either i or j. This mean

that they should have the same value in every state of i and j. A set of agent-action

pairs {(i1, ai1), . . . , (ik, aik
)} ∈ IC indicates that the agents i1, . . . , ik cannot execute

the actions ai1 , . . . , aik
at the same time. On the other hand, a set of agent-action pairs

{(i1, ai1), . . . , (ik, aik
)} ∈ C indicates that the agents i1, . . . , ik must execute the ac-

tions ai1 , . . . , aik
concurrently for their effects to be materialized. The sets F , IC, and

C are called constraints ofM.

136

Example 6. The planning problem in Example 1 can be represented by

M1 = 〈{A,B,C}, {PA,PB ,PC}, ∅, ∅, ∅〉 where

• A, B, and C are the students from Example 1;

• PA is defined as in Example 5;

• PB = 〈DIB , IB , OB , DCB〉 where DIB is defined over

FB = {h nail, h screw, diploma on, h ham} and AB = {hw nail, hw screw}
with the set of laws:
hw nail causes diploma on hw nail causes ¬h nail
hw nail executable h ham, h nail hw screw causes diploma on

hw screw causes ¬h screw hw screw executable h screw

IB = {h nail, h screw, h ham,¬diploma on} and OB = {diploma on}, and

DCB contains cooperative actions similar to that in DCA and DCC (below).

• PC = 〈DIC , IC , OC , DCC〉 where DIC is defined over

FC = {h nail, h screw, painting on}

AC = {hw screw}

with the set of laws: hw screw causes painting on

hw screw causes ¬h screw hw screw executable h screw

IC = {h nail,¬h screw,¬painting on}, OC = {painting on}, and DCC con-

tains the following laws:

give me screw requests h screw from {A,B} may cause h screw if ¬h screw
get this screw provides h screw for {A,B} causes ¬h screw if h screw ✷

We now define the notion of a solution for a planning problem.

Definition 6 (Joint plan for multiagents). Let M = 〈AG, {Pi}i∈AG ,F , IC, C〉 be

a multiagent planning problem. For each i ∈ AG, let Si = [si
0a

i
0, . . . , a

i
n−1s

i
n] be a

possible plan of Pi. We say that {Si}i∈AG is a joint plan (or solution) of length n for

M if for every 0 ≤ k ≤ n:

• for each instance of a request ai
k = r(γ, j) that is satisfied in Si, we have that

a
j
k = p(γ, i);

• for each (i, j, fi, fj) ∈ F , fi ∈ s
i
k iff fj ∈ s

j
k;

• for each S ∈ IC, there exists some (i, a) ∈ S such that ai
k 6= a; and

• for each S ∈ C, either {a | (i, a) ∈ S and a = ai
k} = {a | (i, a) ∈ S} or

{a | (i, a) ∈ S and a = ai
k} = ∅.

Intuitively, a joint plan is composed of individual plans which allow the agents to

achieve their own goals and satisfy the various constraints of the problem. In the pro-

cess, agents can help each other in establishing certain conditions. However, if a request

of an agent is assumed (by the requestor) to be satisfied within a joint plan then the joint

plan must also contain an agent who actually executes an offer action satisfying the re-

quest (first item). The second item states that the individual plans must agree with each

other on their effects of shared fluents, i.e., it enforces the constraints in F . The third

and fourth items make sure that non-parallel and parallel constraints in IC and C are

maintained by the joint plan.

137

Example 7. For the multiagent planning problemM1 from Example 6, We can easily

check the following:

• for n ≤ 2,M1 has no solution.

• for n = 3, it has a solution consisting of the following plans

• SA = [sA
0 , give me nail(h nail, C), sA

1 , give me ham(h ham,B),
sA
2 , hw nail, sA

3 , wait, s
A
4]

• SB = [sB
0 , hw nail, sB

1 , get this ham(h ham,A),
sB
2 , get this screw(h screw,C), sB

3 , wait, s
B
4 ,]

• SC = [sC
0 , get this nail(h nail, A), sC

1 , wait, s
C
2 , give me screw(h screw,B),

sC
3 , hw screw, sC

4]

where all requests are satisfied and the states are uniquely determined by the initial

states and the executed actions. ✷

The joint plan for the agents in Example 7 requires that each agent executes some

cooperative actions. It is easy to see that any joint plan for the two agents in the problem

M2 requires that only one agent to flip the switch next to her and other agent to wait.

4 Computing Joint Plans

In this section, we will present different approaches to computing joint plans. Our ap-

proaches utilize answer set programming [18, 19], a declarative programming paradigm

that has recently emerged from the study of logic programming under the answer set

semantics [11].

4.1 Answer Set Semantics of Logic Programs

A logic program Π is a set of rules of the form

a0 ← a1, . . . , am,not am+1, . . . ,not an (5)

where 0 ≤ m ≤ n, each ai is an atom of a propositional language5 and not represents

negation-as-failure. A negation as failure literal (or naf-literal) is of the form not a

where a is an atom. For a rule of the form (5), the left (right) hand sides of the rule are

called the head (body), respectively. The head and the body can be empty (but not at the

same time). A rule is a constraint if its head is empty; it is a fact if its body is empty.

Consider a set of ground atoms X . The body of a rule of the form (5) is satisfied

by X if {am+1, . . . , an} ∩X = ∅ and {a1, . . . , am} ⊆ X . A rule of the form (5) with

nonempty head is satisfied by X if either its body is not satisfied by X or a0 ∈ X . In

other words, X satisfies a rule of the form (5) if its head belongs to X whenever X

satisfies its body. A constraint is satisfied by X if its body is not satisfied by X .

For a set of ground atoms S and a program Π , the reduct of Π w.r.t. S, denoted by

ΠS , is the program obtained from the set of all ground instances of Π by deleting

1. each rule that has a naf-literal not a in its body with a∈S, and

2. all naf-literals in the bodies of the remaining rules.

S is an answer set of Π if it satisfies the following conditions.

5 Rules with variables are viewed as a shorthand for the set of its ground instances.

138

1. If Π does not contain any naf-literal (i.e. m = n in every rule of Π) then S is the

smallest set of atoms that satisfies all the rules in Π .

2. If the program Π does contain some naf-literal (m < n in some rule of Π), then S

is an answer set of Π if S is the answer set of ΠS . (Note that ΠS does not contain

naf-literals, its answer set is defined in the first item.)

A programΠ is said to be consistent if it has an answer set. Otherwise, it is inconsistent.

To make answer set style programming easier, Niemelä et al. [20] introduce a new type

of rules, called cardinality constraint rule (a special form of the weight constraint rule)

of the following form: A0 ← A1, . . . , Am,not Am+1, . . . ,not An

where each Ai is a choice atom of the form l{b1, . . . , bk}u with bj are atoms and l and

u are two integers, l ≤ u; and A0 can be empty. An atom l{b1, . . . , bk}u is said to be

true wrt. a set of literals S iff l ≤ |S ∩{b1, . . . , bk}| ≤ u. The satisfaction of a rule wrt.

a set of atoms is extended in the usual way. Using rules of this type, one can greatly

reduce the number of rules of programs in answer set programming. The semantics of

logic programs with such rules is given in [20].

4.2 Finding a Possible Plan for One Agent

We will represent each individual problem of each agent Pi by a logic program. The

program will consist of rules describing the effects of actions, the initial knowledge of

the agent, and the goal of the agent. Answer set planning [16] refers to the use of answer

set programming in planning. This method has been applied to a variety of problems

[10, 25]. Let P = 〈DI, I,O,DC〉 be a planning problem. We will now describe the

program Π(P) that encodes P . We adapt the conventional style in logic programming:

terms starting with lower-case letter are constant and others are variables. It also has a

parameter denoting the maximal length of the plan that the agent considers permissible.

The key predicates of Π(P) are:

• h(l, t) – fluent literal l holds at the time step t; and

• o(a, t) – action a is executed (by the agent) at the time step t;

• poss(a, t) – action a can be executed at the time step t.

h(l, t) can be extended to define h(φ, t) for an arbitrary fluent formula φ, which states

that φ holds at the time moment t. In writing the program, we use h({l1, . . . , lk}, T) as

a shorthand for h(l1, T), . . . , h(lk, T). In addition, we write h(ok(r(γ, i)), t) to denote

that the request-action r(γ, i) is satisfied at the time step t. The rules of the program is

divided into groups:

• Group 1: The program contains the following facts:

{fluent(f) | f ∈ F} ∪ {action(a) | a ∈ A}∪
{action(r(γ), i) | r occurring in a law of form (3), i ∈ Ai}∪
{action(p(γ), i) | p occurring in a law of form (4), i ∈ Ai}

These facts declare the fluents and the actions of the problem.

• Group 2: rules for reasoning about effects of actions. For each action a ∈ A,

- if DI contains the law (a executable φ) then Π(P) contains the rules

poss(a, T)← h(φ, T) (6)

← o(a, T),not poss(a, T) (7)

139

- if DI contains the law (a causes l if φ) then Π(P) contains the rule

h(l, T + 1)← o(a, T), h(φ, T) (8)

• Group 3: rules for reasoning about request-actions. For each statement of the form

r requests γ from Ai may cause φ if ψ

and each i ∈ Ai, Π(P) contains the rules

poss(r(γ, i), T)← h(ψ, T) (9)

← o(r(γ, i), T),not poss(r(γ, i), T) (10)

0 {h(ok(r(γ, i)), T + 1)} 1← o(r(γ, i), T). (11)

h(φ, T)← h(ok(r(γ, i)), T) (12)

where (12) is a shorthand for the collection of rules {h(l, T)← h(ok(r(γ, i)), T) |
l ∈ φ}. Observe that atoms of the form h(ok(γ, i), T) are used to record the sat-

isfaction of the request r(γ, i) and there might be different ways for a condition γ

to be satisfied. Hence, (11) and (12) need to be separated even though it looks like

they could have been merged into one.

• Group 4: rules for reasoning about offer-actions. For each statement of the form

p provides γ for Ai causes φ if ψ

and i ∈ Ai, Π(P) contains the rules

poss(p(γ, i), T)← h(ψ, T) (13)

← o(p(γ, i), T),not poss(p(γ, i), T) (14)

h(φ, T + 1)← o(p(γ, i), T). (15)

These rules are similar to the rules encoding the effect of individual actions of the

agent. The difference between the encoding of a request-action and the encoding

of an offer-action lies in that we do not need to introduce an atom of the form

h(ok(p(γ, i)), T) to record the execution of p(γ, i), i.e., effects of offer-actions are

deterministic.

• Group 5: rules describing the initial state. For each literal l ∈ I , Π(P) contains the

fact h(l, 0).

• Group 6: rules encoding the goal state. For each literal l ∈ O, Π(P) contains

← not h(l, n). (16)

where n is the desired length of the plan.

• Group 7: rules for reasoning by inertial. For each fluent F ∈ F, Π(P) contains

h(F, T + 1)← h(F, T),not h(¬F, T + 1). (17)

h(¬F, T + 1)← h(¬F, T),not h(F, T + 1). (18)

← h(F, T), h(¬F, T). (19)

140

• Group 8: rules for generating action occurrences. Π(P) contains the rule

1 {o(A, T) : action(A)} 1← T < n. (20)

which states that at any time step, the action must execute one of its actions6.

Let P = 〈DI, I,O,DC〉 be a planning problem and Π(P, n) denote the set of

ground rules of Π(P) in which the variable T is instantiated with integers between 0
to n. Let M be an answer set of Π(P, n). Let st[M] = {l | l is a fluent literal and

h(l, t) ∈ M}. By α[M] we denote the sequence s0[M], a0, s1[M], . . . , an−1, sn[M]
where o(ai, i) ∈M . We can show the following:

Theorem 1. Let P be a planning problem. Then,

• for each possible plan α of P there exists an n and an answer set M of Π(P, n)
such that α = α[M];

• for each n, if Π(P, n) is inconsistent then P does not have a solution of length

less than or equal to n; and

• for each n, if Π(P, n) has an answer set M then α[M] is a solution of P .

4.3 Compatible Answer Sets and Joint Plan

Individual possible plans can be computed using the program Π(Pi). We will now

discuss an approach for combining them to create a plan for all the agents. Intuitively,

we need to make sure that if a request is assumed to be satisfied by an agent then

there exists an instance of an offer-action matching this request. This can be easily

characterized by the notion of a compatible answer sets.

Definition 7 (Compatible answer sets). Let M = 〈AG, {Pi}i∈AG ,F , IC, C〉 be a

multiagent planning problem and M = 〈Mi〉i∈AG be a sequence of answer sets of

〈Π(Pi, n)〉i∈AG where the constant n is fixed. M is a set of compatible answer sets if

for each k ≤ n,

• for each i ∈ AG, if h(ok(r(γ, j)), k + 1) ∈Mi then o(p(γ, i), k) ∈Mj;

• for each i ∈ AG, if o(p(γ, j), k) ∈Mi then h(ok(r(γ, i)), k + 1) ∈Mj;

• for each (i, j, fi, fj) in F , h(fi, k) ∈Mi iff h(fj , k) ∈Mj;

• for each S ∈ IC there exists some (i, ai) ∈ S such that o(ai, k) 6∈Mi; and

• for each S ∈ C, either {ai|(i, ai) ∈ S and o(ai, k) ∈ Mi} = {a|(i, a) ∈ S} or

{ai|(i, ai) ∈ S and o(ai, k) ∈Mi} = ∅.

Intuitively, a set of compatible answer sets corresponds to a joint plan (as we will prove

in the next theorem) similar to the correspondence between answer sets and plans in

the case of a single agent. Observe also that h(ok(.), T) is present only due to the

successfulness of a request-action, not an offer-action. The conditions imposed on a set

of compatible answer sets make sure that the collection of individual plans extracting

from them satisfies the constraints of the planning problem and the requirement that

satisfying requests must be matched with offers.

6 Since we assume that wait always belongs to the set of actions of an agent, this is not a strict

requirement as it might sound.

141

Theorem 2. LetM = 〈AG, {Pi}i∈AG ,F , IC〉 be a multiagent planning problem and

n be an integer.

• if 〈Π(Pi, n)〉i∈AG does not have a set of compatible answer sets thenM does not

have a solution with length n.

• a sequence of answer sets M = 〈Mi〉i∈AG is compatible iff there exists a solution

S = 〈αi〉i∈AG such that α[Mi] = αi for every i ∈ AG.

Example 8. LetM1 be the multiagent planning problem from Example 6. We can eas-

ily check the following:

• {Π(Pi, n)}i∈{A,B,C} for n ≤ 2 does not have compatible answer sets,

• for n = 3, the three answer sets MA, MB , and MC of Π(PA, 3), Π(PB , 3), and

Π(PC , 3), where

• MA contains o(give me nail(h nail, c), 0), h(ok(give me nail(h nail, c)), 1),
o(give me ham(h ham, b), 1), h(ok(give me ham(h ham, b)), 2),
o(hw nail, 2), and o(wait, 3).

• MB contains o(hw nail, 0), o(get this ham(h ham, a), 1),
o(get this screw(h screw, c), 2), o(wait, 3); and

• MC contains o(get this nail(h nail, a), 0), o(wait, 1), o(give me screw(h screw, b), 2),
h(ok(give me screw(h screw, b)), 2), and o(hw screw, 3).

These answer sets are compatible and correspond to the solution in Example 5. ✷

The notion of joint plan can be specialized as follows.

Definition 8 (Optimal Joint Plan). LetM = 〈AG, {Pi}i∈AG ,F , IC, C〉 be a multia-

gent planning problem and {Si}i∈AG be a plan forM. We say that {Si}i∈AG is optimal

if there exists no unsatisfied request actions in {Si}i∈AG .

Remark 3. The program Π(Pi) can be easily adapted to generate only optimal plans.

Indeed, the only modification that needs to be done is to replace the rule (11) with

h(ok(r(γ, i)), T + 1)← o(r(γ, i), T).

Intuitively, this rule states that the request r(γ, i) is satisfied. Thus, if a joint plan is

found it will not contain any unsatisfied requests, i.e., it must be optimal.

Definitions 6 and 7 provide us with a way for computing joint plans of length n for a

planning problem M. The process involves (i) computing a set {Mi}i∈AG of answer

sets, where Mi is an answer set of Π(Pi, n); and (ii) checking the compatibility of

{Mi}i∈AG . In what follows, we discuss a method for doing it. This method computes

a joint plan by (a) forming a program representingM from the programs representing

the individual plans and the set of constraints inM; and (b) extracting joint plan from

answer sets of the new program. This method is useful if the planning problemM is

known to an agent or a manager.

4.4 Computing Joint Plans by Answer Set Programming

LetM = 〈AG, {Pi}i∈AG ,F , IC, C〉 be a planning problem. We will define a program

Π(M) whose answer sets represent the solutions of M. M is constructed from the

142

programs Π(Pi) for i ∈ AG as follows. For each i ∈ AG, let Πi(Pi), referred as

the tagged version of Π(Pi), be the program obtained from Π(Pi) by replacing every

literal x in Π(Pi) with the atom xi (e.g., action(a)i for action(a), h(f, t)i for h(f, t),
etc.). The program Π(M) consists of

• for each i ∈ AG, the tagged version Πi(Pi) of Π(Pi);

• for each tuple (i, j, f i, f j) in F , the constraints

← hi(f i, T), hj(¬f j , T) (21)

← hi(¬f i, T), hj(f j , T) (22)

ensure that shared variables maintain their consistency.

• for each set S = {(i1, a1), . . . , (ik, ak)} in C, the constraint

← 0 {oi1(a1, T), . . . , oik(ak, T)} k − 1 (23)

which makes sure that if a part of S is executed, i.e., o(ij , aj) belongs to an answer

set, then the whole set S is executed.

• for each set {(i1, a1), . . . , (ik, ak)} in IC, the constraints

← oi1(a1, T), . . . , oik(ak, T) (24)

This constraint guarantees that not all the actions a1, . . . , ak are executed at the

same time.

• for every pair of instance r(γ, j) and p(γ, i) of a request-action r (for γ) of an agent

i and an offer-action p (for γ) of an agent j, the following constraints

← oi(r(γ, j), T), hi(ok(r(γ, j)), T + 1),not oj(p(γ, i), T) (25)

← oj(p(γ, i), T),not oi(r(γ, j), T) (26)

← oj(p(γ, i), T),not hi(ok(r(γ, j)), T + 1) (27)

The first constraint makes sure that if i requests for γ from j and it is satisfied then

j does indeed offer the service. The last two rules guarantee the converse.

For a set X of literals in the language of Π(M), let X|i = {a | a is a literal in the

language of Π(Pi) and ai ∈ X}. We have:

Theorem 3. LetM = 〈AG, {Pi}i∈AG ,F , IC, C〉 be a multiagent planning problem.

M is an answer set ofΠ(M, n) iff there exists a set of compatible answer sets {Mi}i∈AG

such that M |i = Mi.

The proof of Theorem 3 relies on the Splitting Theorem for logic programs [17]. It is

divided into two steps. First, it is proved for program without the constraints (21)-(27).

The significance of this proposition is that it allows us to compute the solution of a

multiagent planning problem by computing a single answer set of P(M). Since the

problem of determining whether a propositional program has an answer set or not is

NP-complete, the following holds.

Corollary 1. Determining whether a solution of polynomial bounded length of a mul-

tiagent planning problemM exists or not is NP-complete.

143

5 Related Works

Multiagent planning could be viewed as a special case of distributed problem solving

[9]. In this respect, our work could be viewed as one in the Centralized Planning for

Distributed Plans group according to the classification in [9]. This is achieved by the

program Π(M). Alternatively, the individual plans can also be computed distributedly

and coordinated using the program consisting of the constraints (21)-(27) and the tagged

versions of the individual answer sets.

Our main goal is to generate a joint plan for the agents before its execution. In

this regards, our work differs from many distributed continual planning systems that

were discussed in the survey [7] and many papers presented in the recent AAMAS

conferences which concentrate on planning and replanning or dealing with unexpected

events during the plan execution.

Our approach to generating a joint plan in this paper blends the two components

“planning” and “coordination” in the equation

Multiagent planning = Planning + Coordination

presented in [6] into a single step. Furthermore, we employ a plan representation

that allows for the coordination to be done by using time-steps presented in individual

plans. This is different from several other systems in which partial order plans are used

for plan representation and refinement planning is used for coordination (e.g., [4, 3] or

earlier works such as the Patial Global Planning framework).

We use answer set programming [16], a method that has been used for single agent

planning [10, 25], in computing the joint plan. The declarativeness and modularity of

answer set programming make the process of computing the joint plan fairly simple and

simplify the coordination of the plans7. Our work is similar to the spirit of that in [8]

where an attempt is made to construct joint plan using SAT-based single agent planner.

Nevertheless, our use of answer set programming does not require the development of

additional algorithms to assemble the final joint plan.

In [2], a language based on PDDL for modeling multiagent planning problems has

been proposed that allows for the specification of and reasoning about several features

important for multiagent planning and execution such as concurrency, individual and

mutual beliefs of agents, planning and acting with incomplete information, communi-

cation, continuous events, etc. A special agent, called env, is present in all problems

for modeling the environment which may act “unpredictably”. Our language is less ex-

pressive than the above mentioned language as our focus is solely on the generation of a

joint plan prior to its execution. On the other hand, the semantics provided in this paper

can be used to prove formal properties of plans as well as the correctness of the logic

program encoding of multiagent planning problem.

We note that collaborative actions presented in this paper is also suitable for the

modeling of multiagent planning with resources. Requesting for a resource and offering

a resource can be modeled in a similar fashion to that of asking for and offering of a

nail (Example 4). Since our focus is the generation of joint plan before execution, the

proposed language is different from the resource logic introduced in [5], whose focus

7 Recall that this is achieved by simply adding the rules (21)-(27).

144

was on the plan merging phase. The requesting/offering actions can be seen as special

case of negotiation actions discussed in [26].

We would like to point out that we use A because of its simple semantics and its

close relationship to PDDL, the language developed for describing planning problems

[14]. This means that other extensions or variations of A (e.g,. B, C [13], E [15]) could

also be extended to formalize cooperative actions. Observe that there are subtle differ-

ences between request actions and non-deterministic actions. First, a cooperative action

changes the world of other agents while a non-deterministic action does not. Second, a

cooperative action does not change the world of the agent executing this action, while

a non-deterministic action does. In this sense, a cooperative action of an agent is like

an exogenous action for other agents. Thus, modelling cooperative actions using non-

deterministic actions might not be the most natural way.

Finally, we would like to note that an extension of the STRIPS language has been

considered for multiagent planning in [1]. In this framework, a multiagent planning

problem is formulated as a single problem and agent identifiers are attached to the ac-

tions, which is different from what we proposed here. As such, the framework in [1] is

only appropriate for domains where no privacy among agents is required. This is not an

issue in our formulation.

6 Conclusions and Future Works

We extend the action language A to define a language for representing and reasoning

about actions and their effects in presence of cooperative actions between agents. We

define the notion of a plan with cooperative actions and use it in formalizing the notion

of a joint plan. We use answer set programming to generate joint plans. We introduce

the notion of a set of compatible answer sets and provide a translation of a multiagent

planning problem to a logic program whose answer sets represent joint plans.

The work so far has focused on the development of a theoretical framework for

generating joint plans using answer set programming. The encoding of the examples

are available in the technical report version of this paper [24]. Our immediate goal for

the future is to investigate the scalability and efficiency of the proposed method. The

use of answer set programming allows us to easily incorporate preferences or domain

knowledge in the generation of the joint plans [22, 23]. Additionally, we would like to

explore the use of more expressive languages (e.g., action languages with constraints

and sensing actions) in representing and reasoning about joint-plans of multiagents by

addressing various questions mentioned in [2]. This is because the method provides in

Section 2 has proved to be very effective in the single agent case (e.g. [25]).

References

1. C. Boutilier and R.I. Brafman. Partial-order planning with concurrent interacting actions.

JAIR, 14:105–136, 2001.

2. M. Brenner. Planning for Multiagent Environments: From Individual Perceptions to Coordi-

nated Execution. In Work. on Multiagent Planning & Scheduling, ICAPS, 80–88. 2005.

3. J. S. Cox and E. H. Durfee. An efficient algorithm for multiagent plan coordination. AAMAS

2005, 828–835.

4. J. S. Cox and E. H. Durfee and T. Bartold. A Distributed Framework for Solving the Multi-

agent Plan Coordination Problem. In AAMAS, pages 821–827. ACM Press, 2005.

145

5. M. de Weerdt, A. Bos, H. Tonino, and C. Witteveen. A resource logic for multi-agent plan

merging. Ann. Math. Artif. Intell., 37(1-2):93–130, 2003.

6. M. de Weerdt, A. ter Mors, and C. Witteveen. Multi-agent planning: An introduction to

planning and coordination. In Handouts of the Euro. Agent Summer School, 1–32, 2005.

7. M. desJardins, E. H. Durfee, C. L. Ortiz, and M. Wolverton. A survey of research in dis-

tributed, continual planning. AI Magazine, 20(4):13–22, 1999.

8. Y. Dimopoulos and P. Moraitis. Multi-agent coordination and cooperation through classical

planning. In IEEE/WIC/ACM/IAT, 398–402. IEEE Comp. Society, 2006.

9. E. Durfee. Distributed Problem Solving and Planning. In Muliagent Systems (A Modern

Approach to Distributed Artificial Intelligence), pages 121–164. MIT Press, 1999.

10. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. Answer Set Planning under Action

Costs. Journal of Artificial Intelligence Research, 19:25–71, 2003.

11. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Int.

Conf. on Logic Programming, 1070–1080, 1988.

12. M. Gelfond and V. Lifschitz. Representing actions and change by logic programs. Journal

of Logic Programming, 17(2,3,4):301–323, 1993.

13. M. Gelfond and V. Lifschitz. Action languages. ETAI, 3(6), 1998.

14. M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, and

D. Wilkins. PDDL — the Planning Domain Definition Language. Ver. 1.2. TR1165, Yale,

1998.

15. A. C. Kakas, R. Miller, F. Toni: E-RES. Reasoning about Actions, Events and Observations.

In LPNMR, 254-266, 2001.

16. V. Lifschitz. Action languages, answer sets and planning. In The Logic Programming

Paradigm: a 25-Year Perspective, pages 357–373. Springer Verlag, 1999.

17. V. Lifschitz and H. Turner. Splitting a logic program. In ICLP, 23–38, 1994.

18. V. Marek and M. Truszczyński. Stable models and an alternative logic programming

paradigm. In The Log. Prog. Paradigm: a 25-year Perspective, 375–398, 1999.

19. I. Niemelä. Logic programming with stable model semantics as a constraint programming

paradigm. AMAI, 25(3,4):241–273, 1999.

20. I. Niemelä, P. Simons, and T. Soininen. Stable model semantics for weight constraint rules.

In Proc. Logic Programming and NonMonotonic Rreasong, 315–332, 1999.

21. S. Parsons, C. Sierra, and N. R. Jennings. Agents that reason and negotiate by arguing. J. of

Log. and Comp., 8(3):261–292, 1998.

22. T. C. Son, C. Baral, N. Tran, and S. McIlraith. Domain-Dependent Knowledge in Answer

Set Planning. ACM Transactions on Computational Logic, 7(4), 2006.

23. T. C. Son and E. Pontelli. Planning with Preferences using Logic Programming. Journal of

Theory and Practice of Logic Programming (TPLP), 6:559–607, 2006.

24. T. C. Son and C.. Sakama. Reasoning and Planning with Cooperative Actions for Multiagents

Using Answer Set Programming. Technical Report, 2008.

25. P. H. Tu, T. C. Son, C. Baral. Reasoning and Planning with Sensing Actions, Incomplete

Information, and Static Causal Laws using Logic Programming. TPLP, 7:1–74, 2006.

26. M. Wooldridge and S. Parsons. Languages for negotiation. In Proceedings of ECAI, 2000.

146

Social commitments in time:
satisfied or compensated

(preliminary report)

Paolo Torroni, Federico Chesani, Paola Mello, and Marco Montali

DEIS, University of Bologna. V.le Risorgimento 2, 40136 Bologna, Italy

Abstract. We define a framework based on computational logic technol-
ogy and on a reactive axiomatization of the Event Calculus to formalize
the evolution of commitments in time. We propose a new characteri-
zation of commitments with time that enables a rich modeling of the
domain, various forms of reasoning, and run-time and static verification.

1 Introduction

Social commitments are commitments made from an agent to another agent to
bring about a certain property. In broad terms, a social commitment represents
the commitment that an agent, called debtor, has towards another agent, called
creditor, to bring about some property or state of affairs, which is the subject of
the commitment. In some instantiations of this idea, such as [6, 14], the subject
of a commitment is a temporal logic formula.

Commitments are a well-known concept in Multi-Agent Systems (MAS) re-
search [2, 12]. Representing the commitments that the agents have to one an-
other and specifying constraints on their interactions in terms of commitments
provides a principled basis for agent interactions [13]. From a MAS modelling
perspective, a role can be modelled by a set of commitments. For example, a
seller in an online market may be understood as committing to its price quotes
and a buyer may be understood as committing to paying for goods received.
Commitments also serve as a natural tool to resolve design ambiguities. The
formal semantics enables verification of conformance and reasoning about the
MAS specifications [5] to define core interaction patterns and build on them by
reuse, refinement, and composition.

Central to the whole approach is the idea of manipulation of commitments:
their creation, discharge, delegation, assignment, cancellation, and release, since
commitments are stateful objects that change in time as events occur. Time
and events are, therefore, essential elements. Some authors distinguish between
base-level commitments, written C(x, y, p), and conditional commitments, writ-
ten CC(x, y, p, q) (x is the debtor, y is the creditor, and p/q are properties).
CC(x, y, p, q) signifies that if p is brought out, x will be committed towards y to
bring about q.

In this work we give emphasis to temporal aspects of commitments. We build
from previous research by Mallya et al. [10, 9]. In our opinion, they represent the

147

best articulated research on time-enhanced commitments to date. The main idea
in these articles is to extend a commitment framework with a way to describe
time points and intervals, and alternative outcomes due to commitments extend-
ing into the uncertain future. The perspective on commitment-related temporal
issues proposed by [10] mainly aims to capture the idea of validity of a com-
mitment. Thus the previous notation C(x, p, y) is extended with existential and
universal temporal quantifiers, which become prefixes of p. There are two types
of quantification. By an existential quantification, [t1, t2]p, we mean that p is
true at one or more moments in the interval beginning at t1 and ending at t2.
By a universal quantification, [t1, t2]p, we indicate instead that p is true at every
moment in the interval beginning at t1 and ending at t2. Nestings are possible.
For example, a commitment from x to y that q is going to hold at every moment
in a week beginning on some day between the 1st and 20th of February could
be written as follows: C(x, y, [01.02.2009, 20.02.2009]([tstart, tstart + 7days]q)).

This is an elegant approach which decouples the temporal quantification
from the proposition, enabling reasoning about the temporal aspect without
regard to the propositions’ meaning. However, there are still some cases in which
such a characterization is difficult to use in practical applications. The main
problems are due to the lack of variables in temporal logic expressions, and from
the separation between such expressions and the other parts of the represented
knowledge. Among the aims of this work there is our intention to identify such
cases and discuss them.

Along with a notation to express commitments, we need a language to express
operations on commitments. For example, Yolum and Singh propose a notation
based on the Event Calculus temporal representation language to describe com-
mitment manipulation inside an operational framework [14]. Moreover, from a
design perspective, we need an architecture in which a commitment notation, a
temporal representation language and a specification and verification framework
are given a specific role.

In this paper, we discuss our ongoing research about commitment frame-
works. We start by introducing some issues regarding social commitment mod-
eling, and define a number of desiderata for social commitment frameworks. We
then propose a new notation for commitments and commitment specification
programs: the Commitment Modeling Language (CML). Finally, we outline an
abstract commitment framework architecture and a concrete instance of it that
supports CML. In such an instance, temporal reasoning with commitments is
operationalized using a reactive implementation of the Event Calculus and var-
ious verification tasks can be accomplished thanks to an underlying declarative,
computational logic-based framework.

2 Some issues regarding modeling

The following informal discussion is example-driven. Examples are mainly taken
from the literature. We start by observing that in some cases Mallya et al.’s no-
tation can be simplified, considering that to represent an existentially quantified

148

time interval it is sufficient to represent a time point using a variable with a
domain. We then sketch a new possible notation that accommodates variables
with domains and temporal modeling in several dimensions. Again, based on
literature examples, we demonstrate the possible usage of rules to model condi-
tional commitments. Finally we discuss time associated with commitment state
changes and the issue of compensation.

2.1 Time variables, rules and constraints

Let us analyze the scenario proposed by Mallya et al. in [10].

Example 1. A travel agent wishes to book an airline ticket to a certain destina-
tion, a rental car to use while there, and a hotel room at which to stay. Consider
four situations:

– Situation 1.1. The travel agent wants the passenger to fly on a particular
day while still reserving the right to choose any flight on that day. If the
airline offers such a deal, it becomes committed to maintaining a condition—
a booked ticket—over an extended time period.

– Situation 1.2. The car rental company offers a one-week free rental in Jan-
uary.

– Situation 1.3. A hotel offers an electronic discount coupon that expires today,
but text on the coupon states that it can only be used during a future spring
break. Note that in this case the commitment violates a constraint about
time. In fact, the coupon expires before it can be used.

– Situation 1.4. The car rental company guarantees that its cars will not break
down for at least two days, promising an immediate replacement if one does.
However, if the company is closed on weekends, then a customer who rents
a car on a Friday would not benefit from the warranty if the car broke down
on Saturday. Thus in this case the car rental company offers a warranty that
cannot be used during the period in which the warranty is valid. �

Following [10], we use the symbols h for hotel, g for guest, r for rental com-
pany, c for customer, a for airline and p for the proposition, subject of the
commitment. How do we model the situations above using commitments?

Situation 1.1. Let p represent that a ticket booking is guaranteed. Thus, using an
existential temporal quantifier, [t1, t1 +24hrs]p, we express that a ticket booking
is guaranteed for 1 day, as of t1 [10].

However, in practical applications, it may be interesting to explicitly model
the time at which the commitment is satisfied (e.g., when the ticket is issued). To
this end, we could use an alternative notation, which associates p with a variable,
and binds such a variable to a domain interval: [T]p, T ∈ [t1, t1 + 24hrs]. We
write the commitment as follows:

C(a, g, [T]p), t1 ≤ T, T ≤ t1 + 24hrs. (1)

149

In this way, the commitment is satisfied if there is a possible value of T

which falls in the range [t1, t1 + 24hrs], and such a value can be used for further
inferences.

Situation 1.2. Let p denote free rental, and t1 January 1st. Thus, using a univer-
sal temporal quantifier, guaranteed free rental for 7 days as of time t3 is denoted
by [t3, t3 + 7days]p. Then to express that such an interval [t3, t3 + 7days] is inside
January, Mallya et al. [10] use a condition on t3, namely t1 ≤ t3 ≤ t1 + 24days,
and they attach an existential temporal quantifier outside of the quantifier above:
[t1, t1 + 31days]([t3, t3 + 7days])p, t1 ≤ t3 ≤ t1 + 24days.

Let us now use the notation introduced above, instead of existential temporal
quantification. We obtain [T, T +7days]p, t1 ≤ T, T ≤ t1 +24days. Note that we
simplified the notation. In particular, we do not need do distinguish any more
between existentially/universally quantified time intervals, because all intervals
are universally quantified, and we can drop the over-line notation. The resulting
commitment is:

C(r, c, [T, T + 7days]p), t1 ≤ T, T ≤ t1 + 24days. (2)

Situation 1.3. Mallya et al. propose the following solution:

C(h, c, [t1, t1 + 24hrs]([t3, t3 + 7days]p)), t1 + 24hrs < t3,

where t1, t1 + 24hrs is “today” (before spring break) and spring break starts
on t3 and lasts one week. In this way, we obtain two disjoint intervals. The
commitment should be resolved before the end of the first interval in order not
to be breached, however it can only be resolved during the second interval, which
implies that it will be necessarily breached. An alternative notation for the same
commitment is the following:

C(h, t, [Ts, Te]p), t1 ≤ Ts, Te ≤ t1 + 7days, t3 ≤ Ts, Te ≤ t3 + 24hrs. (3)

In this way, we eliminate the need for nested intervals, and unresolvability can
automatically be discovered by basic CLP inference [7].

Situation 1.3 shows that in a specific case, we can do away with nesting. In
general, all existential temporal quantifiers can be mapped onto CLP domain
restrictions, so the need for nesting intervals is only due to nested universal
temporal quantifiers. An example of such a situation is the following:

Example 2. The car rental company offers a one-week free rental every month,
for the whole 2009. �

In this case, we cannot do away with nested intervals. It is possible to extend
Mallya et al.’s Solution 2 and write

[t1, t1 + 12months]([t3, t3 + 7days]p), t1 ≤ t3 ≤ t1 + 24days,

however that does not capture the “every month” concept, due to lack of do-
main variables. A different notation is needed. For example, we may use nested

150

commitments, instead of nested intervals. Alternatively, if the “every month”
concept is often used in the domain, we could define a new (non-binary) con-
straint and a dedicated propagation algorithm which ensures a very compact
notation and an efficient inference process. Non-binary (global) constraints are
one of the prominent features of constraint programming frameworks. It may
well be that a global constraints that we can use is already available off-the
shelf.1

Situation 1.4. Mallya et al. propose the following solution:

C(r, c, ([t1, t1 + 2days]great car ∨ [t1, t2]replace car)), t2 < t1 + 2days,

where great car means that the car has not broken down, and replace car rep-
resents the warranty that the rental company gives on the quality of the car,
t1 denotes the instant at which the car is rented on Friday and t2 denotes the
closing of the rental company on Friday. Using the framework presented in [10]
is it possible to reason on this “warranty paradox” using CTL and realize that
the warranty cannot be enjoyed if the car is rented on a Friday and it breaks
down on Saturday.

Note that this modeling, however intuitive, may give rise to some counter-
intuitive results. For example, c may decide to satisfy the commitment by re-
placing a perfectly functioning car with a broken car.

If we wish to follow Situation 1.4’s description more literally, we should opt for
a different formalization. For example, the commitment about the replacement
car should only be a consequence of the car breaking down:

C(r, c, [T]replace car), t1 ≤ T, T ≤ t2 ← H(break down, T), T ≤ t1 +2days (4)

where by H(break down(T)) we denote an event occurred (“Happened”) at time
T . Again, it is possible to reason on the “warranty paradox” using basic CLP
inference. The result of such a reasoning would be a “real” validity interval for
the warranty, which excludes Saturday.

Thus using a rule-based notation we can express many situations in a faith-
ful way. In particular, it would be possible to express conditional commitments.
However, there is another possible solution, based on the concept of compen-

sation. A compensation is an action to be taken to recover from a situation of
violation. To this end, we need to explicitly denote the state of commitments.
For instance, we can write viol(C(x, y, p), t) to indicate that a commitment has
been violated at time t (due to an event occurring at time t which falsifies p, or
due to the elapsing at time t of a time interval in which p was supposed to be
verified). We obtain:

C(r, c, [t1, t2]great car). (5)

C(r, c, [Tr]replace car)← viol(C(r, c, [Ts, Te]great car), Tb),

Ts ≤ Tb, Tb ≤ Ts + 2days, Tb ≤ Te, Tb ≤ Tr.
(6)

1 See Beldiceanu and Carlsson’s global constraints catalog, http://www.emn.fr/

x-info/sdemasse/gccat/

151

(Tb is the time of break down, Tr is the time of replacement). Alternatively,
using an extended notation, we could write:

compensate(r, c, [Tr]replace car,C(r, c, [Ts, Te]great car), Tb))←

Ts ≤ Tb, Tb ≤ Ts + 2days, Tb ≤ Te, Tb ≤ Tr.
(7)

More on compensations below.
Note that we can easily refine the rules above to specify what “immediate

replacement” means (1 day? 3 hours?), by posing another constraint between Tb

and Tr, other than Tb ≤ Tr.

2.2 Time of commitments

Another temporal dimension could be interesting in many applications. It is the
time of the commitment itself. To the best of our knowledge, this dimension has
not been considered by previous research.

Example 3. Consider a university-like agent organization, in which agent x and
faculty f belong to. There are roles with social responsibilities, which we can
express by way of commitments. One such role is that of director of studies (dos).
x has been appointed dos at Faculty f on October 29, 2008.

We can express that x has been appointed dos for 2009 at Faculty f , using
a notation like:

C(x, f, [01.01.2009, 31.12.2009]dos). (8)

But how can we express that x has been appointed dos on October 29th 2008?
This could be an important element of the domain. Consider a regulation that
says that a Faculty member that has been appointed director of studies cannot

take more commitments in the Faculty. The notation above does not permit to
reason at this level. The closest approximation is probably: a Faculty member

cannot take more commitments in the Faculty while he is director of studies.
Or, we could resort to an additional commitment to express the appointment,
beside the dos commitment. But this would complicate the model by increasing
the number of commitments. A simple solution is to attach the duration of the
commitment to the commitment itself:

[29.10.2008, Tend]active(C(x, f, [01.01.2009, 31.12.2009]dos)). (9)

2.3 Compensations

Contracts often involve deadlines and compensations. Usually, compensation ac-
tions are possibilities given to recover from a situation of violation. In a typical
setting, a commitment not satisfied in time will not become satisfied by actions
taken after the deadline, but it will instead incur in a further commitment from
the debtor’s side to take a compensation action. The extent of the compensation
required may be subject to context-dependent conditions and be directly related
to the time spent after the deadline before the compensation action is taken.

152

Example 4. According to the Italian civil code, the owners of real estate must
pay taxes to the municipality (I.C.I.) between June 1 and June 16 of every tax
year, for the property owned during the previous solar year. The Law allows the
debtor who did not pay by the deadline to recover, by their own initiative, from
such a violation by a procedure called spontaneous revision. The spontaneous
revision procedure is permitted only if the debtor has not yet been officially
notified about ongoing investigations related to such a violation. A spontaneous
revision’s compensation of a previous violation amounts to 3% of the amount
not paid, which counts as a sanction, plus the legal interests on the amount not
paid, which depend on the time elapsed between the I.C.I. payment deadline
and the payment by spontaneous revision. �

To model this example, we can resort to a compensate notation like we
did above. Let t1 be June 1st, t2 be June 16th, c a citizen, m a municipal-
ity, and let domain-dependent knowledge such as the interest rate IR and the
amount of taxes to be paid by a citizen be defined by rules or facts such as
interest rate(0.025) and ici(c, 100euro). A possible solution of Example 4 is the
following:

C(c, m, [T]pay ICI(Amt)), t1 ≤ T, T ≤ t2 ← ici(c, Amt). (10)

compensates(c, m, [Tp]pay ICI(Amt),C(c, m, [Tr]s rev(Amtnew)))←

interest rate(IRate), Amtnew = Amt× (1.03 + IRate× (Tr − Tp)).
(11)

(s rev stands for spontaneous revision, Amt for amount, and “=” is a CLP
equality constraint).

Such examples are ubiquitous in legislation bodies, and in many domains in
which contracts are used to establish rights and obligations of interacting parties.
To be able to model such situations and reason about them, a notation should
accommodate variables inside commitments and allow us to relate such variables
with domains and expressions containing other variables.

Note that in this case compensates is syntactic sugar for an alternative and
equally expressive notation. One could resort for instance to conditional com-
mitments, and include original content (pay ICI) and compensating content
(s revision) in one single CC-like fact. However, compensations could be de-
fined in different ways depending on the domain. For example, various degrees
of violation can be defined, such as mild/serious violation if before/after official
notification. A commitment modeling framework should be flexible enough to
accommodate all these needs. This notation helps to abstract away from the
specific compensation semantics.

3 Desiderata for a commitment modeling framework

The considerations made above suggest a number of desiderata for a commitment
modeling framework that enables reasoning with time. The first two desiderata
are taken from [10].

153

Time intervals Contracts often involve time bounds. It should be possible to
express such time bounds, in order to enable reasoning about satisfaction or
breach of commitments in general.

Achievement and maintenance Two kinds of commitment conditions are
possible: achievement conditions (a ticket will be issued by the end of the
day), and maintenance conditions (the car will work without breaking down
for 2 days). They should both be accommodated.

Degrees of violation It should be possible to reason about the extent of breach
of a commitment, to capture ideas such as partial or mild violation of a con-
tract.

Compensation The language should enable associating commitments with com-
pensation actions.

Time of commitment state changes It should be possible to reason about
the time a commitment assumes a particular state, e.g., the time a com-
mitment is created, violated or discharged. The framework should enable
reasoning about the state of commitments along time.

Meta-level reasoning There could be commitments about commitments (and
further nesting). The notation should accommodate contracts in which a
commitment is about another commitment that will be created at some
later point, or about some existing commitment.

Simplicity The notation should be easy and at the same time rigorous. It
should be possible to run automated reasoning tasks on commitment-based
contract specifications. Some interesting reasoning tasks are: contract anal-
ysis, commitment tracking, compliance verification.

Modularity It should be possible to extend the commitment notation or modify
the underlying theories and reasoning procedures in a modular way. More-
over, it should be possible to integrate a commitment framework with other
domain knowledge, so as to enable reasoners and agents using commitments
to reason using all available knowledge, possibly including ontological knowl-
edge. Such an integration should preserve the modularity principle.

4 A new notation for social commitments: CML

We propose a new notation for social commitments. We call it CML (Commit-
ment Modeling Language). To enable reasoning, we consider commitments as a
part of a knowledge base. In particular, social commitments are specified inside
CML programs (CPrograms), which could describe for example a contract.

A CML program is made of rules. A rule in the form

CRuleHead← CRuleBody (12)

is used to define effects of events on the state of commitments. More specifically,
the user can use such rules to define for instance which events create, discharge,
or break which commitments, in the style of [14]. The body defines the context,
i.e., the conditions that must hold in order for an event to have an effect on the
state of a commitment. If no context is defined, the rule is said to be a fact.

154

Atoms in the body of rules may be external predicates, not defined in the
commitment specification program (this should be allowed because of the mod-
ularity principle), or they can be fluents modeling the state of commitments.
Such a state can be associated with existentially quantified temporal variables
(holds e notation) or with universally quantified intervals (holds u notation).

The CML syntax, shown in Figure 1, is easily extensible to accommodate

CMLProgram ::= CRules

CRules ::= CRule[CRules]

CRule ::= CRuleHead.|CRuleHead← CRuleBody.

CRuleHead ::= OPC(Terms,Commitment)

OPC ::= = create|discharge|cancel|release|assign|delegate| . . .

CRuleBody ::= CRuleBodyElem|[,CRuleBody]

CRuleBodyElem ::= holds e(State(Commitment, T ime), T ime)|

holds u(Interval State(Commitment, T ime))|

Atom|Constraint

Commitment ::= C(Agent,Agent,[Interval]CAtom)

Interval ::= [TExpr[,TExpr]])

TExpr ::= T ime OPT T ime|T ime OPT Duration

OPT ::= +|-

T ime ::= Date|Numeral|V ariable|TExpression

Duration ::= Numeral Granularity

Granularity ::= hrs|days|weeks|months| . . .

Agent ::= Term

Atom ::= Ident|Ident(Terms)

Term ::= Atom|Numeral|V ariable

Terms ::= Term[,Term]

CAtom ::= Atom|Commitment

Constraint ::= V ariable ∈ Domain|V ariable OPCLP TExpr

State ::= viol|p viol|active| . . .

OPCLP ::= = | 6= | ≤ | ≥ | < | >

Domain ::= Interval|Set

Fig. 1. Syntax of CML programs

various models of commitment evolution. For example, p viol has been intro-
duced alongside viol and active as a possible new commitment state, and a new

155

type of commitment operation, e.g., compensate, could be added to the language
to provide the user with such a high-level abstraction.

A sample CProgram, modeling Situation 1.4, is the following:

create(rent a car(Tc, Te),C(r, c, [Tc, Tc + 2days]great car)). (13)

create(car broken(Tb),C(r, c, [Tr]replace car)), Tr ≤ Tb + 24hours←

holds e(viol(C(r, c, [Ts, Te]great car), Tb), Tb).
(14)

Renting a car at time Tc until Te creates a commitment that for 2 days as
of Tc the car does not break down. The car breaking down at a time Tb creates
a commitment that the car must be replaced within 24 hours of the incident, if
the breakdown has caused a breach of commitment.

While CML provides very expressive constructs such as variables with do-
mains, constraints and rules, on the other hand it does not explicitly accom-
modate temporal logic expressions, such as pUq or ©p. We are currently inves-
tigating whether and how temporal logic formulae can be mapped onto CML
expressions.

5 Commitment manipulation and reasoning

Two fundamental aspects of commitment frameworks are manipulation and rea-
soning [13]. Manipulation operates on the state of commitments.

5.1 States of commitments

Recently, many authors proposed different possible evolutions of the commit-
ment state, from an initial state after creation, down to its satisfaction through
discharge, delegation or cancellation operations, or else to its violation due to
the occurrence of events that contradict the subject of the agreement repre-
sented by the commitment itself. For instance, in [6], Fornara and Colombetti
propose the following set of states for a commitment: empty (e), cancelled (c),
precommitment (p), conditional (cc), active (a), fulfilled (f), and violated (v).

The states and their transitions are depicted in Figure 2.
Usually, once the conditions specified in the commitment are either satis-

fied (for an achievement commitment) or violated (for a maintenance commit-
ment), the commitment assumes a final state. However, as discussed above, if
we consider also relevant temporal aspects, such as deadlines, we could define a
finer-grained characterization of the state of a commitment. For example, after
a deadline has passed, the debtor may still opt for a belated commitment sat-
isfaction. It may be interesting to distinguish among (1) commitment satisfied
in time, (2) commitment “violated” before the deadline but “satisfied” after the
deadline (partial violation/partial satisfaction), and (3) violated commitment.

Such a distinction is depicted in Figure 3 as an extension to Fornara and
Colombetti’s transitions.

156

e

ccp a

f

vc

Fig. 2. Fornara & Colombetti’s commitment state transitions [6]

e

ccp a

f

vpv

pf

c

Fig. 3. A possible extension to a commitment state transitions accounting for partial
violation (pv) and partial fulfillment (pf) of commitments.

5.2 Reasoning about Commitments

Yolum and Singh [14] propose to reason about commitments using the Event
Calculus (EC) [8]. The EC was introduced by Kowalski and Sergot as a logic
programming framework for representing and reasoning about events and their
effects. Basic concepts are that of event, happening at a point in time, and prop-

erty (or fluent), holding during time intervals. Fluents are initiated/terminated
by occurring events. There are many different formulations of the EC axioms. A
simple one, taken from [4], is the one below (F stands for Fluent, Ev for Event).

holds at(F, T)← initiates(Ev, F, TStart)

∧ TStart < T ∧ ¬clipped(TStart, F, T).
(ec1)

clipped(T1, F, T3)← terminates(Ev, F, T2)

∧ T1 < T2 ∧ T2 < T3.
(ec2)

initiates(Ev, F, T)← happens(Ev, T) ∧ holds(F1, T)

∧ ... ∧ holds(FN , T).
(ec3)

terminates(Ev, F, T)← happens(Ev, T) ∧ holds(F1, T)

∧ ... ∧ holds(FN , T).
(ec4)

157

Axioms ec1 and ec2 are the general ones of EC, whereas ec3 and ec4 are user-
defined, domain-specific axioms. The EC is a suitable formalism to specify the
effects of commitment manipulation, and reason from such operations. As a sam-
ple fragment of Yolum and Singh’s formalization, consider a create operation,
whose purpose is to establish a commitment, and can only be performed by the
debtor. To express that an event e(x) carried out by x at time t creates a com-
mitment C(x, y, p), Yolum and Singh define the operation create(e(x),C(x, y, p))
in terms of happens(e(x), t) ∧ initiates(e(x),C(x, y, p), t).

In the same way, the semantics of CML can be given in terms of EC programs.
This helps simplicity, because the language of EC is very simple, and modularity,
because for different domains we can define different theories of commitments.

The EC is an effective framework for temporal reasoning. It has been exten-
sively used in the literature to carry out two main reasoning tasks: deductive
narrative verification, to check whether a certain fluent holds given a narrative
(set of events), and abductive planning, to simulate a possible narrative which
satisfies some requirements [11]. Chittaro and Montanari [3] proposed a way to
use the EC for run-time monitoring and verification. It is based on a mecha-
nism to cache the outcome of the inference process every time the knowledge
base is updated by a new event. In a nutshell, the Cached Event Calculus (CEC)
computes and stores fluents’ maximum validity intervals (MVIs), which are the
maximum time intervals in which fluents hold, according to the known events.
The set of cached validity intervals is then extended/revised as new events oc-
cur or get to be known. Therefore, the EC can be used as a basis for reasoning
on commitments in many ways, including not only planning and static verifica-
tion, but also tracking, depending on the EC implementation used (abductive,
deductive, reactive).

6 Social commitment framework architecture

We propose an abstract, layered architecture that enables modeling and reason-
ing with social commitments. It consists of:

– a user application layer;

– a commitment modeling layer;

– a temporal representation and reasoning layer;

– a reasoning and verification layer.

On the top layer, the user can define contracts or agent social interaction
rules using commitments. Such definitions are based on a language provided by
the layer below. The commitment modeling language is implemented using a
temporal representation and reasoning framework, which is in turn built on top
of a more general reasoning and verification framework, which lies at the bottom
layer. It is important to rely on a formal framework that accommodates various
forms of verification, because in this way commitments can be operationalized
and the user can formally analyze commitment-based contracts, reason on the

158

state of commitments, plan for actions needed to reach states of fulfillment, and
track the evolution of commitments at run-time.

Indeed, the underlying reasoning and verification layer must be powerful
enough to implement a temporal representation and reasoning layer. We propose
a concrete instance of such an architecture, represented in Figure 4.

User and Domain Knowledge Base

Commitment Modeling Language

Reactive Event Calculus

SCIFF Framework

(CML Program)

(REC Theory)

(SCIFF Program)

(Prolog + CLP)

create, discharge, cancel, ...

initiates, terminates

holds_at, clipped, mvi, E, H, ...

SICStus Prolog clauses,

clp(fd), clp(R), CHR constraints

Fig. 4. Social commitment framework architecture

At the bottom layer, we find a number of Prolog+CLP modules which im-
plement the SCIFF family of proof-procedures and provide the SCIFF language
to the layer above [1]. The SCIFF framework is based on abductive logic pro-
gramming and it consists of a declarative specification language and a family
of proof-procedures for reasoning from SCIFF specifications. Some kinds of rea-
soning are: deduction, hypothetical reasoning, static verification of properties,
compliance checking and run-time monitoring. In general, SCIFF comes in hand
for a number of useful tasks in the context of agent interaction. A high-level
description of SCIFF and of its usage is given in [13], also in relation with com-
mitments. The CLP solvers integrated in SCIFF can work with discrete and
dense domains, depending on the application needs, and they are particularly
useful for reasoning along the temporal dimension.

On top of the SCIFF layer there is the SCIFF implementation of the EC,REC.
There are several implementations for EC. One of them which uses ideas taken
from CEC and thus enables runtime verification, is called the Reactive Event
Calculus (REC) and it is implemented in SCIFF. Thus REC is implemented as
a SCIFF program. This layer provides to the layer above the REC language,
which consists of the domain-dependent axioms ec3 and ec4.

In the third layer, the constructs that define the Commitment Modeling
Language (CML), i.e., the notation proposed above, are written by way of REC
theories. Thus this layer will provide the language to write a CProgram to
the top layer. The top layer consists of user and domain-dependent knowledge
encoded into a CProgram. An example of a program for the top layer was given
in Section 4.

159

We believe that such an architecture, and its instantiation based on SCIFF,
REC, and the CML, can successfully address the desiderata identified above.
Modularity is achieved in two directions: in the vertical direction, by making
CML programs, EC theory, and commitment theories independent of each other,
and in the horizontal direction, by letting the user refer to external inputs by
way of simple atoms. Atoms can be mapped into function calls via suitable inter-
faces such as those available in most Prolog engines. CML is a simple and easily
extensible language, which consists of primitives such as create, discharge, etc.,
in the style of [14]. The language is expressive enough to express time inter-
vals, achievement and maintenance conditions, and time of commitment state
change. Thanks to the expressivity of the language and to the modularity of the
architecture, it is possible to extend the framework to model different kinds of
violation and powerful new constructs such as compensation. In fact, the states
of commitments and manipulation operations are not hard-wired in the archi-
tecture, but they can be (re)defined by the user. Finally, CML accommodates
meta-lavel reasoning on commitments, and the underlying REC engine can rea-
son about commitments at all levels by treating a commitment state as a fluent
which holds for a period of time.

7 Conclusion

We identified some issues regarding the representation of commitments which
are still open, and we formulated a number of desiderata for a commitment
modeling framework. To the best of our knowledge, in the state of the art there
is no framework that satisfies all the desiderata. We believe that a possible
answer could come from a commitment framework organized into four layers.

On top of the stack, at the user level, contracts can be specified by way of
commitment programs. We identified in SCIFF a potential candidate for the
bottom layer and we defined a notation for top-level programs. A working im-
plementation exists of the two bottom layers.2 At the current stage, the notation
is still a preliminary proposal.

Our discussion was informal and example-driven. We gave emphasis to tem-
poral aspects of commitments in relation with deadlines. However, deadlines
are only a special case of temporal constraints and CLP constraints in general.
Surely there are many other types of constraint that could be very useful for
modeling the domain correctly and compactly. In particular, global constraints
capture common patterns and help specify complex and recurring constraints
in a simple way. Each global constraint comes with an effective and efficient
propagation algorithm capable of powerful inference. A useful activity could
be to isolate a subset of CLP constraints of interest for commitment-related
domains. A concrete implementation of the commitment modeling framework
should include a library of such CLP constraints. To the best of our knowledge,
the inference potential of such a technology, unlocked by the architecture we
propose, is unprecedented in the domain of commitments.

2 http://lia.deis.unibo.it/research/sciff/

160

Other future work will aim to give a concrete instantiation and implementa-
tion of the top two layers, and on studying the formal properties of the overall
framework and the expressivity of the top-level commitment programming lan-
guage. We also intend to investigate how CML and the abstract architecture
fit into concrete application domains. Among them, the domain of institutions.
Commitments or obligations are also included in their modeling, and often they
work with deadlines of events taking place instead of time.

Acknowledgments. We thank the anonymous reviewers for their useful com-
ments. This work has been partially supported by the FIRB project TOCAI.IT.

References

1. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Ver-
ifiable agent interaction in abductive logic programming: the SCIFF framework.
ACM Transactions on Computational Logic, 9(4):1–43, 2008.

2. C. Castelfranchi. Commitments: From individual intentions to groups and organi-
zations. In V. R. Lesser and L. Gasser, editors, Proceedings of the First Interna-

tional Conference on Multiagent Systems, pages 41–48. The MIT Press, 1995.
3. L. Chittaro and A. Montanari. Efficient temporal reasoning in the cached event

calculus. Computational Intelligence, 12(2):359–382, Aug. 1996.
4. L. Chittaro and A. Montanari. Temporal representation and reasoning in arti-

ficial intelligence: Issues and approaches. Annals of Mathematics and Artificial

Intelligence, 28(1-4):47–106, 2000.
5. M. Fisher, R. H. Bordini, B. Hirsch, and P. Torroni. Computational logics and

agents: A road map of current technologies and future trends. Computational

Intelligence, 23(1):61–91, Feb. 2007.
6. N. Fornara and M. Colombetti. Operational specification of a commitment-based

agent communication language. In Proc. 1st AAMAS, pages 536–542. ACM, 2002.
7. J. Jaffar and M. Maher. Constraint logic programming: a survey. Journal of Logic

Programming, 19-20:503–582, 1994.
8. R. A. Kowalski and M. Sergot. A logic-based calculus of events. New Generation

Computing, 4(1):67–95, 1986.
9. A. U. Mallya and M. N. Huhns. Commitments among agents. IEEE Internet

Computing, 7(4):90–93, 2003.
10. A. U. Mallya, P. Yolum, and M. P. Singh. Resolving commitments among au-

tonomous agents. In F. Dignum, editor, Advances in Agent Communication, vol-
ume Lecture Notes in Computer Science 2922, pages 166–182. Springer, 2004.

11. M. Shanahan. An abductive event calculus planner. Journal of Logic Programming,
44(1-3):207–240, 2000.

12. M. P. Singh. An ontology for commitments in multiagent systems: Toward a
unification of normative concepts. Artificial Intelligence and Law, 7:97–113, 1999.

13. P. Torroni, P. Yolum, M. P. Singh, M. Alberti, F. Chesani, M. Gavanelli, E. Lamma,
and P. Mello. Modelling interactions via commitments and expectations. In
V. Dignum, editor, Handbook of Research on MAS: Semantics and Dynamics of Or-

ganizational Models, pages 263–284, Hershey, Pennsylvania, Mar. 2009. IGI Global.
14. P. Yolum and M. Singh. Flexible protocol specification and execution: applying

event calculus planning using commitments. In Proc. 1st AAMAS, pages 527–534.
ACM Press, 2002.

161

Verifying Dribble Agents

Doan Thu Trang, Brian Logan, and Natasha Alechina

The University of Nottingham

School of Computer Science

Abstract. We describe a model-checking based approach to verification of pro-

grams written in the agent programming language Dribble. We define a logic (an

extension of the branching time temporal logic CTL) which describes transition

systems corresponding to a Dribble program, and show how to express properties

of the agent program in the logic and how to encode transition systems as an in-

put to a model-checker. We prove soundness and completeness of the logic and a

correspondence between the operational semantics of Dribble and the models of

the logic.

1 Introduction

BDI-based agent-oriented programming languages [5] facilitate the implementation of

cognitive agents by providing programming constructs to implement concepts such as

beliefs, goals, and (pre-defined) plans. In such languages, an agent selects a plan to

achieve one or more goals based on its beliefs about the environment. However in any-

thing other than toy environments, selecting an appropriate plan does not guarantee that

it can be successfully executed. The beliefs used to select a particular plan for a given

goal is only a heuristic, and cannot capture the preconditions of all the actions in the

plan (some of which may be false when the plan is selected and will only be made true

by actions in the plan). Moreover, in dynamic environments, an agent’s beliefs (and

hence the best way of achieving a goal) may change in unanticipated ways during plan

execution, and a rational agent must be prepared to revise its plans at run time to take

advantage of ‘fortuitous’ changes in the environment (e.g., which allow some steps in

the plan to be skipped) or to recover from ‘adverse’ changes in the environment (e.g.,

when a precondition of an action is discovered not to hold).

Many BDI-based agent programming languages provide facilities to drop plans if

the corresponding goal is ‘unexpectedly’ achieved or when execution of the plan fails

[6, 16, 17]. More advanced languages, e.g., [18, 9] provide support for arbitrary mod-

ification of plans during their execution. However, while such meta-level capabilities

simplify the development of rational agents, they make it more difficult to reason about

the execution of agent programs, e.g., to verify their correctness. In addition to reason-

ing about the agent’s beliefs, goals and plans, we need to model the current state of plan

execution, and the evolution of the agent’s program at run time in response to inter-

actions between the effects the agent’s actions in its environment and its plan revision

capabilities.

In this paper we present an approach to verifying agent programs which admit arbi-

trary revisions at run time. We focus on the BDI agent programming language Dribble

162

introduced in [18]. Dribble allows the implementation of agents with beliefs, (declara-

tive) goals, actions, abstract actions (procedural goals), plans, and rules for selecting and

revising plans. Although relatively simple and abstract, it is representative of a wider

class of BDI agent programming languages which support plan revision, and presents

significant challenges for verification. Our approach is based on model-checking. We

define a logic (an extension of the branching time temporal logic CTL) which describes

transition systems corresponding to a Dribble program, and show how to express prop-

erties of the program in the logic and how to encode transition systems as an input to

a model-checker. We prove soundness and completeness of the logic and a correspon-

dence between the operational semantics of Dribble and the models of the logic.

The rest of the paper is organised as follows. In the next section, we describe the

syntax and operational semantics of Dribble. In section 3 we introduce a logic for ex-

pressing properties of Dribble programs, and give a complete axiomatisation of the set

of models corresponding to the operational semantics of a Dribble agent program. We

discuss the use of the logic for verification in section 4, where we describe model-

checking of Dribble programs and give a simple example of a program and a property

which can be model-checked. We give a brief survey of related work in section 5.

2 Dribble

In this section, we briefly review the syntax and operational semantics of Dribble.

2.1 Beliefs and goals

Let Prop be a finite set of propositional variables and L the set of propositional for-

mulas. In order to make L finite, we allow L to contain only formulas in Disjunctive

Normal Form (DNF). A formula is said to be in DNF iff it is a disjunction of conjunc-

tive clauses in which a conjunctive clause is a conjunction of literals. As usual, a literal

is either p or ¬p for any p ∈ Prop. Moreover, formulas of L satisfy the following

conditions:

1. formulas do not contain duplicates of conjunctive clauses;

2. conjunctive clauses of a formula do not contain duplicates of literals; and

3. literals in a conjunctive clause of a formula only occur in some fixed order.

A Dribble agent has both a belief base and a goal base which are finite subsets of

L. The agent’s beliefs and goals are expressed in a language LBG. The syntax of LBG

is defined as follows:

β ← Bα | Gα | ¬β | β1 ∧ β2 where α ∈ L.

The meaning of Bα is that α can be propositionally derived from the belief base of an

agent, and Gα means that α is the consequence of some single goal in the goal base

of an agent. For convenience, a formula β is of LB (LG) iff it does not contain any

subformula of the form Gα (Bα, respectively).

A formula of LBG is interpreted by a pair of a belief base and a goal base 〈δ, γ〉,
in which both δ and γ are finite subsets of formulas of L. The truth of a formula β is

defined inductively as follows.

163

– 〈δ, γ〉 |=BG Bα⇔ δ |=Prop α

– 〈δ, γ〉 |=BG Gα⇔ ∃g ∈ γ : g |=Prop α

– 〈δ, γ〉 |=BG ¬ϕ⇔ 〈δ, γ〉 6|=BG ϕ

– 〈δ, γ〉 |=BG β ∧ β′ ⇔ 〈δ, γ〉 |=BG β and 〈δ, γ〉 |=BG β′

2.2 Plans

A Dribble plan consists of basic actions and abstract plans composed by sequence and

conditional choice operators. The sequence operator, ‘;’, takes two plans, π1, π2, as

arguments and states that π1 should be performed before π2. The conditional choice

operator allows branching and generates plans of the form ‘if φ then π1 else π2’.The

syntax of plans is defined as follows:

π ← a | b | if β then π′
1 else π′

2 | π
′
1;π

′
2

where a is an abstract plan, b is a basic action and β ∈ LB .

We depart from [18] in that we do not have an empty plan (denoted by E in [18])

as a special kind of plan which can occur as part of other plans. Below, we will use E

as a marker for an empty plan base, but not as a plan expression, to avoid introducing

rewriting rules for E;E to E and π1;E;π2 to π1;π2, etc.

We define length of a plan π, len(π), inductively as follows:

len(a) = 1
len(b) = 1

len(if β then π′
1 else π′

2) = len(π′
1) + len(π′

2) + 4
len(π′;π) = len(π′) + len(π)

Notice that in the case of the if-then-else statement, the length is the sum of lengths of

the plans π′
1 and π′

2 together with the number of extra symbols of the statement, i.e. if ,

then, else and β.

Since in reality, agents can hold a plan up to some fixed length, we make an as-

sumption that all plans have length smaller than a certain preset number. Restricting the

length of plans also makes the set of plans finite. This is necessary for the axiomatisa-

tion of the logic later in the paper.

In the rest of this paper, we denote by Plans the set of all plans whose lengths are

smaller than lenMAX , where lenMAX is a natural number.

Plans = {π | len(π) ≤ lenMAX}

2.3 Dribble agents

Writing a Dribble agent means writing a number of goal rules and practical reasoning

rules. The syntax of goal rules (PG) and practical reasoning (PR) rules is given below.

– PG rules: β → π where β ∈ LBG and π ∈ Plans
– PR rules: π1 | β → π2 where β ∈ LB and π1, π2 ∈ Plans, and π2 may be

empty.

164

One writes a PG rule to intend that an agent with an empty plan base will generate a

plan π if its current belief and goal bases satisfy the condition encoded in β. If the agent

has certain goals in its goal base, it will generate a plan based on its beliefs to hopefully

achieve those goals. A PR rule proposes a possible revision π2 to (the prefix of) a plan

π1 which is applicable if the belief base satisfies the condition encoded in β. That is, if

the agent has certain beliefs which imply that the current plan will be unable to achieve

the intended goal(s) or that the plan is redundant and can be simplified, it can modify

the plan. Note that π2 can be empty, allowing the agent to drop part or all of a plan.

We have slightly modified the meaning of PR rules given in [18]. In Dribble, these

rules apply to complete plans (π1 is the agent’s plan in its entirety, not a plan prefix,

for example a name for an abstract plan). In contrast we allow π1 to be a prefix of the

agent’s plan, which is replaced by π2 followed by the continuation of the original plan.

We could have written PR rules as π′
1;π | β → π2;π where π is a plan variable. In

cases where π1 matches the entire plan, our PR rules are equivalent to those in [18].

We believe that our generalisation is justified programmatically, and it presents an in-

teresting challenge for logical formalisation, in particular model-checking. To enforce

our assumption about the length of plans, we require that Dribble agents consist of PG

and PR rules which do not produce plans of length more than lenMAX .

A Dribble agent only has one intention at a time, i.e., its plan base contains at

most one plan and it can apply a goal rule only when its plan is empty, and is strongly

committed to its goals, i.e., an agent drops a goal only when it believes that the goal has

been achieved.

A Dribble agent is a tuple 〈δ, γ, Γ,∆〉 in which Γ is a set of goal rules, ∆ is set

of practical reasoning rules, δ and γ are the initial belief base and goal base and both

satisfy the following conditions:

1. δ is consistent

2. ∀α ∈ γ, δ 6|=Prop α

3. ∀α ∈ γ, α is consistent

that is, the agent’s beliefs are consistent, it does not have as a goal any formula it already

believes to be the case, and each of its goals is consistent (though its goals may be

inconsistent with each other as they can be achieved at different times).

2.4 Operational semantics

In this section, we describe how a Dribble agent operates. A Dribble program P is a

pair (Γ,∆) of PG rules and PR rules.

A configuration of an agent is a tuple 〈δ, γ, {π}〉 where δ, γ and π are the agent’s

current belief base, goal base and plan base (where π is the current plan, possibly par-

tially executed), respectively. In what follows, we will omit the set brackets around the

plan for readability, as in 〈δ, γ, π〉. The plan base can also be empty, which we will write

as 〈δ, γ, ∅〉. The initial configuration of an agent is 〈δ0, γ0, ∅〉.
We specify the operational semantics of a Dribble agent as a set of transition rules.

Each transition corresponds to a single execution step and takes the system from one

configuration/state to another. In the cases corresponding to applying PG and PR rules,

165

we have additional conditions to guarantee that we do not produce a plan of length

more than lenMAX . Notice that transitions from a configuration in which the plan base

begins with an abstract plan are included in application of PR rules.

Application of a goal rule

ϕ→ π ∈ Γ len(π) ≤ lenMAX 〈δ, γ〉 |=BG ϕ

〈δ, γ, ∅〉 −→apply(ϕ→π) 〈δ, γ, π〉

Application of a plan revision rule

π1 | β → π2 ∈ ∆ len(π2;π) ≤ lenMAX 〈δ, γ〉 |=BG β

〈δ, γ, π1;π〉 −→apply(π1|β→π2) 〈δ, γ, π2;π〉

Basic action execution

T (b, δ) = δ′ γ′ = γ \ {g ∈ γ | δ′ |=Prop g}

〈δ, γ, b;π〉 −→execute(b) 〈δ′, γ′, π〉

where T is a belief update function which takes an action and a belief base and returns

the resulting belief base. T is a partial function since an action may not be applicable

in some situations.

Conditional statement

〈δ, γ〉 |=BG β

〈δ, γ, if β then π1 else π2;π〉 →execute(if) 〈δ, γ, π1;π〉

〈δ, γ〉 6|=BG β

〈δ, γ, if β then π1 else π2;π〉 →execute(if) 〈δ, γ, π2;π〉

Note that in the last three rules, π may be absent (or be an empty string), in which case

for example executing b;π will result in 〈δ′, γ′, ∅〉.
For technical reasons, if in a configuration 〈δ, γ, π〉 no transition rule is appli-

cable, we assume that there is a special ‘stall’ transition to the same configuration:

〈δ, γ, π〉 →stall 〈δ, γ, π〉.
A computation tree CT (c0, P) for a Dribble agent with a program P = (Γ,∆) is

a tree with root c0 where each node is a configuration, such that for each node c and

each child c′ of c, c→ c′ is a transition in the transition system for P . The meaning of

a Dribble agent 〈δ0, γ0, P 〉 is a tree CT (〈δ0, γ0, ∅〉, P).

3 A logic of Dribble programs

In this section, we introduce a logic which allows us to formalize the properties of Drib-

ble agent programs. Formulas of the logic will be used as input to the model-checker.

In addition, we give a complete axiomatisation of the models of the logic. Axiomati-

sation is, of course not necessary for model-checking, but it helps us to understand the

logic and its models; for example, the axioms may be more intuitive or clearer than the

semantic conditions on models.

166

The language of our logic LD is based on Computation Tree Logic (CTL) [7] which

is a logic for reasoning about branching time. The syntax of CTL is as follows:

LCTL : ϕ← p | ¬ϕ | ϕ1 ∧ ϕ2 | EXϕ | E(ϕUψ) | A(ϕUψ) where p ∈ L

The meaning of the temporal operators is as follows: EXϕ means there is a successor

state which satisfies ϕ; E(ϕUψ) means that there is a branch where ϕ holds until ψ

becomes true; A(ϕUψ) means that on all branches, ϕ holds until ψ.

3.1 Syntax

LD extends LCTL with belief, goal and plan operators (Bs, Gs and P).

LD : ϕ ← Bsδ | Gsγ | Pπ | ¬ϕ | ϕ1 ∧ ϕ2 | EXϕ | E(ϕUψ) | A(ϕUψ)

where δ, γ ⊆ L; π ∈ Plans ∪ {E}. Bs and Gs describe the belief base and goal base

of the agent. Note that these operators apply to sets of formulas. P is used to describe

the plan base of the agent. If the agent’s plan is π, this is expressed as Pπ, and if the

plan base is empty, this is expressed as PE.

We will use the usual abbreviation:

AXϕ = ¬EX¬ϕ (in all successor states, ϕ)

AFϕ = A(⊤Uϕ) (on all branches, in some future state, ϕ)

EFϕ = E(⊤Uϕ) (there exists a branch, where in some future state, ϕ)

AGϕ = ¬EF¬ϕ (on all branches, in all states, ϕ)

EGϕ = ¬AF¬ϕ (there is a branch, where in all states, ϕ).

3.2 Semantics

In this section we define models for the logic. We show in section 4 that they corre-

spond exactly to the computation trees for Dribble agents generated by the operational

semantics.

Given a Dribble agent program P = (Γ,∆), a Dribble model of P is a triple MP =
(S,R, V) in which:

– S is a nonempty set of states

– R ⊆ S × S satisfies the properties below

– V = (Vb, Vg, Vp) a collection of three functions, Vb(s) : S → 2L, Vg(s) : S → 2L

and Vp(s) : S → 2Plans satisfying the following conditions, for all s ∈ S:

1. Vb(s) and Vg(s) are finite subsets of propositional formulas

2. Vb(s) is consistent

3. ∀α ∈ Vg(s) : Vb(s) 6|=Prop α

4. ∀α ∈ Vg(s) : α is (propositionally) consistent

5. Vp(s) is a singleton or an empty set.

167

To simplify the definition, we use the following conventions: ∀g ∈ Γ of the formϕ→ π

then guard(g) = ϕ, body(g) = π, i.e. guard(g) specifies the mental condition for

which situation is a good idea to execute the plan, and body(g) is the plan generated

after firing the goal rule. Also, ∀r ∈ ∆ of the form π1 | β → π2 then head(r) = π1,

guard(r) = β and body(r) = π2. If Vp(s) = {π}, we will write Vp(s) = π for

readability.

Further requirements for R are listed below.

EPG: For all s ∈ S, if Vp(s) = ∅ and there exists g ∈ Γ such that 〈Vb(s), Vg(s)〉 |=BG

guard(g) then there is s′ ∈ S such that (s, s′) ∈ R with Vb(s
′) = Vb(s), Vg(s

′) =
Vg(s) and Vp(s

′) = body(g)
APG: For all (s, s′) ∈ R such that Vp(s) = ∅, then Vb(s

′) = Vb(s), Vg(s
′) = Vg(s)

and there is g ∈ Γ such that 〈Vb(s), Vg(s)〉 |=BG guard(g) and Vp(s
′) = body(g)

EBA: For all s ∈ S, if Vp(s) = b;π then there is s′ ∈ S such that (s, s′) ∈ R

with Vb(s
′) = T (b, Vb(s)), Vg(s

′) = Vg(s) \ {g ∈ Vg(s)|Vb(s
′) |=Prop g} and

Vp(s
′) = π

EIF: For all s ∈ S, if Vp(s) = πif ;π, where πif = if β then π1 else π2, then there is

s′ ∈ S such that (s, s′) ∈ R with Vb(s
′) = Vb(s), Vg(s

′) = Vg(s) and

Vp(s
′) =

{

π1;π if 〈Vb(s), Vg(s)〉 |=BG β

π2;π otherwise

EPR: For all s ∈ S, if Vp(s) = π1;π and there exists r ∈ ∆ such that head(r) = π1

and 〈Vb(s), Vg(s)〉 |=BG guard(r) then there is s′ ∈ S such that (s, s′) ∈ R with

Vb(s
′) = Vb(s), Vg(s

′) = Vg(s) and Vp(s
′) = body(r);π

ABAvPR: For all (s, s′) ∈ R, such that Vp(s) = b;π′;π, where π′ might be empty,

then either of the following is true:

1. Vb(s
′) = T (b, Vb(s)), Vg(s

′) = Vg(s) \ {g ∈ Vg(s) | Vb(s
′) |=Prop g} and

Vp(s
′) = π′;π

2. Vb(s
′) = Vb(s), Vg(s

′) = Vg(s), and there is r ∈ ∆ such that 〈Vb(s), Vg(s)〉 |=BG

guard(r), head(r) = b;π′ and Vp(s
′) = body(r);π

AIFvPR For all (s, s′) ∈ R such that Vp(s) = πif ;π′;π (π′ might be empty), then

either of the following is true:

1. Vb(s
′) = Vb(s), Vg(s

′) = Vg(s), and

Vp(s
′) =

{

π1;π
′;π if 〈Vb(s), Vg(s)〉 |=BG β

π2;π
′;π otherwise

2. Vb(s
′) = Vb(s), Vg(s

′) = Vg(s), and there is r ∈ ∆ such that 〈Vb(s), Vg(s)〉 |=BG

guard(r), head(r) = πif;π
′ and Vp(s

′) = body(r);π
APR For all (s, s′) ∈ R such that Vp(s) = a;π′;π (π′ might be empty), then Vb(s

′) =
Vb(s), Vg(s

′) = Vg(s), and there is r ∈ ∆ such that 〈Vb(s), Vg(s)〉 |=BG guard(r),
head(r) = a;π′ and Vp(s

′) = body(r);π
For any state s such that there are no transitions R(s, s′) required by the conditions

above, we stipulate R(s, s). This is required to make the transition relation serial.

No other transitions apart from those required by the conditions above exist in the

model.

168

Given a model MP and a state s of MP , the truth of a LD formula is defined

inductively as follows:

– MP , s |= Bsδ ⇔ Vb(s) = δ

– MP , s |= Gsγ ⇔ Vg(s) = γ

– MP , s |= Pπ ⇔ Vp(s) = π

– MP , s |= PE ⇔ Vp(s) = ∅
– MP , s |= ¬ϕ⇔MP , s 6|= ϕ

– MP , s |= ϕ1 ∧ ϕ2 ⇔MP , s |= ϕ1 and MP , s |= ϕ2

– MP , s |= EXϕ⇔ ∃s′ : (s, s′) ∈ R : MP , s
′ |= ϕ

– MP , s |= E(ϕUψ)⇔ ∃ path (s0, s1, ..., sn) such that:

s0 = s;n ≥ 0; (si, si+1) ∈ R ∀0 ≤ i < n and MP , sn |= ϕ, and for all i < n,

MP , si |= ψ

– MP , s |= A(ϕUψ)⇔ ∀ paths (s0, s1, ...) such that:

s0 = s and ∀i ≥ 0 (si, si+1) ∈ R, exists n ≥ 0: MP , sn |= ϕ, and for all i < n,

MP , si |= ψ

Note that the formulas of CTL are evaluated in state s on a tree corresponding to

an unravelling of MP with the root s. Without loss of generality, we can assume that

each model of P is a tree with the root which intuitively corresponds to the initial

configuration of the agent.

3.3 Axiomatization

We will refer to the axiom system below as the Dribble logic of a program P , DLP . To

simplify the axioms, we use guard(g), body(g), head(r), guard(r) and body(r) with

the same meanings as in the model. Finally, we use πif for if β then π1 else π2.

CL classical propositional logic

CTL axioms of CTL

A1a
∨

δ⊆L

Bsδ

A1b Bsδ → ¬Bsδ′, ∀δ′ 6= δ

An agent has only one belief base.

A2a
∨

γ⊆L

Gsγ

A2b Gsγ → ¬Gsγ′, ∀γ′ 6= γ

An agent has only one goal base.

A3a
∨

π∈Plans∪{E}

Pπ

A3b Pπ → ¬Pπ′, where π, π′ ∈ Plans ∪ {E}, ∀π′ 6= π

An agent has only one plan.

A4 ¬Bsδ, ∀δ such that δ |=Prop ⊥
Belief base is consistent.

A5 Bsδ → ¬Gsγ for all γ such that ∃g ∈ γ : δ |=Prop g

All goals in goal base are not consequences of belief base.

A6 ¬Gsγ for all γ such that ∃g ∈ γ : g |=Prop ⊥
Each goal in goal base is consistent.

169

EPG Bsδ ∧Gsγ ∧ PE → EX(Bsδ ∧Gsγ ∧ Pπ) if ∃g ∈ Γ such that 〈δ, γ〉 |=BG

guard(g) and π = body(g)
In a state s where some planning goal rule is applicable, i.e. the current plan is

empty, there exists a next state s′ where its plan is the one generated by firing the

planning goal rule.
APG Bsδ∧Gsγ∧PE → AX(

∨

g∈Γ ′

(Bsδ∧Gsγ∧Pπg)) where Γ ′ is a set of planning

goal rules g that satisfies the following two conditions: 〈δ, γ〉 |=BG guard(g) and

πg = body(g), provided Γ ′ 6= ∅.
In a state s where the current plan is empty, all possible next states from s are only

reachable by applying some PG rule, i.e. its plan is generated by firing the PG rule.
EBA Bsδ ∧ Gsγ ∧ P(b;π) → EX(Bsδ′ ∧ Gsγ′ ∧ Pπ) where δ′ = T (b, δ) and

γ′ = γ \ {g | δ′ |=Prop g}
In a state s where a basic action is applicable, there exists a next state s′ in which

the basic action is removed from its plan, and the belief base is updated according

to the basic action (the goal base, therefore, also has to be changed in order to

maintain the disjointness with the belief base).
EIF Bsδ ∧Gsγ ∧P(πif ;π)→ EX(Bsδ ∧Gsγ ∧P(πi;π))

where

πi =

{

π1 if 〈Vb(s), Vg(s)〉 |=BG β

π2 otherwise

In a state s where the current plan begins with a conditional plan, there exists a

next state s′ in which the conditional plan is replaced by one of its two sub plans

depending on whether its condition is derivable or not from the belief base in s,

respectively.
EPR Bsδ ∧Gsγ ∧P(π1;π)→ EX(Bsδ ∧Gsγ ∧P(π2;π))

if ∃r ∈ ∆ such that 〈δ, γ〉 |=BG guard(r), head(r) = π1 and

π2 = body(r)
In a state s where a plan revision rule is applicable, i.e. the head of the rule is the

beginning of the current state and the guard of the rule is derivable from the current

belief and goal base, there exists a next state s′ in which the beginning of the plan

in s is replaced by the body of the rule.
ABAvPR Bsδ ∧Gsγ ∧P(b;π′;π)→ AX((Bsδ′ ∧Gsγ′ ∧P(π′;π))∨

∨

r∈∆′

(Bsδ′ ∧

Gsγ′ ∧ P(π′′;π))) where ∆′ is a set of plan revision rules r that satisfies the

following three conditions: head(r) = b;π′, 〈δ, γ〉 |=BG guard(r) and body(r) =
π′′, provided ∆′ 6= ∅ or T (⌊, δ) is defined.

In a state s where a basic action b is the first element of the plan, we can only

transit to another state by executing the action or applying an applicable practical

reasoning rule.
AIFvPR Bsδ ∧Gsγ ∧P(πif ;π′;π)→ AX((Bsδ′ ∧Gsγ′ ∧P(πi;π

′;π)) ∨
∨

r∈∆′

(Bsδ′ ∧ Gsγ′ ∧ P(π′′;π))) where ∆′ is a set of plan revision rules r that

satisfy three following conditions: head(r) = πif ;π′, 〈δ, γ〉 |=BG guard(r) and

body(r) = π′′; and

πi =

{

π1 if 〈Vb(s), Vg(s)〉 |=BG β

π2 otherwise

170

In a state s where an if-then-else statement is the first element of the plan, we can

only transit to another state by executing the if-then-else statement or applying an

applicable practical reasoning rule.

APR Bsδ ∧Gsγ ∧P(a;π1;π)→ AX
∨

r∈∆′

(Bsδ′ ∧Gsγ′ ∧P(π2;π)) where ∆′ is a

set of plan revision rules r that satisfy three following conditions: head(r) = a;π1,

〈δ, γ〉 |=BG guard(r) and body(r) = π2; provided ∆′ 6= ∅.
In a state swhere an abstract plan is the first element of the plan, we can only transit

to another state by applying a practical reasoning rule.

Stall Bsδ ∧Gsγ ∧Pπ → AX(Bsδ ∧Gsγ ∧Pπ) where Bsδ ∧Gsγ ∧Pπ describes

a configuration from which no normal transitions are available.

We have the following result.

Theorem 1. DLP is sound and complete with respect to the class of models of the

program P .

Proof. The proof of soundness is straightforward and is omitted. In the rest of this

section, we show the completeness ofDLP . Most of the proof is from that ofCTL [13].

Let BGP = 2L× 2L× (Plans∪ {E}). BGP intuitively corresponds to the set of

all possible configurations. Note that this is a finite set.

Given a consistent formula ϕ0, we construct the generalised Fischer-Ladner closure

of ϕ0, FL(ϕ0), as the least set H of formulas containing ϕ0 such that:

1. Bsδ ∈ H for all δ ⊆ L
2. Gsγ ∈ H for all γ ⊆ L
3. Pπ ∈ H for all π ∈ Plans ∪ {E}
4. EX(Bsδ ∧Gsγ ∧Pψ) for all (δ, γ, π) ∈ BGP
5. EX(

∨

(δ,γ,π)∈BGP ′

(Bsδ ∧Gsγ ∧Pψ)) for all BGP ′ ⊆ BGP

6. ¬ϕ ∈ H , then ϕ ∈ H
7. ϕ ∧ ψ ∈ H , then ϕ, ψ ∈ H
8. E(ϕUψ) ∈ H , then ϕ, EXE(ϕUψ) ∈ H
9. A(ϕUψ) ∈ H , then ϕ, AXA(ϕUψ) ∈ H

10. EXϕ ∈ H , then ϕ ∈ H
11. AXϕ ∈ H , then ϕ ∈ H
12. ϕ ∈ H and ϕ is not of the form ¬ψ, then ¬ϕ ∈ H

It is obvious that FL(ϕ0) is finite. As usual, we define a subset s of FL(ϕ0) that is

maximally consistent if s is consistent and for all ϕ, ¬ϕ ∈ FL(ϕ0), either ϕ or ¬ϕ is in

s. Repeat the construction of a modelM for ϕ0 as in [13] based on the set of maximally

consistent sets of FL(ϕ0), with the condition that the assignments are as follows:

– Vb(s) = δ for any δ such that Bsδ ∈ s
– Vg(s) = γ for any γ such that Gsγ ∈ s
– Vp(s) = π for any π such that Pπ ∈ s (and Vp(s) = ∅ if PE ∈ s).

The above definition is well-defined because axioms A1x, A2x and A3x guarantee that

there are exactly one Bsδ ∈ s, Gsγ ∈ s and Pπ ∈ s. Our remaining task is to show

that M is, in fact, a model of P .

171

EPG: Assume that Vb(s) = δ, Vg(s) = γ and Vp(s) = ∅, then we have Bsδ ∧Gsγ ∧
PE ∈ s. Furthermore, assume that there is g ∈ Γ such that 〈δ, γ〉 |=BG guard(g).
By axiom EPG and modus ponens (MP), EX(Bsδ ∧ Gsγ ∧ Pbody(g)) ∈ s.

According to the construction ofM , there is s′ such that Bsδ∧Gsγ∧Pbody(g) ∈
s′ and (s, s′) ∈ R. It is obvious that Vb(s

′) = δ, Vg(s
′) = γ and Vp(s

′) = body(g).
APG: Assume that Vb(s) = δ, Vg(s) = γ and Vp(s) = ∅, then we have Bsδ ∧Gsγ ∧

PE ∈ s. Let Γ ′ is the set of PG rules g ∈ Γ such that 〈δ, γ〉 |=BG guard(g). By

axiom APG and modus ponens (MP), AX(
∨

g∈Γ ′

(Bsδ ∧Gsγ ∧ Pbody(g))) ∈ s.

According to the construction of M , for any s′ such that (s, s′) ∈ R,

∨

g∈Γ ′

(Bsδ ∧Gsγ ∧Pbody(g)) ∈ s

Then, there exists g ∈ Γ ′ such that Bsδ ∧Gsγ ∧Pbody(g) ∈ s′. It is obvious that

Vb(s
′) = δ, Vg(s

′) = γ and Vp(s
′) = body(g).

The proof of other conditions onR is similar to the two cases above and are omitted.

This shows that M is a model of the program P .

4 Verification

We can express properties of Dribble programs using CTL operators in the usual way.

For example, a safety property that ‘nothing bad will happen’ can be expressed as

AG¬φ, where φ is a description of the ‘bad’ situation. Similarly, a liveness property

that ‘something good will happen’, for example the agent will achieve its goal, can

be expressed as EFφ, where φ is a description of the ‘good’ situation. It is essential

however that we know that we are verifying the properties with respect to the compu-

tation trees which precisely correspond to the operational semantics of the agent. We

prove in the next section that models of the logic correspond to computation trees, and

hence that a CTL formula is true at the root of a Dribble model for P if, and only if,

the corresponding property holds for the initial configuration c0 of its computation tree

CT (c0, P).

4.1 Correspondence theorem

We say that a state s of some model MP is corresponding to a configuration c ∈
CT (c0, P) (notation: s ∼ c) iff c = 〈Vb(s), Vg(s), Vp(s)〉.

Consider a Dribble agent 〈δ0, γ0, P 〉 and its computational tree CT (〈δ0, γ0, ∅〉, P).
We claim that it is isomorphic to the Dribble model of P with the root s0 such that

s0 ∼ 〈δ0, γ0, ∅〉 and for every state s, all children of s are distinct. The last condition

is required for isomorphism; there may be Dribble models for P where there are du-

plicated transitions to identical states. Such duplication of identical successors does not

affect the truth of DLP formulas.

Theorem 2. CT (c0, P) is isomorphic to the Dribble model MP of P with the root s0
such that s0 ∼ c0 satisfying the condition that for every state s, all children of s are

distinct.

172

Proof. We are going to show that∼ defines a bijection between the states of CT (c0, P)
and MP . We prove the theorem by induction on the distance from the root of the tree.

Base case: Assume that (s0, s) ∈ R in MP . We will show that there exists a unique c0
with c0 → c in CT (c0, P) and s ∼ c. The other direction (if c0 → c then there is a

unique s such that R(s0, s) and s ∼ c) is similar.

Case 1: Assume that Vp(s0) = ∅, by APG, there is g ∈ Γ such that

〈Vb(s0), Vg(s)〉 |=BG guard(g)

Furthermore, Vb(s) = Vb(s0), Vg(s) = Vg(s0) and Vp(s) = body(g). Let c = 〈Vb(s), Vg(s), Vp(s)〉.
By the operational semantics, c0 →apply(g) c.

Case 2: Assume that Vp(s0) = b;π′;π (π′ might be empty). As (s0, s) ∈ R, ABAvPR

implies that there are two cases to consider. In the first case, Vb(s) = T (b, Vb(s0)),
Vg(s) = Vg(s0) \ {α ∈ Vg(s0) | Vb(s) |=Prop α} and Vp(s) = π′;π. Simply let

c = 〈Vb(s), Vg(s), π
′π〉, we have that c0 →execute(b) c. In the second case, we have

Vb(s) = Vb(s0), Vg(s) = Vg(s0) and there is r ∈ ∆ such that head(r) = b;π′ and

〈Vb(s0), Vg(s0)〉 |=BG guard(r)

and Vp(s) = body(r);π. Let c = 〈Vb(s), Vg(s), body(r);π〉, then we have c0 →apply(r)

c.

For the other cases of Vp(s0), the proof is done in a similar manner by using the suitable

conditions of R.

Induction step: Assume that the path from s0 to s has length n > 1. That means there

are s1, . . . , sn = s in MP such that (si, si+1) ∈ R for all i > 0. By the induction

hypothesis, there are c1, . . . , cn−1 such that si ∼ ci for all i = 0, . . . , n − 1 and

ci →xi
ci+1 by some

xi ∈ {execute(b), execute(if), apply(g), apply(r)}

By repeating the proof of the base case, we have that there is cn such that sn ∼ cn and

cn−1 →x cn by some

x ∈ {execute(b), execute(if), apply(g), apply(r)}.

4.2 Automated verification

In this section, we show how to encodeDLP models for a standard CTL model checker

to allow the automated verification of properties of Dribble programs. For the examples

reported here, we have used the MOCHA model checker [3], due to the ease with which

we can specify Dribble programs in reactive modules, the description language used by

MOCHA.1

1 Note that model checkers such as MCMAS [15] intended for the verification of multi-agent

systems are not appropriate, as they assume that epistemic modalities are defined in terms of

accessibility relations, rather than syntactically as in LD .

173

States of the DLP models correspond to an assignment of values to state variables

in the model checker. In particular, the agent’s mental state is encoded as a collection

of state variables. The agent’s goals and beliefs are encoded as boolean variables with

the appropriate initial values. The agent’s plan is encoded as an array of steps of length

lenMAX + 1. step is an enumeration type which includes all basic actions and ab-

stract plans declared in the agent’s program, and a set of special if-tokens. Each if-token

(β, u, v) corresponds to an if-then-else construct appearing one of the agent’s plans, and

encodes the belief(s) tested, β and the lengths of the ‘then’ and ‘else’ branches (denoted

by u and v respectively). All elements of the plan array are initially assigned the value

null

The execution of plans and the application of goal and practical reasoning rules

are encoded as a MOCHA atom which describes the initial condition and transition

relation for the variables corresponding to the agent’s belief and plan bases. A basic

action is performed if the corresponding step token is the first element in the plan array.

Executing the action updates the agent’s beliefs appropriately and advances the plan,

i.e., for each plan element i > 0, the step at location i is moved to location i − 1. If

the first element of the plan array is an if-token, a test is performed on the appropriate

belief(s) and the plan advanced accordingly. For example, if the first element of the

plan array is (β, u, v) and β is false, the plan is advanced u + 1 steps. Goal rules can

be applied when the agent has no plan, i.e., when the first element of the plan array

contains ‘null’, and the rule’s mental condition holds (i.e., the agent has the appropriate

beliefs and goals). Firing the rule writes the plan which forms the body of the goal

rule into the plan array. Practical reasoning rules can be applied when the plan to be

revised matches a prefix of the plan array and the rule’s belief condition is believed by

the agent. Firing the rule writes the plan which forms the body of the rule into the plan

array and appends the suffix of the original plan (if any). In the case in which the first

element of the plan array is an abstract action, application of the appropriate practical

reasoning rule inserts the plan corresponding to the abstract action at the beginning of

the plan array. An additional atom encodes the agent’s commitment strategy, and drops

any goals the agent has come to believe as a result of executing a basic action.

The evolution of the system’s state is described by an initial round followed by an

infinite sequence of update rounds. State variables are initialised to their initial val-

ues in the initial round and new values are assigned to the variables in the subsequent

update rounds. At each update round, MOCHA non-deterministically chooses between

executing the next step in the plan (if any) and firing any applicable goal and practical

reasoning rules.

4.3 Example

As an illustration, we show how to prove properties of a simple agent program written in

Dribble. Consider the following Dribble program for a simple ‘vacuum cleaner’ agent.

The agent’s environment consists of two rooms, room1 and room2, and its goal is to

clean both rooms. The agent has actions which allow it to move between rooms and

to clean a room, and goal rules which allow it to select an appropriate plan to clean a

room. To clean a room the agent’s battery must be charged and cleaning discharges the

battery. The agent has a PR rule which revises a plan which is not executable because

174

the battery has become discharged. The agent’s beliefs and goals are expressed using

the following propositional variables: c1, c2 which mean that room1 and room2 are

clean, r1, r2 which mean that the agent is in room1 and room2, and b means that the

agent’s battery is charged. The agent has the following five basic actions:2

– mR for ‘move right’. It is applicable if the agent’s belief base δ is such that δ |=prop

r1, for example δ = {b∧¬c1∧¬c2∧r1∧¬r2}. For this particular δ, T (mR, δ) =
{b ∧ ¬c1 ∧ ¬c2 ∧ ¬r1 ∧ r2}, that is, the agent no longer believes that it is in r1
but believes that it is in r2. In general, T (mR, δ) is defined as follows: for every

α ∈ δ, in every disjunct in α containing r1, replace r1 with ¬r1 and for every

disjunct containing ¬r2, replace ¬r2 with r2.

– mL for ‘move left’. The belief update function is defined analogously.

– cR for ‘clean room’. It is applicable if the agent’s belief base δ is such that δ |=prop

b. If the action is executed in room1, it makes c1 true, similarly for executing cR in

room2. In both cases b becomes false.

– cB for ‘charge battery’. It is only applicable in r2 (intuitively because this is where

the charger is) and it makes b true.

The agent’s program consists of the following two goal rules:

g1 = c1 → if r1 then cR elsemL; cR

g2 = c2 → if r2 then cR elsemR; cR

and the PR rule:

r1 = cB;π | r1 → mR; cB;π

We would like to verify that, starting in a state in which the agent believes that it

is in room1, r1, and its battery is charged, b, the above program results in the agent

achieving its goals c1 and c2. This can be achieved by verifying, for the corresponding

model, that AF (Bc1 ∧ Bc2) is true in the initial configuration where b, ¬c1, ¬c2, r1
and ¬r2 are true.

5 Related work

A logic for proving properties of Dribble agents is presented in [18], based on dynamic

logic rather than on CTL. However, no axiomatisation of the logic or automated ver-

ification procedure is given. In [1, 2], Alechina et al. introduced a logic which is also

based on dynamic logic for verification of agent programs written in a sublanguage of

3APL, but this work does not consider rules to revise plans. In [10] Dastani et al. prove a

correspondence between an APL-like agent programming language and a specification

language based on CTL, and show that any agent implemented in the language satisfies

some desirable properties, e.g., relating to commitment strategies. In contrast, our aim

in this paper is to verify whether a given property holds for a particular agent program.

In addition, the APL considered by Dastani et al. does not include practical reasoning

2 For simplicity, we omit abstract actions.

175

rules, and hence their results are confined to agents which are unable to revise their

plans.

A strand of work on model-checking properties of agent programming languages is

represented by [4] and continued by [11, 12] who use Java Path Finder (JPF) which is

a model checker for Java programs. This approach requires writing a Java interpreter

for the language using Agent Infrastructure Layer (AIL). After that, verification pro-

ceeds as for a standard Java program, without exploiting any features specific to agent

programming languages.

A model-checking approach to automated verification of ConGolog programs was

described in [8]. The paper proposes a very expressive logic which includes first-order

language for specifying properties of programs and defines a model-checking algorithm

for the logic. Due to the first-order sublanguage, the algorithm is not guaranteed to

terminate. While ConGolog is a very expressive language, it differs from the APL and

Dribble family of languages in that it lacks an explicit mechanism for revising plans.

MetateM [14] is another language for agent programming which is based on exe-

cutable temporal statements. Although it is easy to verify automatically properties of

agents written in MetateM, the language is very different from agent programming lan-

guages such as 3APL, AgentSpeak and Dribble, where plan constructs are based on

conventional imperative languages (e.g. plans with branching constructs and loops).

6 Conclusion

This paper describes a temporal logic which allows us to axiomatise the set of transition

systems generated by the operational semantics of a Dribble program, and formulate

properties of a Dribble agent, such as that the agent is guaranteed to achieve its goals

or is not going to violate some safety restrictions. One of the interesting properties of

Dribble are practical reasoning or plan rewriting rules, and we believe that they pose

interesting challenges for logical formalisation; in particular, we had to introduce ex-

plicit ‘plan operators’ in the language to model those rules. We show how to encode

the models of the logic as input to a standard model-checker, which gives an automatic

procedure for verifying properties of a Dribble program.

References

1. N. Alechina, M. Dastani, B. Logan, and J.-J. C. Meyer. A logic of agent programs. In Proc.

of the 22nd National Conf. on Artificial Intelligence (AAAI 2007), pages 795–800. AAAI

Press, 2007.

2. N. Alechina, M. Dastani, B. Logan, and J.-J. C. Meyer. Reasoning about agent deliberation.

In Proc. of the 11th Int. Conf. on Principles of Knowledge Representation and Reasoning

(KR’08), pages 16–26. AAAI, 2008.

3. R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and S. Tasiran. MOCHA:

Modularity in model checking. In Computer Aided Verification, pages 521–525, 1998.

4. R. Bordini, M. Fisher, W. Visser, and M. Wooldridge. State-space reduction techniques in

agent verification. In Proceedings of the 3rd Int. Joint Conf. on Autonomous Agents and

Multi-Agent Systems (AAMAS-2004), pages 896–903, New York, NY, 2004. ACM Press.

176

5. R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni, editors. Multi-Agent Pro-

gramming: Languages, Platforms and Applications, volume 15 of Multiagent Systems, Arti-

ficial Societies, and Simulated Organizations. Springer, 2005.

6. R. H. Bordini, J. F. Hübner, and R. Vieira. Jason and the Golden Fleece of agent-oriented

programming. In Multi-Agent Programming: Languages, Platforms and Applications, chap-

ter 1. Springer-Verlag, 2005.

7. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using

branching time temporal logic. In D. Kozen, editor, IBM Logics of Programs Workshop,

number 131 in LNCS, pages 52–71. Springer-Verlag, 1981.

8. J. Claßen and G. Lakemeyer. A logic for non-terminating Golog programs. In Proceedings

of the 11th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’08),

pages 589–599. AAAI, 2008.

9. M. Dastani, M. B. van Riemsdijk, F. Dignum, and J.-J. C. Meyer. A programming language

for cognitive agents goal directed 3apl. In Programming Multi-Agent Systems, LNCS, pages

111–130. Springer, 2004.

10. M. Dastani, M. B. van Riemsdijk, and J.-J. C. Meyer. A grounded specification language for

agent programs. In Proceedings of the Sixth International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS’07), pages 578–585, New York, , USA, 2007. ACM

Press.

11. L. A. Dennis, B. Farwer, R. H. Bordini, and M. Fisher. A flexible framework for verifying

agent programs. In 7th Int. Joint Conf. on Autonomous Agents and Multiagent Systems

(AAMAS 2008), pages 1303–1306. IFAAMAS, 2008.

12. L. A. Dennis and M. Fisher. Programming verifiable heterogeneous agent systems. In 6th

Int. Workshop on Programming in Multi-Agent Systems (ProMAS’08), pages 27–42, 2008.

13. E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the temporal

logic of branching time. J. Comput. Syst. Sci., 30(1):1–24, 1985.

14. M. Fisher. Metatem: The story so far. In Programming Multi-Agent Systems, 3rd Int. Work-

shop, (ProMAS 2005), volume 3862 of Lecture Notes in Computer Science, pages 3–22.

Springer, 2006.

15. A. Lomuscio and F. Raimondi. MCMAS: A model checker for multi-agent systems. In

H. Hermanns and J. Palsberg, editors, Proceedings of the 12th International Conference on

Tools and Algorithms for the Construction and Analysis of Systems, (TACAS 2006), volume

3920 of Lecture Notes in Computer Science, pages 450–454. Springer, 2006.

16. D. Morley and K. Myers. The SPARK agent framework. In Proc. of the 3rd Int. Joint

Conf. on Autonomous Agents and Multiagent Systems (AAMAS’04), pages 714–721. IEEE

Computer Society, 2004.

17. J. Thangarajah, J. Harland, D. Morley, and N. Yorke-Smith. Aborting tasks in bdi agents.

In Proc. of the 6th Int. Joint Conf. on Autonomous Agents and Multi Agent Systems (AA-

MAS’07), pages 8–15, 2007.

18. B. van Riemsdijk, W. van der Hoek, and J.-J. C. Meyer. Agent programming in dribble: from

beliefs to goals using plans. In Proc. of the 2nd Int. Joint Conf. on Autonomous Agents and

Multiagent Systems (AAMAS’03), pages 393–400. ACM Press, 2003.

177

Author Index

Adam, Carole, 1

Alechina, Natasha, 162

Baldoni, Matteo, V

Bentahar, Jamal, V, 66

Chesani, Federico, 147

Chopra, Amit K., 114

Colombetti, Marco, 33

Dastani, Mehdi M., 98

de Boer, Mathijs, 17

de Lima, Tiago, 17

Di Noia, Tommaso, 82

Di Sciascio, Eugenio, 82

Dignum, Frank, 98

Doan, Thu Trang, 162

Donini, Francesco M., 82

Fornara, Nicoletta, 33

Gomrokchi, Maziar, 66

Herzig, Andreas, 1, 17

Khan, Shakil M., 49

Khosravifar, Babak, 66

Lespérance, Yves, 49

Lloyd, John, V

Logan, Brian, 162

Longin, Dominique, 1

Lorini, Emiliano, 17

Louis, Vincent, 1

Mello, Paola, 147

Meyer, John-Jules, 98

Montali, Marco, 147

Ragone, Azzurra, 82

Sakama, Chiaki, 130

Sindlar, Michal P., 98

Singh, Munindar P., 114

Torroni, Paolo, 147

Tran Cao, Son, 130

van Riemsdijk, M. Birna, V

Wellman, Michael P., 82

178

