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Abstract Problems of cyclic scheduling are usually ob-

served in flexible manufacturing systems which produce

multitype parts where the automated guided vehicle system

plays the role of a material handling system, as well as in

various other multimodal transportation systems where

goods and/or passenger itinerary planning plays a pivotal

role. The schedulability analysis of the processes executed

in the so-called systems of concurrent cyclic processes

(SCCPs) can be executed within a declarative modeling

framework. Consequently, the considered SCCP scheduling

problem can be seen as a constraint satisfaction problem.

Such a representation provides a unified way for evaluating

the performance of local cyclic processes as well as of

multimodal processes supported by them. Here, the crucial

issue is that of a control procedure (e.g., a set of dispatching

rules), which would guarantee the cyclic behavior of the

SCCP. In this context, we discuss the sufficient conditions

guaranteeing the schedulability of both local and multimod-

al cyclic processes, and we propose a recursive approach in

designing them.
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1 Introduction

Operations in cyclic processes are executed in sequences

that repeat an indefinite number of times. In everyday

practice, these processes arise in different application

domains (such as manufacturing, time sharing of processors

in embedded systems, digital signal processing, and in com-

pilers where scheduling loop operations for parallel or pipe-

lined architectures takes place) as well as in service

domains, covering such areas as workforce scheduling

(e.g., shift scheduling, crew scheduling), timetabling (e.g.,

train timetabling, aircraft routing and scheduling), and res-

ervations (e.g., reservations with or without slack, assigning

classes to rooms) [7, 10, 11, 14, 15, 19, 21, 23, 24]. Such

cyclic scheduling problems belong to the class of decision

problems, i.e., problems aimed at finding whether or not

there exists a solution satisfying certain assumed conditions

[21]. Moreover, because of their integer domains, the con-

sidered problems belong to a class of Diophantine problems

[9, 18]. This means that certain classes of cyclic scheduling

problems can be seen as undecidable [1].

Therefore, taking into account the undecidability of

Diophantine problems, not all the behaviors (including

cyclic behaviors, i.e., those that belong to a space of

cyclic steady states) are reachable under the constraints

imposed by the structure of the system. This is also the

case with the system behavior that can be achieved in

systems possessing specific structural constraints. This

means that since the system’s constraints determine its

behavior, both the system structure configuration and

the desired cyclic schedule must be considered simulta-

neously. Thus, for the solution of a cyclic scheduling

problem, the configuration of a system structure must be

determined in order to enable scheduling of the process-

es; however, the scheduling must be performed so as to

devise the system configuration.

In this context, this work discusses certain solvability

issues concerning the problems of dispatching cyclic

processes, in particular the conditions guaranteeing the

solvability of the scheduling of cyclic processes. Their

examination may replace exhaustive and time-consuming

searching for the solutions satisfying the required system

functioning.
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A number of models and methods have been proposed to

solve the cyclic scheduling problem [13]. Among them, the

most frequently applied are the mathematical programming

approaches (usually integer programming or mixed integer

programming [24]), max-plus algebra [16], constraint logic

programming [2–5, 22], swarm and evolutionary algorithms

[6, 10, 20], and Petri nets [19]. The majority of these are

oriented at finding a minimum cycle or maximum through-

put while assuming a deadlock-free flow of processes. The

approaches aimed at estimating the cycle time based on the

cyclic process structure and the employed synchronization

mechanism (i.e., rendezvous or mutual exclusion instances)

while taking into account deadlock avoidance constraints

are rather unique [8, 22, 25].

In this context, apart from the above-mentioned solvabil-

ity conditions concerning priority dispatching rules guaran-

teeing the reachability of a cyclic steady state of a system,

our main contribution consists in proposing a new modeling

framework for evaluating the cyclic steady state of a given

system of concurrent cyclic processes (SCCP). This paper is

concerned with the following questions: can the assumed

system behavior be achieved under the given constraints on

the structure of the system? Can we find such a system

structure for which the assumed system behavior can be

achieved?

Therefore, the aim of this paper is to provide the con-

ditions useful for generating cyclic steady states in a system

consisting of concurrently interacting cyclic processes,

where mutual exclusion protocols provide a synchronization

mechanism which controls the access of the processes to

shared (common) resources. This objective encompasses a

rather large class of digital and/or logistic networks that

have common properties, even though their intrinsic differ-

ences are significant. The most important property is related

to different subnetwork infrastructures which enable sched-

uling multimodal processes executed through common

shared sections of different local networks [3]. For instance,

in the case of a metro network, the itinerary of a given

passenger, assuming line changes, is an example of a mul-

timodal process, where itinerary planning can be viewed as

a relevant multimodal process scheduling.

Consequently, this study aims to present a declarative

approach to the reachability problem that can be employed

by decision makers in order to generate, analyze, and eval-

uate cyclic steady states reachable in a given SCCP struc-

ture. By employing the framework of the constraint

satisfaction problem (CSP) [5], we state our main problem

regarding the dispatching rules resulting in the SCCP cyclic

schedules of the assumed cycle time and the Ξ-periodicity

of local processes. An illustrative model of the constraint

satisfaction problem implemented in the Oz/Mozart lan-

guage is discussed from the perspective of multimodal

processes.

This contribution can be seen as a continuation of our

former work [3–5]. Hence, our approach can be viewed as

an extension of the concept of constraints sufficient for the

cyclic behavior of local and multimodal processes [5], as well

as an extension of the concept of the state space introduced in

[3, 4]. This means that the conditions introduced earlier which

guarantee the cyclic behavior of an SCCP and the generation

of its state space provide a formal framework for the devel-

opment of reachability conditions guaranteeing the generation

of cyclic steady states, i.e., the conditions which allow to

distinguish between the initial states and the cyclic steady

states in both local and multimodal processes.

The rest of the paper is organized as follows: Section 2

introduces systems of concurrently flowing local cyclic and

multimodal processes, describes the employed notation, and

states the problem. In Section 3, we discuss certain issues

concerning the generation of feasible state space as well as

provide two methods aimed at refining cyclic steady states.

Two cases illustrating the implementation of both methods

are discussed in Section 4, whereas Section 5 presents our

conclusions.

2 Systems of concurrent cyclic processes

2.1 Declarative modeling

An automated guided vehicle system (AGVS) with distin-

guishable vehicles, pick-up/delivery points (PDPs), and

transportation routes is presented in Fig. 1. Such a system

can be modeled in terms of SCCPs, where cyclic multimod-

al processes (representing transportation routes) are execut-

ed along the parts of cyclic local processes (represented by

the itineraries of vehicles) which are interconnected with

each other through common resources of the AGVS (i.e.,

PDPs). Figure 2 presents the SCCP model from Fig. 1.

Six local cyclic processes are considered, viz., P1,P2, P3,

P4, P5, and P6. The processes follow the routes composed of

transportation sectors (distinguished in Fig. 2 by the set of

resources R = {R1, …, Rc, …, R17}, where Rc is the cth

resource). Some of the local cyclic processes are pipeline

flow processes, i.e., they contain streams (representing

vehicles from Fig. 1) of the processes following the same

route while occupying different resources (sectors). For in-

stance, processes P4 and P5 contain two streams: P4 ¼

P1
4;P

2
4

� �

, andP5 ¼ P1
5;P

2
5

� �

, respectively, i.e., the processes

(vehicles) moving along the same route. The remaining local

processes contain unique streams: P1 ¼ P1
1

� �

, P2 ¼ P1
2

� �

,

P3 ¼ P1
3

� �

, and P6 ¼ P1
6

� �

. In other words, the streams

P1
1 , P1

2 , P
1
3 , P

1
4 , P

2
4 , P1

5 , P
2
5 , and P1

6 represent the eight

vehicles from Fig. 1. The kth stream of the ith local

process Pi is denoted as Pk
i .
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Apart from local processes, we consider two multimodal

processes (i.e., processes executed along the routes consist-

ing of parts of the routes of local processes): mP1 and mP2.

For example, the displacement of the pallet along the

production route depicted by the dashed line corresponds

to the multimodal process mP1 supported by AGVs, which

in turn encompass local transportation streams, P1
1 and P1

3 ,

and then also one of two pipeline-like flowing streams: P1
5

and P2
5. This means that the production/transportation route

specifying how a multimodal process is executed can be

seen as composed of parts of the routes of local cyclic

processes.

Processes can interact with each other through shared

resources, i.e., the transportation sectors. The routes of the

considered local processes (streams) are as follows:

p11 ¼ R1;R2;R3;R4ð Þ; p12 ¼ R4; R5; R6ð Þ;
p13 ¼ R3;R9;R8;R7;R5ð Þ; p41 ¼ p4

2 ¼ R2; R16; R10; R11; R12; R9ð Þ;
p15 ¼ p25 ¼ R8;R17;R13;R14;R12ð Þ; p16 ¼ R14; R11; R15ð Þ;

where R2–R5, R8–R14,R16, and R17 are the shared resources,

since each of them is used by at least two streams, and R1,

R6,R7, andR15 are the non-shared resources, because they are

exclusively used by one stream only. In general, the route pki
is the sequence of resources used in order to execute the

Legend:

- pick-up/delivery points (PDPs) - Automated Guided Vehicle (AGV)

-production route of the pallet - transportation sector 

Fig. 1 Example of an AGVS

Legend:

- resource occupied by the stream and controlled by the priority 

dispatching rule ; ( - a set of streams)

- -th resource of set - unoccupied resource: 

Fig. 2 Example of FMS–SCCP

model of an AGVS
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operations of the stream Pk
i . Note that the streams p14 and p24

which belong to P4 and the streams p15 and p25 which belong

to P5 follow the same route (these streams correspond to

vehicles moving along the same route).

Consider two cyclic multimodal processes mP1 and mP2

which follow the routes mp1 and mp2, respectively (see

Fig. 2):

mp1 ¼ R1;R2;R3;R9;R8;R17;R13ð Þ;
mp2 ¼ R15;R14;R12;R8;R7;R5;R6ð Þ:

Let us assume that mp1 and mp2 can be seen as follows:

mp1 ¼ R1;R2;R3ð Þ; R9;R8ð Þ; R17;R13ð Þð Þ;
mp2 ¼ R15;R14ð Þ; R12;R8ð Þ; R7;R5ð Þ; R6ð Þð Þ;

where:

(R1 , R2 , R3) , (R9 , R8) , (R17 , R13)— the parts

(subsequences) of routes p11, p
1
3 and p15 included in mp1

(R15, R14), (R12, R8), (R7, R5), (R6)—the parts

(subsequences) of routes p16, p
1
5, p

1
3, and p12 included in

mp2.

Let us assume that multimodal processes do not contain

subprocesses, i.e., that each multimodal process consists of

a unique stream.

The class of the considered SCCPs follows the con-

straints stated below [5]:

& A new operation may start on a resource only if the

current operation has been completed and the resource

has been released,

& Local processes share common resources in the mutual

exclusion mode, the operation of a local process can

only be suspended if the necessary resource is occupied,

suspended local processes cannot be released, and local

processes are non-preemptible, i.e., a resource may not

be taken from a process as long as it is used by it,

& Multimodal processes encompassing pallet flow con-

veyed by AGVs follow local transportation routes, and

different multimodal processes can be executed simulta-

neously along the same local process,

& Local and multimodal processes execute cyclically with

periods Tc and Tm, respectively; resources occur unique-

ly in each transportation route,

& In a cyclic steady state, each ith stream must cover its

local route the same number of times Ξ⋅ψi; the factors Ξ

and ψi are defined below.

A resource conflict (caused by the application of the

mutual exclusion protocol) is resolved with the aid of a

priority dispatching rule [2], which determines the order in

which streams access shared resources. For instance, in the

case of the resource R9;σ9 ¼ P1
3;P

1
4;P

2
4

� �

, the priority dis-

patching rule determines the order in which streams can

access the shared resource R9, i.e., the resource is first given

to stream P1
3, then to the stream P1

4, then to P2
4 and then once

again to P1
3 , and so on. The stream Pk

i occurs the same

number of times in each dispatching rule associated with the

resources featuring in its route. Therefore, the SCCP shown

in Fig. 2 is specified by the following set of dispatching

rules: Θ ¼ σ1; . . . ; σ17f g, as well as f1 P1
1

� �

¼ f2 P1
1

� �

¼ f3

P1
1

� �

¼ f4 P1
1

� �

¼ 1 , f4 P1
2

� �

¼ f5 P1
2

� �

¼ f6 P1
2

� �

¼ 3 , etc.,

where fc Pk
i

� �

is the number of occurrences of Pk
i in the cth

priority dispatching rule. This means that during the same

period, the stream P1
2 is repeated three times, while P1

1 only

once.

Thus, the priority rules determine the frequencies of the

mutual appearance of local processes sharing the same re-

source. In general, the set of dispatching rules Θ determines

the sequence of relative frequencies of mutual executions of

local processes, and is denoted by Ψ ¼ y1;y2; . . . ;ynð Þ,
where y i 2 N,

y i ¼ jj d jsc;d ¼ P1
i ; d 2 1; . . . ; lpðcÞf g

� �

jj; 8i 2 1; . . . ; nf g; 8σc 2 Θi;

ð1Þ

where Θi is the set of dispatching rules associated with the

resources featuring in the route followed by Pi, sc,d is the dth

element in the sequence σc = (sc,1, …, sc,d, …, sc,lp(c)), n is

the number of processes, and lp(c) is the length of σc.

Therefore, the SCCP shown in Fig. 2 is specified by the

sequence: Ψ = (1,3,1,1,1,2). This means that one execution

of local processes P1,P3, P4, and P5 (and their associated

streams) corresponds to three executions of process P2 and

two executions of P6.

Since the sequence Ψ of relative frequencies of mutual

executions of local processes does not necessary encompass

a cyclic steady state of the SCCP, we introduced a new

parameter describing the number of occurrences of Ψ in a

cyclic steady state, denoted by Ξ 2 N. Ξ occurrences of Ψ

in one period is termed Ξ-periodicity. For the considered

SCCP, Ξ=2 implies that two executions of the sequence Ψ =

(1,3,1,1,1,2), i.e., two executions of local processes P1,P3,

P4, and P5 correspond to six executions of the process P2

and four executions ofP6. We can define themutual frequency

mΨ of multimodal processes mPi (e.g., in the case of the

execution of multimodal processes (see the SCCP in Fig. 2),

mΨ = (1,1) implies that one execution of the process mP1

corresponds to one execution ofmP2).We can similarly define

mΞ, which determines the number of executions of mΨ in a

cycle.

In general, the following notation is used:

& A sequence pki ¼ pki;1; pki;2; . . . ; p
k
i;j; . . . ; pk

i;lrðiÞ

� �

speci-

fies the route of the stream of a local process Pk
i (the kth

stream of the ith local process Pi). Its components define

the resources used in the execution of operations, where

140 Int J Adv Manuf Technol (2013) 67:137–155



pki;j 2 R (the set of resourcesR ¼ R1;R2; . . . ;Rc; . . . ;Rmf g)

denotes the resources used by thekth stream of the ith local

process in the jth operation. In the rest of the paper, the jth

operation executed on the resource pki;j in the streamPk
i will

be denoted by oki;j ; lr(i) is the length of the cyclic process

route (all streams of Pi are of the same length). For exam-

ple, the route p12 ¼ R4;R5;R6ð Þ of the stream P1
2 (Fig. 2) is

the sequence p12 ¼ p11;1; p11;2; p11;3

� �

, where the first ele-

mentp11;1 is equal to R4, whereas the second,p
1
1;2 ¼ R5, and

the third, p11;3 ¼ R6.

& xki;j;qðlÞ 2 N is the moment when the operation oki;j begins

its qth execution in the lth cycle.

& tki ¼ tki;1; tki;2; . . . ; tki;j; . . . ; t
k
i;lrðiÞ

� �

specifies the opera-

tion times of local processes, where tki;j denotes the time

of execution of operation oki;j (for the SCCP in Fig. 2, see

Table 1).

& mpi ¼ mprk1i1 ai1 ; bi1ð Þ; mprk2i2 ai2 ; bi2ð Þ; . . . ;mpr
ky
iy

aiy ; biy
� �

� �

specifies the route of the multimodal process mPi, where

mprki a; bð Þ ¼
pki;a; p

k
i;aþ1; . . . ; p

k
i;b

� �

pki;a; p
k
i;aþ1 . . . ; p

k
i;lrðiÞ; p

k
i;1; . . . ; p

k
i;b�1; p

k
i;b

� �

a � b

b > a

8

<

:

;

a; b 2 1; . . . ; lrðiÞf g;

is the subsequence of the route pki ¼ pki;1;
�

pki;2; . . . ;

pki;j; . . . ; pk
i;lrðiÞÞ containing elements from pki;a to pki;b.

In other words, the transportation route mpi is a se-

quence of parts of routes of local processes. For in-

stance, the route followed by mP1 (see Fig. 2) is as

follows: mp1 = ((R1, R2, R3), (R9, R8), (R17, R13)), where

mpr11 1; 3ð Þ ¼ R1;R2;R3ð Þ, mpr13 2; 3ð Þ ¼ R9;R8ð Þ, and m

pr15 2; 3ð Þ ¼ R17;R13ð Þ.

In the rest of the paper, the jth operation executed in

the process mPi will be denoted by moi,j.

& mxi;j;kðlÞ 2 N is the moment when the operation moi,j
begins its kth execution in the lth cycle.

& Θ ¼ σ1;σ2; . . . ;σc; . . . ;σmf g is the set of priority dis-

patching rules, where σc = (sc,1, …, sc,d, …, sc,lp(c)) are

sequence components which determine the order in

which the processes can be executed on the resource

Rc, where sc,d ∊ H (H is the set of streams, .e.g., for

Fig. 2, H ¼ P1
1;P2

1
;P3

1
;P4

1
;P4

2
;P5

1
;P5

2
;P6

1
� �

).

Using the above notation, an SCCP can be defined as a

tuple:

SC ¼ R; SLð Þ; SMð Þ; ð2Þ

where:

R = {R1, R2, …, Rc, …, Rm}—the set of resources,

where m is the number of resources

SL = (STL, BEL)—the structure of local processes, i.e.

STL = (U, T)—the variables describing the layout of

local processes

U ¼ p11; . . . ; p
lsð1Þ
1 ; . . . ; p1n; . . . ; p

lsðnÞ
n

n o

— the se t of

routes of local process where ls(i) is the number of

streams belonging to the process Pi and n is the number

of local processes

T ¼ t11 ; . . . ; t
lsð1Þ
1 ; . . . ; t1n ; . . . ; t

lsðnÞ
n

n o

— the set of

sequences of operation times in local processes.

BEL ¼ Θ;< ;Ξð Þ—the variables describing the behav-

ior of local processes

Θ ¼ σ1;σ2; . . . ;σc; . . . ;σmf g—the set of priority dis-

patching rules

< ¼ y1;y2; . . . ;y i; . . . ;ynð Þ—the sequence of relative

frequencies of mutual executions of local processes

Ξ—the number of occurrences of Ψ in a cyclic

steady state.

SM = (STM, BEM)—the structure of multimodal pro-

cesses, i.e.

STM = (M, T)—the variables describing the layout of

the level of a multimodal process, where M = {mp1, …,

mpi,…, mpw} is the set of routes of a multimodal process

and w is the number of multimodal processes mPi

mT = {mt1 … mtw}—the set of sequences of operation

times in multimodal processes.

BEM = (mΨ,mΞ)—the variables describing the behavior

of multimodal processes

m< ¼ my1;my2; . . . ;my i; . . . ;mywð Þ—the sequence

of relative frequencies of mutual executions of multi-

modal processes

mΞ the number of occurrences of mΨ in a cyclic steady

state.

The SCCP model (2) can be seen as a multilevel model,

cf. Fig. 3, i.e., a model composed of an “R level”

Table 1 Local operation times of SCCPs (Fig. 2)

Streams i,k tki;1 tki;2 tki;3 tki;4 tki;5 tki;6

P1
1 1,1 2 2 2 2 – –

P1
2 2,1 2 2 2 – – –

P1
3 3,1 3 3 3 3 3 –

P1
4 4,1 1 1 1 1 1 1

P2
4 4,2 1 1 1 1 1 1

P1
5 5,1 2 2 2 2 2 –

P2
5 5,2 1 1 1 1 1 –

P1
6 6,1 1 1 1 – – –

Int J Adv Manuf Technol (2013) 67:137–155 141



(resources), an “SL level” (local cyclic processes), and an

“SM1 level” (multimodal cyclic processes), as well as an

“SMi level” (the ith meta-multimodal process). The SL

level determines the structure of transportation routes of

local processes U, as well as the parameters Θ,Ψ, and Ξ

which specify the required behavior of the system. In

turn, the SM1 level takes into account multimodal, pro-

cesses, as well as meta-multimodal processes (SM2 level)

composed of multimodal processes from the SM1 level.

In other words, we assume that the variables describing

SMi are the same as in the case of SM, whereas the

routes of the multimodal process of the ith level remain

composed of the processes from the (i−1)th level. The

presented model is an extended version of a simplified

model limited to R and SL levels, which is introduced

in [3, 5].

Therefore, in general, the SC ¼ R; SLð Þ; SMð Þmodel can

be seen as composed of i levels:

SCi ¼ R; SLð Þ; SM 1
� �

; SM 2
� �

; . . .
� �

; SM i
� �

: ð3Þ

Note that the cyclic behavior of SCi−1 implies the peri-

odic behavior of SCi.

2.2 Problem formulation

Let us consider an SCCP specified by a given set R of

resources, dispatching rules Θ, the routes of local and mul-

timodal processes U and M, respectively, and an initial

allocation of processes. The most important issue here is

the periodicity of the SCCP, i.e., does there exist a cyclic

execution of local processes? And if so, what is the period

Tc? Further questions are concerned with cyclic execution of

multimodal processes.

In order to find the answers to the above questions,

more detailed questions must be answered first. Which

allocations of initial processes are admissible (i.e.,

which AGV dockings are possible)? Which dispatching

rules Θ assure the periodicity of a given SCCP (in the

local and multimodal sense), while retaining the as-

sumed frequency (Ψ, mΨ) of the execution of processes

within the global period (local Tc and multimodal Tm)?

In general, however, apart from the above formulations

of forward problems, inverse problems can be consid-

ered as well. For instance, does there exist an SCCP

structure of a local (SL) and/or multimodal layer (SM),

such that the assumed steady cyclic state can be

achieved?

In the rest of the paper, the following forward problem is

considered:

Given an SCCP defined by SC (2), i.e., R, SL = (STL,

BEL), SM = (STM, BEM),

is it possible to attain cyclic behavior of SC (i.e., the

encompassing cyclic steady states of local and multimodal

processes)?

In other words, assuming the declarative approach, we

are searching for the CSP providing a formal framework

aimed at prototyping dispatching rules for the considered

SCCP.

the set of resources

The level of multimodal 

processes :

A potential higher level

The level of local 

processes :

R level

SL level

level

levelFig. 3 Multilayered model of

the behavior of an SCCP (see

the SCCP in Fig. 2)
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3 Refinement of the space of cyclic steady states

3.1 Generation of state space

Let us consider the following definition of an SCCP state,

which describes the allocation of both local and multimodal

processes:

Sk ¼ Slr;MAk
� �

; ð4Þ

where:

& Slr—the rth state of local processes, corresponding to

the kth state of multimodal processes,

Slr ¼ Ar
; Zr

;Qrð Þ; ð5Þ

where:

Ar ¼ a1
r; a2

r; . . . ; ac
r; . . . ; am

rð Þ—allocation of process-

es in the rth state, in which ac
r 2 P[ Δf g; ac

r ¼ Pk
i , the

cth resource Rc, is occupied by the local stream Pk
i and

ac
r ¼ Δ, the cth resource Rc, is unoccupied.

Zr ¼ z1
r; z2

r; . . . ; zc
r; . . . zm

rð Þ—the sequence of sema-

phores corresponding to the rth state, in which zc
r ¼ Pk

i

is the name of the stream (specified in the cth dispatch-

ing rule σc, allocated to the cth resource) which was

allowed to occupy the cth resource, e.g., zc
r ¼ Pk

i means

that stream Pk
i is currently allowed to occupy the cth

resource

Qr ¼ q1
r; q2

r; . . . ; qc
r; . . . ; qm

rð Þ—the sequence of sem-

aphore indices, corresponding to the rth state, in which

qc
r determines the position of the semaphore zc

r in the

priority dispatching rule σc; zc
r ¼ sc; qcrð Þ; qc

r 2 N. For

instance, q2
r ¼ 2 and z2

r ¼ P2
1 correspond to the

semaphore z2
r ¼ P2

1 taking the second position in the

priority dispatching rule σ2.

& MAk
—the sequence of allocations of multimodal pro-

cesses: MAk ¼ mAk
1; . . . ;mA

k
u

� �

, in which mAk
i is the

allocation of the process mPi, i.e.,

mAk
i ¼ mai;1

k
;mai;2

k
; . . . ;mai;c

k
; . . . ;mai;m

k
� �

; ð6Þ

wherem is the number of resources R,mai;c
k 2 mPi;Δf g,

mai;c
k ¼ mPi which means that the cth resource Rc is

occupied by the ith multimodal process Pi, and

mai;c
k ¼ Δ, the cth resource Rc, is released by the ith

multimodal process mPi.

In this context, the state Sk is feasible [5] when:

& Semaphores of occupied resources indicate the

streams allocated to those resources,

& Each local/multimodal stream is allotted to a unique

resource due to a relevant local/multimodal process

route.

The introduced concept of the kth state Sk enables to create

a spaceSof feasible states. To illustrate this, let us consider the

state space of an SCCP composed of six resources and three

local cyclic processes supporting one multimodal process (see

Fig. 4). The observed behavior is twofold, i.e., the levels of

local SL and multimodal SM processes can be distinguished.

In the case of the level of local processes, the states Sli are

denoted by “filled circles,” and in the case of the level of

multimodal processes, the relevant states Si 2 S are denoted

by “unfilled circles.” States Slj 2 Sl can be considered as a

part of associated statesSi 2 S, i.e., the states that are elevated

versions of relevant states Si. The transitions linking feasible

states Sk ; Sl 2 S , while following the constraints of non-

preemption and mutual exclusion, are denoted by Sk → Sl,

and they encompass the next-state function δ: Sl = δ(Sk), the

definition of which [3] leads to the following property:

Each Si 2 S can be preceded by a subset of states SPi,

SP
i � S (also SPi ¼ ;), i.e., 8Sk 2 SP

i, Si = δ(Sk) but can

result only in a unique state Sj 2 S, i.e., there exists at most

one Sj 2 S; Sj ¼ d Sið Þ.
The deadlock state S* 2 S resulting in an SCCP blockade

is free from any descendent state. In this context, two types

of steady state behaviors can be considered: a cyclic steady

state and a deadlock state.

The set mSc* ¼ Sk1 ; Sk2 ; Sk3 ; . . . ; Skv
� �

, mSc*⊂S is

called the reachability state space of multimodal processes gen-

erated by an initial state Sk1 2 S , if the following condition

holds:

Sk1 !
i�1

Ski !
v�i�1

Skv ! Ski ; ð7Þ

where Sa !
i

Sb—the transition defined in [5],

Sk1 !
i
Skiþ1 � Sk1 ! Sk2 ! Sk3 ! . . .! Skiþ1 :

The set mSc ¼ Ski ; Skiþ1 ; . . . ; Skv
� �

, mSc ⊆ mSc*, is

called the cyclic steady state of multimodal processes (i.e., a

cyclic steady state of an SCCP) with a period Tm = ||mSc||, Tm >

1. In other words, the cyclic steady state contains such a set of

states, where starting from any selected state, it is possible to

reach the remaining states and finally reach this selected state

again:

8Sk2mSc Sk !
Tm�1

Sk
� �

: ð8Þ

The cyclic steady state Sc specified by the period Tc of the

execution of local processes is defined in a similar way.

Graphically, the cyclic steady states Sc and mSc are described

by cyclic and spiral digraphs, respectively (see Fig. 4). More-

over, since an initial state Sk1 2 S either leads to mSc or to a

deadlock state S*, i.e., Sk1 !
i�1

Ski !
v�i�1

Skv ! S*, multimodal

processes can also reach a deadlock state, denoted by “circles

with a cross in the middle” in Fig. 4.
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In this context, the problem formulated in Section 2.2 can

be stated as follows: Given an SCCP defined by SC (2), i.e., R,

SL= (STL, BEL, SEL),M = (STM, BEM, SEM), does there exist a

cyclic steady statemSc in the state spaceSof the given SCCP?

Note that the above question gives rise to the following

question: Does there exist an initial state S0 that would gener-

ate the cyclic steady statemSc? Thismeans that searching for a

cyclic steady state mSc in a given SCCP can be seen as a

reachability problemwhere for an assumed initial state S0 (i.e.,

for selected allocations of local andmultimodal processes), we

look for a state Sk such that S0 !
i
Sk !

Tm�1
Sk holds.

Refining the space of cyclic steady states from a

given space of feasible states does not pose difficulty.

However, the problem of generating the space of feasi-

ble states is NP-hard. The majority of states either end

in deadlocks or lead to deadlock states. Therefore, in

order to avoid the generation of the entire space of

feasible states, let us focus on an alternative approach

aimed at generating cyclic steady states.

3.2 Generation of the space of cyclic steady states

Since the parameters describing an SCCP are usually dis-

crete, and the relations between them can be seen as

constraints, the cyclic scheduling problems that involve

them can be presented in the form of a CSP [2, 5, 17]. More

formally, CSP is a framework for solving combinatorial

problems specified by pairs: a set of variables and associated

domains and a set of constraints restricting the possible

combinations of variable values. Thus, in the case of SC

(2), the CSP is defined as follows:

CS SCð Þ ¼ X ; Tc;mX ; Tmf g; DX ;DTc;DmX ;DTmf gð Þ;Cð Þ;

ð9Þ

where:

X,Tc, mX,Tm—the decision variables, where Tc and Tm

are the local and multimodal periodicities;

X ¼ X 1
1 ; . . . ;X

lsð1Þ
1 ; . . . ;X 1

n ; . . . ;X
lsðnÞ
n

n o

is the set of

sequences of X k
i , and X k

i ¼ xki;1;1; . . . ; xki ;lrðiÞ;1

�

; . . . ;

xki;1;Ξ; . . . ; xk
i;lrðiÞ;ΞÞwhere x

k
i;j;q is the moment when the

operation oki;j (local process) begins in the first cycle,

whereas xki;j;q and xki;j;qðlÞ are linked by xki;j;qðlÞ ¼ xki;j;qþ

l � Tc; l 2 Z,Tc ¼ xki;j;q l þ 1ð Þ � xki;j;qðlÞ.

Analogously, mX = {mX1, mX2…, mXi, …, mXw} is the

set of sequences of mXi, and mXi ¼ ðmxi;1;1; . . . ;m

th
e 

el
e

time [u.t.]

Legend:

- i-th local state  

- transition

- cyclic steady state of 

local processes  

- deadlock state

cyclic

cyclic
deadlock

deadlock

deadlock

deadlockdeadlock

deadlock

The level of local 

processes 

The level of multimodal 

processes 

cyclic steady state of multimodal 

processes  

- i-th multimodal state  

- transition

transient periods

Fig. 4 Space of feasible states

encompassing behavior of the

SCCP from Fig. 2
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xi;lmðiÞ;1; . . . ;mxi;1;Ξ; . . . ;mxi;lmðiÞΞ;Þ where mxi,1,1 is

the moment when the operation moi,j (of a multimodal

process) begins in the first cycle mxi;j;kðlÞ ¼ mxi;j;kþ

l � Tm, and Tm ¼ mxi;j;k l þ 1ð Þ � mxi;j;kðlÞ.

The following domains of decision variables are

considered:

DX, DmX—the family of sets of admissible entry values

Xi, x
k
i;j;q 2 Z and mXi;mxi;j;k 2 Z

DTc, DTm—the domains of the variable Tc 2 N and Tm

2 N.

C constraints are specified by both:

& epki;j;q STL;BELð Þ the set of constraints (equations) linking
STL (structure of local processes) and BEL (behavior of

local processes). Each epki;j;q STL;BELð Þ describes the

temporal relation (in accordance with the conditions

presented above [5]) between the moments when the

operation begins during its qth execution: i ¼ 1; ::; n;

j ¼ 1; . . . ; lrðiÞ; k ¼ 1; ::; lsðiÞ; and q ¼ 1; . . . ;Ξ.

& eqi,j,k(STM, BEM) the set of constraints (equations) linking

STM (structure of multimodal processes) and BEM (behav-

ior of multimodal processes). Each eqi,j,k(STM, BEM)

describes the temporal relation between the moments when

the multimodal operations begin during their kth execu-

tion:i ¼ 1; ::;w; j ¼ 1; . . . ; lmðiÞ; and k ¼ 1; . . . ;mΞ.

In other words, the problem discussed in Section 2.2

boils down to the following: Given an SCCP described

by CS(SC)(9) (i.e., the constraint satisfaction problem

determined by SC), do there exist X,Tc, mX, and Tm

whose values satisfy all the constraints C?

The solution to the problem (9) provides us with sets of

sequences X and mX, whose values guarantee the required

cyclic behavior of the SCCP while keeping the set of con-

straints C satisfied. The constraints C that can be seen as

conditions sufficient for the cyclic behavior of the SCCP

(resulting in a collision-free and deadlock-free [12] execution

of processes) are formulated using the operator max, which

takes into account the pipeline nature of the flow of local

processes. The application of the max operator can be seen as

an extension of the max constraint concept introduced in [5].

Constraints on local processes In order to explain how the

constraints of local processes are designed, let us consider

an example of an SCCP shown in Fig. 5. The operation o11;3

(executed by P1
1 on the resource R5) can be started (i.e.,

begin its first execution; q=1) only if the preceding opera-

tion o11;2 (executed by P1
1 on R3) has been completed

x11;2;1 þ t11;2

� �

and the resource R5 has been released, i.e.,

if the streamP1
3 occupying the resourceR5 starts its subsequent

operation at x13;3;1 þ 1. Thus, the considered relation ep11;3;1
STL;BELð Þ can be specified by the following formulae:

x11;3;1 ¼ max x13;3;1 þ 1
� �

; x11;2;1 þ t11;2

� �n o

; ð10Þ

where xki;j;q is the moment when the operation oki;j forms, thePk
i

stream begins in its qth execution.

Table 2 contains the remaining constraints describing the

local processes of the SCCP from Fig. 5.

For all constraints, the following principle holds: the

moment when the operation oki;j begins is calculated as a

maximum of the completion time of operation oki;j�1 preced-

ing oki;j, and the release time of the resource pki;j awaiting for

oki;j execution.

− resource controlled by the priority dispatching rule

; 

– moment when the operation begins its execution in the stream 

Legend:

– moment when the operation begins its execution in the process

Fig. 5 SCCP with dispatching

rules: σ1 ¼ P2
1
; P3

1
� �

;σ3 ¼
P2

1
; P1

1
� �

;σ5 ¼ P3
1
; P2

1
� �

,

and Ψ = (1,1,1, Ξ = 1
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epki;j;q STL;BELð Þ :

moment when the operation oki;j begins in its q� th execution ¼

¼ max moment when pki;j is released;
n

;moment when the operation oki;j�1 completes
o

;

i ¼ 1; ::; n; j ¼ 1; . . . ; lrðiÞ; k ¼ 1; ::; lsðiÞ; q ¼ 1; . . . ;Ξ

ð11Þ

Therefore, following the constraints (11) guarantees a

deadlock-free execution of cyclic processes at the SL level

(see Fig. 3).

Note that the constraints (11) indirectly take into account

the assumed dispatching priority rules Θ and routes of

streams U. This means that the SCCP being free of deadlock

depends on the dispatching rules Θ determining the oper-

ations executed on the shared resource, i.e., the satisfiability

of constraints (11). This is because the moment when the

operation oki;j�1 completes is determined by the route of the

stream pki and, in turn, the moment when pki;j is released

depends on the operation executed before oki;j by pki;j.

Constraints on multimodal processes The constraints deter-

mining the execution of local cyclic processes have already

been discussed in depth in [3–5]. Multimodal processes, how-

ever, have not yet been discussed in a similar way. Therefore,

for the sake of simplicity, let us assume that multimodal

processes are collision- and deadlock-free. At the same time,

multimodal processes can occupy the same resource and may

use the same local process for their execution.

The research presented in [3, 4] focuses on constraints

determining cyclic steady state behavior and particularly on

the conditions behind the concept of the next-state function.

The lack of guarantee that any cyclic steady state is reachable

from a given initial state was the main disadvantage of the

results obtained so far. Moreover, because the number of

potential initial states grows exponentially with the number

of local processes, any real-life implementation of the results

is rather limited. In turn, the conditions obtained in [5], which

guarantee that an initial state belongs to a cyclic steady state,

were limited to local cyclic processes only.

The constraints describing the relationship between the

moments when successive operations begin are shown using

the example of mP1from Fig. 5. The considered process

executes on the set of the following resources: R2,R3,R5,

and R4. The local cyclic processP
1
2 supports the execution of

mP1 between R2 and R3, whereas P
1
1 supports the execution

of mP1betweenR3,R5, and R4. This means that the process

mP1 can execute its operations only when the relevant

operations from local processes are performed (i.e., P1
1 or

P1
2 ). For instance, the operation mo1,2 executed on R3

depends on P1
2. The starting moment mx1,2,1 of the operation

mo1,2 coincides with the starting moment x12;2;1 þ a � Tc
� �

,

i.e., with the beginning of the operation o12;2 and is executed

after the completion of the preceding operation mo1,2 (i.e., the

operationmo1,1 completed at the momentmx1,1,1 +mt1,1,1). The

constraint specifying this relationship has the following form:

mx1;2;1 ¼ min x12;2;1 þ a � Tc
� �

ja 2 Z; x12;2;1 þ a � Tc � mx1;1;1 þ mt1;1;1

n o

;

ð12Þ

where:

xki;j;q—the moment when the operation oi;j
k begins in the

qth execution of a local process

mxi,j,q—the moment when the operation moi,j begins in

the qth execution of a multimodal process

Tc—the periodicity of local cyclic steady states.

Table 3 contains the remaining constraints describing the

multimodal processes of the SCCP from Fig. 5.

For all the constraints, the following principle holds: the

moment when the operation moi,j begins is the earliest

moment when the operation of the local process can start

(of course the one the multimodal process mPi requires),

temporally following the moment when the operation moi,j−1
begins. More formally:

eqi;j;k STM ;BEMð Þ :
moment when the operation moi;j begins ¼
¼ minfset of moments when the operation oki;j�1 begins; temporally following

the moment when the previous operation moi;j�1 compleesg;
i ¼ 1; ::;w; j ¼ 1; . . . ; lmðiÞ; k ¼ 1; . . . ;mΞ:

ð13Þ

4 Scheduling of periodic processes

Let us consider the AGVS from Fig. 1 modeled in terms of

SCCPs (see Fig. 2). Taking into account (2), it can be

described as follows:

Table 2 Constraints

of local processes

determining the

moments xki;j;q for the

SCCP from Fig. 5

x11;1;1 ¼ max x11;3;1 þ t11;3 � Tc
� �

; x11;3;1 þ 1� Tc
� �n o

x11;2;1 ¼ max x11;1;1 þ t11;2

� �

; x12;2;1 þ 1
� �n o

x12;2;1 ¼ max x12;1;1 þ t12;1

� �

; x13;1;1 þ 1
� �n o

x12;1;1 ¼ max x12;3;1 þ t12;3 � Tc
� �

; x11;3;1 þ 1� Tc
� �n o

x13;1;1 ¼ max x13;3;1 þ t13;3 � Tc
� �

; x13;3;1 þ 1� Tc
� �n o

x12;3;1 ¼ max x12;2;1 þ t12;2

� �

; x12;2;1 þ 1g
� �n o

x13;3;1 ¼ max x12;3;1 þ 1� Tc
� �

; x13;2;1 þ t13;2

� �n o

x13;2;1 ¼ max x13;1;1 þ t13;1

� �

; x11;1;1 þ 1
� �n o
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Given SC ¼ R; SLð Þ; SMð Þ, where:

R = {R1, R2, …, R18}—the set of resources,

SL = (STL, BEL)—the structure of local processes

STL=(U,T)

U ¼ p11; p12; p13; p14; p24; p15; p25; p61
� �

p11 ¼ R1;R2;R3;R4ð Þ; p12 ¼ R4;R5;R6ð Þ;

p13 ¼ R3;R9;R8;R7;R5ð Þ;

p14 ¼ p24 ¼ R2;R16;R10;R11;R12;R9ð Þ;

p16 ¼ R14;R11;R15ð Þ;

p15 ¼ p25 ¼ R8;R17;R13;R14;R12ð Þ

T ¼ t11; t12; t13; t14; t24; t15 ; t25 ; t16
� �

, where the val-

ues of the elements of the sequences tki are

given in Table 1

BEL=(Θ, Ψ, Ξ)

Θ={σ1, σ2, …, σ17}

σ1 ¼ P1
1

� �

;σ2 ¼ P1
1;P

1
4;P

2
4

� �

;σ3 ¼ P1
1;P

1
3

� �

;

σ4 ¼ P1
1;P

1
2;P

1
2;P

1
2

� �

;

σ5 ¼ P1
2;P

1
2;P

1
2;P

1
3

� �

; σ6 ¼ P1
2;P

1
2;P

1
2

� �

;

σ7 ¼ P1
3

� �

;σ8 ¼ P1
5;P

2
5;P

1
3

� �

;

σ9 ¼ P1
3;P

1
4;P

2
4

� �

; σ10 ¼ P1
4;P

2
4

� �

;

σ11 ¼ P1
4;P

2
4;P

1
6;P

2
6

� �

;

σ12 ¼ P1
4;P

2
4;P

1
5;P

2
5

� �

;σ13 ¼ P1
5;P

2
5

� �

;

σ14 ¼ P1
5;P

2
5;P

1
6;P

2
6

� �

; σ15 ¼ P1
6;P

2
6

� �

;

σ16 ¼ P1
4;P

2
4

� �

; σ17 ¼ P1
5;P

2
5

� �

;

Ψ = (1,3,1,1,1,2)

Ξ = 1

SM = (STM, BEM)—the structure of multimodal

processes

STM = (M,mT)

M = {mp1,mp2}

mp1 ¼ R1;R2;R3;R9;R8;R17;R13ð Þ;
mp2 ¼ R15;R14;R12;R8;R7;R5;R6ð Þ:

mT= {mt1, mt2}, where the values of all

elements mti are equal to 1 unit of time

BEM = (mΨ, mΞ)

mΨ=(1, 1)

mΞ=1

The response to the following question is sought: Does

there exist a cyclic behavior of the SC (i.e., resulting in

cyclic steady states of local and multimodal processes)?

The approach aimed at generating the space of feasible

states (see Fig. 4) is time consuming (it is an NP-hard

problem) and results mainly in a deadlock or in states

leading to a deadlock. An alternative approach, based on

the CSP formulation of the CS (9), enables to focus on (and,

if possible, to generate) the dedicated cyclic steady states of

both local and multimodal processes.

4.1 Scheduling of repetitive processes

Consider a given SCCP and its SL level. Searching for a possible

cyclic steady state of local processes formulated in terms of aCSP

can be stated as the following constraint satisfaction problem:

CS SCð Þ ¼ X ; Tcf g; DX ;DTcf gð Þ;Cð Þ; ð14Þ

Table 3 Constraints

determining the

moments mxi;j;k for the

SCCP from Fig. 5

Multimodal process mP1

mx1;1;1 ¼ min x12;3;1 þ a � Tc
� �

ja 2 Z; x12;3;1 þ a � Tc � mx1;4;1 þ mt1;4;1 � Tm
n o

;

mx1;2;1 ¼ min x12;2;1 þ a � Tc
� �

ja 2 Z; x12;2;1 þ a � Tc � mx1;1;1 þ mt1;1;1

n o

;

mx1;3;1 ¼ min x11;3;1 þ a � Tc
� �

ja 2 Z; x11;3;1 þ a � Tc � mx1;2;1 þ mt1;2;1

n o

;

mx1;4;1 ¼ min x11;1;1 þ a � Tc
� �

ja 2 Z; x11;1;1 þ a � Tc � mx1;3;1 þ mt1;3;1

n o

Multimodal process mP2

mx2;1;1 ¼ min x11;1;1 þ a � Tc
� �

ja 2 Z; x11;1;1 þ a � Tc � mx2;4;1 þ mt2;4;1 � Tm
n o

;

mx2;2;1 ¼ min x11;2;1 þ a � Tc
� �

ja 2 Z; x11;2;1 þ a � Tc � mx2;1;1 þ mt1;2;1

n o

;

mx2;3;1 ¼ min x12;2;1 þ a � Tc
� �

ja 2 Z; x12;2;1 þ a � Tc � mx2;2;1 þ mt2;2;1

n o

;

mx2;4;1 ¼ min x13;1;1 þ a � Tc
� �

ja 2 Z; x13;1;1 þ a � Tc � mx2;3;1 þ mt2;3;1

n o

;

mod {Tm,Tc} = 0
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Table 4 Constraints

determining the

moments xki;j;q when

operations begin for the

SCCP from Fig. 2

Local process P1
1 Local process P1

2

x11;1;1 ¼ max x11;4;1 þ t11;4 � Tc
� �

; x11;4;1 þ 1� Tc
� �n o

x12;1;1 ¼ max x12;3;3 þ t12;3 � Tc
� �

; x11;1;1 þ 1þ Tc
� �n o

x11;2;1 ¼ max x11;1;1 þ t11;1

� �

; x24;2;1 þ 1
� �n o

x12;2;1 ¼ max x12;1;1 þ t12;1;1

� �

; x13;1;1 þ 1
� �n o

x11;3;1 ¼ max x11;2;1 þ t11;2

� �

; x13;1;1 þ 1
� �n o

x12;3;1 ¼ max x12;2;1 þ t12;2;1

� �

; x12;1;1 þ 1
� �n o

x11;4;1 ¼ max x11;3;1 þ t11;3

� �

; x12;2;3 þ 1
� �n o

x12;1;2 ¼ max x12;3;1 þ t12;3;1

� �

; x12;2;1 þ 1
� �n o

x12;2;2 ¼ max x12;1;2 þ t12;1;2

� �

; x12;3;1 þ 1
� �n o

x12;3;2 ¼ max x12;2;2 þ t12;2;2

� �

; x12;1;2 þ 1
� �n o

x12;1;3 ¼ max x12;3;2 þ t12;3;2

� �

; x12;2;2 þ 1
� �n o

x12;2;3 ¼ max x12;1;3 þ t12;1;3

� �

; x12;3;2 þ 1
� �n o

x12;3;3 ¼ max x12;2;3 þ t12;2;3

� �

; x12;1;3 þ 1
� �n o

Local process P1
3 Local process P1

4

x13;1;1 ¼ max x13;5;1 þ t13;5 � Tc
� �

; x11;4;1 þ 1
� �n o

x14;1;1 ¼ max x14;6;1 þ t14;6 � Tc
� �

; x11;3;1 þ 1
� �n o

x13;2;1 ¼ max x13;1;1 þ t13;1

� �

; x24;1;1 þ 1
� �n o

x14;2;1 ¼ max x14;1;1 þ t14;1

� �

; x24;3;1 þ 1� Tc
� �n o

x13;3;1 ¼ max x13;2;1 þ t13;2

� �

; x25;2;1 þ 1
� �n o

x14;3;1 ¼ max x14;2;1 þ t14;2

� �

; x24;3;1 þ 1� Tc
� �n o

x13;4;1 ¼ max x13;3;1 þ t13;3

� �

; x13;5;1 þ 1� Tc
� �n o

x14;4;1 ¼ max x14;3;1 þ t14;3

� �

; x16;2;2 þ 1� Tc
� �n o

x13;5;1 ¼ max x13;4;1 þ t13;4

� �

; x12;3;3 þ 1
� �n o

x14;5;1 ¼ max x14;4;1 þ t14;4

� �

; x25;2;1 þ 1
� �n o

x14;6;1 ¼ max x14;5;1 þ t14;5

� �

; x13;3;1 þ 1
� �n o

Local process P2
4 Local process P1

5

x24;1;1 ¼ max x24;6;1 þ t24;6 � Tc
� �

; x14;2;1 þ 1
� �n o

x15;1;1 ¼ max x15;5;1 þ t15;5 � Tc
� �

; x13;4;1 þ 1
� �n o

x24;2;1 ¼ max x24;1;1 þ t24;1

� �

; x14;3;1 þ 1
� �n o

x15;2;1 ¼ max x15;1;1 þ t15;1

� �

; x25;3;1 þ 1� Tc
� �n o

x24;3;1 ¼ max x24;2;1 þ t24;2

� �

; x14;4;1 þ 1
� �n o

x15;3;1 ¼ max x15;2;1 þ t15;2

� �

; x25;4;1 þ 1� Tc
� �n o

x24;4;1 ¼ max x24;3;1 þ t24;3

� �

; x14;2;3 þ 1
� �n o

x15;4;1 ¼ max x15;3;1 þ t15;3

� �

; x16;1;1 þ 1
� �n o

x24;5;1 ¼ max x24;5;1 þ t24;5

� �

; x14;6;1 þ 1
� �n o

x15;5;1 ¼ max x15;4;1 þ t15;4

� �

; x24;6;1 þ 1
� �n o

x24;6;1 ¼ max x24;5;1 þ t24;5

� �

; x14;1;1 þ 1þ Tc
� �n o

Local process P2
5 Local process P1

6

x25;1;1 ¼ max x25;5;1 þ t25;5 � Tc
� �

; x15;2;1 þ 1
� �n o

x16;1;1 ¼ max x16;3;2 þ t16;3 � Tc
� �

; x24;5;1 þ 1
� �n o

x25;2;1 ¼ max x25;1;1 þ t25;1

� �

; x15;3;1 þ 1
� �n o

x16;2;1 ¼ max x16;1;1 þ t16;1

� �

; x16;3;2 þ 1� Tc
� �n o

x25;3;1 ¼ max x25;1;1 þ t25;1

� �

; x15;4;1 þ 1
� �n o

x16;3;1 ¼ max x16;2;1 þ t16;2

� �

; x25;5;1 þ 1
� �n o

x25;4;1 ¼ max x25;3;1 þ t25;3

� �

; x15;5;1 þ 1
� �n o

x16;1;2 ¼ max x16;3;1 þ t16;3

� �

; x16;2;1 þ 1
� �n o

x25;5;1 ¼ max x25;4;1 þ t25;4

� �

; x15;1;1 þ 1þ Tc
� �n o

x16;2;2 ¼ max x16;1;2 þ t16;1

� �

; x16;3;1 þ 1
� �n o

x16;3;3 ¼ max x16;2;2 þ t16;2

� �

; x16;4;1 þ 1
� �n o
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where:

X ¼ X 1
1 ;X

1
2 ;X

1
3 ;X

1
4 ;X

2
4 ;X

1
5 ;X

2
5 ;X

1
6

� �

X 1
1 ¼ x11;1;1; x

1
1;2;1; x

1
1;3;1; x

1
1;4;1

� �

—the moments when

operations executed along p11 ¼ R1;R2;R3;R4ð Þbegin

X 1
2 ¼ x12;1;1; x

1
2;2;1; x

1
2;3;1; x

1
2;1;2; x

1
2;2;2; x

1
2;3;2; x

1
2;1;3; x

1
2;2;3;

�

x12;3;3Þ;

X 1
3 ¼ x13;1;1; x

1
3;2;1; x

1
3;3;1; x

1
3;4;1; x

1
3;5;1

� �

;

X 1
4 ¼ x14;1;1; x

1
4;2;1; x

1
4;3;1; x

1
4;4;1; x

1
4;5;1; x

1
4;6;1

� �

;

X 2
4 ¼ x24;1;1; x

2
4;2;1; x

2
4;3;1; x

2
4;4;1; x

2
4;5;1; x

2
4;6;1

� �

;

X 1
5 ¼ x15;1;1; x

1
5;2;1; x

1
5;3;1; x

1
5;4;1; x

1
5;5;1

� �

;

(allocations)

(semaphores)

(semaphore indices)

Legend:

- execution of stream - suspension of the stream - -th local state of SCCP 

re
so

u
rc

es

time [u.t.]

Fig. 6 Gantt chart illustrating the cyclic steady state of local processes for the SCCP from Fig. 2, where Ψ = (1,3,1,1,1,2) and Ξ = 1

Table 5 Values of the moments
xki;j;q when operations begin for

the SCCP from Fig. 2

Starting

moments:

x11;1;1; x12;1;1; x11;2;1; x13;1;1; x12;2;1; x24;4;1 x12;3;1; x11;3;1 x12;1;2 x13;3;1
x13;5;1; x25;1;1; x15;3;1; x14;4;1; x14;5;1; x13;2;1

x15;2;1; x16;2;1 x16;3;1 x25;2;1; x24;3;1

x16;1;1 x16;1;2

Values: 0 1 2 3 4 5 6 7 8 9

Corresponding

states:

Sl0 Sl1 Sl2 Sl3 Sl4 Sl5 Sl6 Sl7 Sl8 Sl9

Starting

moments:

x12;2;2; x14;1;1; x12;3;2; x14;3;1; x12;1;3; x15;5;1 x12;2;3; x11;4;1; x12;3;3;

x14;5;1; x24;5;1 x13;4;1; x24;1;1; x24;2;1; x25;4;1 x15;1;1 x25;5;1

x14;2;1; x24;2;1; x25;3;1

x24;6;1; x16;3;2

x16;2;2

Values: 10 11 12 13 14 15 16 17 18

Corresponding

states:

Sl10 Sl11 Sl12 Sl13 Sl14 Sl15 Sl16 Sl17 Sl18
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X 2
5 ¼ x25;1;1; x

2
5;2;1; x

2
5;3;1; x

2
5;4;1; x

2
5;5;1

� �

;

X 1
6 ¼ x16;1;1; x

1
6;2;1; x

1
6;3;1; x

1
6;1;2; x

1
6;2;2; x

1
6;3;2

� �

;

C—the set of constraints that (due to (11)) consists of

the constraints from Table 4.

The solution of the CS(14) implemented in the

Oz/Mozart platform (on an Intel Core Duo 3.00 GHz

Table 6 Constraints determining the moments mxi,j,k when operations begin for the SCCP from Fig. 2

Multimodal process mP1

mx1;1;1 ¼ min x11;1;1 þ a � Tc
� �

ja 2 Z; x11;1;1 þ a � Tc � mx1;7;1 þ mt1;7;1 � Tm
n o

;

mx1;2;1 ¼ min x11;2;1 þ a � Tc
� �

ja 2 Z; x11;2;1 þ a � Tc � mx1;1;1 þ mt1;1;1

n o

;

mx1;3;1 ¼ min x11;3;1 þ a � Tc
� �

ja 2 Z; x11;3;1 þ a � Tc � mx1;2;1 þ mt1;2;1

n o

;

mx1;4;1 ¼ min x13;2;1 þ a � Tc
� �

ja 2 Z; x13;2;1 þ a � Tc � mx1;3;1 þ mt1;3;1

n o

;

mx1;5;1 ¼ min x13;3;1 þ a � Tc
� �

ja 2 Z; x13;3;1 þ a � Tc � mx1;4;1 þ mt1;4;1

n o

;

mx1;6;1 ¼ min x15;2;1 þ a � Tc
� �

; x25;2;1 þ a � Tc
� �

ja 2 Z; x15;2;1 þ a � Tc � mx1;5;1þ
n

mt1;5;1; x25;2;1 þ a � Tc � mx1;5;1 þ mt1;5;1

o

;

mx1;7;1 ¼ min x15;3;1 þ a � Tc
� �

; x25;3;1 þ a � Tc
� �

ja 2 Z; x15;2;1 þ a � Tc
n

� mx1;5;1 þ mt1;5;1; x25;2;1 þ a � Tc � mx1;6;1 þ mt1;6;1

o

Multimodal process mP2

mx2;1;1 ¼ min x16;3;1 þ a � Tc
� �

; x16;3;2 þ a � Tc
� �

ja 2 Z; x16;3;1 þ a � Tc � mx2;7;1þ
n

mt2;7;1 � Tm; x16;3;2 þ a � Tc � mx2;7;1 þ mt2;7;1 � Tm
o

;

,

mx2;2;1 ¼ min x16;1;1 þ a � Tc
� �

; x16;1;2 þ a � Tc
� �

ja 2 Z; x16;1;1 þ a � Tc
n

� mx2;1;1 þ mt2;1;1; x16;1;2 þ a � Tc � mx2;1;1 þ mt2;1;1

o

mx2;3;1 ¼ min x15;5;1 þ a � Tc
� �

; x25;5;1 þ a � Tc
� �

ja 2 Z; x15;5;1 þ a � Tc
n

� mx2;2;1 þ mt2;2;1; x25;5;1 þ a � Tc � mx2;2;1 þ mt2;2;1

o

mx2;4;1 ¼ min x15;1;1 þ a � Tc
� �

; x25;1;1 þ a � Tc
� �

ja 2 Z; x15;1;1 þ a � Tc
n

� mx2;3;1 þ mt2;3;1; x25;1;1 þ a � Tc � mx2;3;1 þ mt2;3;1

o

mx2;5;1 ¼ min x13;4;1 þ a � Tc
� �

ja 2 Z; x13;4;1 þ a � Tc � mx2;4;1 þ mt2;4;1

n o

,

mx2;6;1 ¼ min x13;5;1 þ a � Tc
� �

ja 2 Z; x13;5;1 þ a � Tc � mx2;5;1 þ mt2;5;1

n o

,

mx2;7;1 ¼ min x12;3;1 þ a � Tc
� �

; x12;3;2 þ a � Tc
� �

; x12;3;3 þ a � Tc
� �

ja 2 Z; x12;3;1 þ a � Tc � mx2;6;1 þ mt2;6;1; x12;3;2 þ a � Tc
n

� mx2;6;1 þ mt2;6;1; x
1
2;3;3 þ a � Tc

� mx2;6;1 þ mt2;6;1
�

Table 7 Values of the moments

mxi,j,k when operations begin for

the SCCP from Fig. 2

Starting moments: mx1,1,1, mx1,2,1 mx1,3,1 mx2,3,1 mx2,4,1 mx1,4,1

mx2,2,1

Values: 0 2 7 15 17 25

Corresponding local states: Sl0 Sl2 Sl7 Sl15 Sl17 Sl6

Corresponding multimodal states: S0 S2 S7 S15 S17 S25

Starting moments: mx1,5,1 mx2,5,1 mx1,6,1, mx1,7,1 mx2,7,1 mx2,1,1

mx2,6,1

Values: 28 31 38 40 44 51

Corresponding local states: Sl9 Sl12 Sl0 Sl2 Sl6 Sl17

Corresponding multimodal states: S28 S31 S38 S40 S40 S51
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with 4.00-GB RAM and obtained in less than 1 s) is

shown in Table 5.

Therefore, the period Tc of the obtained cyclic steady

state is equal to19. The moments when operations begin in

the local processes are shown in Table 5. A Gantt chart of

the cyclic steady state behavior is shown in Fig. 6. Note that

each unit time corresponds to a system state, i.e., the allo-

cation of processes to resources. Thus, the cyclic steady

state consists of 19 states: Sc={Sl0, Sl1, …, Sl18}. Similarly

to Fig. 4, the states Sl encompassing the succeeding alloca-

tions are denoted by filled circles (see Fig. 5).

4.2 Scheduling of multimodal processes

Let us consider the cyclic steady state Sc of the local

processes of an SCCP. What is the cyclic steady state of

the multimodal processes mSc executed in this system? Let

us assume two multimodal processes mP1 and mP2. There-

fore, we must solve the relevant CSP, i.e., CS(SC) defined as

(9), which can be seen in terms of the problem (14) aug-

mented by variables mX = {mX1,mX2}, where:

mX1 ¼ mx1;1;1;mx1;2;1;mx1;3;1;mx1;4;1;mx1;5;1;mx1;6;1;mx1;7;1
� �

mX2 ¼ mx2;1;1;mx2;2;1;mx2;3;1;mx2;4;1;mx2;5;1;mx2;6;1;mx2;7;1
� �

;

as well as by the constraints (stated in (13)) specified in

Table 6. The obtained solution consists of the solution (see

Table 5) to the problem (14) that has already been obtained,

as well as of the moments mX1 and mX2 when operations

begin (see the Table 7).

The Gantt diagram of the cyclic steady state of behavior of

multimodal processes (composed of 57 states Sc ¼

S0; S1; . . . ; S57 ) is shown in Fig. 7. The obtained period is

equal to Tm=57 (i.e., the multiple of the period Tc=19). This

means that within that period, the multimodal processes com-

plete one period, whereas the local processes complete three.

The obtained cyclic steady states Sc and mSc are shown in

Fig. 8 (they are denoted as Sc1 and mSc1, respectively). Apart

fromobtaining feasible solutions encompassing a cyclic behavior

- see Fig. 6 

Legend:

- execution of stream - suspension of the stream - -th local state of SCCP 

- -th multimodal state of 

SCCP 

- execution of multimodal 

process

- execution of multimodal 

process

re
so

u
rc

es

time [u.t.]

Fig. 7 Gantt chart of the cyclic steady state of multimodal processes of the SCCP from Fig. 2, where Ψ = (1,3,1,1,1,2), Ξ = 1, mΨ (1,1), and mΞ = 1
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of the considered SCCP, we present another solution that follows

a new dispatching rule σ8 ¼ P1
3;P

1
5;P

2
5

� �

(previously, the dis-

patching rule associated with R8 was σ8 ¼ P1
5;P

2
5;P

1
3

� �

). Note

that a change in the dispatching rule does not change the period

of local processes (even though it is different from the previous

Sc2). However, the period of the cyclic steady state of the

multimodal process mSc2 does change: Tm=113.

Moreover, the mutual proportions changed as well: mΨ =

(3,2). This means that during three executions of the process

mP1, the process mP2 executes twice. The Gantt chart of the

solution of the CS (9) problem (obtained in less than 1 s) is

shown in Fig. 9.

The provided examples demonstrate the computational

efficiency of the approach based on the CSP concept (i.e.,

SC (2) and CS(SC)) aimed at generating a cyclic steady state

of the SCCP and determined by U,T,Θ,Ψ,Ξ,M,mT,mΨ, and

mΞ. The obtained cyclic steady state behaviors are free from

transient periods, i.e., transient periods as shown in Fig. 4.

This property is crucial for problems regarding switching

between possible cyclic behaviors of an SCCP [3, 4].

It should be noted, however, that for certain cases of CS

(SC), cyclic solutions do not exist at all. This means that the

constraints employed in the CS can be seen merely as

feasible conditions guaranteeing cyclic behavior.

In general, the lack of any cyclic behavior implies that the

conditions are contradictory. However, the existence of contra-

dicting conditions does not necessarily imply the lack of cyclic

behavior. Moreover, it is crucial that the time-consuming

generation of the state space that enables the refinement of

cyclic steady states [3, 4] can be replaced by direct generation

of cyclic states. From the perspective of computational com-

plexity, this means that the exponential growth of the number

of possible initial states (a possible cyclic steady state may be

reachable from each of them) can be replaced by the exami-

nation of a number of dispatching rules that also grow expo-

nentially albeit with a smaller prefactor. This is because our

Legend:

- k-th local state  

- transition

- k-th multimodal state 

- transition

time [u.t.]

Legend:

- k-th local state  

- transition

- k-th multimodal state 

- transition

time [u.t.]

Fig. 8 Space of cyclic steady

states of the SCCP from Fig. 2
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57 113

Legend:

- execution of stream - suspension of the stream - -th local state of SCCP 

- -th multimodal state of 

SCCP 

- execution of multimodal 

process

- execution of multimodal 

process

re
so

u
rc

es
re

so
u

rc
es

time [u.t.]

time [u.t.]

Fig. 9 The Gantt chart illustrating the cyclic behavior of the SCCP from Fig. 2, taking into account the new dispatching rule σ8 ¼
P3

1
; P5

1
; P5

2
� �

,Ψ = (1,3,1,1,1,2), = 1, mΨ (3,2), and mΞ = 1
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time-driven framework assumes the requirements imposed on

Ξ-periodicity of local processes (not taken into account in

an event-driven framework [3, 4]), while not taking into

account the information about the allocation of processes.

In general, two approaches can be distinguished. In the first

one, a cyclic steady state of local processes is determined.

Subsequently, basing on this, we seek the cyclic steady state of

multimodal processes at the first level (see, SM1 from Fig. 3).

In turn, based on the behavior of the first level, the behavior of

the second level is calculated, and so on and so forth. Such a

proactive approach assumes the following statement from the

formulation of the direct problem. Given a cyclic behavior at

the ith level, what is the cyclic behavior of multimodal pro-

cesses at the (i+1)th level?

Alternatively, this problem formulation can be reversed.

Given a cyclic steady state of multimodal processes at the

ith level, what are the dispatching rules that provide the

cyclic steady state of local processes guaranteeing the as-

sumed behavior at the ith level?

5 Conclusions

The constraint satisfaction problem of cyclic scheduling of

concurrently flowing local and multimodal processes was

considered. We assumed that multimodal processes are

composed of sequences of local cyclic processes. For in-

stance, if local processes encompass a network of dedicated

AGV lines, the processes responsible for moving workpie-

ces between destination points while crossing different lines

constitute the multimodal processes.

Since the AGVS structure constrains its SCCP behavior,

there are two fundamental problems. Does there exist such a

set of dispatching rules subject to constraints on the AGVS

structure that would guarantee a solution to a CSP represen-

tation of the cyclic scheduling problem? What set of dis-

patching rules subject to the assumed cyclic behavior of the

AGVS would guarantee the solution to a CSP representation

of the cyclic scheduling problem?

In this context, we propose a declarative framework pro-

viding a unified framework for the evaluation of local and

multimodal processes which allows to take into account both

the direct and inverse formulation of cyclic scheduling prob-

lems. Moreover, the employed framework enables evaluating

the SCCP behavior on the basis of the given process layout,

operation times, and the employed dispatching rules, particu-

larly in order to compose elementary systems so as to obtain

the required quantitative and qualitative behavioral features.

Therefore, our main goal is to look for a method that

allows to replace time-consuming and exhaustive search for

the admissible control design of an SCCP, which will be

obtained by a step-by-step structural design of the SCCP

that would guarantee its required behavior.

Open Access This article is distributed under the terms of the Creative

Commons Attribution License which permits any use, distribution, and

reproduction in any medium, provided the original author(s) and the

source are credited.
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