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ABSTRACT
As cloud computing becomes widely deployed, one of the
challenges faced involves the ability to orchestrate a highly
complex set of subsystems (compute, storage, network re-
sources) that span large geographic areas serving diverse
clients. To ease this process, we present COPE (Cloud Or-
chestration Policy Engine), a distributed platform that al-
lows cloud providers to perform declarative automated cloud
resource orchestration. In COPE, cloud providers specify
system-wide constraints and goals using COPElog, a declar-
ative policy language geared towards specifying distributed
constraint optimizations. COPE takes policy specifications
and cloud system states as input and then optimizes com-
pute, storage and network resource allocations within the
cloud such that provider operational objectives and customer
SLAs can be better met. We describe our proposed integra-
tion with a cloud orchestration platform, and present initial
evaluation results that demonstrate the viability of COPE
using production traces from a large hosting company in the
US. We further discuss an orchestration scenario that in-
volves geographically distributed data centers, and conclude
with an ongoing status of our work.

Categories and Subject Descriptors
K.6.4 [Computing Milieux]: Management Of Comput-
ing And Information Systems—System Management ; C.2.4
[Computer Systems Organization]: Computer Commu-
nication Networks—Distributed Systems

General Terms
Design, Languages, Management

Keywords
Cloud computing, Resource orchestration, Declarative queries,
Distributed optimizations
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Cloud resource orchestration [16] involves the creation,
management, manipulation and decommissioning of cloud
resources, i.e., compute, storage and network, in order to
realize customer requests, while conforming to operational
objectives of the cloud service providers at the same time.
We argue that cloud orchestration is highly complex. First,
as many recent proposals [22, 25, 4, 24, 5] have articu-
lated, cloud management is inherently complicated due to
the scale, heterogeneity, infrastructure, and concurrent user
services that share a common set of physical resources. Sec-
ond, configurations of various resource types interact with
each other. For example, the locations of virtual machines
(VMs) have an impact on storage placement, which in turn
affect bandwidth utilization within and external to a data
center. Third, cloud resources have to be deployed in a fash-
ion that not only realizes provider operational objectives,
but also guarantees that the customer service-level agree-
ments (SLAs) can be constantly met as runtime conditions
change. All in all, the orchestration process is complex and
potentially error prone if performed manually, and motivates
the need for better management tools that enable us to au-
tomate part or all of the decision process.

As a first step towards addressing these challenges, this
paper presents our initial work on COPE (Cloud Orchestra-
tion Policy Engine), a platform that enables cloud providers
to automate the process of cloud orchestration via the use of
declarative policy languages. COPE allows cloud providers
to formally model cloud resources and formulate orchestra-
tion decisions as a constraint optimization problem given
goals and cloud constraints. In COPE, we envision a dis-
tributed network of controllers, each of which resides over
a cloud orchestration platform [16], coordinating resources
across multiple data centers. Each COPE node utilizes a
constraint solver for efficiently generating the set of orches-
tration commands, and a distributed query engine [2, 17]
for communicating policy decisions among different COPE
nodes. Specifically, this paper makes the following contribu-
tions:

• Cloud orchestration as a constraint optimization
problem. We propose a unified framework for mathe-
matically modeling cloud resources orchestration as a con-
straint optimization problem (COP). Operational objec-
tives and customer SLAs are specified in terms of goals,
which are subjected to a number of constraints specific to
the cloud deployment scenario. These specifications are
then fed to a COPE constraint solver, which automati-
cally synthesizes orchestration commands. We show that



this framework is general enough to capture a variety of
cloud resource orchestration scenarios within and across
data centers.

• Declarative configuration. To ease the process of spec-
ifying the above models, we provide a declarative policy
language called COPElog that allows cloud providers to
specify goals and constraints of resource orchestration. To
validate COPE, we conduct an experiment based on ac-
tual hosting traces obtained from a large hosting company
in the US. In 8 COPElog rules, we demonstrate the ability
of COPE to perform automated VM migrations to ensure
good load distribution within data centers.

• Distributed optimizations. To scale the above configu-
ration process and provide autonomy to smaller groups of
local administrators such as federated cloud [6] infrastruc-
tures, we extend the earlier formulation to consider a dis-
tributed optimizations-based approach. This approach al-
lows different cloud operators to configure a smaller set of
resources while coordinating amongst themselves to achieve
a global objective. COPE utilizes a distributed query
engine integrated with constraint solving capabilities for
coordinating distributed optimizations. We demonstrate
its feasibility via a case study involving dynamic load-
balancing across data centers. We conclude with a discus-
sion of open issues and challenges, and speculate how dis-
tribution optimizations may apply to a number of emerg-
ing cloud scenarios.

2. SYSTEM OVERVIEW
Figure 1 presents a system overview of COPE, which is de-

signed for a cloud environment comprising of geographically
distributed data centers via dedicated backbone networks or
the Internet. COPE can be deployed in either a centralized
or distributed mode.
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Figure 1: COPE in the Cloud

In a centralized deployment scenario, the entire cloud is
configured by one centralized COPE node. It takes as in-

put system states (e.g. node CPU load, memory usage, net-
work traffic statistics) gathered from the cloud, and a set of
provider policy constraints and goals specified in a declar-
ative policy language called COPElog. These specifications
are then used by a constraint solver to automatically gener-
ate optimization commands. These commands are then fed
into a cloud orchestration layer to generate physical orches-
tration operations to directly manipulate cloud resources.
Our target orchestration layer is Data-centric Management
Framework (DMF) [16], which provides high-level orchestra-
tion commands relieving operators from working with ad-hoc
configuration scripts. DMF further provides a convenient
transactional semantics for orchestration commands, where
the ACID property is preserved for a series of orchestration
commands grouped as a transaction.

In a distributed deployment scenario, there are multiple
COPE instances, typically one for each data center. A dis-
tributed deployment brings two advantages. First, cloud en-
vironments like federated cloud [6] may be administered by
different cloud providers. This necessitates each provider
running its own COPE for its internal configuration, but co-
ordinate with other COPE nodes for inter data center con-
figurations. Second, even if the cloud is entirely under one
administrative domain, for scalability reasons, each cloud
operator may choose to configure a smaller set of resources
using local optimization commands. A distributed query en-
gine [2] is used to coordinate the exchange of system states
and optimization output amongst COPE nodes, in order to
achieve a global objective.

3. MOTIVATING EXAMPLES
To illustrate both deployment models, we present two mo-

tivating scenarios, SimpleCloud and Follow-the-Sun.

3.1 SimpleCloud
We consider a hypothetical cloud service called Simple-

Cloud, a simplified version of what cloud service providers
might offer. In SimpleCloud, a customer may spawn new
VMs from an existing disk image, and later start, shutdown,
or delete the VMs. SimpleCloud is realized within a data
center, and used to host a variety of client applications.
Given that SimpleCloud is located within one data center,
one can deploy COPE as a centralized controller node for
the entire data center, issuing commands to the cloud or-
chestration layer to manipulate VM placement.

COPE takes as input real-time system states (e.g., CPU
and memory load, migration feasibility), and a set of policies
specified by the cloud provider. An example optimization
goal is to reduce the cluster-wide CPU load variance across
all machines, so as to avoid hot-spots. Constraints can be
tied to each machine’s resource availability (e.g. each ma-
chine can only run up to a fixed number of VMs, run certain
classes of VMs, and not exceed its own memory limits), or
security concerns (VMs can only be migrated across certain
types of machines). Another possible policy is to minimize
the total number of VM migrations, as long as a load vari-
ance threshold is met across all machines. Alternatively, to
consolidate workloads one can minimize the number of hosts
that are hosting VMs, as long as each application receives
sufficient resources to meet customer demands. Given these
optimization goals and constraints, COPE can be executed
periodically, or triggered whenever imbalance is observed, or
whenever the VM’s CPU and memory usage changes.



In today’s deployment, providers typically perform load
balancing in an ad-hoc fashion. For instance, VM migra-
tions can be triggered at an overloaded host machine, whose
VMs are migrated to a randomly chosen machine currently
with light load. While such ad-hoc approaches may work
for a specific scenario, they are unlikely to result in configu-
rations that can be easily customized upon changing policy
constraints and goals, and whose optimality cannot be easily
quantified.

3.2 Follow-the-Sun
Our second motivating example is based on the Follow-

the-Sun [22] scenario, which aims to migrate VMs across
geographical distributed data centers based on customer dy-
namics. Here, the geographic location of the primary work-
load (i.e., majority of customers using the cloud service) de-
rives demand shifts during the course of a day, and it is
beneficial for these workload drivers to be in close proximity
to the resources they operate on. The migration decision
process has to occur in real-time on a live deployment with
minimal disruption to existing services.

In this scenario, the cloud infrastructure service aims to
optimize for two parties: enable service consolidation (for
providers) to reduce operating costs, and improve applica-
tion performance (for customers), while ensuring that cus-
tomer SLAs of web services (e.g. defined in terms of the
average end-to-end experienced latency of user requests) are
met. In addition, they may be performed to reduce inter-
data center communication overhead [27, 5]. Since data cen-
ters in this scenario may belong to different cloud providers
(similar to federated cloud [6]), Follow-the-Sun may be best
suited for a distributed deployment, where each COPE node
is responsible for controlling resources within their data cen-
ter.

In the rest of the paper, to illustrate COPE’s capabili-
ties, we first focus on the centralized deployment scenario
in Section 4 using the SimpleCloud scenario, followed by a
discussion of the distributed Follow-the-Sun scenario in Sec-
tion 5.

4. CENTRALIZED ORCHESTRATION
Using the SimpleCloud scenario, we provide a complete ex-

ample to illustrate COPE’s capabilities: (1) expressing cloud
orchestration as a constraint optimization problem (COP),
(2) expressing COP using a declarative policy language, and
(3) present a trace-driven evaluation of COPE using actual
traces from a large hosting company. We focus on the cen-
tralized deployment, and defer discussion of distribution to
Section 5.

4.1 COP Specifications
A COP takes as input a set of constraints, and attempts to

find an assignment of values chosen from an domain to a set
of variables to satisfy the constraints under an optimization
goal. The goal is typically expressed as a minimization over
a cost function of the assignments.

COPE uses a declarative policy language COPElog to con-
cisely specify the COP formulation in the form of policy
goals and constraints. Additional derivation rules are used
to process intermediate system states for use by the solver
in processing the COP program. Our declarative language
COPElog is based on Datalog, a recursive query language
used in the database community for querying graphs. Our

choice of Datalog as a basis for COPElog is driven by Dat-
alog’s conciseness in specifying dependencies among system
states, including distributed system states that exhibit recur-
sive properties. Its root in logic provides a convenient mech-
anism for expressing solver goals and constraints. Moreover,
there exists distributed Datalog engines [2] that will later
facilitate distributed COP computations.

COPElog extends traditional Datalog with constructs for
expressing goals and constraints and also distributed com-
putations. These specifications are compiled into execution
plans executed by a distributed query engine that includes
modules for constraint solving. To illustrate COPElog, we
consider the following program, which expresses a COP that
aims to achieve load-balancing within a data center. For
simplicity, this example is centralized, and we will revisit
the distributed extensions in the next section.

goal minimize C in stdevCPU(C).

var hostAssign(Hid,Vid) forall vm(Vid,CPU,Mem).

r1 aggCPU(Hid,SUM<CPU>) :- hostAssign(Hid,Vid),
vm(Vid,CPU,Mem).

r2 stdevCPU(STDEV<CPU>) :- aggCPU(Hid,CPU).
r3 aggMem(Hid,SUM<Mem>) :- hostAssign(Hid,Vid),

vm(Vid,CPU,Mem).

c1 aggMem(Hid,Mem) -> Mem<=mem_thres.
c2 hostAssign(Hid,Vid) -> vm(Vid,CPU,Mem),

CPU>load_thres.
c3 hostAssign(Hid,Vid) -> host(Hid).

In COPElog, regular Datalog rules are used to generate
intermediate tables used by the solver. This is specified as
regular Datalog rules of the form p :- q1, q2, ..., qn,
resulting in the derivation of p, whenever the rule body (q1
and q2 and ... and qn) is true. We adopt standard Data-
log terminology throughout the paper, and refer to each term
within a rule (e.g. q1, q2) as a predicate, and the correspond-
ing derivation obtained (e.g. p) during rule body execution
are referred to as tuples. Attributes in upper case refer to
variables, while lower case refers to constants.

Language extensions. Two reserved keywords goal and
var specify the goal and variables used by the constraint
solver. Constraint rules of the form F1 -> F2, F3, ...,

Fn, denotes the logical meaning that whenever F1 is true,
then the rule body (F2 and F3 and ... and Fn) must also be
true to satisfy the constraint. Unlike a Datalog rule, which
derives new values for a predicate, a constraint restricts a
predicate’s allowed values, hence representing an invariant
that must be maintained at all times. These are used by the
solver to limit the search space when computing the opti-
mization goal.

Program description. The above program takes as in-
put vm(Vid,CPU,Mem) and host(Hid) tables. Each vm en-
try stores information of a virtual machine (VM) uniquely
identified by Vid. Additional monitored information (i.e. its
CPU utilization CPU and memory usage Mem) are also sup-
plied in each entry. This monitored information can be pro-
vided by the cloud infrastructure, which regularly updates
CPU and memory utilization attributes in the vm table. The
host table stores the set of currently available machines that
can run VMs. Given these input tables, the above program
expresses the following:

• Optimization goal: Minimize the CPU standard devia-
tion attribute C in stdevCPU.



• Variables: As output, the solver generates entries in
hostAssign(Hid,Vid), where each entry indicates VM Vid

is assigned to host Hid. Vid is bounded via the forall to
all existing VMs stored in vm(Vid,CPU,Mem).

• Derivation rules: Rules r1 aggregates the CPU of all
VMs running on each host. Rule r2 takes the output from
r1 and then computes the system-wide standard deviation
of the aggregate CPU load across all hosts. The output
from r2 is later used by the constraint solver for exploring
the search space that meets the optimization goal.

• Constraints: Constraint c1 expresses that no host can
accommodate VMs whose aggregate memory exceeds its
physical limit (a predefined threshold mem_thres). Simi-
larly, constraint c2 restricts migration to only VMs whose
CPU load is above a predefined threshold load_thres. c2
is used to reduce unnecessary migrations, by removing the
VMs with light load from the list. Constraint c3 ensures
that VMs are only assigned to hosts that are currently
available.

Orchestration. The DMF orchestration layer executes
the above program either as a one-time query, periodically,
or in a continuous fashion. The continuous version would re-
quire running the program as a continuous query, and then
triggering the solver whenever a rule body predicate is up-
dated (e.g. reported changes to monitored CPU or mem-
ory usage for a given VM). The output of the solver is the
hostAssign(Hid,Vid) table. For each entry, the DMF con-
troller will invoke a migration operation if VM Vid currently
resides in another location other than Vid.

Using COPElog, it is easy to customize policies simply
by modifying the goals, constraints, and adding additional
derivation rules. For instance, if the overhead of VM migra-
tion is too high, we can set an optimization goal that mini-
mizes the number of VM migrations. We can also add a rule
(continuous query) that triggers the COP program when-
ever load imbalance is observed (i.e. C in stdevCPU exceeds
a threshold). Alternatively, we can optimize for the fewest
number of unique hosts used for migration while meeting
customer SLAs when consolidating workloads.

4.2 COPElog Compilation and Execution
COPE’s compiler and runtime system is implemented by

integrating the RapidNet [2] distributed query engine with
the Gecode [1] constraint solver. RapidNet was originally
designed as a platform for declarative networks [17]. We
adopted its usage in order to leverage its distributed Data-
log engine. This allows us to execute the derivation rules in
COPElog programs using standard query processing tech-
niques involving database operators, such as joins (variable
matching in rule body), aggregation (e.g. SUM, STDEV),
selection filters, rule head renaming, etc.

Whenever an orchestration decision is required, COPElog
programs are compiled into executable code in RapidNet,
which invokes Gecode’s high-performance constraint solving
modules. Our compilation process maps COPElog’s goal,
var, and constraints into equivalent COP primitives in Gecode.
These modules are invoked either as a one-time program
submitted to COPE, periodically (via periodic timer events
generated from COPElog rules), or in a continuous fashion
triggered by incremental maintenance [18] as the body pred-
icates are updated.

Gecode adopts the standard branch-and-bound searching
approach to solve the optimization while exploring the space
of variables under constraints (e.g. c1-3). In addition to
these constraints, rules that use solver results as input (e.g.
r1 and r3) are rewritten into constraints to further prune
the search space.

One of the interesting aspects of COPE from a query pro-
cessing standpoint, is our integration of RapidNet (an in-
cremental bottom-up distributed Datalog evaluation engine)
and Gecode (a top-down goal-oriented constraint solver).
This integration allows us to implement a distributed solver
that can perform incremental and distributed constraint op-
timizations.

4.3 Evaluation
To demonstrate the capabilities of COPE, we perform a

trace-driven experiment executing the COPElog program for
the SimpleCloud scenario. As input to the experiment, we
use data center traces obtained from a large hosting company
in the US. The data contains up to 248 customers hosted
on a total of 1,740 statically allocated physical processors
(PPs). Each customer application is deployed on a subset
of the PPs. The entire trace is one-month in duration, and
the trace primarily consists of sampling of CPU and memory
utilization at each PP gathered at 300 seconds interval.

Workload generation: From the trace, we generate a
workload in a hypothetical cloud environment similar to Sim-
pleCloud where there are 15 physical machines geographi-
cally dispersed across 3 data centers (5 hosts each). Each
physical machine has 32GB memory. By default we config-
ure two types of VMs: local and migratable. We preallocate
56 local VMs on each of 15 hosts, and 8 migratable VM on
each of 12 hosts, where the other 3 hosts serve as storage
servers for each of the three data centers. This allows us to
simulate a deployment scenario involving about 1000 VMs.
The workload is generated as follows:

• VM spawn: CPU demand (% PP used) is aggregated over
all PPs belonging to a customer at every time interval.
We compute the average CPU load, under the assumption
that load is equally distributed among the allocated VMs.
Whenever a customer’s average CPU load per VM exceeds
a predefined high threshold and there are no free VMs
available, one additional VM is spawned on a random host
by cloning from an image template.

• VM stop and start: Whenever a customer’s average CPU
load drops below a predefined low threshold, one of its
VMs is powered off to save resources (e.g. energy and
memory). We assume that powered-off VMs are not re-
claimed by the cloud. Customers may bring their VMs
back by powering them on when the CPU demands be-
come high later.

Our COPE prototype periodically (every 20 minutes) ex-
ecute the COPElog program in Section 4.1, to perform a
COP computation that orchestrates load balancing via VM
migration within each data center. The program takes as
input the vm(Vid,CPU,Mem) table, which is updated by the
workload generator, as well as the host(Hid) table. Fig-
ure 2 shows the average CPU standard deviation of three
data centers achieved by the COPElog program over a 3.5
hours period. During this period, there are on average 16.8
VM migrations every interval.
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Figure 2: Average CPU standard deviation of three
data centers

To validate that COPE is achieving good load balancing,
we compare COPE against two strawman approaches De-
fault and Heuristic. Default is the most näıve strategy, which
simply does no migration after VMs are initially placed on
a random host. Heuristic is a threshold-based policy that
migrates VMs from the most loaded host (i.e. with the high-
est aggregate CPU of the VMs running on it) to the least
one, until the most-to-least load ratio is below a threshold K
(K is 1.2 in our experiment). Heuristic emulates an ad-hoc
strategy that a cloud operator may adopt in the absence of
COPE. As evidence of the effectiveness of COPE, we observe
that COPE is able to more effectively perform load balanc-
ing, achieving a 44% and 18% reduction of the degree of
CPU load imbalance as compared to Default and Heuristic,
respectively.

Note that the above results validate the capability of
COPElog in enforcing one particular load balancing policy.
By customizing the COPElog rules, one could have flexibly
implemented different policies that load balances memory
usage, or achieve another optimization goal of minimizing
the number of VM migrations, as previously described.

In terms of solver overhead, we note that on a Intel Quad
core 2.33GHz PC with 4GB RAM running Ubuntu 10.04,
the solver takes an average of 0.6 seconds (6.1 seconds at
maximum) to complete each COP execution. The memory
footprint is 217KB (on average), and 409KB (maximum).
For larger-scale data centers with more migratable VMs,
the solver will require exponentially more time to terminate.
This makes it hard to reach the optimal solution in reason-
able time. In the next section, we will discuss distributed
deployment scenarios that can potentially improve scalabil-
ity.

5. DISTRIBUTED ORCHESTRATION
As noted in Section 2, distributed deployments are re-

quired in cases where orchestration spans multiple cloud
providers, or to improve scalability by partitioning an expen-
sive COP operation into smaller operations (this typically
results in an approximate solution). We use the Follow-the-
Sun example to highlight these distributed capabilities.

5.1 COP Formulation
We first present a COP-based mathematical model of the

Follow-the-Sun scenario. Recall that in the scenario, cloud
providers decide to migrate VMs across data centers in order
to consolidate resources and better meet customer demands.
In this model, there are n autonomous geographically dis-
tributed data centers C1, ..., Cn at location 1, 2, ..., n. Each
data center is managed by one COPE node. Each site Ci has
a resource capacity (set to the maximum number of VMs)
denoted as Ri. Each customer specifies the number of VMs
to be instantiated, as well as a preferred geographic location.
We denote the aggregated resource demand at location j as
Dj , which is the sum of total number of VMs demanded by
all customers at that location. Given the resource capacity
and demand, Ci currently allocates Aji resources (VMs) to
meet customer demand Dj at location j.

In the formulation, Mijk denotes the number of VMs mi-
grated from Ci to Cj to meet Dk. When Mijk > 0, the cloud
orchestration layer will issue commands to migrate VMs ac-
cordingly. This can be periodically executed, or executed
on demand whenever system parameters (e.g., demand D or
resource availability R) changes dramatically.

A näıve algorithm is to always migrate VMs to customers’
preferred locations. However, it could be either impossi-
ble, when the aggregated resource demand exceeds resource
capacity, or suboptimal, when the operating cost of a desig-
nated data center is much more expensive than neighboring
ones, or when the traffic patterns incur high communication
cost, e.g. the majority of the access clients for the VMs are
far away from the preferred data center.

In contrast, COPE’s COP approach attempts to optimize
based on a number of factors captured in the cost function.
In the model, we consider three main kinds of cost: (1) oper-
ating cost of data center Cj is defined as OCj , which includes
typical recurring costs of operating a data center; (2) com-
munication cost of meeting resource demand Di from data
center Cj is given as CCij ; (3) migration cost MCij is the
communication overhead of moving a VM from Ci to Cj .
Given the above variables, the COP formulation is:

min (aggOC + aggCC + aggMC) (1)

aggOC =
nX

j=1

(

nX
i=1

(Aij +

nX
k=1

Mkji) ∗OCj) (2)

aggCC =

nX
j=1

nX
i=1

((Aij +

nX
k=1

Mkji) ∗ CCij) (3)

aggMC =
nX

i=1

nX
j=1

((
nX

k=1

max(Mijk, 0)) ∗MCij) (4)

subject to:

∀j : Rj ≥
nX

i=1

(Aij +
nX

k=1

Mkji) (5)

∀i, j, k : Mijk + Mjik = 0 (6)

Optimization goal. The COP aims to minimize the
aggregate cost of cloud providers. In the above formula, it
is defined as the sum of the aggregate operating cost aggOC
(2) across all data centers, aggregate communication cost
aggCC (3) to meet customer demands served at various data
centers, and the aggregate VM migration cost aggMC (4),



all of which are computed by summing up OCj , CCij , and
MCij for the entire system.

Constraints. The COP is subjected to two constraints.
In Constraint (5), each data center cannot allocate more
resources than it possesses. Constraint (6) ensures the zero-
sum relation between migrated resources between Ci and Cj

for demand k.
In Appendix A, we validate the above COP formulation

via performing a preliminary utility analysis using a syn-
thetic workload. In the absence of actual traces that mir-
rors actual costs (operating, migration, communication), our
synthetic workload provides an initial starting point for vali-
dating the formulation. Note that our COP formulation can
be further customized based on provider/customer needs.
For example, an alternative optimization goal is to mini-
mize service latency in SLAs under the constraint that cus-
tomer budget is fixed [27]. We can also impose restrictions
on the maximum quantity of resources to be migrated due
to high CPU load or router traffic in data centers, or impose
constraints that the total cost after optimization should be
smaller by a threshold than before optimization. This can
prevent instability issues like recurring massive VM migra-
tion among specific data centers. Our model can also be
extended to support other resource types (e.g. storage, net-
work) beyond VM. We leave these extensions as future work.

5.2 COPElog Specifications
We next demonstrate how COPE can be used to realize a

distributed implementation of the above model. At a high
level, we utilize an iterative distributed graph-based com-
putation strategy, in which all nodes execute a local COP,
and then iteratively exchange COP results with neighboring
nodes until a stopping condition is reached. In this execu-
tion model, all data centers are represented as nodes in a
graph, and a link exists between two nodes if resources can
be migrated across them. The following COPElog program
implements the local COP at a given node X:

// goal declaration
goal minimize C in totalCost(@X,C).

// variable declaration
var migVM(@X,Y,D,R) forall eSetLink(@X,Y,D).

// totalCost definition
r1 totalCost(@X,SUM<C>) :- link(@X,Y),

aggCost(@Y,C).

// aggCost definition
r2 aggCost(@X,C) :- aggOpCost(@X,C1),

aggCommCost(@X,C2), aggMigCost(@X,C3),
C=C1+C2+C3.

// aggregate operating cost
r3 aggOpCost(@X,SUM<Cost>) :- curVM(@X,D,R1),

migVM(@X,Y,D,R2), opCost(@X,C),
Cost=C*(R1-R2).

// aggregate communication cost
r4 aggCommCost(@X,SUM<Cost>) :- curVM(@X,D,R1),

migVM(@X,Y,D,R2), commCost(@X,Y,C),
Cost=C*(R1-R2).

// aggregate migration cost
r5 aggMigCost(@X,SUM<Cost>) :- migVM(@X,Y,D,R),

migCost(@X,Y,C), Cost=R*C, Cost>0.

COP COPElog

symbol Ri resource(I,R)

symbol Aij curVM(I,J,R)

symbol Mijk migVM(I,J,K,R)

equation (1) rule goal, r1-2

equation (2) rule r3

equation (3) rule r4

equation (4) rule r5

equation (5) rule r6-7, constraint c1

equation (6) rule r8

Table 1: Mappings from COP to COPElog.

// constraints on VM migration quantity
r6 aggCurVM(@X,SUM<R>) :- curVM(@X,D,R).
r7 aggMigVM(@X,SUM<R>) :- migVM(@X,Y,D,R).
c1 aggMigVM(@X,R2) -> resource(@X,R),

aggCurVM(@X,R1), R1-R2>=R.

// propagate results to ensure symmetry
r8 migVM(@Y,X,D,R2):- migVM(@X,Y,D,R1), R2=-R1.

The above program is written using distributed variant of
Datalog used in declarative networking [17], where the lo-
cation specifier @ denotes the source location of each corre-
sponding tuple. This allows us to write rules where the input
data spans multiple nodes, a convenient language construct
for formulating distributed optimizations. Table 1 summa-
rizes the mapping from COP symbols to COPElog tables,
and COP equations to COPElog rules/constraints identi-
fied by the rule labels. In the table, Ri is stored as a re-

source(I,R) tuple. Likewise, the R attribute in mig(I,J,K,R)

stores the value of Mijk.
The localized COP program works as follows. Instead of

minimizing the global total cost of all data centers, the op-
timization goal is the total cost within a local region (node
X and its neighbors). Periodically, an eSetLink event trig-
gers the local COP operation at data center X, which then
randomly selects one of its links to start a link negotiation
process with its neighbor Y for resource demand at D. The eS-
etLink(@X,Y,D) tuple is generated periodically at node X via
an extra COPElog rule, where Y and D denotes the neighbor
randomly chosen for the current negotiation process and the
resource demand location, respectively. To avoid conflicts,
for any given link(X,Y), the link negotiation protocol se-
lects the node with the larger identifier (or address) to carry
out the subsequent process.

As part of this negotiation process, each node exchanges
its aggregate system state aggCost (derived using rules r2-

r5) with its neighboring nodes. This is achieved by using
rule r1, where node X collects its neighbors’ aggCost tables,
and then perform a SUM aggregate, stored in totalCost. The
negotiation process then solves a local COP (by minimizing
totalCost) to determine the quantity of resources that can
be migrated to the specific neighbor. The COP is expressed
by solving the optimization goal, under the specified con-
straint c1, together with rules r6 and r7. The migration re-
sult migVM is then propagated to immediate neighbors using
rule r8 to ensure symmetry. Above process is then itera-
tively repeated until all links have been assigned values or
when a stopping condition is reached.

Distributed Execution. The COPElog compilation pro-
cess (in Section 4.2) requires minimal modification in or-



der to implement the above distributed program. COPE
uses RapidNet for executing distributed Datalog rules, which
already provides a runtime environment for implementing
these rules. At a high level, each distributed rule or con-
straint (with multiple distinct location specifiers) is rewrit-
ten using a localization rewrite [17] step. This transformation
results in rule bodies that can be executed locally, and rule
heads that can be derived and sent across nodes. The beauty
of this rewrite is that even if the original program expresses
distributed properties and constraints, this rewrite process
will realize multiple local COP operations at different nodes,
and have the output of COP operations via derivations sent
across nodes. For example, rule r8 takes the output of a
local COP execution at node X, and sends that to node Y to
continue on the optimization process in the next iteration.

6. RELATED WORK
Prior to COPE, there have been a variety of systems that

use declarative logic-based policy languages to express con-
straint optimization problems in resource management of
computing systems. [23] proposes continuous optimization
based on declaratively specified policies for autonomic com-
puting. [21] describes a model for automated policy-based
construction as a goal satisfaction problem in utility comput-
ing environments. The XSB engine [3] integrates a tabled
Prolog engine with a constraint solver. Rhizoma [26] pro-
poses to use rule-based language and constraint solving pro-
gramming to optimize resource allocation. It focuses on self-
deployed applications in overlay networks to maximize the
utilization of well-connected, lightly loaded nodes. [19] uses
a logic-based interface to a SAT solver to automatically gen-
erate configuration solution for a single data center.

Unlike the above systems, COPE is designed for a different
application domain – one that aims to achieve cost reduction
and maximize infrastructure utilization by automatically or-
chestrating the cloud based on policies configured by cloud
providers. Another unique feature of COPE is its support
for distributed optimizations, achieved by using the COPElog
language which supports distribution, and the integration of
a distributed query engine with a constraint solver.

7. ONGOING STATUS
This paper presents our initial work on the COPE sys-

tem, which is a first step towards our eventual vision of en-
abling automated cloud resource orchestration realized and
controlled using declarative languages. Resource allocation
in the cloud is an inherent distributed optimization prob-
lem. We have demonstrated in this paper the viability of
COPE in the centralized optimization scenario, using trace-
driven simulations obtained from an actual hosting service.
Realizing COPE in its full entirety requires a distributed pol-
icy language and optimization environment. Towards that
goal, we introduce the COPElog framework, which combines
unique features from declarative networking and constraint
solving.

We are currently in the process of developing a full-fledged
COPE prototype that will be integrated with the DMF cloud
orchestration platform. We intend to evaluate the Simple-
Cloud and Follow-the-Sun scenarios on the Shadownet [8]
testbed. At this point of time, we have already successfully
deployed DMF on Shadownet for two scenarios. The Simple-
Cloud scenario consists of about 1000 VMs on 15 Shadownet

hosts, while the Follow-the-Sun scenario is a smaller-scale
limited deployment. A live demonstration [15] was carried
out recently.

Building upon the basic policies described in this paper,
we hope to incorporate into the optimization framework, re-
cent models on resource provisioning and deployment anal-
ysis in the cloud. For example, [20] proposes a server oper-
ational cost optimization model for cloud computing service
that involves scaling CPU frequency and powering on/off
VMs over a time horizon. [13, 14] proposes a pricing model
that offers cloud users the choice of different execution speeds
corresponding to different prices. Similarly, [12] explores the
feasibility of migrating enterprise applications to the cloud,
based on a cost-benefit analysis. We plan to explore the
applicability of COPE to enable such resource provisioning
and cost-benefit analysis.

We also plan to release the COPE prototype as open-
source, for use by other researchers to implement resource
management policies in the cloud. Finally, we will explore
more complex scenarios beyond resource migration, partic-
ularly those that involve network management tasks [7] in-
curred as a result of cloud orchestration, and orchestration
procedures required for mobility [9], virtualized desktop [11]
and database consolidation [10].
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APPENDIX
A. FOLLOW-THE-SUN SIMULATIONS

Using the Follow-the-Sun scenario, we present a prelim-
inary validation of our COP formulation. The goal of our
evaluation is to validate that executing the COP results in
VM placement which minimizes the total cost (as described
in Section 5.1). We also examine the scalability of COPE.

Our experiment setup consists of 3 data centers geograph-
ically distributed at three locations, with the number of mi-
gratable VMs all set to 60. Initially each data center has 35,
35, and 30 VMs respectively. This roughly corresponds to a
random placement of VMs across the 3 data centers.

We consider three time phases within a single day in which
there are drastic changes in user locations, i.e. morning, af-
ternoon, and evening, denoted as time = 0, 1, 2. Given an
aggregate customer demand of 100, we modify customer lo-
cations as follows. At time = 0, all customer are located
near data center DC0. This means that demand at DC0

is D0 = 100. As the Sun moves, at time = 1, customers
move closer to DC1, hence D1 = 100. Finally, at time = 2,
demand shifts again to DC2.

Based on the above customer mobility pattern, at the be-
ginning of each time phase, we execute the COP that deter-
mines the VM migrations necessary to minimize the cloud
providers’ total cost. As a strawman, we compare against

Default, where all the VMs continue to reside in their orig-
inal location regardless of time phase. In our analysis, we
consider abstract cost values as follows. We set the operating
cost for all data center to be 4. The migration cost between

data centers are MC =

24 0 1 1
1 0 1
1 1 0

35, where the value in row

i and column j denote MCij . Finally, CC =

24 0 3 5
3 0 4
5 4 0

35.

Given that data centers may span geographic regions, com-
munication costs between data centers may differ.

Table 2 summarizes our evaluation results, where we com-
pare the total cost of COPE against the strawman Default
approach. We further provide a breakdown of VMs per data
center at each time interval.

Time 0 1 2

Default

DC0 35 60 40
DC1 35 40 60
DC2 30 0 0

Total Cost 655 580 840

COPE

DC0 60 40 0
DC1 40 60 40
DC2 0 0 60

Total Cost 548 540 618

Table 2: Evaluation results of the Follow-the-Sun
scenario.

We observe that the output from our solver produced the
following migration patterns: at time = 0, 25 VMs are mi-
grated from DC2 to DC0, and 5 VMs from DC2 to DC1; at
time = 1, 20 VMs are migrated from DC0 to DC1; and at
time = 2, 1 VM is migrate from DC0 to DC1, 39 VMs are
migrated from DC0 to DC2, and 21 VMs from DC1 to DC2.
While the absolute number of VMs migrated are highly de-
pendent on cost parameters, we note that the general trend
of shifting VMs based on demand is followed. Based on this
migration pattern, we observe that COPE achieved a lower
total cost compared to Default.

In terms of solver execution time, we note that on a Intel
Quad core 2.33GHz PC with 4GB RAM running Ubuntu
10.04, the solver takes less than 2.6 seconds to complete each
COP execution. For larger number of data centers up to 6,
the solver returns the answer within seconds.
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