
Declarative Configuration Management
for Complex and Dynamic Networks

Xu Chen†§ Yun Mao† Z. Morley Mao§ Jacobus Van der Merwe†

§ University of Michigan - Ann Arbor † AT&T Labs - Research

Abstract— Network management and operations are com-
plicated, tedious, and error-prone, requiring significant hu-

man involvement and domain knowledge. As the complex-

ity involved inevitably grows due to larger scale networks

and more complex protocol features, human operators are in-

creasingly short-handed, despite the best effort from existing
support systems to make it otherwise. This paper presents

COOLAID, a system under which the domain knowledge of de-

vice vendors and service providers is formally captured by

a declarative language. Through efficient and powerful rule-

based reasoning on top of a database-like abstraction over a
network of devices, COOLAID enables new management prim-

itives to perform network-wide reasoning, prevent miscon-

figuration, and automate network configuration, while re-

quiring minimum operator effort. We describe the design

and prototype implementation of COOLAID, and demonstrate
its effectiveness and scalability through various realistic net-

work management tasks.

1. INTRODUCTION
Network management and operation arguably remains a

domain that continues to thwart modernization attempts by

the networking community. There are a number of reasons

for this state of affairs. First, network management is inher-

ently difficult because of the scale, the distributed nature and
the increasing complexity of modern communication net-

works. Second, network management tools and practices

fail to keep up with the ever–evolving and complex nature

of the networks being managed. Third, and perhaps most

importantly, current network management approaches fail to
capture and utilize, in a systematic fashion, the significant

domain expertise (from vendors, service providers and pro-

tocol designers), which in essence is the foundational pillar

enabling the continued operation of the network.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2010, November 30 – December 3 2010, Philadelphia,
USA.
Copyright 2010 ACM 1-4503-0448-1/10/11 ...$5.00.

In a typical large Internet service provider setting, hun-
dreds or thousands of network devices are distributed across

vast geographic distances, and their configurations collec-

tively determine the functionality provided by the network.

The protocols and mechanisms that realize such network

functionality often have complex dependencies that have to
be satisfied for correct operations. Such dependencies are

often not precisely defined, or at least not expressed in a sys-

tematic manner. When they are violated through miscon-

figurations, software bugs, or equipment failures, network

troubleshooting becomes an extremely difficult task.
Despite these complexities, network management oper-

ations still largely rely on fairly rudimentary technologies.

With only a few notable exceptions for specialized tasks,

network configuration management is still performed via ar-

chaic, low-level command line interfaces (CLIs). Vendors
describe protocol dependencies and network-wide capabili-

ties in device manuals or other technical documents. Net-

work engineers manually interpret these vendor documents

and in turn produce service provider documentation, which

describes in prose with configuration excerpts, on how net-
work services might be realized. Similarly, disruptive ac-

tivities like planned maintenance rely on the experience of

human operators and their ability to interpret and follow pro-

cedures documented by domain experts to prevent undesired
side effects. In short, current network management prac-

tices depend on the knowledge base of domain experts cap-

tured in documents meant for human consumption and fur-

ther attempts to derive, from this captured knowledge, sys-

tems and procedures to ensure that the correct documents are
consulted and followed to perform network operations.

In cases where network operations have progressed be-

yond the capacity of human interpretation and manual exe-

cution of procedures, tools attempt to automate the proce-

dures that a human operator would have performed and/or
reverse engineer the protocol and network dependencies that

prevail in an existing network. For instance, sophisticated

network configuration management tools [12, 9] attempt to

capture the actions of human experts for subsequent automa-

tion. Existing fault and performance management practices
involve, in part, reverse engineering protocol actions and de-

pendencies [20]. Unfortunately, all such tools are highly

1

specialized, each focusing on a specific management aspect.

In this paper, we present COOLAID (COnfiguring cOmpLex

and dynamic networks AutomatIcally and Declaratively), a

network management framework that automates a variety

of dominant network operations relying on configurations,
while minimizing human involvement. The key idea is to

formally capture the domain knowledge using a declarative

logic-based language, then apply the knowledge on top of

a database-like abstract data model that represents network-

wide information. As such, COOLAID can derive high-level
views for network-wide reasoning, automate network con-

figuration, and prevent misconfiguration, allowing operators

to better manage their networks without being exposed to the

overwhelming details.
We describe the design and implementation of COOLAID,

and demonstrate the effectiveness and scalability of COOLAID

in a realistic distributed network testbed and on other simu-

lated large-scale topologies. We expect that COOLAID enables

a move towards higher formalism in representing domain
knowledge from different stakeholders and role players (e.g.,

device vendors, service providers, network management tool

developers), so that such knowledge can be captured within

the same framework and combined systematically to auto-

mate network operations by systems like COOLAID, funda-
mentally relieving the excessive burden on human operators.

This paper makes the following contributions:

• Demonstrates with real-world examples of how do-

main knowledge from both device vendors and service

providers can be concisely captured using a declarative

language;
• Builds a unified data model abstracting network-wide

information to facilitate the automation of rule-based

domain knowledge;
• Exemplifies distributed recursive query, updatable

view, and distributed transaction management as use-

ful enabling techniques for new and enhanced network

management primitives;
• Implements and evaluates a prototype of the COOLAID

system to automate a variety of useful network opera-

tions requiring minimal human involvement.

2. MOTIVATION

Modern networks are complexity-plagued, large-scale,
and highly dynamic. This is particularly true for large ISP

networks, which typically house thousands of devices inter-

connected across dispersed geographic regions and support

diverse network services and features. Next we explain three

key challenges in managing such networks.

Network functionalities are complex: Large ISPs support

a variety of revenue-generating network services in addition

to traditional IP transit. For example, Virtual Private Net-
work (VPN) service, which allows multiple sites of a cus-

tomer organization to be seamlessly connected together, and

Voice-over-IP (VoIP) service are commonly offered. Sup-

porting these services is very challenging, even purely from

a configuration’s point of view. Setting up these services

requires operators to understand voluminous configuration

manuals and apply the knowledge to specific network se-

tups. A particular complication stems from the fact that net-

work services or features are commonly dependent on each
other 1. These dependencies are usually verbally described

in documentations and impose a steep learning curve.

Network-wide reasoning is hard: Understanding the net-

work functionalities given the configurations on the phys-

ical devices is crucial for network management. Opera-
tors commonly ask (mostly themselves) questions like, “Is

that MPLS/VPN instance configured correctly for the cus-

tomer?” and “What services might be impacted if I shut

down this loopback interface?” Mistakes in answering these
questions might result in network-wide outages. Yet answer-

ing these questions is difficult for two reasons: (i) Reasoning

about each network feature requires understanding a chain

of dependent features; (ii) More importantly, understanding

each feature requires not only inspecting individual device
configurations but also reasoning about the distributed pro-

tocol execution logic, e.g., how the routes propagate through

OSPF within a network. The complexity quickly increases

with the number of network elements and network features,

and therefore human errors in reasoning about complicated
protocols on thousands of routers become unavoidable, es-

pecially when operators are constrained with short main-

tenance windows to rush management tasks. Even worse,

when multiple operators are working on the same network,

their concurrent actions, each might be fine to perform in-
dividually, can cause significant network disruptions if not

properly synchronized. This calls for an automation support

to accurately reason about network services and protocols

at scale. To the best of our knowledge, no existing tool is

capable of providing such generic support.
Networks are dynamic: Last but not the least, modern net-

works are quickly evolving. Besides providing new features,

much of the network evolution is purely driven by growth de-

mand, e.g., adding core or edge routers to handle more cus-

tomers with higher throughput. These device introduction,
upgrade and re-purpose activities are commonly performed

in today’s large networks, and they need to be handled cor-

rectly and efficiently to ensure the continuous service deliv-

ery. In general, removing devices must not interfere with

existing network functionalities, while new devices must be
configured with proper functionalities to become an integral

part of the network, e.g., to participate in OSPF routing or to

establish iBGP sessions to other routers. Figuring out what

to configure on the new devices is non-trivial and usually re-

quires reverse-engineering the existing network setups. Re-

1For example, as we later show in Figure 4, on commodity routers
(e.g., from Cisco or Juniper), setting up a VPLS (Virtual Private
LAN Service, a form of VPN to provide layer-2 connectivity) de-
pends on establishing LSPs (Label-Switching Paths) and BGP sig-
naling, while LSPs in turn depend on an MPLS- and RSVP-enabled
network, and BGP signaling further relies on other factors, e.g., a
properly configured IGP.

2

Human

Rules

Data Model

Controller

Domain Knowledge

Service providerVendor

StatusFacts Configurations

Physical Network

Manual

Interaction

COOLAID

Interaction

COOLAID

Component

Figure 1: COOLAID vs. manual management

dundant or missing configurations result in redundant fea-

tures or, more problematically, non-functional networks. It

quickly becomes cumbersome for operators when network
changes are frequent and network features are diverse. The

emerging trend of network virtualization further raises the

bar [27], as the network inventory can be dynamically allo-

cated and the topology can be easily modified. An ideal sup-

port to address this challenge is to allow the specification of
network-wide properties, which are enforced no matter how

the network changes. Unfortunately, there is no systematic

support to address this need.

3. MANAGING NETWORKS IN COOLAID
Our key observation about the current network manage-

ment practice is that the required domain expertise is unfor-

tunately not captured in a systematic manner for the purpose

of re-use and automation. Therefore, the current practice is

inherently limited by human capability. As illustrated in Fig-
ure 1 with solid lines, human operators play a central role to

absorb a tremendous amount of domain knowledge and di-

rectly interact with the underlying physical networks via a

variety of rudimentary interfaces, e.g., router CLIs. In par-

ticular, operators need to interpret network facts (e.g., the
list of routers, how they are connected, and customer ser-

vice agreements), the current configurations and up-to-date

network status (e.g., if a BGP session is indeed established),

based on which to reason about existing network-level func-

tionalities (e.g., if a VPN service is correctly configured for
a customer) or realize additional features by changing con-

figurations, and enforce network-wide constraints, e.g., there

must be a BGP full-mesh on core routers.

To minimize human involvement, a management system

must satisfy three requirements: (i) it must systematically
and formally capture the domain knowledge, in particular

protocol dependencies and network-wide properties; (ii) the

resulting representations should allow the system to expose

high-level management primitives for automating manage-

ment tasks; (iii) the system can re-use the knowledge base
to assist operators and other network management tools in a

network-wide (cross-device) manner.

In this section, we describe COOLAID, a network man-

agement system that satisfies these requirements. We first

overview three key building blocks of the system, and then

unfold the new network management primitives enabled by

COOLAID. The enabling techniques for these primitives are

described in §4, and our system implementation in §5.

3.1 COOLAID building blocks
Conceptually, COOLAID models a network of inter-

connected devices as a distributed but centrally managed

database, exposing an intuitive database-style interface for

operators to manage the entire network. Figure 1 depicts the

COOLAID building blocks with rounded-boxes, and their in-
teraction with operators and the network using dotted lines.

Data model: The data model creates a logically centralized

database abstraction and access point to cover all the tra-

ditional network management interfaces, which largely in-
clude reading and modifying router configurations, check-

ing network status and provisioning data. The abstraction is

designed to work with commodity devices, and interopera-

ble with existing management tools. We define three types

of base tables2: (i) Regular tables store fact-related data that
naturally fit into a conventional database (e.g., MySQL). (ii)

Config tables store the live network configurations, in par-

ticular, router states that are persistent across reboots, e.g.,

IP addresses and protocol-specific parameters. (iii) Status

tables represent the volatile aspect of device/network state,
such as protocol running status, routing table entries, or

other dynamic status relevant to network health, for exam-

ple, ping results between routers.

The key benefit of having these tables is that COOLAID ab-

stracts away the details of individual management interfaces
and instead works on a unified abstraction, which funda-

mentally enables the systematic expression and integration

of domain knowledge from different role players as we de-

scribe next. We want to emphasize that the traditional us-

age of databases in network management is predominantly
for archiving snapshots of network-related information to fa-

cilitate subsequent analysis. In contrast, COOLAID uses the

database notion as an abstraction layer that sits on top of

the actual network for enabling new management primitives.

To enable a new distributed transaction support, COOLAID

chooses not to store data from config tables or status ta-

bles in a conventional SQL database but rather accesses them

through software artifacts exposing database interfaces. We

describe how to enable this abstraction on commodity net-

work devices in §5.2.
Regular tables are only modified when necessary to reflect

network changes, e.g., new devices or new customer agree-

ments. Config tables are always in-sync with the network

devices, and modifying these tables causes actual configura-

tion changes. Status tables are read-only, and table entries
are generated on-demand from traditional management in-

terface, such as CLI and SNMP3.

2We use the following naming convention: names of regular, config
and status tables begin with T, C, S respectively.
3Status tables contain important information for various manage-
ment operations (e.g., fault diagnosis). However, because this pa-

3

Rules: COOLAID represents network management do-

main knowledge, in particular protocol dependencies and

network-wide requirements, as rules in a declarative query

language. Each rule defines a database view table (or view in

short), which is derived from a query over other base tables
or views. Intuitively, a view derives higher-level network

properties (e.g., if a feature is enabled) based on lower-level

information (e.g., the availability of the required configura-

tions and other dependent services.) Formalizing domain

knowledge as declarative rules has two benefits. First, view
querying is a well-defined procedure that hides intermedi-

ate steps and presents meaningful end-results to the opera-

tors. Comparing to a manual reasoning process, which is

inherently limited by human operators, COOLAID can handle
expanding knowledge base and network size with ease. Sec-

ond, the rules can be re-used, as they can be queried many

times even on different networks. Note that operators do not

need to write any such rules. Specifically, we envision an en-

vironment where (i) device vendors provide rules to capture
both device-specific capabilities and network-wide protocol

configuration and dependency details (§3.2, §3.4) and (ii)

service providers define rules on how these vendor capabil-

ities should be utilized to reliably deliver customer services

(§3.3, §3.5), and more importantly these rules operate within
the same framework.

Controller: As the “brain” of COOLAID, the controller acts

as a database engine to support straightforward database op-

erations, like table query, insertion and deletion. We will

explain in the following sections about how these operations
correspond to a set of new management primitives. By ap-

plying the rule-based domain knowledge onto the network

states stored in the data model, the controller significantly

relieves the burden on operators. The operators can stay at

a high-level of interaction, without touching the low-level
details of the network. From the database perspective, the

controller supports recursive query processing, global con-

straint enforcement, updatable views, and distributed trans-

action management.

Listing 1: Rules for OSPF Route Learning

R0 EnabledIntf(ifId, rId) :- TRouterIntf(ifId, rId),
CInterface(ifId, "enabled");

R1 OspfRoute(rId,prefix) :- EnabledIntf(ifId,rId),
CIntfPrefix(ifId,prefix), CIntfOspf(ifId);

R2 OspfRoute(rId1,prefix) :- OspfRoute(rId2,prefix),
TIntfConnection(ifId1,rId1,ifId2,rId2),
EnabledIntf(ifId1,rId1), CIntfOspf(ifId1),
EnabledIntf(ifId2,rId2), CIntfOspf(ifId2);

3.2 Network-wide reasoning
COOLAID achieves the primitive of automated network-

wide reasoning through materializing the views by dis-

tributed recursive queries on top of the data model pre-

sented in §3.1. We demonstrate how the knowledge regard-

per primarily focuses on the configuration management, we leave
exploiting status tables as future work.

SF LASJ

SF:lo0
192.168.1.9/32

SJ:lo0
192.168.1.10/32

LA:lo0
192.168.1.11/32

SF:fe0 SJ:fe1 SJ:ge3 LA:ge0

Interface w/ OSPF Configured

Interface w/o OSPF Configured

Route
learned
locally

Route
Propagation Doesn’t

Propagate

Figure 2: Example network with OSPF configuration

TRouterIntf("SF:lo0","SF")

CInterface("SF:lo0","enabled")

CIntfPrefix("SF:lo0","192.168.1.9/32")

CIntfOspf("SF:lo0")

OspfRoute("SF", "192.168.1.9/32")

OspfRoute("SJ", "192.168.1.9/32")

Apply

R2

Apply

R1

Figure 3: Bottom-up view evaluation

ing OSPF route learning can be written as three rules in List-

ing 1. The rules are written in a declarative language based
on Datalog [29]4, where each rule is defined as

rule name rule head :- rule body;

The rule head contains exactly one predicate as the view

to be defined, and the rule body contains predicates and

Boolean expressions that derive the view. A rule is intu-
itively read as “if everything in the body is true, then the

head is true.”

Rule R0 defines a view EnabledIntf for identifying the list

of enabled interfaces in the network. It first joins a regu-

lar table TRouterIntf that contains the router interface inven-
tory and a config table CInterface with interface setups, and

then selects the interfaces that are configured as "Enabled".

Rule R1 captures how a router imports local OSPF routes,

by stating that if an interface on a router is enabled (as in

EnabledIntf) and configured to run OSPF (as in CIntfOspf),
then the prefix of its IP address should be in the OSPF rout-

ing table of the router (OspfRoute). We are ignoring some

details, such as OSPF areas, for brevity. Finally, rule R2 ex-

presses how routes are propagated across routers, by stating

that any OspfRoute on router rId2 can propagate to router rId1
if they have directly connected interfaces and both are en-

abled and OSPF-speaking. Note that R2 is both distributed

and recursive, as the query touches multiple devices and the

rule head is part of the rule body.

Figure 2 shows a small network with three routers. The
interfaces connecting routers SF and SJ, as well as their loop-

back interfaces, are OSPF-speaking and enabled, so that the

loopback IP "192.168.1.9/32" configured on router SF should

propagate to router SJ, according to how OSPF works. Fig-

ure 3 illustrates how the entries in the view tables are gener-

4We choose Datalog with stratified negation as our query language
for its conciseness in representing recursive queries and negations
and its tight connection to logic programming. Other query lan-
guages, such as SQL and XQuery, if augmented with necessary
features, such as recursion, are also suitable to our framework.

4

��������	�
��

������������

�	�����������

���������������� �����������

�	�
��������������������������������������

����������

�����������������

���� ����

��������!	���

"�����#	�����������

�������$
������������

"�����#������������"�����#������������ "�����#������������

������
�#����������

��������#��������%

����#�������$
����

��������#���������������

���������������� 	�������

��������

���� �����������

�������������

�������� 	�������

���� ���������

��������$������ ���������� ��������	������� ����������

����

����

��	�

���

����

���

����������������������

����

����	
���	

������	����

������������������������
���������
���������	��

������	
�	��������������	��	�����	�����		���

�������
����	�����	�	������������

Figure 4: VPLS related view dependency graph

ated in a bottom-up fashion based on R0-R2, and eventually

the entry OspfRoute("SJ","192.168.1.9/32") shows that “pre-
fix 192.168.1.9/32 in the OSPF route table of router SJ.” On

the other hand, there is no ("LA","192.168.1.9/32") entry, be-

cause the dependencies are not met.

Effectively, a simple query over OspfRoute can reveal the

OSPF routes on all routers to the operators without requiring
them to understand how the route propagation works across

distributed network devices. Figure 4 shows that the knowl-

edge regarding complicated services like VPLS can be mod-

eled with a stack of dependent views. Operators only need to

query the top view ActiveVPLSLink to acquire a list of enabled
VPLS connections, without understanding the details of all

the dependent protocols, such as MPLS, RSVP, etc.

3.3 Misconfiguration prevention
COOLAID uses constraints to detect and prevent misconfig-

uration. The constraints dictate what data should not ap-
pear if the database is in a good state. That is, COOLAID

rejects an operation (e.g., made by operators who under-

estimate the network-wide impact) if the outcome would vi-

olate the given constraints, before the changes take effect

on the routers. As a result, COOLAID can help prevent unde-
sired properties, such as network partitioning, service dis-

ruption, or large traffic shift. Constraints exist in traditional

relational database management systems (RDBMS), but are

usually limited to uniqueness of primary keys and referential

integrity of foreign keys. In contrast, COOLAID allows more
expressive constraints capable of reasoning about multiple

devices and different network service layers.

Specifically, in COOLAID, a constraint is defined the same

way as views by a set of rules. A constraint is satisfied if

and only if the associated view is evaluated to an empty list.
Conceptually, each entry in a non-empty constraint view cor-

responds to a violation to a desired network property.

Constraints help prevent misconfigurations when com-

bined with our new transaction primitive (described in §3.6.)

In essence, a group of network intended changes are de-
clared as a transaction and executed in an all-or-nothing

fashion. The changes are effective only if the transaction

commits. Before committing a transaction, COOLAID checks

if any constraints are violated by the changes, and if so aborts

the transaction. For example, an access router has two inter-

faces connecting to the core network, and one of them is

shut down for maintenance. If an operator mistakenly at-

tempts to shut down the other link, such an operation (on

CInterface table) would not be committed, because it vio-
lates the constraint that an access router must be connected

to the core. Such support automates a network-wide “what-

if” analysis, avoiding erroneous network operations due to

operators’ lack of understanding of complex network func-

tions or their inability to reason at a large scale.

3.4 Configuration automation
COOLAID supports a new primitive of automating network

configuration by allowing writes to view tables. Specifically,

COOLAID allows the operators to specify intended network

changes as insert/delete/update to view tables, then automat-

ically identifies a set of low-level changes to config tables
that can satisfy the given intention. For example, an op-

erator can express goals, like establish a VPLS connection

between two interfaces, by a simple view insert statement,

ActiveVPLSConnection.insert("intA","intB").

The traditional mindset for configuration management is
that operators (i) change the configurations on one or more

devices and (ii) check if a network feature change is effected.

These two steps are repeated until the check succeeds. For a

failed network check, the operators reason about the symp-

tom and fulfill the missing dependencies based on domain
knowledge. In COOLAID, to the contrary, operators can stay

unaware of how to realize certain network functions, instead

they specify at a high-level what functions they need. In

the previous example, the operator only needs to deal with

ActiveVPLSConnection view, rather than fiddling with all the
dependent network functionalities.

3.5 Network property enforcement
COOLAID allows the operators to specify certain properties

to enforce on the network. For example, a network may be

required to configure loopback IP address on every router,

and establish full-mesh iBGP sessions. We model a de-

sired network property also using constraint views, while an
empty constraint means that the associated property is valid

on the network. When the underlying network changes, e.g.,

with a new router introduced, constraint violations may oc-

cur, meaning that certain network-wide properties no longer

hold. COOLAID takes advantage of deletion operations on a
view to automatically resolve the constraint violations. For

example, by calling LoopbackAddressConstraint.remove all(),

COOLAID automatically changes related configuration tables,

say modifying CIntfPrefix table to configure the loopback

interfaces in question, so that the constraint view becomes
empty. This means that the operator only needs to specify

the desired properties, and COOLAID can automatically en-

force them in the face of dynamic network changes.

3.6 Atomic network operations
Device failures during network operations are not uncom-

mon, especially in large-scale networks. If not handled

5

Query

Processing (§4.1)

Updatable View

Solver (§4.2)

Transaction

Management (§4.3)

Network-wide

Reasoning (§3.2)

Misconfiguration

Prevention (§3.3)

Atomic

Operations (§3.6)

Configuration

Automation (§3.4)

Property

Enforcement (§3.5)

COOLAID Primitives

COOLAID Techniques

enables

Figure 5: COOLAID primitives and techniques

properly, they often put the network in inconsistent states.

A network operation involving configuring several routers

might be abandoned half way because of unforeseen circum-
stances, such as an unexpected transient network failure, or

overloaded routers. Current operational procedures would

require a manual rollback, which may be incomplete, leav-

ing “orphaned” configuration excerpts and leading to secu-

rity holes or unintended network behavior.
The problem in the above example is due to the lack

of “all-or-nothing”, or atomicity, in network management

primitives. In fact, we argue that the ACID properties of

transactional semantics (§4.3), namely atomicity, consis-

tency, isolation, and durability, are all highly desirable as
primitives to compose network operations. They are pro-

vided naturally in COOLAID by the database abstraction.

We note that modern routers already allow atomic config-

uration changes on a per-device basis. In contrast, COOLAID

not only extends such semantics to a network-wide fash-
ion, but also supports additional assertions on network-wide

states, by checking constraint views, to validate transactions.

3.7 Summary
In this section, we have presented an overview of the

COOLAID framework. COOLAID builds on a database abstrac-
tion that captures all aspects of the network and its opera-

tions in a data model, consisting of regular, config, and status

tables. COOLAID allows vendors and providers to collabora-

tively capture domain knowledge in the form of rules, in a
declarative query language. By leveraging such knowledge,

COOLAID provides new network management primitives to

network operators, including network-wide reasoning, mis-

configuration prevention, configuration automation, network

property enforcement, and atomic network operations, all in
the same cohesive framework.

4. TECHNIQUES
In this section, we explain key techniques that COOLAID

utilizes to enable the network management primitives de-
scribed in §3. Figure 5 shows their relationships.

4.1 Query processing
Query processing is essential for network-wide reasoning

(§3.2) and misconfiguration prevention (§3.3). We highlight

a few design choices in building the query processor effi-
ciently, despite the differences between COOLAID and con-

ventional RDBMS.

First, besides traditional database-style queries, COOLAID

heavily relies on recursive queries due to the distributed na-

View1(x,y) :- View1(x,z), View2(y,z)

Propagation

Exploration

View2(y,z) :- Config1(z), Regular1(y,z)

Constrain possible values

Bound

Figure 6: Solving updatable view operations

ture of network protocols. Recursive query evaluation and
optimization is a well-studied area in databases [29]. Recent

work has also examined recursive queries in a distributed en-

vironment with a relaxed eventual consistency model [23].

Second, COOLAID manages a much smaller amount but dis-

tributed data. The largest portion of the data comes from
configurations. If we assume that a configuration file is

100KB on average, and there are a thousand routers in a net-

work, then we need roughly a hundred megabytes of space

to store the raw data. On the other hand, the configura-

tion exists on different routers might require hundreds of
milliseconds of round-trip time to access, for a typical ISP

with national footprints. Therefore, we always first aggre-

gate all data to the main memory of a centralized master

node (§5.1) before query evaluation. Centralized process-

ing is also preferred in order to enforce a strong consistency
model as opposed to the eventual consistency model [23].

Once all data are available, we apply the semi-naı̈ve evalu-

ation algorithm [29], which is both efficient and generic, to

evaluate recursive queries.

We further apply the technique of materialized view main-

tenance to speed up query performance. The entire contents

of all views are cached in memory once computed, rather

than generated on-demand at each query evaluation time.

Each view has the meta data that describe which base tables

it depends on. Once the base tables of a view are updated,
the view is incrementally updated by only computing the dif-

ferences to reduce overhead.

4.2 Updatable view solver
Updatable view operations, like view insertions or dele-

tions, enable configuration automation (§3.4) and network

property enforcement (§3.5). Underneath the simple APIs

called by operators, COOLAID controller finds the config table

entries to change to realize the intended view changes.
We explain two techniques to update views with differ-

ent trade-offs. In practice, we use a combination of both

to achieve the best performance and usability. First, we de-

signed an automatic updatable view solver, using standard

techniques from Prolog, such as exploration and propaga-
tion. As illustrated in Figure 6, to insert an entry (x,y)

into View1, we need to recursively guarantee tuples (x,z) and

(z,y) are in View1 and View2. If there are no such combina-

tion, a recursive view insertion is attempted. For the value of

x and y, we can directly propagate from the left-hand side to
the right-hand side. But we have to enumerate the possible

values for z and try them one-by-one: some guessed values

may not be possible to insert into View2, for example. For

non-recursive rules, the recursion in this solving process is

6

bounded by the level of dependencies. For recursive rules,

this solving process might be expensive: for example, to in-

sert tuple (x,y) into View1, we need to further insert (x,z)

into View1, and this may go on many times. There are two

key factors that keep this process feasible: (i) We do not
change regular tables, because the values are treated as facts

of the network. As a result, regular tables bound the domain

for many fields in views. For example, View2 is defined by

joining a config table and a regular table, so the tuples in

View2 can only possibly come from Regular1. In this case,
COOLAID can bound the exploration for literal z, when insert-

ing to View1. (ii) Network functionalities are almost always

cumulative, so that negations rarely occur in the rules. This

greatly reduces the search space.
Note that COOLAID prunes the solutions that violate con-

straints. The key benefit of this approach is that COOLAID only

needs a single solver to handle all protocols and features.

The main downside, however, is that the results provided

by the solver may not always be preferred. The is because
many solutions can be found to satisfy the same updatable

view operation. For example, if we want to establish IGP

connectivity on a set of ISP core routers, we can use OSPF,

IS-IS, or simply static routes. With OSPF, we can configure

a subset of the interfaces to establish a spanning tree touch-
ing all routers, still enabling all-pair connectivity, although

this is clearly undesired for reliability concerns. In practice,

we assign customizable preference values to different rules,

so that the solver prioritizes accordingly.

Second, an alternative solution is to allow the rule com-
posers to customize resolution routines for view insertion

and deletion. For example, when an insertion is called on a

view, the corresponding resolution routine is executed based

on the value of the inserted tuple. The key benefit is that rule

composers have better control over the resulting changes to
the network. Such resolution routines can explicitly encode

the best practice. For example, to enable OSPF connectivity,

we can customize the routine to configure OSPF on all non-

customer interfaces in the core network, comparing to the

generic solver that may give a partial configuration. The flip
side is the extra work on rule composers to develop these

routines, comparing to using a generic solver to automat-

ically handle the intended changes. Based on our experi-

ence, however, such resolution functions are very simple to

develop, largely thanks to the unified database abstraction.
Also, this requires one-time effort by vendors or network ex-

perts, while the operators can stay unaware of such details.

4.3 Transaction management
Misconfiguration prevention (§3.3) and atomic network

operations (§3.6) both rely on the transaction processing ca-

pability in COOLAID. We describe the transactional semantics

and our design choices.
In the context of databases, a single logical operation on

the data is called a transaction. Atomicity, consistency, isola-

tion, and durability (ACID) are the key properties that guar-

antee that database transactions are processed reliably. In

COOLAID, a network operational task is naturally expressed

as a distributed database transaction that may span across

multiple physical devices. In our data model, the regular

tables inherit the exact ACID properties from a traditional

RDBMS. Interestingly, we find that ACID properties natu-
rally fit config tables as follows:

Atomicity: The configuration changes in an atomic opera-

tion must follow an “all-or-nothing” rule: either all of the

changes in a transaction are performed or none are. COOLAID

aborts a transaction if failure is detected, and rolls back to
the state before the transaction started. Note that atomicity

also applies in a distributed transaction where config changes

involve multiple devices. The atomic feature greatly sim-

plifies the management logic in handling device and other
unexpected failures.

Consistency: The database remains in a consistent state be-

fore the start of the transaction and after the transaction ter-

minates regardless of its outcome. The consistency defini-

tion in COOLAID is that all constraints must be satisfied. Be-
fore each commit in a transaction, COOLAID checks all the

constraints. In case of constraint violations, an operator can

simply instruct COOLAID to roll-back thus abort the transac-

tion, or resolve all violations and still proceed to commit.

The database ends up in a consistent state in both cases.
Isolation: Two concurrent network operations should not in-

terfere with each other in any way, i.e., as if both transactions

had executed serially, one after the other. This is equivalent

to the serializable isolation level in a traditional RDBMS.

For example, an operation in an enterprise network might
be to allocate an unused VLAN in the network. Two of

such concurrent operations without isolation might choose

the same VLAN ID because they share the same allocation

algorithm. Such a result is problematic and can lead to se-

curity breach or subtle configuration bugs. COOLAID provides
transaction isolation guarantees to prevent such issues.

Durability: Once the user has been notified of the success

of a transaction commit, the configurations are already effec-

tive in the routers. Most commodity routers already provide

this property.
To implement the ACID transactional semantics in

COOLAID, we use the Two-Phase Commit protocol for atomic-

ity due to its simplicity and efficiency; we use Write-Ahead-

Logs for crash recovery; and we use Strict Two-Phase Lock-

ing for concurrency control [28]. These design decisions are
customized for network management purposes. For exam-

ple, we favor conservative, pessimistic lock-based concur-

rency control because concurrent network management op-

erations occur much less frequently than typical online trans-

action processing (OLTP) workload, such as online banking
and ticket booking websites. Once two concurrent network

operations have made conflicting configuration changes, it is

very expensive to roll back and retry one of them. We choose

to prevent conflicts from happening, even at the cost of lim-

iting parallelism. We discuss the detailed implementations
of transaction management in §5.1.

7

5. IMPLEMENTATION

Queries Operations

Rules
Transaction

Manager

Query

Processor

Meta-data

Manager

Controller

Tables

Global

Config

Tables

Global

Tables

Global

Status

Tables

Data

Model
Tables

Global

Regular

Tables

Master

Node

Router1

ConfigConfig

Tables
Regular

Tables

Status

Tables

RouterDB

Router2

PostgreSQL

ConfigConfig

Tables

Status

Tables

RouterDB

Figure 7: COOLAID system architecture

The overall system architecture of COOLAID is depicted

in Figure 7. We have implemented a prototype system in

roughly 13k lines of Python code with two major software

pieces described next.

5.1 Master node
The master node unifies all data sources and manages

them as a centralized database. We use PostgreSQL as the
backend to manage regular tables. Each physical router is

managed by a RouterDB (§5.2) instance, which exports the

corresponding config tables and status tables. The config ta-

bles on RouterDBs are aggressively combined and cached

on the master node for performance improvement. When an
entry in a config table is modified, the appropriate RouterDB

instance will be identified and notified (known as horizontal

partitioning in data management) based on the primary key

of the entry, which has the physical router ID encoded.

The controller on the master node has three components:
Query processor: The query processor first parses the

declarative rules and rewrites them in expressions of re-

lational algebra (set-based operations and relational oper-

ators such as join, selection and projection). We imple-

mented a library in Python, with a usage pattern similar to
Language INtegrated Query (LINQ) in the Microsoft .NET

framework [2], to express and evaluate those relational ex-

pressions. The library is capable of integrating queries from

Python objects, tables in PostgreSQL, and XML data. We

implemented the algorithm described in §4.1 for query eval-
uation and view maintenance and an updatable view solver

described in §4.2.

Meta-data manager: Meta-data, such as the definitions of

all tables, views and constraints, are managed in the format

of tables as well. In particular, the controller manages the
meta-data by keeping track of the dependencies between the

views, which is used by the view maintenance algorithm

(§4.1) for caching and incremental updates, and updatable

view operations (§4.2).

Transaction manager: The master node serves as a dis-

tributed transaction coordinator, and passes data records to

and from the underlying local database engines. It does not

handle any data storage directly, and achieves the transac-

tional ACID properties as follows:
Atomicity and durability are achieved by realizing the

two-phase commit protocol (2PC) [28] among the underly-

ing database participants (i.e., PostgreSQL and RouterDB

instances): In phase 1, the master node asks all of the par-

ticipants to prepare to commit. The transaction aborts if any
participant responds negatively or fails to reply in time. Oth-

erwise, in phase 2, the master node flushes the commit deci-

sion to a log on disk, then asks all nodes to commit.

Consistency is enforced by checking all constraints after
the commit request is received. Unless all constraints are

satisfied (directly or through violation resolution), the 2PC

protocol starts to complete the transaction.

Isolation is enforced by a global lock among transactions

in the current prototype. Effectively, this only allows a sin-
gle transaction at a time—the most conservative scheme.

While it clearly limits the parallelism in the system, serial-

izing them is acceptable as backlog is unlikely even in large

networks. Using finer-grained locks for higher parallelism

could introduce distributed deadlocks, which could be costly
to resolve. We leave exploring this trade-off as future work.

To recover from a crash of the master node, the transac-

tion manager examines the log recorded by the 2PC protocol.

It will inform the participants to abort pending transactions

without commit marks, and recommit the rest. If the master
node cannot be restarted, it is still possible for network op-

erators to directly interact with individual RouterDBs. This

allows raw access and control over the network for emer-

gency and manual recovery. We talk about removing master

node as a single point of failure in §7.

5.2 RouterDB

��������

�	

��

�������

������

������ ������

�������������
������ !

Figure 8: RouterDB implementation

RouterDB provides a 2PC-compliant transactional

database management interface for a single router device.

Our current prototype works for Juniper routers, but can be

easily extended to other router vendors. RouterDB utilizes
the programmable APIs standardized by the Network Con-

figuration Protocol (NETCONF) [3] to install, manipulate,

and delete the configuration of network devices over XML.

When a RouterDB instance starts, it uses a given creden-

tial to initiate a NETCONF session over ssh with the corre-
sponding router, and fetches the currently running configu-

ration in XML format. Then a schema mapper is used to

convert configurations from the tree-structured XML format

into relational config tables.

8

Transaction APIs: To update config tables, a transaction

must be started by calling the begin txn RouterDB API. It

saves a snapshot of the current configuration in XML, and

returns a transaction context ID. Further data manipulation

operations, such as insert, update, delete to the config ta-
bles, must use the ID to indicate their transaction affiliations.

Once a manipulation call is received, the schema mapper

converts it back to an XML manipulation snippet, and uses

the edit-config NETCONF API to change the configuration

on the router. Note that this change is made to a candidate
target, which is separate from the running configuration of

the router. Then, the updated configuration in the candidate

target is fetched, and the change is propagated to the config

tables via the schema mapper.
To be compliant with the two-phase commit protocol

used by the master node, RouterDB implements the prepare,

commit, and rollback APIs. When executing prepare(), the

configuration in the candidate target is validated by the

router. An invalidated configuration will raise an exception
so that the transaction will be aborted. During commit(), the

configuration in the candidate target is first made effective by

issuing a commit NETCONF call, and then the saved snap-

shots are freed. During rollback(), the candidate target is

discarded on the router.
Placement: We chose to host a RouterDB close to the corre-

sponding router, e.g., on the same LAN, reliably connecting

to the dedicated management interface. The placement is

advantageous over hosting RouterDB on the physical router

itself because: (i) Data processing on RouterDB is isolated
from other tasks on the router, and it is guaranteed not to

compete for router resources (e.g., CPU and memory); (ii)

When RouterDB is separated from the router, it is much

more likely to differentiate failures between RouterDB and

the physical router from the master node, and treat them
differently; (iii) Only selected high-end commercial routers

provide enough programmability to build RouterDB [21].

On the other hand, by placing RouterDB close to the router

instead of the master node, we have the opportunity to re-

duce the amount of data transferred from RouterDB to the
master node, by pushing some database operators, such as

filters, into RouterDB.

Handling failures: Following the Write-Ahead-Log proto-

col [28], RouterDB records every operation in a log file on

persistent storage. When recovering from a previous crash,
RouterDB locates all ongoing transactions at the time of

crash, rolls back the ones that are not committed, and re-

commits those transactions that the master node has issued

commit commands.

During the downtime of a RouterDB instance, the master
node still has the configuration data in its cache so that it is

readable. However, any write requests will be denied. The

data in corresponding status tables become unavailable too.

Physical router failures detected by RouterDB are re-

ported to the master node, which temporarily marks the re-
lated entries in the regular table caches as “offline” so that

they do not show up in query results, until the physical router

comes back online. Operators cannot change configuration

or check status on the router during the offline time.

6. EVALUATION
We evaluated several key aspects of COOLAID to show that

it effectively reduces human workload and prevents miscon-

figurations in realistic management tasks, at the same time
scales to large networks. We used Juniper M7i routers run-

ning JUNOS V9.5. The Linux servers, which host master

nodes and RouterDB instances, were equipped with Intel

Dual Core 2.66GHz processors and 4GB RAM.

6.1 Automating configuration
We created the network topology of Internet-2 core net-

workwith 10 routers and 13 links on top of the ShadowNet
platform [10] for network experimentation. The actual

router instances are distributed across Texas, Illinois and

California. Besides the links in the topology, each router has

another interface connecting a local virtual machine, simu-

lating a customer site. We run one RouterDB for each router
and a single master node in Illinois. All routers in this ex-

periment started with minimum configurations that only de-

scribe interface-level physical connectivity.

Our goal is to configure a VPLS service connecting two
customer-facing interfaces on two different routers. This is

a heavily involved procedure as operators need to deal with

allocating interface IPs, configuring OSPF or IS-IS routing,

iBGP sessions, building a MPLS network with RSVP sig-

naling, establishing LSPs and finally the VPLS instances.
If an operator were to manually perform the task entirely,

she must start with executing at least 25 lines of config-

uration commands on average on all routers, and 9 addi-

tional lines on the two customer-facing routers, in total 268

lines. For larger networks with more routers and links, this
number should increase linearly. The lines of configuration

changes is measured by show configuration | display set on

JUNOS, which displays the current configuration with mini-

mum number of commands. In reality, the actually executed

commands are usually more. Besides, this number does not
reflect the manual reasoning effort to realize this VPLS ser-

vice, which commonly requires multiple iterations of trial-

and-test and accessing low-level CLIs.

In COOLAID, enabling such a complicated service re-

quires a single operation by the operator, calling
ActiveVPLSConnection.insert(int1 id,int2 id). This stays the

same no matter how large the network is. Also, the operator

does not have to deal with any of the dependencies.

6.2 Handling network dynamics
In contrast to the previous setup, we started with a well-

configured 9-router subset of the Abilene network topol-

ogy on ShadowNet. The intention is to study how COOLAID

enforces network properties when new, barely configured

routers are introduced in an existing network. When the reg-

ular tables were updated to include the 10th router and the

associated links, several network properties that were spec-

9

ified as constraints were immediately flagged as violated.

For example, LoopbackAddressConstraint showed that the new

router did not have an loopback interface configured with a

proper IP address and BGPFullMeshConstraint reported that the

new router had no iBGP sessions to other routers. COOLAID

checks constraints for property enforcement whenever there

is a network change, and automatically tries to resolve the vi-

olations. In this case, the customized view solver was used

to produce 26 lines of config changes on the new router, and

9 lines on the existing routers for iBGP sessions, such that
specified network properties are enforced automatically.

6.3 Performance
In this section we isolate the DB processing capability

from device access overhead to evaluate the performance of

the view query processor and the view update solver.

Network Abilene 3967 1755 1221 6461 3257 1239

Router # 10 79 87 108 141 161 315
Link # 13 147 161 153 374 328 972

Time (ms) 0.3 20 24 28 73 116 592

Table 1: Query processing time for OSPFRoute

Processing queries: To evaluate the query processing per-

formance, we chose the recursive view OspfRoute because it

is one of the most expensive queries, where the complex-

ity grows quadratically with the network size. We use the
topologies of Abilene backbone and five other ASes inferred

by Rocketfuel [33]. The config tables were initialized such

that all interfaces on each router are OSPF enabled, includ-

ing the loopback interfaces. Then we queried OspfRoute to

get the OSPF routes on all routers for each topology. The
query time is showed in Table 1. It only took 0.3ms to

complete the query for Abilene. For the largest topology

on AS1239 with 315 routers and 972 links, it took less than

600ms. This suggests that processing queries has negligible

overhead compared with device related operations, such as
physically committing config to routers (on the order of tens

of seconds on the Juniper routers).

Case 1: OSPF Case 2: iBGP Case 3: iBGP w/ OSPF

14.112s 14.287s 0.025s

Table 2: Time to solve view updates

Solving view updates: We tested our view update solver

in three cases with the Abilene topology. We picked a pair

of routers (r1 and r2) that are farthest from each other in the

topology. In Case 1, starting with the minimal configuration,

we inserted two tuples into OspfRoute, intending to have the
loopback IPs of r1 and r2 reachable to each other via OSPF.

In Case 2, also starting with the minimum configuration, we

inserted a single tuple in ActiveIBgpSession, intending to cre-

ate an iBGP session between r1 and r2. In Case 3, we started

with a network with OSPF configured on all routers, and per-
formed the same operation as in Case 2. As captured by the

rules, active iBGP sessions depend on IGP connectivity, so

in Case 2 the solver automatically configured OSPF to con-

nect r1 and r2 first and then configured BGP on both routers.

Table 2 shows the running time for each case. We ob-

serve that (i) Case 3 was much faster, because the solver

was able to leverage existing configurations; (ii) Case 1 and

Case 2 took about the same amount of time, because the

OSPF setup dominated. The OSPF setup in Case 1 is slow
because it starts with a network without configuration and

requires multiple levels of recursion to solve this view in-

sertion. While 14 seconds is not short, in practice, one only

needs to configure OSPF for a network once, and most of

the common tasks, including configuring a new router to run
OSPF, are incremental to existing configurations, thus can

be done quickly, like in Case 3.

We also evaluated the same tasks using the rules with cus-

tomized resolution routines. In this case, view update oper-
ations are achieved by calling a chain of hard-coded resolu-

tion routines, thus the reasoning overhead is zero.

6.4 Transaction overhead

Step 1 Step 2 Outcome

w/o COOLAID 8.4s 8.4s Disconnected network
w/ COOLAID 8.4s Rejected Disruption avoided

Table 3: Network operations with and without COOLAID

To study the device-related performance and transaction
overhead, we use the following setup. First, we assume 3

routers r1-r3 with pair-wise links, and all routers are config-

ured with OSPF. In step 1, we shut down the link between r1

and r2 (by disabling one of its interfaces). Such operations

are common for maintenance purpose and benign, because
the network is still connected. In step 2, we try to shut down

the link between r1 and r3 to emulate a misconfiguration

that would cause a network partition.

We compare the experience of using COOLAID to perform

such operations with using a script that directly calls NET-
CONF APIs, and then show the result in Table 3. Without

COOLAID, the two steps took 8.4 seconds each, ending with

a disconnected network. The time is mostly spent by the

router internally to validate and commit the new configura-
tion. With COOLAID, step 1 takes the same amount of time,

suggesting a negligible overhead in constraint checking or

any other extra overhead introduced by COOLAID. Because we

specified a constraint that every router’s loopback IP must be

reachable to all other routers, step 2 is rejected by COOLAID

before it could take effect on the actual routers.

7. DISCUSSION
Feasibility: Using the database abstraction and the declara-
tive rules represents a drastic but reasonable shift. First, net-

work databases are commonly practiced in modern ISPs [7].

The emerging trend of XML-based configuration files fur-

ther reduces the effort, since XML files can be directly

queried. Second, according to our experience, the time-
consuming part of writing the rules is to derive the correct

dependency by reading documentations and performing field

tests. In reality, we found the amount of work manageable

for a single graduate student to decipher VPLS, despite the

10

complex dependency involved. Furthermore, as we have

suggested, we envision an environment where, in addition

to providing the text documents, vendors can also provide

libraries of rules. Such an approach greatly simplifies the

service creation by service providers.
Deployment: While COOLAID is designed to take over man-

aging the whole network, we note that it is amenable to a va-

riety of partial deployment scenarios. For example, COOLAID

can initially work in a read-only mode to assist network rea-

soning. When operators are comfortable enough about using
the new database primitives, they can gradually enable write

permission to config tables. Note that configuring certain

network features do not require touching all routers.

Availability: In the current centralized implementation, the
system is not available when the master node is offline. To

remove this single point of failure, we can adopt the repli-

cated state machine approach [32] where multiple copies

of the COOLAID controller are running simultaneously as pri-

mary node and backup nodes. Another alternative is to adopt
a fully decentralized architecture, where all query process-

ing and transaction management is handled in a distributed

fashion by RouterDB instances. There are sophisticated al-

gorithms and protocols, such as Paxos commit [16], that are

designed for this scenario. How they compare with the cen-
tralized architecture in performance and ease of maintenance

is an interesting direction for our future work.

Limitations: (i) Routing protocols are not transaction-

aware, as they require time to converge upon configuration

changes. The order and timing of such changes are impor-
tant in determining the consequences, e.g., temporary rout-

ing loops and route oscillations. Therefore, transaction roll-

back support for handling failures in such tasks is usually in-

adequate without creating case-specific handlers to deal with

failure exceptions. (ii) It is possible that some resources are
released during the transaction execution and cannot be re-

acquired in the case of rollback. The problem could be ad-

dressed through a locking mechanism to hold the resources

until the transaction finishes. (iii) We assume the set of con-

straints are complete to prevent inconsistent states; however,
this is difficult because new constraints can be introduced

and discovered over time. One potential solution is to roll-

back previous operations to a point where no constraints, in-

cluding the new ones, are violated, and then replay the trans-

actions, such as updateable view operations. (iv) COOLAID

currently does not address the issues of protocol optimiza-

tion, e.g., tweaking the OSPF link weights for traffic engi-

neering [14]; however, existing techniques can be invoked

in the customized view solvers to integrate their results with

our data model.

8. RELATED WORK
Network management: A clean-slate approach to configu-
ration management is advocated in CONMan [4], in which

protocols are abstracted as modules and network configura-

tion is done through piping the modules. Template-driven

approaches [15, 12] are commonly used in production en-

vironments. A template program extracts parameters from

provisioning databases and generates configuration snippets,

optionally with some validation [35]. Unfortunately, the

dependencies among templates and between the generated

snippets and the existing configurations, still need to be re-
solved manually. Sung et al. built a query engine for evalu-

ating Class of Service (CoS) configuration [34]. In contrast,

COOLAID advocates using declarative rules as a concise repre-

sentation of domain knowledge, which can be contributed by

both vendors and service providers. The reasoning support is
generic to all services. COOLAID further provides constraint

checking with transactional semantics, not simply emitting

configuration snippets to network devices. Relating to the

4D project [17], COOLAID fulfills the functionalities of the
decision and dissemination planes. KarDo [22] automates

generic operations on PCs, and the enabled automation does

not apply to complex network management tasks.

There are also many existing systems that apply rule-

based approaches to general system management. On the
commercial side, IBM’s Tivoli management framework and

HP’s OpenView allow event-driven rules to be expressed

and automated for system management. These languages

are best suited for reacting to system condition changes by

triggering pre-defined procedural code, but not suitable for
specifying domain knowledge of network protocol behav-

iors and dependencies. On the research side, InfoSpect [31],

Sophia [36] and Rhizoma [37] all proposed to use logic pro-

gramming to manage nodes in large-scale distributed sys-

tems such as PlanetLab or cloud environments. Providing
advanced support for and meeting the distinct requirements

of network management, COOLAID’s main techniques differ

drastically from those systems. For example, features like

distributed recursive query processing, view update resolu-

tion, and transactional semantics with constraint enforce-
ment, are all unique to COOLAID. PoDIM [11] is a languange

designed to express cross-machine constraints in an enter-

prise environment. COOLAID captures more general and com-

plex dependencies and constraints in wide-area networks.

In the enterprise network management space, Ethane [8]
and NOX [18] focus on network flow access control manage-

ment. Along the same line, Flow-based Management Lan-

guage [19] is based on the Datalog syntax to express policies

of flow control. These resemble most of the policy-based

network management work [1]. In contrast, the language
proposed in COOLAID effectively captures domain knowledge

in protocol behaviors and dependencies.

Declarative systems: Declarative programming in system

and networking domains has gained considerable attention

in recent years. The declarative networking project proposes
a distributed recursive query language to specify and imple-

ment traditional routing protocols at the control plane [25,

30]. The declarative approach has been explored by numer-

ous projects, e.g., to implement overlays [24], data and con-

trol plane composition [26], and specify distributed storage
policies [5]. Compared to those studies, COOLAID focuses

11

on re-factoring current network management and operations

practices. Specifically, in COOLAID the declarative language

is used for describing domain knowledge, like dependencies

and restrictions among network components, as opposed to

implementing protocols for execution or simulation. As a
stand-alone management plane, COOLAID orchestrates net-

work devices in a declarative fashion, while not requiring

the existing routers to be modified.

Databases: Database technologies are routinely utilized as

part of network management and operations. One class of
existing work, represented by NetDB [7], uses a relational

database to store router configuration snapshots, where one

can write queries to audit and perform static analysis of ex-

isting configurations in an offline fashion, e.g., for BGP [13].
From a network operator’s perspective, the database is read-

only and is not necessarily consistent with live configura-

tions. In contrast, COOLAID provides a unifying database ab-

straction that integrates router configurations, live network

status and provisioning data, provides transactional write op-
erations to change network configurations, and enforces con-

straints to detect and prevent policy violations during opera-

tion, as opposed to a postmortem support tool.

To realize the database abstraction of COOLAID, we take

advantage of many existing techniques and concepts in
the database literature, including recursive query optimiza-

tion [29], distributed transaction processing [28], updatable

materialized views [6], etc. However, we note that while

some of these features are becoming available in commercial

database products, no existing database systems support all
of these features, or work with commodity routers as back-

end storage. To our knowledge, COOLAID is the first system

that integrates these features with unique optimizations cus-

tomized for network management and operations.

9. CONCLUSION
We presented COOLAID as a unifying data-centric frame-

work for network management and operations, where the do-

main expertise of device vendors and service providers can

be systematically captured, and where protocol and network

dependencies can be automatically exposed to operational
tools. Built on a database abstraction, COOLAID enables new

network management primitives to reason and automate net-

work operations while maintaining transactional semantics.

We described the design and implementation of the proto-
type system, and used case studies to show its generality and

feasibility. Our future plan is to improve the design and im-

plementation of COOLAID by adding new management primi-

tives, increasing concurrency, and improve reliability. While

COOLAID currently covers a variety of dominant network op-
erations that rely on configuration changes, we also plan to

explore COOLAID’s applicability in other management areas

such as fault diagnosis and performance management.

10. REFERENCES
[1] IETF Policy Framework Charter. http://ietf.org.
[2] LINQ. http://msdn.microsoft.com/netframework/future/linq/.
[3] Network configuration (netconf).

http://www.ietf.org/html.charters/netconf-charter.html.

[4] H. Ballani and P. Francis. CONMan: A Step Towards Network Manageability.
In Proceedings of SIGCOMM, 2007.

[5] N. Belaramani, J. Zheng, A. Nayte, M. Dahlin, and R. Grimm. PADS: A Policy
Architecture for building Distributed Storage systems. In Proc. of NSDI, 2009.

[6] A. Bohannon, J. A. Vaughan, and B. C. Pierce. Relational Lenses: A Language
for Updateable Views. In Proceedings of of PODS, 2006.

[7] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, G. Hjalmtysson, and
J. Rexford. The cutting EDGE of IP router configuration. In Proceedings of

HotNets Workshop, 2003.
[8] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker.

Ethane: taking control of the enterprise. In Proceedings of SIGCOMM, 2007.
[9] X. Chen, Z. M. Mao, and J. Van der Merwe. PACMAN: a Platform for

Automated and Controlled network operations and configuration
MANagement. In Proceedings of CoNEXT, 2009.

[10] X. Chen, Z. M. Mao, and J. Van der Merwe. ShadowNet: A Platform for Rapid
and Safe Network Evolution. In Proceedings of USENIX ATC, 2009.

[11] T. Delaet and W. Joosen. PoDIM: A language for high-level configuration
management. In Proceedings of LISA, 2007.

[12] W. Enck, P. McDaniel, S. Sen, P. Sebos, S. Spoerel, A. Greenberg, S. Rao, and
W. Aiello. Configuration management at massive scale: system design and
experience. In Proceedings of USENIX ATC, 2007.

[13] N. Feamster and H. Balakrishnan. Detecting BGP Configuration Faults with
Static Analysis. In Proceedings of NSDI, 2005.

[14] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford. NetScope:
Traffic engineering for IP networks. IEEE Network Magazine, March/April
2000, pp. 11-19.

[15] J. Gottlieb, A. Greenberg, J. Rexford, and J. Wang. Automated Provisioning of
BGP Customers. IEEE Network, Vol. 17, 2003.

[16] J. Gray and L. Lamport. Consensus on transaction commit. ACM Transactions

on Database Systems, 31(1):133–160, 2006.
[17] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie,

H. Yan, J. Zhan, and H. Zhang. A Clean Slate 4D Approach to Network Control
and Management . In Proceedings of SIGCOMM CCR, 2005.

[18] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker. NOX: towards an operating system for networks. In Proceedings of

SIGCOMM CCR, 2008.
[19] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker. Practical

declarative network management. In Proceedings of SIGCOMM WREN

Workshop, 2009.
[20] C. R. Kalmanek, et al. Darkstar: Using Exploratory Data Mining to Raise the

Bar on Network Reliability and Performance. In Proceedings of DRCN, 2009.
[21] J. Kelly, W. Araujo, and K. Banerjee. Rapid service creation using the junos

sdk. In Proceedings of SIGCOMM CCR, 2010.
[22] N. Kushman and D. Katabi. Enabling Configuration-Independent Automation

by Non-Expert Users. In Proceedings of OSDI, 2010.
[23] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis,

R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative Networking: Language,
Execution and Optimization. In Proceedings of SIGMOD, 2006.

[24] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica.
Implementing Declarative Overlays. In Proceedings of SOSP, 2005.

[25] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative
Routing: Extensible Routing with Declarative Queries. In Proceedings of

SIGCOMM, 2005.
[26] Y. Mao, B. T. Loo, Z. G. Ives, and J. M. Smith. MOSAIC: Unified Declarative

Platform for Dynamic Overlay Composition. In CoNEXT, 2008.
[27] L. Peterson, S. Shenker, and J. Turner. Overcoming the Internet Impasse

Through Virtualization. In Proceedings of HotNets Workshop, 2004.
[28] R. Ramakrishnan and J. Gehrke. Database Management Systems.

McGraw-Hill, third edition, 2002.
[29] R. Ramakrishnan and J. D. Ullman. A Survey of Research on Deductive

Database Systems. Journal of Logic Programming, 23(2):125–149, 1993.
[30] T. Roscoe, S. Hand, R. Isaacs, R. Mortier, and P. Jardetzky. Predicate routing:

enabling controlled networking. In Proceedings of SIGCOMM CCR, 2003.
[31] T. Roscoe, R. Mortier, P. Jardetzky, and S. Hand. InfoSpect: Using a Logic

Language for System Health Monitoring in Distributed Systems. In
Proceedings of the SIGOPS European Workshop, 2002.

[32] F. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys, 22(4), 1990.

[33] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring ISP
topologies with rocketfuel. IEEE/ACM Trans. Netw., 12(1):2–16, 2004.

[34] Y.-W. E. Sung, C. Lund, M. Lyn, S. G. Rao, and S. Sen. Modeling and
understanding end-to-end class of service policies in operational networks. In
Proceedings of SIGCOMM, 2009.

[35] L. Vanbever, G. Pardoen, and O. Bonaventure. Towards Validated Network
Configurations with NCGuard. In Proceedings of INM Workshop, 2008.

[36] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: an Information Plane for
networked systems. In Proceedings of SIGCOMM CCR, 2004.

[37] Q. Yin, A. Schuepbach, J. Cappos, A. Baumann, and T. Roscoe. Rhizoma: a
runtime for self-deploying, self-managing overlays. In Proceedings of

Middleware, 2009.

12

