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ABSTRACT
Effective debugging usually involves watching program state
to diagnose bugs. When debugging sensor network appli-
cations, this approach is often time-consuming and error-
prone, not only because of the lack of visibility into system
state, but also because of the difficulty to watch the right
variables at the right time. In this paper, we present declar-
ative tracepoints, a debugging system that allows the user
to insert a group of action-associated checkpoints, or tra-
cepoints, to applications being debugged at runtime. Tra-
cepoints do not require modifying application source code.
Instead, they are written in a declarative, SQL-like language
called TraceSQL independently. By triggering the associ-
ated actions when these checkpoints are reached, this sys-
tem automates the debugging process by removing the hu-
man from the loop. We show that declarative tracepoints are
able to express the core functionality of a range of previously
isolated debugging techniques, such as EnviroLog, NodeMD,
Sympathy, and StackGuard. We describe the design and im-
plementation of the declarative tracepoints system, evaluate
its overhead in terms of CPU slowdown, illustrate its expres-
siveness through the aforementioned debugging techniques,
and finally demonstrate that it can be used to detect real
bugs using case studies of three bugs based on the develop-
ment of the LiteOS operating system.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids and Tracing

General Terms
Design, Experimentation, Performance
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1. INTRODUCTION
Effective debugging usually involves watching program state

to diagnose abnormal behavior. When debugging sensor
networks, observing state is challenging in that it requires
watching the right set of variables at the right time. That
set is hard to know in advance. Meanwhile, watching ev-
erything is not feasible due to severe resource limitations
at individual sensor nodes. Often, a node could crash and
restart before useful information is collected, in which case
all state is lost. Therefore, the debugging process for sensor
network applications remains time-consuming, error-prone,
and difficult.

To simplify the debugging process, we present the declar-
ative tracepoints (DT) system, which allows the developer
to insert a group of action-associated checkpoints at run-
time. We refer to these action-associated checkpoints as
tracepoints, or probes, analogous to the way test probes are
used in electronic hardware to debug circuits. These trace-
points are programmed in an SQL-like declarative language,
called TraceSQL. By triggering the associated actions when
tracepoints are reached, DT removes the human from the
loop, and makes the debugging process programmable.

DT has two key advantages. First, DT does not require
modifying application source code. Based on dynamic in-
strumentation, it enables programmers to add and remove
tracepoints at runtime, without requiring application re-
boots. Such flexibility allows programmers to try out multi-
ple rounds of modifications without the need to re-deploy ap-
plications. This is particularly attractive in sensor networks,
where recompilation and re-deployment of applications is
usually a lengthy, error-prone process. Second, to implement
associated actions, DT introduces the TraceSQL language to
program the debugging actions. Being programmable, DT
can express a wide range of debugging techniques that were
previously hardwired for unique application needs. In this
sense, DT acts like the thin waist of a systematic framework
where multiple debugging techniques co-exist. To the best
of our knowledge, DT is the first debugging system to simul-
taneously provide both a declarative programming language
and independence from application source code for wireless
sensor networks.



The usage model of DT is as follows. First, a user applica-
tion is deployed into multiple nodes. After observing abnor-
mal behavior, the developer writes DT scripts in TraceSQL,
compiles the scripts into Tracepoint Engines (TEs), and in-
stalls the TEs to debug the application. A TE inserts trace-
points into application binaries, triggers associated actions
when such tracepoints are reached, and exposes information
in the form of messages or traces for online or off-line di-
agnosis. In this sense, the TE is an agent in lieu of the
developer, streamlining the debugging process because it no
longer involves user interaction. Finally, the developer can
uninstall the current TEs and install new ones if the bug
has not been resolved. The on-demand deployment of TEs
keeps the debugging code base small, thus minimizing the
resource consumption of the debugging process.

The design of DT is partially inspired by features offered
by Aspect Oriented Programming (AOP) [13]. The design
motivation of AOP is to achieve separation of concerns and
to avoid tangling code by identifying cross-cutting aspects
that cut across the system’s basic components at join points,
where additional advice is applied. The aspects and com-
ponents in AOP are usually developed using different lan-
guages, and are later weaved together either at compile time
or at runtime. For complicated systems, such an approach is
promising to improve the isolation, composition, and reuse
of software modules.

DT and the TraceSQL language can be viewed as one as-
pect of sensor network development, the debugging aspect.
Just like AOP, TraceSQL programs are developed indepen-
dently of the debugged applications. TraceSQL programs
cut across functional components, in the form of Tracepoint
Engines (TEs). The associated actions are essentially a form
of advice for debugging purposes.

We have implemented a prototype of DT on top of the
LiteOS operating system, a recent thread-based operating
system developed at the University of Illinois [6]. We chose
LiteOS mostly because of its support for interactive con-
trol of network behavior through its Unix-like shell, such as
the file copy command for easy retrieval of data. There-
fore, we do not address trace retrieval separately in the DT
system. The prototype we implemented supports instru-
mentation of both user applications and the LiteOS kernel.
We also selected four representative debugging techniques,
namely EnviroLog [17], NodeMD [14], Sympathy [20], and
StackGuard [8], to demonstrate that they can be expressed
with TraceSQL. Finally, we also used DT to retroactively
debug the documented bugs in the development version of
LiteOS and its applications from October 2007 to March
2008, as well as to solve a problem in the communication
stack development based on LiteOS. We present these bugs
as representative case studies.

Note that, DT can also be implemented on other sen-
sor network operating systems, as long as the following two
features are supported. First, the operating system should
support dynamic loading of new modules, so that the com-
piled TE can be installed incrementally in addition to the
deployed user applications. Second, the operating system
should support access to non-volatile storage, such as flash.
Several existing operating systems meet such requirements,
including TinyOS [11] (with TinyThreads [19], Deluge [12],
and the Matchbox file system [2] installed), Contiki [9], and
Mantis [4]. Porting declarative tracepoints to these operat-
ing systems is therefore possible. Also note that while DT

is designed for wireless sensor networks, it applies to more
generic embedded system debugging as well. Porting DT for
these needs is outside the scope of this paper.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes the related work. In Section 3, we give
an overview of DT. Section 4 presents the details of the
TraceSQL language, illustrating the core features using ex-
amples. In Section 5, we discuss the implementation of
declarative tracepoints. Section 6 presents performance eval-
uation focusing on overhead. In Section 7, we explore and
evaluate the expressiveness of DT using a series of debugging
techniques from the literature. Section 8 presents three real
bugs based on the LiteOS operating system as case studies
to demonstrate the effectiveness of DT. Section 9 concludes
the paper and presents directions for future work.

2. RELATED WORK
Debugging has been an active topic probably ever since

software has been written. In the area of sensor networks,
many debugging techniques have been proposed. In this
paper, we use TraceSQL to express three such techniques;
namely, EnviroLog [17], NodeMD [14], and Sympathy [20].
We also use TraceSQL to express a more general technique
called StackGuard [8]. Below, we describe them in more
detail.

The first tool that we use TraceSQL to express is En-
viroLog. It aims to improve repeatability of experimental
testing of distributed event-driven applications, based on the
observation that the system state can change depending on
the event sequence and timing. Hence, debugging such ap-
plications is complicated by non-repeatable event sequences
caused by the dynamic environmental inputs. To address
this challenge, EnviroLog provides an event recording and
replay service that captures and replays events with the help
of the non-volatile flash. Its compiler modifies the applica-
tion source code such that every time an instrumented func-
tion is called, its invoked time and parameters are stored into
flash. Later, EnviroLog replays this sequence of events by
executing the same sequence of functions with the same pa-
rameters. After the code is installed, EnviroLog allows the
user to issue START_RECORD and START_REPLAY commands to
record and replay events on demand.

The second tool expressed, NodeMD, is designed to di-
agnose node-level faults in sensor network applications. It
focuses on catching software faults before they completely
disable the remote sensor node, so that the user can be pro-
vided with diagnostic information to troubleshoot the root
cause. It tries to catch three types of bugs: stack overflows,
livelocks, and deadlocks, in addition to application-specific
faults. It also provides remote retrieval of the logged infor-
mation stored in a circular buffer, so that the probable root
of the bug can be traced.

The third tool, Sympathy, detects and debugs failures by
collecting metrics and performing an analysis procedure at
the sink to localize the most likely failure source. The key
assumption made by Sympathy is that for a broad class of
data gathering applications, it is possible to diagnose failures
by analyzing a minimal set of metrics at a centralized sink.
It traces the failure source to one of the three possibilities:
the node itself, the communication path, or the sink.

The last tool we express is StackGuard, a more generic
tool for detecting stack corruption caused by buffer over-
runs (e.g., when the return address of a function is over-



written). This problem is also known as the buffer overrun
security exploit. Having received intensive attention, this
problem is addressed in multiple ways, and StackGuard is
one of the better-known techniques in that it virtually elim-
inates all buffer overflows with the help of the canary word.
More specifically, StackGuard modifies the generated pro-
logue and epilogue code for functions to insert canary words.
The assumption held by StackGuard is that if some code in
a function modifies the return address, it must have modi-
fied the canary word as well, assuming that the application
does not know the value and size of the canary word. By
checking the integrity of the canary word, StackGuard can
detect malfunctioning code.

Besides the four representative debugging techniques, many
other tools have been proposed for different debugging pur-
poses in the sensor network community. Clairvoyant [24],
JTAG [1], and the LiteOS shell [6] provide interactive source-
level debugging commands such as break, step, and watch
to access program state. TOSSIM [16], EmStar [10], and
Avrora [21] provide simulation environments for sensor net-
work applications. SNMS [22] provides logging and retrieval
of runtime state for fault diagnosis. Some tools recognize
visibility as the one of main obstacles for debugging, hence
propose to improve visibility in various ways [23]. Tools
for improving memory safety also exist [7]. Various vir-
tual machines [15] developed for sensor networks can also
be modified to provide robustness and error checking on
the nodes. However, none of these tools implement lan-
guages specialized for debugging that can express existing
techniques. Hence, we believe that DT is complementary to
these previous techniques.

Outside the area of sensor networks, one tool that has
used dynamic instrumentation for debugging is DTrace [3],
a comprehensive dynamic tracing framework developed by
Sun Microsystems on Solaris 10. DTrace allows the user to
write scripts using the D programming language to perform
runtime instrumentation and trace collection. Compared
to DTrace, our work is novel in the following two respects.
First, DTrace is tightly integrated with the underlying oper-
ating system and only supports PCs with sufficient system
resources. The design and implementation of our DT sys-
tem, on the other hand, consists of design choices specific
to sensor nodes to fit into their stringent resource limita-
tions. Second, the debugging needs addressed in this paper
are very different from those addressed by DTrace scripts.
While DTrace primarily addresses problems more specific to
its own environment, such as CPU scheduling tracing and
I/O activities, our DT system targets debugging tasks of
more interest to sensor networks, such as stack overflows
and the special need to replay sensor readings. These sig-
nificant differences in goals and approaches distinguish DT
from DTrace.

3. DESIGN
The DT system aims to provide a programmable and

application-independent debugging architecture. Figure 1
shows its overall architecture. Below, we identify the major
design goals.

3.1 Application Independence
Our first goal is to achieve application independence. More

specifically, we hope that DT programs should be devel-
oped independently of applications, and should not require
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Figure 1: Overall System Architecture of Declara-
tive Tracepoints

source level modifications to the applications under debug-
ging. While this approach may sometimes prevent the com-
piler from performing better global optimizations, it achieves
separation of concerns by isolating debugging code from ap-
plication code. Hence, debugging can be performed with-
out requiring re-compilations and re-deployments of appli-
cations.

DT works as follows. As shown in Figure 1,TraceSQL
programs are compiled into TE executables. Once installed,
TE inserts tracepoints into applications by instrumenting
their binaries. The instruction flow jumps to an action han-
dler whenever a tracepoint is reached. The action handler
is carefully designed such that its existence is transparent
to user applications except in timing 1. Indeed, the num-
ber of CPU cycles for running a user application is changed
inevitably if new functionality is added. However, this is
usually not a big concern in that it can be viewed that the
application reached a mini context switch at each tracepoint,
although the kernel is oblivious. Given that DT is designed
for multi-threaded operating systems (each TE is executed
as a separate thread), it is reasonable to assume that addi-
tional context switches should not lead to extra application
bugs in most cases 2.

3.2 Ease of Programming
Our second goal is to allow easy DT programming. To

this end, we adopt a declarative language syntax similar to
SQL. Declarative languages are well known for their abil-
ity to express complicated operations with short programs.
The customized language we developed, TraceSQL, focuses
on expressing the locations of tracepoints and the associated
actions. Below, we show an example that records every con-
text switch caused by applications. In LiteOS, each context
switch invokes the yield() function in the syscall.c file.
Therefore, we simply add a tracepoint at the beginning of
this function to track context switches, shown as follows.
The syntax of TraceSQL is described in Section 4.

TRACE yield() FROM syscall.c EXECUTE {
RECORD yield();

}

3.3 Runtime Efficiency
Our third goal is to control the overhead introduced by

DT. To this end, we directly compile DT programs into

1TraceSQL also provides function APIs to modify the ap-
plication stack under special scenarios, as described in Sec-
tion 5.2.2.
2The dynamic instrumentation may still cause heisenbugs,
which change or disappear once the debugger is deployed.
We attempt to minimize such effect by reducing the memory
footprint of the DT system.



TraceSQLLanguage Overview
Statement types Keywords Comments

Configuration statements @fileoutput, @buffersize Configure the TE environment.

Variable declaration statements @, INTEGER, LONG, STRUCT, ARRAY Declare TraceSQL variables. Each statement must start with @.

Tracepoint
declaration 
statements

General TRACE, FROM, EXECUTE, WHERE, EXIT
The basic format is
TRACE {… } FROM {… } EXECUTE {…} WHERE {….}.

Tracepoint type 
declarations

Function tracepoints
BEFORE_PROLOGUE, AFTER_PROLOGUE, 

BEFORE_EPILOGUE, AFTER_EPILOGUE, regular expressions
BEFORE_PROLOGUE inserts the probe before the prologue section of a 
function generated by GCC, AFTER_PROLOGUE the opposite, etc.

Statement tracepoints N/A N/A

Virtual tracepoints PERIOD, FOR, REPEAT
Set up the virtual timer period and the number of times it will be 
triggered.

Condition predicates AND, OR , NOT Define complicated predicates. 

Tracepoint 
actions

Generic RECORD, LOAD, INTO, AS Operate files in the LiteFS file system. 

On memory variables READ, SET Read and write memory variables. 

On invoking functions INVOKE Invoke a function. 

On thread operations TERMINATE, BREAK Control threads.

Built-in functions

Stack operations pushinteger(), popinteger(), getsp() Push and pop integers to and from the stack, and read the stack pointer.

Number operations getRand() Return a random number.

Memory operations readMem(), writeMem() Read and write memory locations directly.

Table 1: Overview of TraceSQL Language Keywords

Caller Stack Context

Ret Address

Old Stack Pointer

Local Variables, 
Buffer, etc.

Stack 
growth

Canary Word

The canary word is 
checked every time 
the function returns

The local variables may 
overwrite the return address 
and the canary word. 

Figure 2: The Use of Canary Words in StackGuard

application-specific TEs, instead of interpreting them by a
common engine running on sensor nodes. Different TraceSQL
scripts generate different TEs, and only their binary images
are installed. This approach significantly reduces their mem-
ory footprint, and reduces the amount of data transferred in
the deployment phase of the DT system.

4. THE TRACESQL LANGUAGE
In this section, we systematically describe the syntax of

TraceSQL. Table 1 shows an overview of TraceSQL key-
words. We first present a complete TraceSQL example, fol-
lowed by describing its syntax details.

4.1 TraceSQL Program Example
In this example, we present the TraceSQL implementa-

tion of the StackGuard tool. As described in Section 2,
StackGuard addresses the stack corruption problem through
canary words, as illustrated in Figure 2. This problem is
usually not caused by security attacks in sensor networks.
Instead, it is more common for a node to crash for acciden-
tally overwriting the return address of its functions, causing
a function to return to unpredictable addresses. Therefore,
using StackGuard is very much needed. While StackGuard
is implemented as a patch for GCC, to our knowledge, it
does not support AVR-GCC, and hence does not work with
sensor networks.

Our implementation of StackGuard is illustrated in Ta-
ble 2. This example demonstrates the use of integers, trace-
points declarations, and their associated actions. It consists
of two probes for each instrumented function, which, in this

1 INTEGER @canarynumber = getRand();
2 INTEGER @testnumber;
3 TRACE crashNode() BEFORE PROLOGUE
4 FROM app.c EXECUTE
5 {
6 push integer(@canarynumber);
7 }
8 TRACE crashNode() AFTER EPILOGUE
9 FROM app.c EXECUTE
10 {
11 @testnumber = pop integer();
12 IF (@testnumber != @canarynumber) {
13 BREAK;
14 }
15 }

Table 2: TraceSQL Example for StackGuard

example, is the crashNode() function from the file app.c.
One probe is located before the prologue, and the other after
the epilogue. When a procedure is invoked, the first trig-
gered tracepoint pushes a randomly generated canary word
onto the stack. Just before this function returns, the second
tracepoint is triggered, which checks if the canary word is
still intact. If not, an error is detected and the thread is
suspended.

4.2 Program Structure Overview
Formally, a TraceSQL program consists of three types of

statements: configuration statements, variable declaration
statements, and tracepoint declaration statements. The ex-
ample in Table 2 shows the latter two types of statements.

Configuration statements: These statements specify
TE parameters. For example, if a program writes to a file,
it specifies the name of the file with a configuration state-
ment. Starting with a pre-defined @, the following sample
shows how to set the file output and the internal buffer size.

@fileoutput = “trace.log”;
@buffersize = 64;

Variable declaration statements: These statements
specify the types and names of variables. Integers are most
commonly used, as shown in lines 1 and 2 of the StackGuard
example (Table 2).

Tracepoint declaration statements: Tracepoint dec-
laration statements are the key components of a program.



Each statement consists of three parts, tracepoint addresses,
tracepoint actions, and optional condition predicates. One
or more tracepoints can be specified within a single state-
ment, and they can also be nested to perform complicated
tasks. The declaration part starts with a TRACE keyword,
the action part starts with an EXECUTE keyword, and the
predicate starts with a WHERE keyword. Hence, a tracepoint
declaration looks as follows. Two examples of this declara-
tion are shown in lines 3 and 8 of the StackGuard example
(Table 2).
TRACE {...} FROM {...} EXECUTE {...} WHERE {...}

4.3 Tracepoint Declarations
TraceSQL supports three types of tracepoints: function

tracepoints, statement tracepoints, and virtual tracepoints.
Function tracepoints: The first type of tracepoints in-

serts probes into functions. In TraceSQL programs, the
probe is addressed by a pair consisting of a function name
and a file name. By default, the probe is located before the
first instruction generated by the function. Additional key-
words, such as BEFORE_PROLOGUE and AFTER_PROLOGUE, can
be used to specify the exact address of inserted probes (for
these two keywords, they specify that the probe is located
before and after the prologue code generated by the GCC
compiler).

Function tracepoints can express a variety of events of
interest, such as receiving a packet (by adding a probe to
the packet receiving function), or reading ADC sensors (by
adding a probe to the ADC reading function). To simplify
adding a group of tracepoints, the TraceSQL compiler sup-
ports regular expressions. For example, the following code
inserts probes to all functions starting with device in files
with names starting with hardware.

INTEGER @counter;
TRACE [device\w*]() FROM [hardware\w*]
EXECUTE {

@counter++;
RECORD “Device driver called”+ counter + “\n” ;

}
As illustrated in this example, regular expressions make

inserting a group of tracepoints much faster than manually
instrumenting the source code.

Statement tracepoints: The second type of tracepoints
inserts probes into specific source code statements. It is de-
fined by a pair consisting of a line number and a file name.
An example is shown as follows:

TRACE 236 FROM app.c EXECUTE {
RECORD “Line 236 reached”;

}
In this example, the probe is inserted before the first in-

struction generated by code line 236 in the user file app.c.
Compared to function tracepoints, statement tracepoints
provide more flexible positioning.

Virtual tracepoints: The third type of tracepoints does
not insert explicit probes. Instead, they are triggered by
timers, either once or periodically, to perform specific ac-
tions. In the following example, we show how to record the
value of a counter 100 times at a period of 100 seconds. Ob-
serve that TRACE is followed by a variable counter, instead
of a function. No confusion will be introduced because un-
like functions, variables are not followed with parentheses.

TRACE counter FROM app.c PERIOD 100s FOR 100
EXECUTE { RECORD counter; }

4.4 Condition Predicates
The TraceSQL compiler also supports condition predi-

cates with the WHERE keyword. A condition predicate can be
constructed by logical operators such as AND, OR, and NOT.
To illustrate their uses, we present an example that records
all context switches triggered by radio transmissions. Here,
the msend mutex variable in the library file radio.c is a flag
that shows whether or not there is ongoing radio operation
(if there is, the msend mutex is locked). We use the READ

keyword to access memory variable values.

TRACE yield() FROM syscall.c EXECUTE {
RECORD yield() ;

}
WHERE {

READ msend->lock FROM radio.c == 1
}

4.5 Tracepoint Actions
In this section, we describe the associated actions when

tracepoints are reached. The RECORD keyword used in previ-
ous examples represents a logging action. Formally, TraceSQL
supports the following three action categories: actions on
declared variables, on memory variables, and on function
invocations.

First, a tracepoint action may operate on declared vari-
ables. Consider that a user application does not keep track
of the number of received packets and hence provides no
visibility on network activity statistics. Without modifying
the source code, we can write a TraceSQL program to gather
such information by declaring additional variables. In the
following example, we define such a variable, numOfPacket-
sReceived, for this purpose. This variable is shared by two
tracepoints, but no race conditions will be introduced be-
cause action statements are implicitly protected by atomic
operators.

INTEGER @numOfPacketsReceived = 0;
TRACE packetreceived() FROM user.c EXECUTE {

@numOfPacketsReceived ++ ;
}
TRACE PERIOD 100s FOR REPEAT EXECUTE {

RECORD @numOfPacketsReceived;
@numOfPacketsReceived = 0;

}
Second, a tracepoint action may directly read/write RAM

variables using keywords READ and SET. The values of these
variables can be combined with other statements to perform
complex actions. This has been illustrated in previous ex-
amples.

Finally, a tracepoint action may directly invoke functions
provided by the operating system or user applications. In
TraceSQL, these actions start with the keyword INVOKE. The
following example shows how to blink the LED every time a
packet is received. The greentogglefunction() is located
in the syscall.c file that toggles the green LED.

TRACE packetreceived() FROM user.c EXECUTE {
INVOKE greentogglefunction() FROM syscall.c;

}
TraceSQL also provides several built-in functions, as illus-

trated in Table 1, including stack operations, number oper-
ations, and memory operations. The detailed descriptions
are skipped because they are self-explanatory.
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5. IMPLEMENTATION
We implement DT on the LiteOS operating system for

the MicaZ platform running the Atmega128 processor. In
this section, we first describe the execution model of LiteOS,
then we describe the details of tracepoint instrumentation.

5.1 Execution Model of LiteOS
LiteOS supports separate compilation of the kernel and

user applications. Initially, only the LiteOS kernel is in-
stalled. It then loads more applications into memory ac-
cording to users’ needs. The kernel and user applications
are bridged by system calls, a special type of function point-
ers. Multiple user applications can be loaded simultaneously,
running as individual threads. As AVR processors provide
separate program space (flash) from the data space (RAM),
each thread in LiteOS owns a non-overlapping chunk of both
the flash memory and the RAM.

Figure 3 shows how we implemented the DT system in the
LiteOS environment. Each tracepoint engine (TE) is imple-
mented as a stand-alone thread in LiteOS. It is loaded by
the user using the interactive shell, where individual threads
can be started or stopped separately. Hence, multiple TEs
can be loaded concurrently or sequentially. When one TE
terminates, it restores the applications it has instrumented
to their original state, so that the normal execution of user
applications will not be interrupted.

A tracepoint engine is compiled by the TraceSQL com-
piler. Implemented in Python, the compiler translates user
programs from TraceSQL into C with equivalent seman-
tics. To optimize memory variable operations, the compiler
must be provided with memory addresses of the applica-
tions. Such information is provided by the .lss files gener-
ated from user applications.

As output, the TraceSQL compiler generates translated
C programs that are ready to be compiled. We use GCC
4.1.1 in our experiments. If the RECORD command is used,
the compiler also generates a customized trace interpreter
for translating the collected traces into readable output.

Note that, our implementation description assumes that
traces can be easily obtained at the end of the experiments
using the file copy command supported by the LiteOS shell.
This assumption is operating-system-dependent. On other
operating systems where this command is not available, DT
must also implement its own trace retrieval module. Such
discussions are out of the scope of this paper.

5.2 The Tracepoint Engine (TE)
This section describes the details of the Tracepoint En-

gine. As shown in Figure 3, it consists of three modules:
the configuration controller for setting up the environment,
the tracepoint controller for instrumenting tracepoints, and
the action handler for triggered actions.

The first module, the configuration controller, sets up the
operating environment. In this part, it opens files for trace
output in the LiteOS file system (LiteFS). LiteFS is a hier-
archial file system that provides Unix-like operations on the
external flash available on the motes. For MicaZ, the size
of the flash is 512K bytes. To reduce writing operations,
TE also keeps an internal buffer to temporarily store traces.
The remaining two modules are more complicated, and we
describe them separately.

5.2.1 Tracepoint Instrumentation
Tracepoint instrumentation is based on dynamic instru-

mentation, a technique that modifies application binary code
at runtime. On MicaZ, DT relies on the binary rewriting
capability of the Atmega128 processor to modify applica-
tion binaries. It inserts branch instructions into specified
locations of original user application binaries as tracepoint
portals. The displaced user application instructions are mir-
rored in the action handlers. Note that, the displaced in-
structions cannot contain destinations of other branch in-
structions in the original application. Otherwise, the correct
execution of the original application can no longer be en-
forced (another branch instruction could jump to the middle
of the tracepoint portal, causing unexpected errors). This
limitation is typically not a problem, because the proba-
bility that one instruction being the destination of another
branch instruction is measured to be very low. In our bench-
mark application used later, for instance, the probability is
0.76% (38 instructions are branch destinations in around
5000 instructions). Such destinations of branch instructions
are identified and avoided by the TraceSQL compiler.

We next describe the implementation of different types of
tracepoints.

Function and Statement Tracepoints
Figure 4 shows an example of inserting a tracepoint into a

sequence of instructions. For clarity, we organize the whole
instrumented code into 14 parts. They are described in de-
tail as follows.

Part 1 is the original binary code (in assembly form),
taken from the greenToggle() function. After binary in-
strumentation, these instructions are replaced with a trace-
point portal, shown in part 2. These new instructions first
save registers in part 2, then branch to the system call gate
in part 3. Parts 3 through 5 check if a tracepoint handler
is present, and lead to its handler. Part 6 through part 13
are the core parts of the tracepoint handler, where mixed C
and assembly code is used to explain its logic.

At the beginning of part 6, observe that the TE has exe-
cuted several branch instructions in parts 2, 3, and 5. Each
branch instruction pushes a return address onto the stack.
Also, the contents of several registers have been modified
after they are saved onto the stack. To enforce the correct
semantics of the original program, both the stack contents
and the register values have to be restored. Parts 6 and part
7 perform these actions, modifying the stack pointer, restor-
ing registers, and saving the program counter to a variable
regsource.



1   ldi R30, 0x04
2   ldi R31, 0xEA
3   icall
4   push R20     
5   push R21     
6   ldi R30, 0x0C
7   ldi R31, 0xEA

1   push R30
2   push R31
3   ldi R30, 0xF4
4   ldi R31, 0xEA
5   icall
6 pop R31
7 pop R30

1   call 0x13354
2   nop
3   ret

1   push R24
2   push R25
3   push R28
4   push R29

5   lds R24, 0x0A0E
6   lds  R25, 0x0A0F 
7   sbiw R24, 0x00
8   breq .+18     
9   lds R24, 0x0A10 
10 cpi R24, 0x01
11 brne .+10     
12 lds R30, 0x0A0E
13 lds R31, 0x0A0F
14 icall

1   uint16_t SPvalue ;                      
2   uint8_t *sp;
3   uint16_t regsource;

4   asm volatile (                          
"in %A0, 0x3d”"\n\t"                   
"in %B0, 0x3e" "\n\t"                   
: "=r" (SPvalue):);                                                                      

5   SPvalue = SPvalue+9;                    
6   sp = (uint8_t*)SPvalue;                 
7   regsource

= (uint16_t)*(uint16_t*)sp;
8   SPvalue = SPvalue -7;                          
9   asm volatile (                         

"out 0x3d, %A0" "\n\t"                  
"out 0x3e, %B0" "\n\t"                  
:: "r" (Spvalue)); 

10 pop R29
11 pop R28
12 pop R25
13 pop R24
14 pop R31
15 pop R30     
16 pop R31     
17 pop R30
18 pop R31
19 pop R30
20 ldi R30, 0x04
21 ld i R31, 0xEA
22 icall
23 push R20     
24 push R21     
25 ld i R30, 0x0C
26 ld i R31, 0xEA

27 push R31
28 push R30
29 push R25
30 push R24

31 SWAP_STACK_PTR();
32  PUSH_GPR();                             
33  PUSH_ALL_REG(); 

35  POP_ALL_REG();                       
36  POP_GPR();  
37  SWAP_STACK_PTR() 
38  pop R24
39  pop R25
40  pop R30
41  pop R31

42  PUSH R30
43  PUSH R31
44  asm volatile (                          

“mov R31%A0” "\n\t"                   
“mov R30 %B0" "\n\t"                   
: : “r" (regsource));                           

45   asm volatile (“ijmp”::);

Orig inal Binary Code

After binary 
instrumentation

①

③
②

Instrumented Binary

System Call Interface

④

⑤

⑥

⑦

Tracepoint handler ⑧

⑨

User app instruction mirroring

34  Handler
Implementation ⑩

⑪

⑭

⑫

⑬

Interchangeable

Figure 4: Implementation for Dynamic Tracepoint Instrumentation

This variable regsource is useful in two ways. First, reg-
source differentiates between tracepoint origins. This is needed
because TE uses one single handler for all function and state-
ment tracepoints. To map each origin to the right action,
TE relies on the value of regsource, which has been set as
the program counter before the first icall instruction in part
2. Second, regsource allows the instruction flow to return to
the original after the action handler, as shown in parts 12
and 13.

At the end of part 7, the modified registers and the stack
pointer have been restored. The mirrored instructions can
therefore be safely executed in part 8.

Parts 9, 10, and 11 perform the handler actions. Here TE
optionally uses a macro SWAP_STACK_PTR() to switch the
stack pointer back and forth between the kernel stack and
the thread stack. If the original tracepoint is located in a
thread, the macro is activated, as is illustrated here. The
reason is that the thread stack of user applications in LiteOS
is typically compact, and directly executing the action han-
dler may cause stack overflows, especially if complicated ac-
tions are involved. Switching to the kernel stack helps solve
this problem.

Note that, even with SWAP_STACK_PTR(), TE still pushes
more variables onto the stack in part 2 through 6 than the
unmodified application. In general, TE requires 12 bytes of
extra data space to work well. Therefore, if a thread has
consumed almost all of its stack space, stack overflow may
occur. In our experiments, however, we did not observe this
problem because by default, LiteOS allocates more stack
than minimum for user applications.

One note on TE is that the mirrored instructions in part 8
can swap with parts 9, 10, and 11, so that the action can also
be performed before the mirrored instructions. This feature
is useful for implementing the BEFORE_PROLOGUE keyword,
where the actions have to be executed before the displaced
prologue section.

System Call Gate and Virtual Tracepoints
DT allows tracepoints to be positioned in system call gates

of LiteOS. The system call gates are a table of function
pointers through which applications access kernel function-
alities. Each system call gate strictly uses 4 bytes. Because
of this limitation, the approach described in Figure 4 cannot
be applied, as it requires 7 instructions to be modified at the
tracepoint portal.

We follow a different approach for system call instrumen-
tation, based on the observation that the total number of
system calls in LiteOS is fewer than 80, and their implemen-
tation is known. Here, we implemented an instrumented set
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Figure 5: Implementation of Push and Pop Func-
tions

of system call gates that resides entirely in the TE. We then
rewrite the original system call gates by only modifying the
call instructions to point to the instrumented version, so
that the system calls are diverted to tracepoint handlers.

A different implementation is needed for virtual trace-
points. Such tracepoints are triggered by timers instead of
user applications. Instead of binary instrumentation, for ev-
ery virtual tracepoint, we set up a callback function that
invokes action handlers when the timer fires. The timer can
be either one-time or periodic depending on the TraceSQL
program.

5.2.2 Action Handlers
We next describe two techniques to implement more com-

plicated actions: stack shuffling and loop compression.
Stack Shuffling Techniques
As illustrated in Table 1, TraceSQL provides two func-

tions: push_integer() and pop_integer(). Operating di-
rectly on the stack, they are unusual in that they explicitly
modify the stack content, hence breaking the transparency
of the tracepoint handler. So what is the whole point of
their existence?



We find two occasions when pushing and popping opera-
tions are useful: before prologues and after epilogues. For
example, the StackGuard debugging tool checks the return
address of functions at these two locations. TraceSQL pro-
vides two GCC-dependent keywords, BEFORE_PROLOGUE and
AFTER_EPILOGUE for these needs.

However, supporting the push and pop functions is not
trivial. After the stack content is changed, all registers must
be restored to their original values. Otherwise, the applica-
tion logic will be broken. To this end, we developed a tech-
nique called stack shuffling. The details of stack shuffling
are shown in Figure 5.

The implementation of the push_integer() function con-
sists of four steps. First, it pushes registers that are used
later onto the stack. Notice it pushes R31 and R30 twice,
so that there is extra stack space reserved for the integer
VAR (assumed to be two bytes). Then, the parameter VAR is
saved to this reserved space with the help of a pointer. Fi-
nally, the registers are restored except for the space occupied
by VAR, then the push_integer() operation finishes.

The implementation of the pop_integer() function is sim-
ilar, except that it reads the VAR variable rather than saves
it. After VAR is read, the stack is shuffled by moving stored
registers by two bytes while preserving their relative order.
Finally, registers are restored and the pop_integer() func-
tion finishes.

Loop Compression
Loop compression optimizes the RECORD operation. In one

extreme case, if an event A is logged for 100 times, it should
be written as “A for 100 times” instead of writing 100 As
repeatedly. The loop compression technique extends this
observation by compressing the data stored in the buffer
periodically before they are written into an external file.
This technique works best for large internal buffers, such as
256 bytes or 512 bytes.

5.2.3 Implementation Notes
In our implementation of tracepoints, we made several

tradeoffs. To ensure that the implementation of TE is generic
instead of compiler-dependent, we focus on global variable
operations in tracepoint actions. The addresses of these
variables are obtained by parsing the generated assembly
code. For local variables, on the other hand, it is still pos-
sible to obtain their values through a pair of pop and push

stack operations. However, TE does not automate this pro-
cess because in that case, extensive and compiler-dependent
analysis on the contents of the stack is required. Such an
analysis cannot be ported across compilers easily, in contrast
to the way TE handles global variables. For the same reason,
TE does not address complexities introduced by compiler-
specific optimizations. For instance, it is possible to read
out-of-date values for variables that have been temporarily
cached by registers. This problem, however, can usually be
prevented by carefully selecting tracepoint locations (e.g., at
the beginning of functions).

6. EVALUATION OF DT OVERHEAD
In this section, we evaluate the overhead of DT. We focus

on three metrics: slowdown in CPU cycles, memory over-
head, and flash lifetime. The details of our experiment set-
tings are shown in Table 3, where we carry out all experi-
ments on the LiteOS operating system with MicaZ nodes.

Experiment Platform

Mote hardware
MicaZ / MIB520
programming board

Compiler
AVR-GCC 4.1.1
WinAVR 20070122

Mote operating system LiteOS 0.3.2
PC Platform Windows XP / Cygwin

Experiment Settings 1
Number of Tracepoints 1 - 15

Actions triggered
when tracepoints
are reached

None
Read a memory address
Write a memory address
Logging a variable into a file

Size of Buffer 256

Experiment Settings 2
Number of Tracepoints Flexible
Addresses of Tracepoints Kernel

Actions triggered
None
Logging system call traces
into a file

Buffer Size 128, 256, 512 bytes

Table 3: Tracepoint Evaluation Settings

6.1 CPU Slowdown
In DT, new binary code is dynamically weaved into ap-

plication code at runtime. By analyzing the generated as-
sembly code, we identify that each blank tracepoint (i.e.,
one without any triggered actions) adds 282 CPU cycles.
On MicaZ, this consumes 36 microseconds. The overhead
of adding multiple tracepoints is usually tolerable. In one
of our later examples where 10 tracepoints are added, each
triggered 20 times per second, theoretically, an aggregate
overhead of around 0.7% of CPU time is introduced, with-
out considering the effect of their associated actions.

To profile the slowdown impact of tracepoints, we use a
simple timer-driven radio message generator as the bench-
mark application in this evaluation. This application sends
out radio messages at a frequency of 20 messages per second.
The complete experimental settings are shown in Table 3.

To measure the slowdown effect, we designed a CPU idle-
ness parameter (CIP) metric as follows. We modified the
LiteOS kernel by adding a loop counter in its main (idle)
loop that runs when no tasks or threads are scheduled. When
the loop is executed, the counter is increased monotonically
while the CPU is idle. Its value is periodically collected
through the USART port. The difference in counter readings
between two collection instants (i.e., the difference within a
period) reflects the amount of idle time of the CPU within
one period. The percentage of reduction for this value can
be used to estimate CPU overhead.

In the first experiment, we added 1 to 15 tracepoints to
the message generator application. We set the size of the file
output buffer to 256 bytes. We used the CIP value when no
applications are running as the baseline. We then started
the application under evaluation, instrumented it with tra-
cepoints, and measured the new CIP value. We plotted the
percent of decrease compared to the baseline in Figure 6.

Observe that the message generator consumes around 10%
of CIP when no tracepoint is inserted (denoted as 0 on the
X axis). As more tracepoints are added, CIP decreases. The
average progressive decrease of the CIP counter with each
blank tracepoint is 0.0852%, slightly higher than the theo-
retical 0.072% value based on our earlier analysis. This is
expected, because (due to other computations such as the
kernel timer) the baseline value of the CIP counter repre-
sents less than a 100% idle CPU.
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Figure 6: Tracepoints Slowdown by Memory Oper-
ations

To evaluate the slowdown of tracepoints when actions are
performed, we measured three cases: when the tracepoint
handler reads a 16-bit memory variable, when it writes a
16-bit memory variable, and when it logs a 16-bit variable
into an external file. The performance in the former two
scenarios is similar to that of blank tracepoints, which is
reflected by Figure 6. The performance in the last case is
significantly different, and is shown separately in Figure 7.
The reason is that file operations consume many more CPU
cycles compared to reading/writing memory variables. For
file operations, because of the internal buffer, the measured
CIP fluctuates. Hence we plot 95% confidence intervals in
Figure 7. Observe that in the extreme case, when each of the
fifteen tracepoints writes one variable to the file (encoded to
6 bytes), the number of idle CPU cycles drops by almost
70%. For practical applications, however, we rarely log so
many variables at once, hence the performance impact is
smaller.

In the second experiment, we evaluated the impact of ker-
nel tracepoints. We inserted tracepoints to all system calls,
as well as to the radio-sending function in the kernel. The
same message generator application is used as the bench-
mark. As tracepoints are triggered, TE logs either the sys-
tem call, or the radio sending function. We chose different
sizes of file buffers, including 128 bytes, 256 bytes, and 512
bytes. Figure 8 shows the impact of tracepoints with 95%
confidence intervals. Observe that, as the buffer size in-
creases, the impact on CPU decreases because file I/O oper-
ations are better aggregated. At the end of the experiment,
we retrieved the files generated and obtained a complete
trace of system calls and radio operations. Table 4 shows
one loop in the translated traces, revealing the interactions
between the kernel and the user application. Such infor-
mation provides us with rich details on the behavior of the
software stack for debugging purposes. For example, one
step in our analysis of the third bug in Section 8.3 is based
on such captured details.

6.2 Memory Overhead
In this section, we evaluate the memory overhead of trace-

points. This includes both program flash consumption and
RAM consumption. We measured both metrics with the
benchmark application. In this experiment, we turned on
the -O3 level of optimization, and enabled full program op-
timization in the GCC compiler. Regardless of how many
tracepoints are inserted, the RAM overhead remains con-
stant, because we only use one tracepoint handler for each
TE. The RAM usage for blank tracepoints is measured to
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Figure 7: Tracepoints Slowdown by File Operations
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be 42 bytes, and for file logging tracepoints 332 bytes, both
of which under 10% of the available RAM of MicaZ. There-
fore, we consider this overhead to be usually tolerable. For
flash usage, we plot our measurement results in Figure 9.
As illustrated in this figure, the overhead of compiled code
size increases with the number of tracepoints inserted, but is
consistently less than 4K bytes, or 3% of the flash available
on MicaZ nodes. Therefore, we conclude that the overhead
introduced by tracepoints is generally acceptable.

6.3 Flash Lifetime
There are two types of flash lifetime. The first is related

to the serial flash used as the file system. Each MicaZ node
has 512K bytes of flash memory. Hence, if too much data
are written, the flash will be exhausted. In the previous
file logging example, each variable is encoded into 6 bytes.
Therefore, one tracepoint generates 0.12K bytes of data per
second at the chosen frequency. If 15 tracepoints are added,
the serial flash will be exhausted in about 280 seconds. In
reality, developers should either limit the amount of logging
activities, or attach a larger flash to the node [18].

Another flash lifetime parameter is related to the flash
memory. On MicaZ, the reprogrammable flash has a lifetime
of 10,000 write/erase cycles. Therefore, the total number of
debugging rounds for the same application is limited. This
is usually not a problem, and in extreme cases, the developer
may change memory settings of the compiled programs to
balance program flash operations.

7. TRACESQL EXPRESSIVENESS
To highlight the expressiveness of DT and TraceSQL, we

show that they can provide the core functionality of sev-
eral previous debugging techniques. The details of these



Partial output from the trace interpreter (one complete loop):

The kernel or app thread has event:\
RADIO SEND OPERATION KERNEL

Thread 2 has event: RESTORE RADIO STATE

Thread 2 has event: MUTEX UNLOCK FUNCTION

Thread 2 has event: GET CURRENT THREAD ADDRESS

Thread 2 has event: YIELD FUNCTION

Thread 2 has event: GET RADIO MUTEX ADDRESS

Thread 2 has event: GET CURRENT THREAD ADDRESS

Thread 2 has event: GET CURRENT RADIO INFO ADDR

Thread 2 has event: GET CURRENT THREAD ADDRESS

Thread 2 has event: GET CURRENT THREAD INDEX

Thread 2 has event: SOCKET RADIO SEND FUNCTION

Thread 2 has event: GET CURRENT THREAD ADDRESS

Thread 2 has event: YIELD FUNCTION

The kernel or app thread has event:\
RADIO SEND OPERATION KERNEL

Table 4: Collected Running Traces
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Figure 9: Memory Overhead

techniques are introduced in Section 2. However, these tech-
niques are by no means an exhaustive coverage of the poten-
tial of DT/TraceSQL. For EnviroLog, NodeMD, and Stack-
Guard, we implement their core functionality while leav-
ing out less relevant details. For Sympathy, because it is
designed in the context of a larger project (ESS), we only
briefly outline how it can be expressed.

7.1 EnviroLog
We implemented the core functionality of EnviroLog with

TraceSQL. Specifically, we selected the OscilloscopeRF ap-
plication in the EnviroLog 1.0 distribution as the benchmark
application (EnviroLog 1.0 contains two examples, the other
one is the relatively simple application Blink). We imple-
mented and instrumented this application in LiteOS, and
our main program is named OscilloscopeRF.c. This file
invokes the read_sensor() function to get readings. It is
located on line 61, shown as follows.

reading = read sensor();

In EnviroLog, the return value of the function should be
captured so that it can be replayed later. We use a statement
tracepoint on the following line to implement the record and
replay service of EnviroLog as follows.

//This is the recording script
@output = “logging.data”
TRACE 62 FROM OscilloscopeRF.c EXECUTE
{

RECORD reading FROM OscilloscopeRF.c;
}

//This is the replay script
@input = ”logging.data”
INTEGER @loggedreading;
TRACE 62 FROM OscilloscopeRF.c EXECUTE
{

LOAD INTEGER FROM @input
INTO @loggedreading;
SET reading FROM OscilloscopeRF.c
AS @loggedreading;

}

EnviroLog Implementation on NesC/TinyOS
Metrics Results (bytes) Comments
Flash without EnviroLog 11842 For Mica2
RAM without EnviroLog 510 For Mica2
Flash with EnviroLog 27002 For Mica2
RAM with EnviroLog 1319 For Mica2
Increase in Code Size 15160 (flash)

809 (RAM)
Less platform-
dependent

LOC (Lines of Code) 1 Instrumenting
the ADC func-
tion

TraceSQL Implementation on LiteOS
Metrics Results (bytes) Comments
Flash of OscilloscopeRF 720 For MicaZ
RAM of OscilloscopeRF 35 For MicaZ
Flash of Logging Service 2014 For MicaZ
RAM of Logging Service 218 For MicaZ
Flash of Replay Service 1992 For MicaZ
RAM of Replay Service 218 For MicaZ
Increase in Code Size 4006 (flash)

436 (RAM)
Less platform-
dependent

LOC 14 Instrumenting
the ADC func-
tion

Table 5: EnviroLog Implementation Comparison

Table 5 shows the comparison results of the TraceSQL
version of EnviroLog and the original version in terms of
compiled code size. Note that, because of the programming
paradigm differences between TinyOS (for EnviroLog) and
LiteOS (for TraceSQL), the compiled applications have very
different sizes. TinyOS compiles applications together with
its kernel into a monolithic binary image, whereas LiteOS
compiles applications independently of its kernel. Another
difference is that EnviroLog supports Mica2. In contrast,
TraceSQL currently only supports MicaZ.

We chose two less platform-dependent metrics to make
meaningful comparisons, the lines of code written by the
user, and the increase in the number of code bytes because
of EnviroLog. Arguably, these two metrics should be less
platform-dependent (because EnviroLog does not directly
implement drivers) and less operating-system-dependent (be-
cause we are only considering the increase in bytes).

For this particular example, the user of original EnviroLog
needs to write one line of code, whereas in TraceSQL, a total
of 14 lines of code is needed. Note that the TraceSQL version
requires less memory in part because it leverages the file sys-
tem abstraction provided by LiteOS, while the original En-
viroLog implementation has to address EEPROM and serial
flash operations at a lower level. Another reason is that the
TraceSQL version does not need to implement interactive
actions, as they are already provided through the LiteOS



Original Implementation of NodeMD (published in Table 2 of [14])
Metrics Results Comments
Flash 3556 (bytes) Implemented on Mantis
RAM 302 (bytes) Implemented on Mantis
LOC Not avail-

able
Not available

TraceSQL Implementation of NodeMD
Metrics Results Comments
Flash 1922 (bytes) Implemented on LiteOS
RAM 226 (bytes) Implemented on LiteOS
LOC 22 Incomplete implementation in that no

remote retrieval and logging is imple-
mented

Table 6: NodeMD Implementation Comparison

shell. The original EnviroLog implementation, in contrast,
provides additional commands such as START_RECORD and
START_REPLAY, thus requiring a larger memory footprint.

7.2 NodeMD
NodeMD detects stack overflows and potential livelocks

or deadlocks. The stack overflow problem occurs when the
stack collides with the allocated variables (i.e., the .bss

section). While stack estimation tools exist, they are not
always accurate, and hence runtime stack overflow protec-
tion is still needed. When a procedure is called, the stack
pointer is modified because of three components: the call
overhead such as the return address, the passed parameters,
and the local data for the function being called. Because
the GCC compiler first modifies the stack pointer before
using stack memory, NodeMD detects stack overflows by in-
serting a check code at the start of a function, reading the
pre-incremented SP pointer, and comparing this pointer to
the stack top (i.e., the end of the .bss section). If the SP
pointer collides with the latter, a stack overflow is detected.

In our implementation of NodeMD with DT/TraceSQL,
we focus on its ability to detect stack overflows and live-
lock/deadlocks. For its remaining features, its remote re-
trieval module can be provided by the data copy command
in the LiteOS shell. Its application specific fault detection
module is based on the ASSERT macro, and is supported
by the LiteOS programming environment. Therefore, we do
not address these two modules in our expressiveness study.

DT follows a runtime modification approach to implement
the stack overflow detection of NodeMD, where it inserts a
probe immediately before the first line of a function, but af-
ter the prologue generated by GCC, so that the stack pointer
has been pre-incremented. When the probe is triggered, TE
checks whether the SP pointer has reached the stack top.
For example, for a function foo() from the file app.c, we
develop the following code.

INTEGER @currentsp;
//The stack top for a thread is a known constant
INTEGER @stacktop = ...;
TRACE foo() AFTER PROLOGUE
FROM app.c EXECUTE
{

@currentsp = getsp();
IF @currentsp <= @stacktop

BREAK;
}

The second problem that NodeMD addresses, livelocks
and deadlocks, is solved by adding source code checkpoints
that registers with the kernel regularly if the thread is alive.
NodeMD argues that for most threads, a timeout value can
be estimated. The thread is expected to reach its check-
point during each timeout period. Hence, if the thread fails

to reach the checkpoint for much longer than timeout, the
kernel assumes that this thread has reached a deadlock or
livelock state.

In TraceSQL, the NodeMD approach to check deadlocks
or livelocks can be appropriately implemented using virtual
tracepoints. In the following example, TE adds a checkpoint
to the foo() function in the file app.c (which is already
running) as shown below. Note that, the BREAK keyword
can optionally take the name of the thread, assumed to be
app, as its parameter.

INTEGER @checkpointreached;
//The timeout is known for this thread.
LONG @timeout = ...;
TRACE foo() FROM app.c EXECUTE
{

@checkpointreached = 1;
}
TRACE PERIOD @timeout*3 FOR REPEAT
{

IF (@checkpointreached == 1)
@checkpointreached = 0;

ELSE
BREAK app;

}

Similar to EnviroLog, we use the lines of code written by
the user and the memory footprint as metrics to evaluate
our implementation of NodeMD with TraceSQL. Because
NodeMD source code is currently not publicly available, we
refer to the data reported in its original paper. We also use
its examples, where two applications are measured. One is
blink_led, which uses a single thread to periodically toggle
an LED, and the other is FireWxNet, a multi-tiered moni-
toring application. We only implemented the first one, and
instrumented the blink_led application with the TraceSQL
version of NodeMD. As illustrated by the comparison re-
sults in Table 6, the overhead introduced by TraceSQL is
measured to be lower than that of NodeMD. This is prob-
ably due to that we only implemented the core features of
NodeMD, while leaving out several functionalities that are
already implemented in LiteOS.

7.3 StackGuard
We introduced the mechanism of StackGuard in Section 2.

The implementation of StackGuard in TraceSQL takes 15
lines of code, as shown in Table 2. The evaluation results
of StackGuard are shown in Table 7, where the memory
footprint with 1, 5, 10, 20, and 50 functions instrumented
is presented. Because the original version of StackGuard
does not support the AVR-GCC compiler used for MicaZ,
no comparison between the TraceSQL version of StackGuard
and the original version is made.

We also designed one improvement over StackGuard with-
out using the canary word. Observe that any return address
cannot be zero. Hence, our improved method also checks
the return address in each probe for such invalid numbers
that will crash the node. This approach turns out to be
very useful in one of our case studies to locate a bug in the
LiteOS kernel, as shown in Section 8.1.

7.4 Sympathy
Because Sympathy is designed for ESS, we have not im-

plemented its functionality. Instead, we only present a brief
overview on how the metric collection subsystem of Sym-
pathy could be expressed with TraceSQL. Table 8 shows
the types of metrics that are collected by Sympathy. To



TraceSQL Implementation of StackGuard
Number of Functions Instrumented Flash/RAM Usage
1 1178/64
5 2054/64
10 2958/64
20 4952/64
50 10952/64

Table 7: Implementation of StackGuard

Types Metric Details

Connectivity Metrics
Routing Table
Neighbor List

Flow Metrics

Packets Transmitted
Packets Received
Sink Packets Transmitted
Sink Packets Received
Sink Last Timestamp

Node Metrics
Node Uptime
Bad Packets Received
Good Packets Received

Table 8: Sympathy Metrics

demonstrate how they can be implemented in TraceSQL,
we summarize their potential implementation in Table 9.

8. CASE STUDIES
One of the most convincing ways to evaluate the effective-

ness of a debugging system is to use it to find real bugs. In
this section, we present three case studies. In the first two
cases, we use the DT to retroactively test existing applica-
tions with documented bugs. In the third case, we describe
our experiences using DT to debug a routing protocol that
we developed for the communication stack of LiteOS.

The motivating question we want to answer in the first two
case studies is, could DT have detected any documented old
bugs if it were available? We obtained the full documented
bug list of the LiteOS operating system from October 2007
to March 2008, when it evolved from version 0.2 to 0.3, and
used them to test DT software. Note that, all these bugs had
been fixed by the time we tested them with DT. Therefore,
we knew the causes of the bug in advance when we did the
following tests. This, however, does not prevent us from
gaining insight into the strength and limitations of the DT
system as a debugging tool.

We focus on a subset of difficult bugs that are related
to memory. They share the commonality that while the
symptom is obvious, it is unclear what variables to watch
or where breakpoints should be set. It would be great if the
DT system could identify the source of these bugs with less
time and effort.

Among the nine difficult memory bugs documented (dif-
ficulty measured by the time to fix them), we identified
two bugs that could have been solved using DT/TraceSQL.
This relatively low coverage ratio is primarily caused by the
diversity of the bugs, ranging from erroneous pointer de-
references to stack overflows, most of which simply fall out-
side the scope of DT. For those bugs not caught by DT,
they can be found by more conventional methods such as
the built-in interactive debugger of LiteOS. For the two bugs
that are caught, each took more than one day to solve origi-
nally without DT. In contrast, it took less than two hours to
develop, debug, and identify the root cause using TraceSQL
scripts. This improvement demonstrates the benefits and
effectiveness of the DT system.

Metric TraceSQL Implementation

Routing Table Read application specific table data structure
at runtime with READ.

Neighbor List Read the application specific neighbor list at
runtime with READ.

Packets Transmit-
ted

Declare a counter for the number of trans-
mitted packets. Add a function tracepoint to
the packet send function, and increases the
counter every time this tracepoint is reached.

Packets Received Similar to the previous, except that the func-
tion tracepoint should be added to the packet
receive function.

Sink Packets
Transmitted (the
number of sink
packets received
by the node)

Declare a counter for the number of transmit-
ted sink packets. Add a function tracepoint
to the packet receive function, and check if
the packet is a sink packet. If it is, increase
the counter.

Sink Packets Re-
ceived

Implemented separately on the sink node, not
resource-constrained.

Sink Last Times-
tamp

Implemented separately on the sink node, not
resource-constrained.

Node Uptime Declare a counter as the uptime. Add a
periodic virtual tracepoint, and increase the
counter every time the virtual tracepoint is
reached. Use the counter as indicator for node
uptime. If the node reboots, the counter is re-
set.

Bad Packets Re-
ceived

Declare a counter for this metric. Add a
statement tracepoint to the line of code where
a corrupted packet is received and discarded
(e.g., CRC failed). Every time this tracepoint
is reached, increase this counter.

Good Packets Re-
ceived

Similar to the previous one. Add the trace-
point to the statement where the packet passes
the CRC check.

Table 9: Expressing Sympathy Metrics with
TraceSQL

8.1 Bug I: Node reboot after changing the com-
piler optimization level

The first bug has the following symptom. When the LiteOS
kernel is compiled with -Os (optimization for size) instead
of -O0 (no optimization), the node repeatedly reboots itself.
Since the kernel invokes many functions in its startup stage,
it took a considerable effort to pinpoint the exact buggy
function.

To use DT to analyze this bug, our guess is that reboots
are usually caused by stack corruptions. Using StackGuard
is therefore promising. However, the original version of
StackGuard fails to catch this bug. We then tried our im-
provement that only checks the return address. This time,
the bug is caught. The function lite_switch_to_user_thread,
shown in the following table, is identified as trying to return
to a zero address.

1 void attribute (( noinline ))\
lite switch to user thread()

2 {
3 #ifdef PLATFORM AVR
4 PUSH REG STATUS();
5 PUSH GPR();
6 SWAP STACK PTR( old stack ptr,\

current thread->sp );
7 POP GPR();
8 POP REG STATUS();
9 #endif
10 enable interrupt();
11 return ;
12 }

Technically, this function performs context switches. In
this sense, it does not return to its caller. When -O0 is
used, the assembly code generated for this function first



pushes registers R28 and R29 into the stack. When -Os is
used, however, the compiler detects that such two pushes are
not necessary, and removes them to generate compact code.
However, as shown in lines 7, 8, and 9 of the program, the
number of registers to be popped when the context switch
occurs is pre-calculated. When two pop instructions are re-
moved, when the context switch occurs for the first time,
the stack of the user thread is of the wrong size. Hence,
the return instruction at line 11 leads to address 0x00, and
reboots the node.

8.2 Bug II: User applications put into MEM-
ORY_CORRUPTED state once executed

The second bug appeared when during one LiteOS kernel
update. The symptom was that after this update, any ap-
plication, once loaded by the kernel, was quickly put into
MEMORY_CORRUPTED state. Further investigation shows that
the kernel puts threads into this state only if the thread
appears to be occupying an incorrect chunk of RAM or pro-
gram flash. This checking procedure is based on reading
the thread control block. If the allocation has conflicts with
the kernel or other threads, the thread is immediately put
into error state. Consequently, the problem is, what caused
every thread to have incorrect control block values?

This bug is difficult to solve because the user application
appears to be doing nothing wrong. Analysis of the source
code does not lead to anything. The bug was later detected
with assembly-level analysis.

This bug could have been solved faster with the DT sys-
tem. In our experiments, we instrumented each function of
the user application with a tracepoint that checks whether
the thread control block in question has been illegally modi-
fied. We used a simple Blink application as the test case, and
the instrumented code still triggered the same bug. Hope-
fully, this approach allows us to localize the problem to the
function level so that the search scope is reduced signifi-
cantly. To accurately pinpoint the function, the tracepoints
were inserted after the epilogue section of each function.

With DT deployed, the bug was found immediately. It
turned out the control block of threads is modified by the fol-
lowing function, which is intended to put the current thread
into sleep mode.

1 void sleepThread(int milliseconds) {
2 thread **current thread;
3 current thread = getCurrentThread();
4 (*current thread) ->state = 4;
5 (*current thread) ->data.sleepstate.sleeptime\

= milliseconds;
6 yield();
7 }

Further investigations reveal that the unintended modi-
fication is caused by a mismatch between the thread con-
trol block declaration in the kernel and in user applications.
During the kernel update, the thread control block in the
kernel is updated with additional member variables. On the
application side, however, an old, inconsistent version of the
thread control block structure is used. When the statement
4 in the above function changes the structure member vari-
able state of the control block, it mistakenly modifies the
variables that represent the RAM allocation information,
because it calculates the offsets incorrectly. Therefore, the
thread is blocked and put into the MEMORY_CORRUPTED state
as soon as the kernel takes over.

8.3 Bug III: Unexpected corruption of com-
munication protocol neighbor table

The third bug is related to our development of routing
layer protocols in the LiteOS environment. Here, communi-
cation protocols are developed as stand-alone files that are
running as individual threads. In our development phase,
we attempted to evaluate the performance of multiple pro-
tocols by comparing their delivery ratio. However, when
nodes switch from the first protocol (geographic forwarding)
to the second (logical coordinate based routing, or LCR [5]),
the neighbor table of the second protocol sometimes gets
corrupted with incorrect values. This symptom is relatively
rare, making it hard to pinpoint the exact source of the bug.

We first used the interactive debugger of the LiteOS shell
to monitor the neighbor table contents. This approach was
not successful, because we can only detect the bug after the
neighbor table has been incorrectly modified. Once this hap-
pens, the LCR protocol fails to operate correctly. We later
decide to automate the bug capture process with TraceSQL.
Specifically, we check whether the neighbor table has been
corrupted at the end of several functions that we consider
might have introduced the bug, by reading neighbor table
contents and checking their validness in TraceSQL. To cor-
relate the incorrect modifications with their origins, we also
use TraceSQL to capture the traces of system calls, a tech-
nique we introduced earlier in Section 6.1.

By analyzing the traces we collected, we identified that the
bug symptom is closely correlated with the event of receiv-
ing neighbor beacon packets sent by a node running the ge-
ographic forwarding protocol. This is normal because nodes
do not switch from the first protocol to the second simulta-
neously. As such a packet arrives, the TE running on the
node that has switched to LCR immediately detects that its
own neighbor table is incorrectly modified. This insight al-
lows us to pinpoint the exact location of the bug, and solves
the problem.

Technically, this bug is introduced by the fact that dif-
ferent communication protocols in LiteOS are differentiated
through their port numbers, which are registered by each
protocol with the kernel. A callback function is associated
with the unique port number of each protocol to perform
tasks such as updating the neighbor table. In the failed ex-
periments, after the geographic forwarding protocol process
is terminated, its registered callback function is not properly
removed as the protocol neglects to de-register itself with the
kernel. This problem causes the bug. When a neighbor bea-
con arrives for the geographic forwarding port, the registered
callback function for this port is still invoked. As the two
protocols are compiled in such a way that only their RAM
allocation overlaps, the binary code of the previous protocol
still resides in the program flash, whose execution modifies
the RAM locations that are currently occupied by the new
protocol. Thus, the neighbor table contents of the latter are
incorrectly modified.

9. CONCLUSIONS AND FUTURE WORK
This paper proposes the declarative tracepoint debugging

system, the first comprehensive system that allows application-
independent and programmable tracepoints to be inserted
and removed at application runtime for wireless sensor net-
works. We demonstrate that its programming language,
TraceSQL, is expressive enough to implement the core func-



tionality of a variety of debugging techniques in the liter-
ature, such as EnviroLog, NodeMD, Sympathy, and Stack-
Guard. We also demonstrate the effectiveness of the DT
system through a series of case studies based on the LiteOS
operating system, and demonstrate that it is feasible to use
TraceSQL to detect these otherwise difficult bugs.

In future work, we plan to investigate implementing dis-
tributed tracepoints, and use the DT system to diagnose
new bugs. Such explorations will help us obtain better un-
derstanding on the strength and limitations of the DT de-
bugging system.
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