
DOI 10.1007/s00450-009-0057-9

S P E C I A L I S S U E P A P E R

CSRD (2009) 23: 99–113

Declarative workflows: Balancing between flexibility and support

W. M. P. van der Aalst · M. Pesic · H. Schonenberg

Received: 30 May 2008 / Accepted: 12 January 2009 / Published online: 10 March 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Today’s process-aware information systems tend
to either support business processes or provide flexibility.
Classical workflow management systems offer good process
support as long as the processes are structured and do not
require much flexibility. Information systems that allow for
flexibility have a tendency to lack process-related support. If
systems offer guidance, then they are typically also inclined
to “enforce guidelines” and are perceived as inflexible.
Moreover, implementing flexible systems is far from trivial.
This paper will show that using a more declarative approach
can assist in a better balance between flexibility and support.
This is demonstrated by presenting the Declare framework
that aims to take care of the full spectrum of flexibility while
at the same time supports the user using recommendations
and other process-mining-based diagnostics.

Keywords Workflow management · Business Process
Management · Flexibility · Process mining

1 Introduction

Process-aware information systems (PAISs) support opera-
tional business processes by combining advances in infor-
mation technology with recent insights from management
science [21]. Workflow Management Systems (WFMSs) are

W. M. P. van der Aalst (�) · M. Pesic · H. Schonenberg
Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
e-mail: w.m.p.v.d.aalst@tue.nl

M. Pesic
e-mail: m.pesic@tue.nl

H. Schonenberg
e-mail: m.h.schonenberg@tue.nl

typical examples of such systems. However, many other
types of information systems are also “process aware” even
if their processes are hard-coded or only used implicitly
(e.g., ERP systems). The shift from data orientation to pro-
cess orientation has increased the importance of PAISs.
Moreover, advanced analysis techniques ranging from simu-
lation and verification to process mining and activity moni-
toring allow for systems that support process improvement
in various ways.

When backing business processes with IT there is a diffi-
cult trade-off to be made. On the one hand, there is a desire
to control processes and to avoid incorrect or undesirable
executions of these processes. On the other hand, users
want flexible processes that do not constrain them in their
actions. This apparent paradox has limited the application
of WFMSs thus far, since, as indicated by many authors,
WFMSs are too restrictive and have problems when dealing
with change [5].

Many approaches have been proposed to resolve the
apparent paradox illustrated by Fig. 1. Some of them try
to avoid change, e.g. by generating implicit alternative
paths [8, 12], or by deferring the selection of the desired be-
havior [11]. Others allow for changing the model for a single
instance and/or changing a process model while migrat-
ing all instances [16, 22, 40, 48]. The migration of process
instances from one model to another introduces many inter-
esting problems [5, 16, 40, 48]. For example, the “dynamic
change bug” originally described in [22] shows that it may
be impossible to put the process instance into a suitable state
of the new model without skipping or repeatedly executing
activities.

The goal of the paper is to demonstrate that by using
a declarative approach it is possible to balance between
support or flexibility. Traditional approaches tend to use
procedural process models to explicitly (i.e., step-by-step)

1 3



100 van der Aalst et al.

Fig. 1 Today’s PAIS spectrum: Systems offer support or flexibility
but not both

specify the execution procedure. The declarative approach
presented in this paper is based on constraints, i.e., any-
thing is possible as long as it is not explicitly forbidden.
Constraint-based models, therefore, implicitly specify the
execution procedure by means of constraints: any execution
that does not violate constraints is possible. We have im-
plemented the Declare framework that provides for multi-
ple constraint-based languages. By using such a declarative
approach, different types of flexibility become possible as
shown in the remainder.

This paper is organized as follows. Section 2 presents
a small “taxonomy of flexibility” using three basic types
of flexibility. Moreover, the different types of flexibility
are positioned in the overall life-cycle of a process. Using
this as a basis, Sect. 3 discusses the support ultimately de-
sired from a PAIS. Section 4 introduces the Declare frame-
work and explains the concept of constraint-based work-
flow models. Section 5 relates Declare to the initial tax-
onomy presented in Sect. 2. Section 6 evaluates the support
provided by Declare and 7 discusses the limitations of the
current approach and implementation. Section 8 presents re-
lated work and Sect. 9 concludes the paper.

2 Flexibility

Flexibility has become one of the major research top-
ics in the area of workflow management [5]. Today’s
WFMSs and many other PAISs have problems provid-
ing for flexibility [33, 47]. As a result, these systems are
not used to support dynamically changing business pro-
cesses or the processes are supported in a rigid manner,
i.e., changes are not allowed or handled outside of the sys-
tem. These problems have been described and addressed

extensively in literature [8, 10, 22, 35, 38, 40, 42, 48]. Nev-
ertheless, many problems related to flexibility remain un-
solved.

In this section, we provide an overview of the differ-
ent types of flexibility using a taxonomy. This taxonomy is
based on [43]. See also [5, 9, 23, 26, 33, 39, 42, 47] for other
classifications of flexibility.

To start, let us identify the different phases of a process
(instance) in the context of a WFMS:

• Design time. At design time a generic process model is
created. This model cannot be enacted because it is not
connected to some organizational setting.

• Configuration time. At configuration time a generic
model is made more specific and connected to some or-
ganizational context which allows it to be instantiated.

• Instantiation time. At instantiation time a process in-
stance is created to handle a particular case (e.g., a cus-
tomer order or travel request).

• Run time. At run time the process instance is executed ac-
cording to the configured model. The different activities
are being enacted as specified.

• Auditing time. At auditing time the process instance has
completed, however, its audit trail is still available and
can be inspected and analyzed.

Flexibility plays a role in most of these phases. At design
time some modeling decisions can be postponed to run time.
At run time one can decide to deviate from the model and
at instantiation time one can change the process model used
for the particular instance. When it comes to flexibility, we
identify three flexibility mechanisms:

• Defer, i.e., decide to decide later. This flexibility mech-
anism deliberately leaves freedom to maneuver at a later
phase. Examples are the use of a declarative process
modeling language which allows for the “under speci-
fication” of processes and the use of late-binding, i.e.,
the process model has a “hole” that needs to be filled in
a later phase.

• Change, i.e., decide to change model. Most researchers
have addressed flexibility issues by allowing for change.
Decisions made at an earlier phase may be revisited.
For example, for premium customers the process may be
adapted in an ad-hoc manner. The change may refer to the
model for a single instance (ad-hoc change) or to all fu-
ture cases (evolutionary change). In both cases, a change
can create inconsistencies. For example, there may be
process instances that cannot be migrated properly when
conducting an evolutionary change [2, 16, 22, 38, 40, 48].

• Deviate, i.e., decide to ignore model. The third mechan-
ism is to simply deviate from the model, e.g., activities
are skipped even if the model does not allow for this to
happen. In many environments it is desirable that people

1 3



Declarative workflows 101

Fig. 2 Classification of the
different types of flexibility
based on the phase and
mechanism

are in control, i.e., the system can only suggest activities
but not force them to happen.

Figure 2 relates the two dimensions just mentioned.
Based on the different phases and the three mechanisms, dif-
ferent types of flexibility are classified. Note that we did not
mention any examples of flexibility at auditing time. After
the process instance completes, deferring, changing, or de-
viating is not possible anymore or would imply fraud. Also
note that the actual mechanism in different cells can be the
same, e.g., deferring a choice to run-time can be done at
design time, configuration time and instantiation time.

Figure 2 can be used to characterize the support for flexi-
bility of a concrete WFMS. Unfortunately, today’s systems
typically provide for only a few forms of flexibility. This is
limiting the applicability of PAISs since within one organi-
zations different forms of flexibility may be required.

In the remainder, we will show that it is relatively easy to
care for the various types of flexibility by using a declarative
approach. However, as indicated in the introduction there
may be a trade-off between flexibility and support. There-
fore, we first elaborate on the support desired.

3 Support

It is relatively easy to develop systems that that are ex-
tremely flexible while providing little process support.
A nice example is an e-mail program like Outlook. Outlook
is not forcing users to send e-mails at particular times or in
a particular order. So it can be seen as a very flexible system
as it allows users to execute activities (e.g., sending e-mails)
in any way they want. However, Outlook is providing hardly
any support and has no knowledge of the processes users

are involved in. In this paper, we only consider PAISs where
some process model is used during enactment. In fact, we
focus on WFMSs. These systems use an explicit process de-
sign as a starting point. This design is used at run time to
control and support users. In this section we elaborate on
support in the main two phases depicted in Fig. 2: design
time and run time.

3.1 Design-time support

At design time a model is constructed that will be used to
enact the workflow at run time. Besides providing a good
editor to design the workflow process, the WFMS should
also provide good analysis tools. Here we elaborate on two
types of analysis: verification and performance analysis.
Verification The goal is to design processes that are correct,
e.g., there should not be potential deadlocks, etc. Using veri-
fication techniques it is possible to discover problems before
the design is enacted. We distinguish between syntactical
verification and semantical verification. Syntactical verifi-
cation aims at the discovery of errors that do not require
domain analysis. For example, a model that can deadlock
is incorrect independent of the intent of the process. Sim-
ilarly, it is not acceptable to have processes that may not
terminate or where some activities can never be executed.
The notion of soundness [1] is a typical example of a cor-
rectness property checked through syntactical verification.
Semantical verification aims at the analysis of properties
that can only be formulated based on domain knowledge.
For example, when two drug types are incompatible, then
it should not be allowed to make a model in such a way
that an instance (i.e., a patient) can receive both drug types
during execution. Semantical constraints over processes ex-
press domain knowledge. Such knowledge is vital when

1 3



102 van der Aalst et al.

providing more flexibility, e.g., end users should not modify
process models such that essential semantical constraints get
violated. See [31] for examples of semantical correctness
notions relevant when adapting processes.
Performance analysis Process models should be correct,
but also the performance of a process is relevant. The flow
time may be too long or utilization levels and response
times can be unacceptable. To predict such situations and to
support process improvement, techniques for performance
analysis can be used at design time. For example, simula-
tion can be used to predict key performance indicators and
to evaluate redesigns. In this paper, we will not elaborate
on performance analysis. However, it is important to realize
that such functionality may be important when justifying the
use of a WFMS.

3.2 Run-time support

At run time, the model made at design time is enacted.
Assuming that the model is correct and has a good perform-
ance, we distinguish various types of run-time support.
Enforcing correct execution The WFMS should use the
model made at design time to enforce the correct execu-
tion, i.e., work-items should be offered based on the process
model and the system should prevent the execution of activ-
ities that are not enabled according to the model.
Recommending effective execution The focus of classical
WFMSs is on control, i.e., the system decides on the order-
ing of activities. When systems allow for more flexibility the
decision freedom increases. For example the defer flexibil-
ity type (“decide to decide later”) may move choices from
design time to run time. To support users when making deci-
sions, the system may provide recommendations. These rec-
ommendations may depend on explicit domain knowledge.
However, it is also possible to learn good strategies through
process mining and then use these for guidance [44]. For
example, it is possible to analyze choices made in the past
with respect to flow time and then suggest for new cases the
“fastest path” through the process. The user can still decide
to ignore the recommendation, but at least some decision
support is given.
Monitoring process instances The WFMSs should also sup-
port the monitoring of process instances. It should be pos-
sible to follow specific cases and to look at the workflow at
a more aggregate level. Users should be able to get insight
into the status of a single case, a group of cases, and the
whole workflow.
Learning from processes The more flexible the system is,
the more variations are possible when conducting work.
Therefore, it is interesting to use process mining [7] to dis-
cover the real processes taking place. Starting point for pro-
cess mining are the event logs, i.e., data on the actual execu-
tion of activities. The WFMS should support the recording

of these events in a systematic manner and the analysis tools
of the WFMS should be able to extract knowledge from
these logs. The more variability that is possible, the more
valuable such analysis is.
Enforcing correct changes Verification is not only rele-
vant at design time, but also at run time when changes
are applied. When using the flexibility type change (“de-
cide to change model”), errors can be introduced into the
model. Hence, again syntactical and semantical verification
need to be provided to ensure the correct operation of the
system.

Note that the above summary of required design-time and
run-time support is far from complete. We emphasized as-
pects related to flexibility, e.g., the monitoring of instances
becomes more relevant when users are not forced to work in
a particular way.

4 Declare

The goal of this paper is to show that a more declarative
approach to workflow management makes it easier to bal-
ance between flexibility and support. We will show that it is
easy to provide for a wide variety of flexibility types without
loosing key functionalities at design and/or run time.

To illustrate the advantages of declarative workflows
we present a concrete framework: Declare. Declare is
a constraint-based WFMS that provides for multiple declar-
ative languages (DecSerFlow [6], ConDec [34], etc.). In
fact, Declare is extendible and without any program-
ming it can be configured to support additional constraint-
based languages. Instead of explicitly defining the order-
ing of activities in models, Declare models rely on con-
straints to implicitly determine the possible ordering of
activities (any order that does not violate constraints is
allowed).

Declare can be downloaded from [19]. The archi-
tecture of the Declare system is shown in Fig. 3. The
core of the system consists of the following basic com-
ponents: Designer, Framework and Worklist. The De-
signer component is used for creating the so-called con-
straint templates, to design concrete process models, and
to verify these model. The Framework enacts instances
of process models. Moreover, it also conducts ad-hoc
changes of running instances. While the Framework cen-
trally manages the execution of all instances, each user uses
his/her Worklist component to access active instances. Also,
a user can execute activities in active instances in his/her
Worklist.

Unlike most of the approaches, which offer a predefined
set of constructs for defining dependencies between activi-
ties in process models (e.g., sequence, choice, parallelism,
loops, etc.), Declare uses a customizable set of arbitrary

1 3



Declarative workflows 103

Fig. 3 The architecture of
Declare

constructs called constraint templates. A declarative lan-
guage can be seen as a collection of constraint templates.
This explains why the Declare system provides for multiple
languages (e.g. DecSerFlow [6] and ConDec [34]). Tem-
plates are defined on the system level in the Designer com-
ponent. Each template has (1) a unique name, (2) a graphical
representation, and (3) a formal specification of its seman-
tics in terms of Linear Temporal Logic (LTL) [17, 24]. LTL
is a special type of logic which, in addition to classical
logical operators, uses temporal operators such as: always
(�), eventually (�), until (�), and next time (©) [17]. Fig-
ure 4 shows how the response template is defied. This tem-
plate is graphically represented with a single line between
two activities A and B, with a filled circle next to A and
a filled arrow next to B. The semantics of the template is
given as LTL formula �(A ⇒ �(B)), i.e., every time ac-
tivity A is executed, B has to be executed afterwards at
least once.

Fig. 4 Constraint template response

In this paper, we use ConDec [34] as the modeling lan-
guage. ConDec can be seen as a collection of constraint
templates. Using these templates one can make concrete
models. In this paper, we will refer to such a ConDec
model as “Declare model” or simply “model” because we
do not elaborate on the different languages supported by
Declare.

In the remainder, we use the process for handling a pa-
tient at the first aid department in a hospital with a sus-
picion of a fracture as a running example. Figure 5 shows
the model constructed using Declare. All activities are de-
picted as boxes, constraints are depicted by relations (lines)
between activities. The model contains mandatory con-
straints (solid lines) and optional constraints (dashed lines).
For example, the dashed arrow in Fig. 5 shows an appli-
cation of the response template defined in Fig. 6. We use
the following fonts to refer to activity (task) names and
constraint template names respectively: task name and con-
straint name.

Initially, a specialist performs activity examination (con-
straint init), if necessary, additional diagnosis is done by
X-ray. Depending on the absence, presence and type of frac-
ture, there are several types of treatment available, such as
sling, fixation, surgery and cast. Except for cast and fixation,
which are mutually exclusive (constraint not co-existence),

Fig. 5 Declarative model for handling patients using Declare

1 3



104 van der Aalst et al.

Fig. 6 Defining the optional response constraint

the treatments can be given in any combination and each pa-
tient receives at least one treatment (1 of 4 constraint). Ad-
ditional diagnosis (X-ray) is not necessary when the special-
ist diagnoses the absence of a fracture during examination.
Without this additional diagnosis, the patient can only re-
ceive the sling treatment. All other treatments require X-ray
to rule out the presence of a fracture, or to decide how to
treat the fracture (constraint precedence). Simple fractures
can be treated just by cast. For unstable fractures activity fix-
ation may be preferred over activity cast. For patients who
undergo surgery the specialist is advised to execute activ-
ity rehabilitation afterwards (optional constraint response).
Moreover, the specialist can provide medication, e.g., pain
killers or anticoagulants, at any stage of the treatment. Also
additional examinations and X-rays can be done during the
treatment.

Note that init, precedence, 1 of 4, and not co-existence
refer to constraint templates whose semantics are ex-
pressed in terms of LTL. Table 1 shows the relation be-
tween the constraints shown in Fig. 5, the constraint tem-
plates, and LTL. The process should start with exam-
ination. This constraint is specified using the init tem-
plate. Table 1 shows its definition: init(A) = A. Therefore,
init(examination) = examination. Note that in LTL-terms
this means that examination should be the current (i.e.,
first) action. The precedence constraint template is de-

Template formula Constraint LTL expression

init(A) = A init examination
precedence(A, B) = (!B) W A precedence (!(surgery ∨fixation ∨cast) W X-ray
response(A, B) = �(A ⇒ (�B)) response �(surgery ⇒ (�rehabilitation))

1o f 4(A, B, C, D) = �(A ∨ B ∨C ∨ D) 1 of 4 �(surgery ∨fixation∨cast ∨ sling)

not coexistence(A, B) =!((�A)∧ (�B)) not-coexistence !((�fixation)∧ (�cast))

Table 1 LTL expressions for
constraints in Fig. 5

fined by the LTL formula precedence(A, B) = (!B) W A,
i.e., B should not happen before A has happened. Note
that W is a temporal operator similar to � (until). The
“weak until” operator W in “(!B) W A” says that A does
not have to happen if B never happens. In Fig. 5, the
precedence constraint template is used with three B’s, i.e.,
(!(surgery∨ fixation∨ cast) W X-ray defines the semantics
of this particular constraint). This means that the treat-
ments surgery, fixation, and cast all require X-ray to rule
out the presence of a fracture. However, X-ray is not
needed if none of the treatment activities (surgery, fixa-
tion, and cast) occurs. Table 1 also defines the 1 of 4 and
not co-existence constraints. 1 of 4(A, B, C, D) = �(A ∨
B ∨ C ∨ D) means that eventually (�) at least one of
the four activities should occur. not coexistence(A, B) =
!((�A)∧ (�B)) means that it cannot (!) be the case that
eventually A occurs (�A) and that eventually B occurs
(�B).

The process defined by Fig. 5 allows for many execu-
tion paths. Unlike imperative languages, there is no need
to include these execution paths explicitly. For example,
the mutual exclusion constraint between cast and fixation
is difficult to express in imperative languages, especially
since the moment of choice between these two treatments
is not fixed. In an imperative language one would need
to decide on the moment of choice, specify the loop be-
havior, and determine the people making these choices. In
Declare one can simply use the not-coexistence constraint
with an intuitive graphical notation. In declarative languages
only the rules that constrain the behavior need to be speci-
fied. Therefore, there is no need to enumerate the execution
paths.

Constraint response between activities surgery and reha-
bilitation is optional as shown by the dashed arrow in Fig. 5.
Figure 6 shows the definition of the constraint that is using
the response template. Note that for optional constraints
a level and a warning message can be defined. In this par-
ticular case a warning of level “5” is generated when the
user is about to violate the constraint.

Figure 7 shows the Worklist component containing two
active instances (active instances are presented in the list
on the left-hand side of the screen). After executing activity
examination, the user is currently executing activity medica-
tion for the second process instance. Activities examination,
X-ray, and medication are enabled, i.e., can be executed. Ac-
tivities surgery, fixation, and cast are disabled, i.e., cannot

1 3



Declarative workflows 105

Fig. 7 Executing an instance

be executed (indicated by the gray color) due to the prece-
dence constraint (activity X-ray is not executed yet in this
instance).

The enabling and execution of activities is driven by
constraints: Everything that does not violate the manda-
tory constraints is enabled for execution and all manda-
tory constraints must be satisfied at the end of the in-
stance execution. For an active instance, each constraint
is in one of three states: satisfied, temporarily violated, or
violated. In the violated state there is no possible future
that will satisfy the constraint. In the satisfied state there
is no need to execute more activities to let the constraint
evaluate to true. For example, the init, precedence, and re-
sponse constraints are satisfied in the instance presented
in Fig. 7. In all other states, the constraint is not (yet) sat-
isfied, but it is still possible to satisfy the constraint by
executing the appropriate activities. These states are called
temporarily violated. For example, constraint 1 of 4 is tem-
porarily violated because none of the activities surgery,
fixation, cast and sling are executed, but executing one of
these four activities will bring this constraint into the state
satisfied.

Optional constraints may become violated. However, this
is not possible for mandatory constraints. In order to enforce
this, Declare constructs an automaton for each constraint [6,
34]. To achieve this we use an approach similar to [17, 24].
Based on the automaton it is possible to see whether the ex-
ecution of some activity will violate the constraint. Since
there is an automaton per constraint, it is easy to see which
constraints are violated by which actions. Moreover, De-
clare constructs an overall automaton that is based on the
conjunction of all LTL-based constraints. This way it is pos-
sible to make sure that mandatory constraints are either in
state satisfied or state temporarily violated. Optional con-
straints can also be in state violated. However, when an
optional constraint is about to be violated the system issues
a warning (cf. Fig. 6).

So each constraint is translated into a finite state automa-
ton that exactly represents all words (i.e., all executions) that
satisfy the corresponding LTL formula. For each process
instance, Declare creates (1) one automaton for the conjunc-
tion of LTL formulas of all constraints in the instance, i.e.,
the so-called instance automaton, and (2) one automaton for
each constraint in the instance. As mentioned before, these
automata are used for several purposes when executing the
instance. First, the instance automaton is used for driving the
execution: executing an activity in the instance triggers one
or more transitions in the automaton and, thus, causes the
state change of the automaton. Second, the instance automa-
ton is used to determine which activities are enabled: only
activities that can be triggered at the current state of the au-
tomaton are enabled. Third, the instance automaton is used
to determine the state of the instance: if the current state of
the automaton is accepting, then the instance is satisfied; if
the current state of the automaton is non-accepting, then the
instance is temporarily violated. Fourth, the automaton cre-
ated for each constraint is used to determine the state of the
constraint: if the current state of the automaton is accepting,
then the constraint is satisfied; if the current state of the au-
tomaton is non-accepting, then the constraint is temporarily
violated. Details about the usage of automata for the execu-
tion of instances in Declare are out of scope of this paper.
We refer the interested reader to [33].

5 Flexibility with Declare

In this section we show that Declare cares for all three flexi-
bility types introduced in Sect. 2, i.e., (1) defer, (2) change,
and (3) deviate. To show that this is indeed the case, we first
summarize the main differences with imperative/procedural
languages using Fig. 8.

The black oval in Fig. 8b represents the behavioral
boundary of a classical (i.e., imperative/procedural) process
model that is defined using an “inside out” style of modeling
where routing is modeled explicitly. The black thick bound-
ary in Fig. 8c represents the “outside in” style of modeling
supported by Declare and the use of optional constraints.
Comparison of the two approaches in Fig. 8 suggests that
a declarative approach indeed allows for more flexibility.

5.1 Defer (“decide to decide later”)

Declare facilitates flexibility by the possibility to easily
defer choices to run time. Consider for example the not-
coexistence constraint in Fig. 5. This constraint specifies the
mutual exclusion of the two activities cast and fixation. We
only specify that if cast is done, then fixation cannot occur
and vice versa. Hence, with little effort, many choices are
deferred to run time. For example, cast and fixation may

1 3



106 van der Aalst et al.

Fig. 8 Mandatory constraints
restrict the set of possible
behaviors while optional
constraints further guide the user.
Since traditional approaches
explicitly specify the possible
behaviors, declarative language
tend to be more flexible [33]

both occur multiple times or not at all. The only require-
ment is that for the same instance they do no both happen.
Note that there is no explicit choice between activities cast
and fixation, i.e., there is no activity inserted to make deci-
sions on the number of times each of these activities should
be executed. Specifying such a constraint in an imperative
language typically results in an “over specification” of the
desired behavior, i.e., the user has to explicitly incorporate
all execution paths and identify explicit decision points de-
termined at design time.

Figure 5 shows several other constraints that would be
difficult to capture in traditional languages without unneces-
sarily restricting the user at run time. For example, in Fig. 5
a specialist can administer medication at any moment. The
decision how often and when this can be done is deferred to
run time and not included into the design. The only thing
that is specified is that medication is an activity the special-
ist can execute in the fracture process and that there are no
constraints on this activity.

These examples show that Declare definitely supports the
flexibility type “decide to decide later” described in Sect. 2.

5.2 Change (“decide to change model”)

Declare allows for instance change at run time to sup-
port unforeseen situations or changed circumstances. The
change may refer to a single instance (ad-hoc change) or
all instances of a given process (evolutionary change). To
illustrate the functionality provided by Declare, we con-
sider Fig. 5. Suppose that new guidelines would forbid spe-
cialists to prescribe the usage of sling without the execu-
tion of X-ray. This can be achieved by adding an addi-
tional branch to activity sling on the precedence constraint

as shown in Fig. 9. This branch can be added to the instance
in an ad-hoc manner, i.e., during the execution of the in-
stance. In addition, it is possible to request that the change
should be applied to all instances (evolutionary change).
This implies that all running instances of the model are mi-
grated (if possible) from the model in Fig. 5 to the model
in Fig. 9. Moreover, all new instances would start in the new
model. All of this is possible in Declare illustrating that
a declarative approach is able to address many of the prob-
lems described in literature [2, 22, 40].

Declare applies the change only to instances that do
not become violated because of the migration to the new
or adapted process, For example, assume that the ad-hoc
change presented in Fig. 9 is applied to an instance of the
model from Fig. 5 for which activities examination, sling,
and medication have been executed. Because the added
branch specifies that activity sling can be executed only after

Fig. 9 The initial model is changed by extending the precedence con-
straint. This constraint now also includes activity sling

1 3



Declarative workflows 107

Fig. 10 Report for the ad-hoc change in Fig. 9 showing that an in-
stance cannot be migrated because of a violation of the new prece-
dence constraint

activity X-ray was executed, applying this change would
lead to a violation because activity sling is already executed
before activity X-ray. The instance automaton (cf. Sect. 4)
is used to check whether an ad-hoc change is applicable for
an instance. The change is applicable if and only if the in-
stance history can be “replayed” on the automaton generated
for the new model. If the new model is not consistent with
the instance history, then the automata generated for subsets
of constraints can be used to determine which minimal com-
bination of constraints in the new model prevents the ad-hoc
change. Indeed, Fig. 10 shows that the precedence constraint
does not allow the change presented in Fig. 9.

5.3 Deviate (“decide to ignore model”)

As mentioned earlier, Declare allows for optional con-
straints. In Fig. 5 the response constraint is optional as indi-
cated by the dashed line. Figure 6 showed the definition of
this constraint indicating the warning that will be given if
a users tries to violate this constraint. Figure 8c shows the
basic idea behind such optional constraints, the user can de-
viate into the light-gray part of the figure and thus “decide
to ignore model”. One can think of optional constraints as
guidelines or “soft” constraints. Declare allows the designer
to set a warning level to indicate the severity of such a devi-
ation. This way Declare also provides provides for the third
type of flexibility identified in Sect. 2.

Figure 11 shows a warning shown to a user who is about
to violate the optional response constraint. This constraint
indicates that if surgery has been executed, then rehabilita-
tion has to be executed afterwards. It is not enforced because
when the patient is young and mobile and the severity of
fracture is minor this is not strictly necessary. The instance
presented in Fig. 11 corresponds to a patient for which activ-
ity surgery is executed but activity rehabilitation is not exe-
cuted yet. Therefore, the response constraint is temporarily
violated (shown using the color orange). If the user would

Fig. 11 A warning regarding the possible violation of the optional
response constraint

try to close this instance at this moment, this would per-
manently violate the response constraint. If this would be
a mandatory constraint, closing the instance would not be
possible. However, since the constraint is optional, the user
gets an informative warning about the possible violation.
Note that the warning shown in Fig. 11 is indeed the warn-
ing defined in Fig. 6.

6 Support by Declare

This section presents the support provided by Declare using
the topics identified in Sect. 3. First, we discuss the design-
time support offered by Declare. Then, we elaborate on
Declare’s run-time support.

6.1 Design-time support

6.1.1 Verification

Constraints in Declare models can interfere in subtle ways.
This can cause two types of errors. First, it might be that
an activity in the model can never be executed. We refer to
such an activity as a dead activity. Second, it might be that
constraints are conflicting, i.e., it is not possible to execute
a model in such a way that all mandatory constraints are sat-
isfied. We refer to this kind of error as a conflict. Each dead
activity and conflict is caused by a certain combination of
mandatory constraints in the model (i.e., the so-called cause
of error). Through verification, Declare can automatically
detect the existence of dead tacks and conflicts while explic-
itly indicating the combination of mandatory constraints that
cause each error. Consider, for example, the model shown
in Fig. 12. This model contains three errors. First, fixation is
dead because of the non co-existence constraint and the 1..*
constraint on activity cast, i.e., cast should be performed
at least once and therefore fixation can never occur. Sec-

1 3



108 van der Aalst et al.

Fig. 12 A model with a conflict

ond, cast is dead because of the non co-existence constraint
and the 1..* constraint on activity fixation. Third, there is
a conflict because the combination of the non co-existence
constraint, the 1..* constraint on activity fixation, and the
1..* constraint on activity cast leads to a contradiction.

The three errors in the Fig. 12 and the combination of con-
straints that cause them can be detected using the automata
generated from LTL specifications of constraints. In order
to find the cause of an error, an automaton is generated for
the conjunction of all subsets of mandatory constraints. If an
error is found in a minimal subset of constraints, then the
error is reported and the root cause is given as a subset of
constraints. Because transitions of an automaton enable the
execution of activities, a dead activity is detected as an activ-
ity that cannot be triggered by any transition of the automa-
ton. Because a model exhibiting a conflict can never be exe-
cuted such that all related constraints are satisfied, this error
is detected by checking whether the corresponding automa-
ton is empty, i.e., if it has no states and no transitions, then
the model has a conflict. Declare uses this automata-based
method to detect errors and the corresponding root causes.
Figure 13 shows the verification report of Declare for the
model presented in Fig. 12. Indeed, the three errors and com-
binations of constraints that cause them are detected.

Note that dead activities and conflicts correspond to syn-
tactical errors (cf. Sect. 3.1). Using LTL it is also easy to
check for semantical errors. As long as the (un)desired prop-
erty can be expressed in terms of LTL, classical model
checking techniques can be used to find the error. Note that
this is not (yet) implemented in Declare. However, syntacti-
cal errors are verified both at design time and run time (see
also Sect. 6.2).

6.1.2 Performance analysis

Declarative models are less suitable for performance ana-
lysis. The reason is that many execution paths are possible,

Fig. 13 (a) Activity cast is dead; (b) a conflict; (c) activity fixation is
dead. Verification result for the model in Fig. 12

i.e., there is a tendency to defer decisions to run time. Hence,
arbitrary runs of Declare may not be representative for ac-
tual user behavior. In a procedural language, the users are
driven by the process model and it is easy to define the be-
havior of users as their degree of freedom is limited. This
implies that Declare could only support performance an-
alysis if a lot of information is added about the expected
behavior of users. Therefore, no support for performance
analysis at design time is added.

6.2 Run-time support

6.2.1 Enforcing correct execution

As explained in Sect. 4, Declare constructs an instance au-
tomaton based on the conjunction of all mandatory con-
straints. This automaton forces the users to stay within the
boundaries of the model. By adding lots of restrictive con-
straints, the behavior of the Declare engine becomes similar
to that of a classical workflow engine. However, it is also
possible to have just a few mandatory constrains and thus
only force the users with respect to these constraints. The
run-time view of Declare shows the activities that are en-
abled and indicates the status of each constraint (cf. Fig. 7).

1 3



Declarative workflows 109

An activity is not enabled if its execution would perma-
nently violate a mandatory constraint.

6.2.2 Recommending effective execution

The link between the process mining tool ProM [4] and
Declare enables the guidance of users through recommen-
dations [44]. Declare records all events taking place, e.g.,
starting or completing an activity. These recorded events are
shared with ProM. ProM is able to extract knowledge from
Declare’s event logs using process mining techniques. For
example, as shown in [44], ProM can find the paths that
minimize costs, flow time, response time, resource utiliza-
tion, etc. Based on this ProM provides a so-called recom-
mendation service. For each running instance, Declare con-
tinuously asks the recommendation service for suggestions,
i.e., all the enabled activities are ranked based on historic
information. Note that users do not have to follow recom-
mendations; they merely serve as an advice to support the
user. Related to the recommendation service is the predic-
tion service of ProM that predicts when a case is finished.
This information may also be used when selecting an en-
abled activity.

6.2.3 Monitoring process instances

The monitoring of instances is important to manage the pro-
cess and to make users aware of the context of their work.
Many systems use work distribution mechanisms that lead
to “context tunneling”, i.e., the user only sees one particu-
lar work-item in isolation without seeing the bigger picture.
This is the reason that Declare shows the process model
augmented with additional information. Using colors it is
shown which constraints are satisfied and which activities
are enabled (cf. Fig. 7). As explained in Sect. 4 multiple
automata are used to determine the state of an instance and
states of all constraints. Declare relies on ProM for moni-
toring processes at a higher level [4]. In the future we also
hope to use the work-item visualization of YAWL [29]. This
visualization allows for the definition of several “maps” on
which work-items may be projected. We believe that the
more flexible processes are, the more important it is to visu-
alize “work” while using contextual information.

6.2.4 Learning from processes

Declare can export historic event information (e.g., start-
ing and completing activities) by creating so-called MXML
logs while executing instances and these can be loaded into
ProM. ProM provides numerous plug-ins to extract know-
ledge from these Declare logs [4]. For example, ProM can
extract process models based on the work that has actu-
ally been done or construct social networks based on the

interactions between people. Moreover, Declare templates
and constraints can be exported into the so-called LTL for-
mat readable by ProM. ProM’s LTL checker can then ver-
ify properties specified in LTL with respect to some event
log [4].

A-posteriori analysis of instances of the model presented
in Fig. 5 can provide information that can help to improve
the model. For example, it is possible to check which in-
stances violated the optional constraint in Fig. 5. Moreover,
additional properties not specified in the model can be
checked. Consider, for example, the verification of instances
processed in the past against the following two properties:
(1) activity surgery was executed in the instance, and (2)
activity rehabilitation was executed after activity surgery
in the instance. On the one hand, verification could show
that the first property (1) holds in 80% of the instances pro-
cessed in the previous year, while it holds in only 40% of the
instances processed in the year before. This can be an indi-
cation that the hospital should hire more surgeons. On the
other hand, verification could show that the second property
(2) does not hold in 90% of the instances, i.e., the medical
staff violated the optional constraint from the model shown
in Fig. 5 in 90% of the instances. This result may indicate
that this constraint should either be removed from the model
or made mandatory.

In [28] it is shown that Declare models can also be dis-
covered using inductive logic programming. This makes it
possible to discover the primary constraints by just observ-
ing the process. The discovered models can be loaded into
Declare.

6.2.5 Enforcing correct changes

As shown in Sects. 4 and 5, it is possible to change pro-
cesses. For an ad-hoc change only one instance needs to be
migrated, while for an evolutionary change in principle all
running instances need to be migrated. In Fig. 9 it is shown
that after making a choice the new model can be verified
and that instances can be migrated. Verification of the new
model is done in the same way as described in Sect. 6.1.1.
This way it can be enforced that the new model is syntac-
tically correct, i.e., free of deadlocks, etc. Moreover, using
“replay” it is enforced that only those instances are migrated
that actually fit into the new model. Hence, Declare ensures
syntactical correctness even when processes are changing.

7 Limitations

In this paper, we demonstrated that declarative workflow
languages can assist in balancing between flexibility and
support. As a proof of concept, the Declare system was pre-
sented. However, the current approach also has some short-

1 3



110 van der Aalst et al.

comings. These are characterized by the following three
limitations.

The first limitation is that a constraint-based approach
is not very suitable for processes that are of a strict proce-
dural nature. This becomes clear when looking at Fig. 8. If
the desired control-flow is highly procedural, it is easier to
simply describe what should happen rather than describing
the constraints that should be satisfied. As shown in Fig. 8,
the starting point of our constraint-based approach is that
anything is allowed unless not explicitly forbidden. In tra-
ditional approaches everything is forbidden unless explicitly
specified. The later is more suitable if the desired behavior is
highly restricted.

The second limitation is that declarative workflow spe-
cifications may be less readable if many (interacting) con-
straints are added. A well-known problem of rule-based sys-
tems is the cognitive load on the designer if rules interact
in various ways. Similar problems may be encountered if
our constraint-based approach is used. However, these prob-
lems are (partly) addressed by our graphical language and
our verification techniques. Unlike rule-based systems, we
provide a powerful graphical notation which immediately
shows possible interactions between constraints. Moreover,
our verification techniques can be used to easily detect con-
flicting constraints (cf. Sect. 6.1.1).

An alternative way to tackle some of the problems as-
sociated to the first two limitations is to use composition
and mixtures of various languages. In [3, 33] we show that
flexibility can be provided as a “service”, i.e., using service-
orientation various languages can be mixed. For example,
we have integrated YAWL, Worklets, and Declare using
such an approach. Moreover, composition can be used to de-
fine a hierarchy of simpler models (“divide and conquer”).

The third limitation is the efficiency of the current imple-
mentation. The current Declare engine has problems dealing
with large specifications. This is due to the complexity of the
model-checking techniques used. So far we have followed
a rather straightforward implementation strategy and a much
faster implementation is possible, e.g., by a better encod-
ing of the automaton and by cashing results. Moreover, the
underlying constraint language can be restricted to not use
the full power of LTL. By limiting the expressiveness more
efficient implementations come into reach. We expect that,
based on focussed research and development efforts, highly
performing implementations are possible.

8 Related work

Many researchers have been trying to provide ways of
avoiding the apparent paradox where, on the one hand, there
is the desire to control the process and to avoid incorrect or
undesirable executions of the processes, and, on the other

hand, users want lots of flexibly and to feel unconstrained in
their actions [2, 5, 6, 8, 11, 12, 16, 22, 38, 40, 48].

See [5, 9, 23, 26, 33, 39, 42, 43, 47] for various taxono-
mies/classifications of workflow flexibility. The taxonomy
in this paper is based on [43].

It is impossible to provide a complete overview of re-
lated work. Therefore, we refer to only some of the most
related papers in this area. In [47] 18 “change patterns”
(e.g. inset/delete process fragments) and 7 “change sup-
port features” (e.g., correctness enforcement and instance
migration) are identified. The case handling concept is advo-
cated as a way to avoid restricting users in their actions [8].
This is achieved by a range of mechanisms that allow for
implicit deviations that are rather harmless. In [12] com-
pletely different techniques are used, but also the core idea
is that implicit paths are generated to allow for more flexi-
bility. In [9, 11] pockets of flexibility are identified that are
specified/selected later in the process, i.e., there is some
form of “late binding” at run time. A similar approach was
proposed in [42] where the process of defining a change is
integrated in the process itself. Many papers look at prob-
lems related to ad-hoc and/or evolutionary change [2, 16,
22, 38, 40, 48]. The problem of the dynamic change bug was
introduced in [22]. In [2] this problem is addressed by cal-
culating so-called change regions based on the structure of
the process. A particular correctness property is described
in [48] and the problem of instance migration is also in-
vestigated in [16]. In the context of the ADEPT system the
problem of workflow change has been investigated in de-
tail (including data analysis) [38–40]. In [41] a holistic ap-
proach is given which combines the ADEPT framework for
process change with cased-based reasoning technology to
learn from change. Case based reasoning was also proposed
in [32] to reuse past experiences with change. Here a sus-
pension mechanism was proposed that allows the designer
to modify suspended parts of the workflow while other parts
continue to be executed.

Another popular stream of research is applying rule-
based or constraint-based process modeling languages [20,
25, 46] that are able to offer multiple execution alternatives
and, therefore, can enhance flexibility by design. In [25],
Glance et al. use process grammars for definition of rules
involving activities and documents. Process models are ex-
ecuted via execution of rules that trigger each other. The
Freeflow prototype presented in [20] uses constraints for
building declarative process models. Freeflow constraints
represent dependencies between states (e.g., inactive, active,
disabled, enabled, etc.) of different activities, i.e., an activity
can enter a specific state only if another activity is in a cer-
tain state. Some approaches consider process models based
on dependencies between events involving activities [18,
46]. For example, the constraint-based language presented
in [46] uses rules involving (1) preconditions that must hold

1 3



Declarative workflows 111

before an activity can be executed, (2) postconditions that
must hold after an activity is executed and (3) additional
conditions that must hold in general before or after an ac-
tivity is executed. A similar idea was presented in [27] by
Joeris, who proposes flexible workflow enactment based
on event-condition-action (ECA) rules. In [30], a temporal
constraint network is proposed for business process exe-
cution. The authors use thirteen temporal intervals defined
by Allen [13] (e.g., before, meets, during, overlaps, starts,
finishes, after, etc.) to define selection constraints (which
define activities in a process) and scheduling constraints
(which define when these activities should be executed).
Several approaches propose using intertask dependencies
for specification of the process models. In [14, 15], Attie
et al. propose using Computational Tree Logic (CTL) for the
specification of intertask dependencies amongst different
unique events (e.g., commit dependency, abort dependency,
conditional existence dependency, etc.). Dependencies are
transformed into automata, which are used by a central
scheduler to decide if particular events are accepted, delayed
or rejected. In [36, 37], Raposo et al. propose a larger set of
basic interdependencies and propose modeling their coordi-
nation using Petri nets.

It is also interesting to mention some commercial
WFMSs in this context. Historically, InConcert of Xerox
and Ensemble of FileNet were systems among the first com-
mercial systems to address the problem of change. Both
supported ad-hoc changes in a rather restrictive setting. Sev-
eral systems have been extended with some form of late
binding. For example, the Staffware workflow system al-
lows for the dynamic selection of subprocesses at run time.
Probably the most flexible commercial system is FLOWer
of Pallas Athena [8]; this system supports a variety of case
handling mechanisms to enable flexibility at run time while
avoiding changes of the model.

This paper is based on the earlier work on Declare and
related languages such as ConDec and DecSerFlow [6, 33–
35, 45]. In [3] it is explained how Declare can be combined
with other (not constraint-based) approaches.

9 Conclusion

In this paper, we advocated the use of declarative language
as a means to balance between flexibility and support. The
ideas have been implemented which resulted in Declare, an
open source workflow management system. Declare pro-
vides a wide range of flexibility mechanisms: defer (decide
to decide later), change (decide to change model), and devi-
ate (decide to ignore model). Both ad-hoc and evolutionary
change are supported and models can be verified. As far as
we know, there is no other workflow management system
that supports such a wide range of flexibility mechanisms. In

this paper, we also elaborated a bit on the link with process
mining. The connection between ProM and Declare enables
innovate means of analysis, e.g., users may get recommen-
dations based on historic information.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. van der Aalst WMP (1998) The application of Petri nets to work-
flow management. J Circ Syst Comput 8(1):21–66

2. van der Aalst WMP (2001) Exterminating the dynamic change
bug: a concrete approach to support workflow change. Inform
Syst Front 3(3):297–317

3. van der Aalst WMP, Adams M, ter Hofstede AHM, Pesic M,
Schonenberg H (2008) Flexibility as a service. BPM Center Re-
port BPM-08-09, BPMcenter.org

4. van der Aalst WMP, van Dongen BF, Günther CW, Mans RS,
Alves de Medeiros AK, Rozinat A, Rubin V, Song M, Ver-
beek HMW, Weijters AJMM (2007) ProM 4.0: Comprehensive
support for real process analysis. In: Kleijn J, Yakovlev A (eds)
Application and theory of Petri nets and other models of concur-
rency (ICATPN 2007), vol 4546 of Lecture Notes in Computer
Science, pp 484–494. Springer-Verlag, Berlin

5. van der Aalst WMP, Jablonski S (2000) Dealing with workflow
change: identification of issues and solutions. Int J Comput Syst
Sci Eng 15(5):267–276

6. van der Aalst WMP, Pesic M (2006) DecSerFlow: Towards a truly
declarative service flow language. In: Bravetti M, Nunez M, Za-
vattaro G (eds) International Conference on Web Services and
Formal Methods (WS-FM 2006), vol 4184 of Lecture Notes in
Computer Science, pp 1–23, Springer-Verlag, Berlin

7. van der Aalst WMP, Reijers HA, Weijters AJMM, van Don-
gen BF, Alves de Medeiros AK, Song M, Verbeek HMW (2007)
Business process mining: an industrial application. Inform Syst
32(5):713–732

8. van der Aalst WMP, Weske M, Grünbauer D (2005) Case hand-
ling: a new paradigm for business process support. Data Know
Eng 53(2):129–162

9. Adams M (2007) Facilitating dynamic flexibility and exception
handling for workflows. Phd thesis, Queensland University of
Technology, Brisbane

10. Adams M, ter Hofstede AHM, van der Aalst WMP, Edmond D
(2007) Dynamic, extensible and context-aware exception hand-
ling for workflows. In: Curbera F, Leymann F, Weske M (eds)
Proceedings of the OTM Conference on Cooperative information
Systems (CoopIS 2007), vol 4803 of Lecture Notes in Computer
Science, pp 95–112. Springer-Verlag, Berlin

11. Adams M, ter Hofstede AHM, Edmond D, van der Aalst WMP
(2006) Worklets: A service-oriented implementation of dynamic
flexibility in workflows. In: Meersman R, Tari Z et al (eds) On
the Move to Meaningful Internet Systems 2006, OTM Confed-
erated International Conferences, 14th International Conference
on Cooperative Information Systems (CoopIS 2006), vol 4275
of Lecture Notes in Computer Science, pp 291–308. Springer-
Verlag, Berlin

12. Agostini A, De Michelis G (2000) Improving flexibility of work-
flow management systems. In: van der Aalst WMP, Desel J, Ober-
weis A (eds) Business process management: Models, techniques,

1 3



112 van der Aalst et al.

and empirical studies, vol 1806 of Lecture Notes in Computer
Science, pp 218–234. Springer-Verlag, Berlin

13. Allen JF (1983) Maintaining knowledge about temporal intervals.
Commun ACM 26(11):832–843

14. Attie PC, Singh MP, Emerson EA, Sheth A, Rusinkiewicz M
(1996) Scheduling workflows by enforcing intertask dependen-
cies. Distrib Syst Eng J 3(4):222–238

15. Attie PC, Singh MP, Sheth A, Rusinkiewicz M (1993) Specifying
and enforcing intertask dependencies. In: 19th International Con-
ference on Very Large Data Bases (VLDB), pp 134–145, Dublin,
Ireland, August 24–27, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA

16. Casati F, Ceri S, Pernici B, Pozzi G (1998) Workflow evolution.
Data Knowl Eng 24(3):211–238

17. Clarke EM, Grumberg O, Peled DA (1999) Model checking. The
MIT Press, Cambridge, London

18. Decker G, Grosskopf A, Barros A (2007) A graphical notation
for modeling complex events in business processes. In: Proceed-
ings of the 11th IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2007), pp 27–36, IEEE Computer
Society

19. Declare (2008) http://declare.sf.net. Accessed March 1, 2009
20. Dourish P, Holmes J, MacLean A, Marqvardsen P, Zbyslaw A

(1996) Freeflow: Mediating between representation and action
in workflow systems. In: Proceedings of the CM Conference on
Computer Supported Cooperative Work (CSCW ’96), pp 190–
198. ACM Press, New York

21. Dumas M, van der Aalst WMP, ter Hofstede AHM (2005)
Process-aware information systems: Bridging people and soft-
ware through process technology. Wiley & Sons, Hoboken

22. Ellis CA, Keddara K, Rozenberg G (1995) Dynamic change
within workflow systems. In: Comstock N, Ellis C, Kling R, My-
lopoulos J, Kaplan S (eds) Proceedings of the Conference on
Organizational Computing Systems, pp 10–21, Milpitas, Califor-
nia, ACM SIGOIS, ACM Press, New York

23. Georgakopoulos D, Hornick M, Sheth A (1995) An overview of
workflow management: from process modeling to workflow au-
tomation infrastructure. Distrib Parall Datab 3:119–153

24. Giannakopoulou D, Havelund K (2001) Automata-based verifica-
tion of temporal properties on running programs. In: ASE ’01:
Proceedings of the 16th IEEE international conference on Auto-
mated software engineering, p 412, Washington, DC, IEEE Com-
puter Society

25. Glance N, Pagani D, Pareschi R (1996) Generalised process struc-
ture grammars (GPSG) for flexible representations of work. In:
Proceedings of the Conference on Computer-Supported Cooper-
ative Work (CSCW’96), pp 190–198, ACM Press, New York

26. Heinl P, Horn S, Jablonski S, Neeb J, Stein K, Teschke M (1999)
A comprehensive approach to flexibility in workflow manage-
ment systems. In: Georgakopoulos G, Prinz W, Wolf AL (eds)
Work Activities Coordination and Collaboration (WACC’99),
pp 79–88, San Francisco, February, ACM press

27. Joeris G (2000) Decentralized and flexible workflow enactment
based on task coordination agents. In: Wangler B, Bergman L
(eds) Proceedings of the 12th International Conference on Ad-
vanced Information Systems Engineering (CAiSE’00), vol 1789
of Lecture Notes in Computer Science, pp 41–62, Stockholm,
Sweden, Springer-Verlag, Berlin

28. Lamma E, Mello P, Montali M, Riguzzi F, Storari S (2007) In-
ducing declarative logic-based models from labeled traces. In:
Alonso G, Dadam P, Rosemann M (eds) International Conference
on Business Process Management (BPM 2007), vol 4714 of Lec-
ture Notes in Computer Science, pp 344–359. Springer-Verlag,
Berlin

29. de Leoni M, van der Aalst WMP, ter Hofstede AHM (2008) Vi-
sual support for work assignment in process-aware information

systems. In: Dumas M, Reichert M, Shan MC (eds) International
Conference on Business Process Management (BPM 2008), vol
5240 of Lecture Notes in Computer Science, pp 67–83. Springer-
Verlag, Berlin

30. Lu R, Sadiq S, Padmanabhan V, Governatori G (2006) Using
a temporal constraint network for business process execution. In:
Proceedings of the 17th Australasian Database Conference (ADC
’06), pp 157–166, Darlinghurst, Australia, Australian Computer
Society, Inc

31. Ly LT, Rinderle S, Dadam P (2006) Semantic correctness in adap-
tive process management systems. In: Business process manage-
ment, vol 4102 of Lecture Notes in Computer Science, pp 193–
208. Springer-Verlag, Berlin

32. Minor M, Schmalen D, Koldehoff A, Bergmann R (2007) Struc-
tural adaptation of workflows supported by a suspension mech-
anism and by case-based reasoning. In: Proceedings of WETICE
2007, pp 370–375

33. Pesic M (2008) Constraint-based workflow management systems:
Shifting control to users. Phd thesis, Eindhoven University of
Technology, Eindhoven

34. Pesic M, Schonenberg H, van der Aalst WMP (2007) DECLARE:
Full support for loosely-structured processes. In: Spies M,
Blake MB (eds) Proceedings of the Eleventh IEEE International
Enterprise Distributed Object Computing Conference (EDOC
2007), pp 287–298. IEEE Computer Society

35. Pesic M, Schonenberg MH, Sidorova N, van der Aalst WMP
(2007) Constraint-based workflow models: Change made easy.
In: Curbera F, Leymann F, Weske M (eds) Proceedings of the
OTM Conference on Cooperative information Systems (CoopIS
2007), vol 4803 of Lecture Notes in Computer Science, pp 77–94.
Springer-Verlag, Berlin

36. Raposo AB, Fuks H (2002) Defining task interdependencies and
coordination mechanisms for collaborative systems. In: Blay-
Fornarino M, Pinna-Dery AM, Schmidt K, Zaratè P (eds) Cooper-
ative systems design, vol 74 of Frontiers in Artificial Intelligence
and Applications, pp 88–103, Amsterdam, The Netherlands, IOS
Press

37. Raposo AB, Magalhaes LP, Ricarte ILM, Fuks H (2001) Coordi-
nation of collaborative activities: A framework for the definition
of tasks interdependencies. In: Proceedings of the 7th Interna-
tional Workshop on Groupware (CRIWG), pp 170–179, IEEE
Computer Society

38. Reichert M, Dadam P (1998) ADEPTflex: supporting dynamic
changes of workflow without loosing control. J Intell Inform Syst
10(2):93–129

39. Rinderle S, Reichert M, Dadam P (2003) Evaluation of cor-
rectness criteria for dynamic workflow changes. In: van der
Aalst WMP, ter Hofstede AHM, Weske M (eds) International
Conference on Business Process Management (BPM 2003), vol
2678 of Lecture Notes in Computer Science, pp 41–57. Springer-
Verlag, Berlin

40. Rinderle S, Reichert M, Dadam P (2004) Correctness criteria for
dynamic changes in workflow systems: a survey. Data Knowl Eng
50(1):9–34

41. Rinderle S, Weber B, Reichert M, Wild W (2005) Integrating pro-
cess learning and process evolution: A semantics based approach.
In: van der Aalst WMP, ter Hofstede AHM, Weske M (eds) In-
ternational Conference on Business Process Management (BPM
2005), vol 2678 of Lecture Notes in Computer Science, pp 252–
267. Springer-Verlag, Berlin

42. Sadiq S, Sadiq W, Orlowska M (2001) Pockets of flexibility in
workflow specification. In: Proceedings of the 20th International
Conference on Conceptual Modeling (ER 2001), vol 2224 of Lec-
ture Notes in Computer Science, pp 513–526. Springer-Verlag,
Berlin

43. Schonenberg H, Mans R, Russell N, Mulyar N, van der Aalst WMP
(2008) Process flexibility: A survey of contemporary approaches.

1 3

http://declare.sf.net


Declarative workflows 113

In: Dietz J, Albani A, Barjis J (eds) Advances in enterprise en-
gineering I, vol 10 of Lecture Notes in Business Information
Processing, pp 16–30. Springer-Verlag, Berlin

44. Schonenberg H, Weber B, van Dongen BF, van der Aalst WMP
(2008) Supporting flexible processes through recommendations
based on history. In: Dumas M, Reichert M, Shan MC (eds) In-
ternational Conference on Business Process Management (BPM
2008), vol 5240 of Lecture Notes in Computer Science, pp 51–66,
Springer-Verlag, Berlin

45. Schonenberg MH, Mans RS, Russell NC, Mulyar NA, van der
Aalst WMP (2007) Towards a taxonomy of process flexibility
(extended version). BPM Center Report BPM-07-11, BPMcen-
ter.org

46. Wainer J, de Lima Bezerra F (2003) Constraint-based flexible
workflows. In: Proceedings of the 9th International Workshop on
Groupware: Design, Implementation, and Use (CRIWG 2003),
vol 2806, pp 151–158 Springer-Verlag, Berlin

47. Weber B, Reichert M, Rinderle-Ma S (2008) Change patterns and
change support features: Enhancing flexibility in process-aware
information systems. Data Knowl Eng 66(3):438–466

48. Weske M (2001) Formal foundation and conceptual design of
dynamic adaptations in a workflow management system. In:
Sprague R (ed) Proceedings of the Thirty-Fourth Annual Hawaii
International Conference on System Science (HICSS-34). IEEE
Computer Society Press, Los Alamitos

Wil van der Aalst is a full
professor of Information Systems
at the Technische Universiteit
Eindhoven and an adjunct profes-
sor at Queensland University of
Technology. His research interests
include workflow management,
process mining, Petri nets, busi-
ness process management, process
modeling, and process analysis.
Many of his papers are highly
cited (he has an H-index of 55
according to Google Scholar)
and his ideas have influenced
researchers, software developers,
and standardization committees
working on process support. For

more information about his work visit: www.workflowpatterns.com,
www.workflowcourse.com, www.processmining.org, www.yawl-
system.com, www.wvdaalst.com.

Maja Pesic studied information
systems at University of Belgrade,
Serbia. She received a Ph.D. de-
gree in 2008 at Eindhoven Uni-
versity of Technology, The Nether-
lands. Her research in the field
of workflow management systems
aims at increasing the flexibility
of these systems. Currently, she is
working as a researcher (Postdoc)
at the department of Mathematics
and Computer Science at the Eind-
hoven University of Technology,
The Netherlands.

Helen Schonenberg is currently
working as Ph.D. student in the
group of professor Wil van der
Aalst at Eindhoven University of
Technology, The Netherlands. Her
research focus is on supporting
the execution of flexible processes
by means of recommendations
and predictions, using process
mining techniques. Schonenberg
received her Master of Science
in Computer Science (Ingenieur)
in 2006 from the University of
Twente, The Netherlands.

1 3

file:www.workflowpatterns.com
file:www.workflowcourse.com
file:www.processmining.org
file:www.yawl-system.com
file:www.yawl-system.com
file:www.wvdaalst.com

	1 Introduction
	2 Flexibility
	3 Support
	3.1 Design-time support
	3.2 Run-time support

	4 Declare
	5 Flexibility with Declare
	5.1 Defer (``decide to decide later'')
	5.2 Change (``decide to change model'')
	5.3 Deviate (``decide to ignore model'')

	6 Support by Declare
	6.1 Design-time support
	6.1.1 Verification
	6.1.2 Performance analysis

	6.2 Run-time support
	6.2.1 Enforcing correct execution
	6.2.2 Recommending effective execution
	6.2.3 Monitoring process instances
	6.2.4 Learning from processes
	6.2.5 Enforcing correct changes


	7 Limitations
	8 Related work
	9 Conclusion
	References

