
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Declaratively Programming the Mobile
Web with Mobl

Z. Hemel, E. Visser

Report TUD-SERG-2011-001

SERG

TUD-SERG-2011-001

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

c© copyright 2011, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.

Declaratively Programming the Mobile Web with Mobl

Zef Hemel
Software Engineering Research Group

Delft University of Technology, The Netherlands
z.hemel@tudelft.nl

Eelco Visser
Software Engineering Research Group

Delft University of Technology, The Netherlands
visser@acm.org

ABSTRACT
A new generation of mobile touch devices, such as the iPhone,
Android and iPad, are equipped with powerful, modern browsers.
However, regular websites are not optimized for the spe-
cific features and constraints of these devices, such as lim-
ited screen estate, unreliable Internet access, touch-based
interaction patterns, and features such as GPS. While re-
cent advances in web technology enable web developers to
build web applications that take advantage of the unique
properties of mobile devices, developing such applications
is not a clean, well-integrated experience. Developers are
required to use many loosely coupled languages with lim-
ited tool support and application code is often verbose and
imperative. We introduce mobl, a new language designed
to declaratively construct mobile web applications. Mobl
integrates languages for user interface design, data model-
ing and querying, scripting and web services into a single,
unified language that is flexible, expressive, enables early
detection of errors, and has good IDE support. We illus-
trate the design of the language with the implementation of
ConfPlan, an application for keeping track of the schedule
of conference events.

General Terms
Mobile Web Development, User Interaction

Keywords
mobile web, web development, reactive programming, declar-
ative programming

1. INTRODUCTION
With the rapid growth in sales of modern smart phones and
tablets, such as iPhone, iPad, Android and BlackBerries,
the web becomes available on an increasing number of pow-
erful mobile devices equipped with modern web browsers.
However, today’s websites are optimized for personal com-
puter browsers and environments, whereas mobile devices
are used in different contexts, and have different features
and constraints than personal computers, for instance:

• Internet access is not always available, reliable or fast;

• Screen estate is limited;

• Expected user interaction patterns are different, such
as touch controls and gestures such as tapping, swiping
and pinching;

• Applications are expected to respond to changes in
context, such as holding the device in portrait or land-
scape mode, or changes in location.

Consequently, hundreds of thousands of custom native mo-
bile applications are being developed. Examples include
communication applications (e-mail, messaging), content view-
ers (books, articles, papers, RSS feeds, video, photos, audio)
and location-based services (wikihood, foursquare, loopt).
While these applications run locally on the device itself, a
large class of these applications are data-driven applications
that communicate with one or more web services to exchange
data.

While iOS, Android, BlackBerry, WebOS, Windows Phone
7 and other platforms are similar in terms of interaction, fea-
tures and restrictions, their development environments are
quite different. iPhone and iPad applications are developed
using the Objective-C language; Android and BlackBerry
applications are built using Java, but using very different
APIs; WebOS applications use HTML, CSS and JavaScript;
Windows Phone 7 development is done using .NET. Devel-
oping software that is portable to multiple platforms is diffi-
cult. In addition, deployment is non-trivial; most platforms
come with an application marketplace, some of which re-
quire manual testing of submitted applications by the mar-
ketplace provider before being published — a process that
can take many weeks — and applications can be rejected for
seemingly arbitrary reasons.

At the end of the 1990s, mobile phones started to gain ac-
cess to the Internet through WAP (Wireless Application
Protocol). The development model for WAP applications
was very similar to the development of regular web appli-
cations. Rather than sending HTML, a server would send
WML (Wireless Markup Language) to the mobile phone.
With the release of the original iPhone in 2007, a new gen-
eration of smart phones and tablets started to be released
with more powerful browsers that support all modern web
technologies. At the same time, advancements in HTML
(HTML 5) and CSS (CSS 3) started to enable the creation

SERG Declaratively Programming the Mobile Web with Mobl

TUD-SERG-2011-001 1

of web applications that offer a comparable experience to
native applications, especially for data-driven applications,
by supporting application and data caching, detection of
touch gestures and access to geographical position informa-
tion (GPS). The portability and deployment advantages of
web applications make the use of web technologies for build-
ing mobile applications very attractive.

Similar to native applications, mobile web applications can
now be developed that run completely disconnected from the
server, requiring a different development model than regular
web applications. When the mobile web application is first
launched through the web browser, its application code is
cached on the device. The application can use local SQL
databases to cache data obtained from a server for offline
use. When no Internet connection is available, the mobile
browser retrieves the application from its cache and contin-
ues to operate. All application logic, written in JavaScript,
resides on the device rather than on the server as is the
case in regular web applications. Communication with the
server, similar to native applications, happens by performing
web service calls using AJAX (Asynchronous JavaScript and
XML). At the time of writing, HTML5 is well supported by
the iPhone, iPad, Android and WebOS platforms, support
is forthcoming for Blackberry.

While it is now possible to develop offline-capable mobile
web applications that are portable and easy to deploy, devel-
oping such applications is not a consistent and well-integrated
experience. We identify the following problems:

1. Development involves a mix of specialized, loosely cou-
pled languages, such as HTML for creating user inter-
faces, CSS for styling, JavaScript for application logic,
SQL for database querying and caching manifests for
application caching. Inconsistencies between the lan-
guages are detected only at runtime. Earlier detection
of faults would speed up development.

2. Tool support is sub-optimal. Due to the loose coupling
of web languages, very little cross-language support
is offered by IDEs (Integerated Development Environ-
ments). The dynamic nature of web languages pre-
vents accurate implementation of desirable IDE fea-
tures such as in-line error reporting, code completion
and reference resolving.

3. While HTML enables declarative definition of user in-
terfaces, it lacks abstraction mechanisms, e.g. to pa-
rameterize and reuse HTML fragments.

4. Establishing a connection between user interface and
data typically requires a lot of boilerplate code for
copying values from data objects to user interface and
vice versa.

5. Many JavaScript APIs are defined as asynchronous
APIs, forcing developers to write code in continuation-
passing style.

In this paper, we introduce mobl1, a high-level, declarative
language for programming mobile web applications, which

1http://www.mobl-lang.org

addresses these problems. Mobl integrates languages for
user interface design, data modeling and querying, script-
ing and web services into a single, unified language. The
language is high-level since it avoids accidental complexity
such as continuation passing style and supports the defini-
tion of reusable user interface elements. The language is
declarative since it ensures automatic updates of the user
interface through reactive programming, automatic persis-
tence of data in the client-side database, and automatic con-
version of data from services. The integration of the various
concerns of mobile web programming into a single language,
enables consistency checking accross concern boundaries, en-
suring early detection of many common errors by the mobl
IDE (integrated into Eclipse), which provides in-line error
reporting, code completion and reference resolving. The
mobl compiler compiles mobl code into a combination of
HTML, CSS, JavaScript and application caching manifests
instructing the browser to cache the application locally.

We used mobl to create a number of mobile applications,
ranging from simple task managers and tip calculators to
a twitter client and simple graphical games. To illustrate
the design of mobl, we describe the implementation of Conf-
Plan2, a mobile application for viewing the schedule of con-
ference events the user is attending. It uses GPS to find
nearby conferences and downloads and caches their sched-
ules transparently. The user can browse the schedule, search
for keywords, read abstracts and mark talks as favorites to
more easily decide what sessions to attend. ConfPlan is
representative of a large class of mobile applications that
present data obtained from a web service and use contex-
tual information such as geographical location.

The rest of this paper is organized as follows. In Section 2
we analyze the architecture and interaction patterns of mo-
bile web applications, and identify a number of problems re-
lated to constructing such applications. Section 3 introduces
mobl, our solution to these problems, by demonstrating how
it is used to build the ConfPlan application. Section 4 dis-
cusses the language design decisions made for mobl. Sec-
tion 5 discusses the limitations of our approach and related
work. In Section 6 we draw some conclusions.

2. MOBILE WEB APPLICATIONS
The design of a new language for mobile web application
development requires a thorough understanding of the mo-
bile domain. This section discusses the architecture of tra-
ditional web applications and compares it to the architec-
ture of mobile web applications. Subsequently, we identify
a number of problems in the development of mobile web
applications.

2.1 Architecture
Regular web applications respond to HTTP requests from
the client. When a request comes in, it is handled by a server
written using, for instance, Java, .NET, PHP or Ruby. The
server communicates with a database to retrieve or manipu-
late data, and eventually sends back HTML to the browser
which renders it on the user’s screen. A server handles multi-
ple users and typically stores data for all its users in a shared
database. HTTP requests can also be sent by JavaScript

2http://researchr.org/confplan/confplan.html

Declaratively Programming the Mobile Web with Mobl SERG

2 TUD-SERG-2011-001

code on the web page, using AJAX calls. Based on the re-
sult of such a request, the JavaScript may manipulate the
HTML DOM (Document Object Model) to make changes to
the user interface without requiring an entire page reload.
In addition to performing AJAX calls, JavaScript can also
be used for client-side validation of user input in forms.

There are multiple approaches to developing mobile web ap-
plications. For older, non-smart phones, processing power
is the main bottleneck. Therefore, several thin-client ap-
proaches exist [9, 8] where all processing happens on the
server and phones are served with pre-rendered pages. How-
ever, today’s modern smart phones have more powerful pro-
cessors, thus client-side processing is no longer a bottleneck.
Therefore, for these devices applications can be developed
in a range of styles. On one end of the scale are web appli-
cations that are built similarly to regular web applications,
except reducing the amount of data presented on a single
page, to fit the screen size of the mobile device. It is rela-
tively easy to adjust a regular web application to produce
pages that are more friendly to the smaller screen size of
a mobile device. A drawback of this approach is that such
applications are not available without an Internet connec-
tion. In addition, Internet speeds on mobile devices are on
average a lot slower than on PCs, resulting in a bad user
experience.

At the other end of the spectrum are offline-capable mobile
web applications that, once accessed by the mobile browser,
are cached locally. They may fetch data from the server
and cache it in a local database on the device as well. The
development model of this type of application is very simi-
lar to desktop applications and native mobile applications.
All the application logic, written in JavaScript, executes at
the client, in the device’s browser. Like desktop applica-
tions, such mobile web applications are single-user appli-
cations that do not require user authentication and access
control. An additional advantage of this approach is that
applications can be used without an Internet connection af-
ter the application and its data is loaded and cached locally.
Internet latency on mobile networks is also less problematic
because fewer requests have to be sent to the server.

In this paper we focus on mobile web applications that fully
operate within the mobile web browser and are off-line capa-
ble. Moreover, we focus on data-driven applications, whose
main purpose is browsing, searching and manipulating (tex-
tual) data. Thus, we do not consider applications such as
graphical games, graphics editors, and applications for audio
and video processing.

2.2 Mobile Web Development
While modern web technologies make development of offline
capable data-driven web applications possible, development
of such applications is not a well-integrated consistent ex-
perience. Web applications are built from components de-
veloped using a number of domain-specific languages, which
have poor tool support, lack support to create reusable user
interfaces, do not support binding data to user interfaces,
do not easily support hierarchical navigation and use asyn-
chronous APIs in JavaScript. In this subsection we will go
into each of these issues in more detail.

Polyglot programming. Web development involves a mix
of domain-specific languages, such as HTML for creating
user interfaces, CSS for styling, JavaScript for application
logic, SQL for database querying and caching manifests for
application caching. While the use of domain-specific lan-
guages support separation of concerns, their loose coupling
makes early error detection (such as in-editor error high-
lighting) complicated.

Tool support. Tool support for mobile web development is
sub-optimal. Due to the aforementioned loose coupling of
web languages, very little cross-language support is offered
by IDEs. The dynamic nature of the web languages pre-
vents accurate implementation of typical IDE features such
as code completion and reference resolving.

Continuation-passing style. Browsers force programs to
be written in continuation-passing style. JavaScript in the
browser runs on a single thread that is shared with the page
renderer. Therefore, JavaScript calls that take a long time
to complete can freeze the browser. As Javascript does not
allow developers to create threads, many JavaScript APIs
are defined as asynchronous APIs. Asynchronous computa-
tions are computed on a separate thread (managed by the
browser), and call back to the Javascript thread when the
computation completes. While synchronous calls return the
result of their computation as a return value, asynchronous
methods are passed a callback function (or continuation),
which is called with the result when the computation has
finished. For instance, to obtain the GPS location of the
device, a call is made to the getCurrentPosition method,
with a callback function with pos (the result of the getCur-

rentPosition call) as an argument. The callback function is
called when the device’s GPS location has been established.
While asynchronous APIs have favorable performance char-
acteristics, continuation-passing style leads to verbose, diffi-
cult to read and maintain code.

User interface reuse. While HTML was designed to sup-
port declarative definition of web interfaces, it lacks abstrac-
tion mechanisms to reuse fragments of HTML, e.g. to reuse
a calendar widget or a gridview control. It also lacks sup-
port to define such reusable components. Some JavaScript
frameworks, such as jQTouch3 and jQuery Mobile4 attempt
to fix the reuse issue by inventing an encoding, for instance,
by interpreting the class attribute of tags as UI control en-
codings. For example, <div class="calendar"/> might en-
code a calendar control and is replaced dynamically with an
appropriate calendar widget when the page is loaded. Never-
theless, such mechanisms only allow use of controls built into
the framework, while definition of new controls has to be
done using non-declarative JavaScript. Other frameworks,
such as GWT5 and Sencha Touch6 replace HTML altogether
with a Java (GWT) or JavaScript (Sencha) API to impera-
tively construct user interfaces.

3http://jqtouch.com
4http://www.jquerymobile.com
5http://code.google.com/webtoolkit/
6http://www.sencha.com/products/touch/

SERG Declaratively Programming the Mobile Web with Mobl

TUD-SERG-2011-001 3

Data binding. While user interfaces are used to present
and manipulate data, establishing a connection between data
and the user interface requires a lot of boilerplate code. Data
values have to be copied into the user interface when it is
first loaded and stored back into data objects when certain
events occur (e.g. when a“Save”button is pushed). Changes
to data often give rise to changes in the user interface. When
the user of a todo application creates a new task in the
database, the screen that displays all tasks has to be up-
dated. In many frameworks this behavior is not automatic
and has to be implemented imperatively.

Navigation. The web is navigated by clicking hyperlinks,
sending the user from one web page to another. Browsing
patterns can be random, and websites are not always or-
ganized in a strictly hierarchical manner. We observe that
in mobile applications, navigation patterns are more strin-
gent. Data-driven mobile applications typically organize in-
formation as trees. Some applications present the top-level
of the tree as tabs, enabling the user to quickly switch be-
tween them. Deeper levels of information are presented in
list views. When the user selects a list item, the current
screen slides to the left, and a new one slides in from the
right. Navigation between screens usually happens by navi-
gating deeper into the hierarchy or moving back to a higher
level (using the back button). Moving between siblings of
the tree is only supported by some applications, specifically
news readers that allow the user to go to the previous or
next article.

In application frameworks, browsing through the informa-
tion tree creates a stack of screens where only the top of
the stack is visible. When an item is selected, a new screen,
representing the item is pushed onto the stack and when
the user pushes the back button, the screen at the top is
popped off the stack and the previous screen appears. This
screen stack has to be managed manually by the developer,
by pushing and popping screens.

3. MOBL BY EXAMPLE
To solve the problems outlined in the previous section, we
have developed mobl, a new declarative domain-specific lan-
guage supporting the development of mobile web applica-
tions. Mobl is supported by an Eclipse IDE plug-in, which
provides in-line error highlighting, code completion, code
folding and an outline view. Control-clicking the name of a
variable, control or function call, navigates to its definition,
which is invaluable for understanding larger projects. Fig-
ure 7 shows the mobl IDE in action. Mobl programs can also
be compiled with a command-line compiler, which is useful
in particular for continuous integration.

This section gives a tour of the language illustrated with the
implementation of ConfPlan. In the next section, we discuss
the language design features that enable the definition of
ConfPlan as laid out in this section.

3.1 ConfPlan
ConfPlan is a mobile application that aids conference atten-
dees in organizing and exploring the schedule of the con-
ference they are attending. The conference schedules are
easily browsable, searchable and events can be marked as

Figure 1: Nearby confer-
ences

Figure 2: Schedule days

Figure 3: Tuesday’s
schedule

Figure 4: Talk details

Figure 5: Next talks Figure 6: Search

favorite. Figure 1 through Figure 6 give an impression of
the ConfPlan application in action. When the application
is loaded first, it determines the user’s geographical location
and sends a request to the server that fetches conferences in

Declaratively Programming the Mobile Web with Mobl SERG

4 TUD-SERG-2011-001

Figure 7: The Mobl Eclipse IDE

entity Conference {
name : String
description : String
locationLong : Num
locationLat : Num
events : Collection <Event >

(inverse: conference)
}

entity Event {
conference : Conference

(inverse: events)
name : String (searchable)
speaker : String (searchable)
abstract : String (searchable)
startDate : DateTime
favorite : Bool

}

Figure 8: ConfPlan’s data model

the vicinity. The user is presented with a list (Figure 1), and
when he or she picks one, the conference’s entire schedule is
fetched from the server and cached locally on the device (if
it was not cached before).

Subsequently, the user is presented with a tabbed view that
presents three ways of exploring the schedule, either by day
(Figure 2), by what is going to be presented next, based on
the current time (Figure 5), or by searching the schedule
(Figure 6). Conference events show the time they start (in
blue when marked as favorite – tapping the time toggles
it as a favorite), the title of the event and the speakers.
When an event is tapped, a detail screen gives more details
(Figure 4), including the talk’s abstract. Searching through
events using the “Search” tab (Figure 6) is instantaneous,
the list of results updates as the user types.

3.2 ConfPlan Implementation
Figure 8 shows the declaration of ConfPlan’s data model.
It consists of two persistent data entities: Conference and
Event. A conference has a name, description, location and
a collection of events (such as talks and coffee breaks). An
event belongs to a conference (and defines an inverse rela-
tionship with a conference’s events property), has a name,
speaker, abstract, start date and can be marked as a fa-
vorite. For each property a type is specified and option-
ally one or more annotations. The searchable annotations
makes properties searchable (as can be seen in the search

control in Figure 10).

Figure 9 details the startup sequence of ConfPlan. When
a mobl application starts, the root screen is first loaded.
The root screen displays the text “Fetching data...” and ex-
ecutes a script that first invokes the loadLocalConferences

function, after which the pickConference screen is called,
navigating the user to a screen where he or she can pick a
conference (Figure 1).

screen root() {
"Fetching data ..."

script {
loadLocalConferences ();
pickConference ();

}
}
service DataProvider {

resource getNearbyConferences(lat : Num ,
long : Num) : [JSON] {

uri = "/nearbyConferences"
}
resource fetchProgram(conferenceId : String)

: [JSON] {
uri = "/conferenceProgram"

}
}
function loadLocalConferences () {

if(isOnline ()) {
var pos = getPosition ();
var nearbyConferencesJson =

DataProvider.getNearbyConferences(pos.lat ,
pos.long);

foreach(jsonObj in nearbyConferencesJson) {
Conference.fromSelectJson(jsonObj);

}
}

}
screen pickConference () {

header("Conferences")
group {

list(conf in Conference.all()) {
item(onclick ={ conference(conf); }) {

label(conf.name)
}

}
}

}

Figure 9: Loading conference data and picking a
conference

The loadLocalConferences functions checks whether the
user currently has access to the Internet, and if so, obtains

SERG Declaratively Programming the Mobile Web with Mobl

TUD-SERG-2011-001 5

the user’s location. After the location is known, a request
is sent to the DataProvider service. A service definition
specifies an interface to web services located on the server.
DataProvider specifies two resources, representing REST-
ful [12] web services. Resources can have arguments and a
return type. The two resources of DataProvider both re-
turn JSON7 objects. A JSON object is textual, structured
data representation that can be imported into the database
on the device using the fromSelectJson method defined on
entities.

When the conference objects are loaded, or no Internet con-
nection is available (in which case it is assumed there is
cached data available in the database already), the pickCon-
ference screen loads (Figure 1). This screen is composed
of a number of user interface controls. Mobl comes with a
number of reusable control libraries, but developers can also
easily define their own controls. Controls can have (named)
arguments (such as header), and a body (such as group).
The pickConference screen displays a header, and a group
of items. list is a built-in construct that iterates over a col-
lection and renders an item (specified in the list body) for
each object in the collection. A list automatically responds
to changes in the collection it iterates over. Consequently,
when a new conference is imported into the database, or any
of the conference data changes, the list will automatically be
updated to reflect these changes. When an item in the list
is tapped, the user navigates to the conference screen. The
onclick argument of the item control is an example of a
named argument with a callback as value. A callback is a
snippet of script (enclosed in curly braces) that is executed
when a certain event occurs (in this case a click or tap).

Figure 10 details the implementation of the tabbed confer-

ence screen (as can be see in Figure 2, Figure 5 and Fig-
ure 6). When loaded, a call to the fetchConferenceSched-

ule function fetches the schedule from the server if it is not
already present. Furthermore, it defines three controls, one
for each tab. The screen uses the tabSet control to display
the three controls as a tab set. The tabSet control is passed
an array of tuples, each with the name of the tab, and the
control that is used to render it. tabSet is an example of a
higher-order control, a control that takes other controls as
arguments.

Both the next and search controls use the masterDetail

control, which takes three arguments: a collection of data
items, a control to be used to display in a list view, and a
control to render the detail view. The result can be seen
in Figure 5, Figure 4 (the eventDetails view) and Fig-
ure 6. The implementation of eventItem and eventDetail

is shown in Figure 11. The eventItem control uses a float-

Box control to display the start time of the event on the left
(5 pixels from the left), the time blob is styled depending
on whether the event is marked as a favorite or not. When-
ever the time is tapped, the value of its favorite property
if flipped, and the style of the time blob automatically up-
dates. The collections passed to the master-detail control
in next and search are using collection filters, which can be
used to filter, order and limit the length of a collection using
a syntax similar to SQL.

7JavaScript Object Notation http://json.org

screen conference(conf : Conference) {
script {

fetchConferenceSchedule(conf);
}
control schedule () {

header("Schedule") { backButton () }
group {

item(onclick ={ conferenceAll(conf); }) {
"All"

}
list(startDate in determineDays(conf)) {

item(onclick ={
conferenceForDay(conf , startDate);

}) {
label(daysOfWeek[startDate.getDay ()])

}
}

}
}
control next() {

var nowDate = now()
header("What ’s next?") { backButton () }
masterDetail(conf.events

where startDate > nowDate
order by startDate asc limit 10,

eventItem , eventDetails)
script {

repeat (15*60000 , {
nowDate = now();

});
}

}
control search () {

var searchPhrase = ""
header("Search") { backButton () }
searchBox(searchPhrase , placeholder="Phrase")
masterDetail(Event.search(searchPhrase)

where conference == conf limit 10,
eventItem , eventDetails)

}
tabSet ([("Schedule", schedule), ("Next", next),

("Search", search)])
}

Figure 10: The conference screen

The master-detail control of the search tab in Figure 10
uses the Event.search(searchPhrase) collection to gener-
ate items, the searchBox is bound to that same search-

Phrase variable, resulting in updates to searchPhrase when-
ever the search phrase is changed in the search box. These
changes are propagated to the master-detail control, auto-
matically updating the list of search results as the user types.
Similarly, the filtered collection in the next control depends
on the value of nowDate, which is updated every 15 minutes,
automatically updating the list of upcoming events.

4. LANGUAGE DESIGN DECISIONS
The previous section demonstrated how mobl is used to build
useful applications with a small amount of code. This sec-
tion analyses the design decisions behind the notation of the
mobl language.

4.1 Integrated Language
In previous work [6], we have argued that the creation of a
language that supports separation of concerns but is linguis-
tically integrated, enables static consistency checking across
concerns, catching many common programming errors early
in the development process. Mobl applies this principle to
the mobile web application domain, combining data model-
ing, user interface design, service description, and scripting
into a single, statically typed language. The IDE checks

Declaratively Programming the Mobile Web with Mobl SERG

6 TUD-SERG-2011-001

control eventItem(evt : Event) {
floatBox(left =5) {

block("timeBlob" + (evt.favorite ? "Fav" : ""),
onclick ={ evt.favorite = !evt.favorite; }) {
label(buildTimeString(evt.startDate))

}
}
block("event") {

label(evt.name)
block("speaker") {

label(evt.speaker)
}

}
}
control eventDetails(evt : Event) {

table {
row {

headerCol { "Title:" }
col { label(evt.name) }

}
row {

headerCol { "Speaker: " }
col { label(evt.speaker) }

}
row {

headerCol { "Start time: " }
col { label(evt.startDate) }

}
row {

headerCol { "Favorite: " }
col { checkBox(evt.favorite ,

label="Favorite") }
}

}
block("textBlob") {

label(evt.abstract)
}

}

Figure 11: The eventItem and eventDetails controls

the application for inconsistencies, such as type errors, non-
existent properties, and controls with missing arguments,
providing immediate feedback during development through
inline error reports. Code completion helps the developer to
explore the API and reference resolving lets the developer
quickly jump to the definition of any screen, control, variable
or service. Reuse of language elements, such as expressions,
leads to a language with consistent syntax and semantics.

4.2 Automatic Data Persistence
Entity declarations such as shown in Figure 8, define a data
model of persistent data. Mobl automatically creates a data-
base on the mobile device and manages the database’s schema.
Database tables are created for each entity, as well as cou-
pling tables where required.

Entity instances are automatically and transparently per-
sisted to the database, without the developer having to write
INSERT and UPDATE SQL queries. When a property in the
data model is marked as (searchable), a full-text index
is created that can be queried using the entity’s search

method, as demonstrated in Figure 6. The search index
is automatically updated as searchable properties change.

Rather than using unchecked SQL queries embedded in strings,
queries in mobl are automatically derived from collection fil-
ters using where, order by, and limit clauses. The mobl
compiler translates collection filters to efficient SQL queries.
Because queries are integrated into the mobl language, their
syntax is checked and it is ensured that properties referenced

in the query exist and are of correct types. Query code com-
pletion helps the developer in selecting the right properties
and values.

4.3 Reactive Programming
In spreadsheets, changing a single cell can cause a large num-
ber of other cells to update their values as well, because their
value depends on the changed cell’s value. The type of pro-
gramming model exposed by spreadsheets is called reactive
programming [5], a declarative style of programming where
values are automatically recalculated when their dependent
values change. Mobl’s user interface definitions work sim-
ilarly. The search control in Figure 10 defines a variable
searchPhrase. It binds this variable to the searchBox con-
trol, creating a bi-directional connection between the two
— when the value of the search box changes, it updates the
variable and vice versa. Another control, the master-detail
control, uses a collection as an argument that also depends
on the searchPhrase variable. The collection is read-only,
and therefore only a one-way connection from searchPhrase

to the collection is established. Consequently, when the user
modifies the text in the search box, the change is propagated
to searchPhrase, in turn resulting in a change of the search
collection passed to the master-detail control, immediately
reflected in the list of search results.

Mobl uses the observer pattern [4] combined with reference
arguments to realize this reactive programming model. Con-
trols subscribe to change events of data values and update
accordingly when events are triggered. Controls have ref-
erence arguments, instead of value arguments. Changes
made to reference arguments, in contrast to value argu-
ments, change the caller’s actual argument as well. For ex-
ample, consider a control c that takes an argument x. The
control assigns the value 7 to argument x. After c is used
on variable v, v would remain unchanged when arguments
were passed as value. However, when passed as reference, as
is the case in mobl, v would have value 7. Therefore, typing
text in the search box in Figure 10, the changed text value
is assigned to searchPhrase.

4.4 Navigation
Section 2 described that navigation in mobile applications
is hierarchical. Rather than managing the stack of screens
manually, screen stacks in mobl are managed automatically.
Screens are modelled as functions that can be called and
optionally return a result. Like a function call, a screen call
pushes a screen onto the stack and automatically pops it off
the stack when a screen return statement is executed, e.g.
when the user taps the back button.

The backButton control as used in Figure 10, has an op-
tional onclick argument, similar to other types of buttons.
A onclick callback of a back button is the most common
place to perform a screen return. It is so common that
the default value of the onclick callback argument is de-
fined as a single screen return statement (as can be seen in
Figure 12), and can therefore be omitted when called, as
done in Figure 10.

Figure 13 shows an application of a screen with a return
type. The prompt screen can be used to ask the user a
question, and returns the answer as result. One or more

SERG Declaratively Programming the Mobile Web with Mobl

TUD-SERG-2011-001 7

control backButton(text : String = "Back",
onclick : Callback = { screen return; }) {

<span class="backButton" onclick=onclick
databind=text/>

}

Figure 12: Implementation of the back button

screen prompt(question : String) : String {
var answer = ""
header(question) {

button("Ok", onclick ={
screen return answer;

})
}
group {

item { textField(answer) }
}

}
...
alert("Hello , " + prompt("First name?") +

" " + prompt("Last name?"));

Figure 13: The prompt screen

invocations of this screen can be combined in a single ex-
pression. The statement at the bottom of Figure 13 results
in two prompt screens appearing in sequence. The first asks
for the user’s first name, the second for the last name. Sub-
sequently, an alert dialogue pops up that greets the user
with his or her full name.

4.5 Extensibility
An important goal of the design of mobl is extensibility.
Existing frameworks and languages for mobile development
provide a standard set of controls that are easy to use, while
defining custom controls is much more complicated. Mobl,
as a language, does not come with any controls built-in. All
its controls are provided in mobl libraries, written in mobl
itself, by composing existing controls, or using plain HTML
or JavaScript at the lowest level.

HTML. Figure 12 shows the implementation of the back-

Button control, it uses a HTML tag that is styled
with CSS to look like a button. In mobl, HTML attribute
values are mobl expressions, and can thus perform arbitrary
computations. The special databind attribute binds a vari-
able to the value of the tag. In the case of a , value
is defined as its body, for <input> tags, it is defined as the
text in the control.

JavaScript. In addition to entities, which are automatically
persisted in the database, mobl also supports regular, non-
entity types. Examples of these include strings, numbers,
arrays, GPS locations and dates. JavaScript has these types
built in, but in order to expose them to mobl applications
their interfaces need to be specified. This is done using exter-
nal definitions. Figure 14 shows a fragment of the definition
of the generic Array type. Similar to Java, mobl supports
generic types. External types only define the interface of
a type. The implementation is provided by a library, or,
as is the case with Array, by the JavaScript runtime. The
sync keyword used for functions indicates that a function
is synchronous, i.e. it returns a value immediately, rather
than taking a callback function that will be called with the

external type Array <T> {
length : Num
sync function push(item : T) : void
sync function join(sep : String) : String
sync function contains(el : T) : Bool
sync function insert(idx : Num , item : T) : void
sync function remove(item : T) : void

}

Figure 14: A fragment of the definition of Array

getCurrentPosition(function(pos) {
DataProvider.getNearbyConferences(pos.lat ,pos.long ,

function(nearbyConferencesJson) {
for (...) {

...
}

});
});

Figure 15: Asynchronous calls in JavaScript

result.

External types are not the only type of external definition
that mobl supports. Every type of definition has an ex-
ternal version, including entities, screen, controls, functions
and services. Therefore, it is possible to create a custom
JavaScript implementation of any of these definitions and
expose them through mobl. This has enabled us to reuse
controls provided by other mobile frameworks and use them
as mobl controls.

4.6 CPS Transform
Numerous JavaScript APIs, such as geolocation and AJAX,
are asynchronous; instead of calling a method and return
a value immediately, they are called with a callback func-
tion that is invoked when the result of the computation is
known. This can be milliseconds up to many seconds later,
depending on the computation. JavaScript supports anony-
mous functions as expressions, which makes calling asyn-
chronous APIs less verbose. The loadLocalConferences

function in Figure 9 performs two asynchronous calls: one
to determine the user’s current location and another to a web
service that retrieves nearby conferences. In JavaScript, call-
ing these asynchronous methods in sequence looks as shown
in Figure 15. The getCurrentPosition function is passed
a function with an argument: pos. When the user’s loca-
tion is known, this callback function is called with the loca-
tion as argument. The function calls another asynchronous
method getNearbyConferences of the DataProvider object.
It passes the latitude, longitude and another callback func-
tion to that method. When the list of conferences is re-
trieved, the callback function is called. The function sub-
sequently processes and imports the retrieved data into the
local database. Compared to Figure 9, this continuation-
passing style is clearly harder to read and more verbose.

To avoid having to write code such as Figure 15, mobl ex-
poses asynchronous APIs as regular synchronous APIs. The
compiler uses continuation-passing style (CPS) transforma-
tion [13] to transform code that calls asynchronous APIs
automatically to the continuation-passing style as shown in
Figure 15.

Declaratively Programming the Mobile Web with Mobl SERG

8 TUD-SERG-2011-001

5. DISCUSSION
We have constructed a number of applications using mobl,
ranging from simple toy applications such as a todo list man-
ager and a tip calculator to more complex applications such
as a twitter client, the ConfPlan application and even sim-
ple graphical games and a collaborative drawing applica-
tions8. While developing these application we grew a library
of reusable controls, ranging from basic, such as labels and
buttons, to more complex, such as the tab set, a master-
detail, accordion, date picker and context menu controls.
The definitions of these controls are all declarative and con-
cise. Mobl’s screen calling mechanism leads to clean code
and a navigation style that feels native to the application
user.

This section discusses the limitations of our approach and
compares it to related work.

Language Limitations. While mobl’s type checker checks
many program properties, it does not yet check everything.
For instance, certain controls have to be nested within other
controls. For instance, items need to be nested inside groups
to be rendered properly. Mobl does not yet support declar-
ing such nesting requirements.

While mobl integrates languages for many application as-
pects, it does not yet integrate a styling language. Cur-
rently, CSS styles are defined separately from the rest of the
application, lacking cross-language checking or IDE support.
Integrating styling into mobl is future work.

Mobile web applications generated by mobl are portable to
any mobile platform that supports HTML 5. However, the
user interface does not adapt to the look-and-feel of the plat-
form, nor does it adapt to the screen size of the device. We
intend to extend controls with the ability to better adapt
to their environment. For instance, controls such as the
master-detail control are sufficiently high-level to allow an
implementation specific to tablet-sized screens that take ad-
vantage of the wider screen by rendering the list of items on
the left and the detail view on the right.

Performance. The performance of mobile web applications
will always be worse than native applications, just as web
applications in general are slower than native desktop appli-
cations. Nevertheless, by caching both the application and
its data locally and the recent performance improvements of
(mobile) browsers, performance of mobile web applications
is very reasonable. While performance has not been a pri-
mary focus of the mobl compiler thus far, there is potential
to generate more optimal code, both in size (by e.g. remov-
ing white space from the output and reducing variable and
method name size) and execution speed.

While load-time is a common performance bottleneck in web
applications, mobl applications are cached locally on the de-
vice. A first load of ConfPlan over a 3G network takes about
10 seconds. Subsequent launches occur from the browser
cache and are almost instantaneous.

8http://github.com/zefhemel/mobl/tree/master/
samples/

Good Web Citizenship. While mobl uses the web as a
medium to deliver applications, and uses web technologies
to run applications, a mobl application is not built like a
regular web application: a mobl application does not con-
sist of pages with unique URLs; breaks the browser’s back
button; and is not indexable by search engines. We intend
to solve some of these issues. A working back button is rela-
tively easy to implement. Full history support is much more
complex, requiring some type of encoding of the application
state in the URL of the application. Indexing mobile ap-
plications can be useful for some data-driven applications.
A tool such as CrawlJax [10] could be used to generate a
static, indexable version of the application.

Web Application Limitations. While web applications have
the advantage of being portable, they have limitations too.
HTML5 offers many JavaScript APIs that give access to var-
ious device services, but their implementation in mobile de-
vices is not always complete. Access to audio and video ser-
vices is limited — it is possible to play an audio or video file,
but only by launching the dedicated audio or video player.
Access to other device-specific features such as bluetooth,
the built-in compass, camera and local file storage are not
supported yet.

A way around these restrictions is a native/web hybrid ap-
proach. PhoneGap9 allows a developer to build applica-
tions using web technologies, and expose additional native
APIs including a file storage API and a camera API through
JavaScript, an approach that works nicely with mobl. Ap-
plications built with PhoneGap can be deployed as native
applications through e.g. the Apple AppStore or Android
Marketplace.

Web applications have limitations in user experience as well.
It is very difficult to reproduce certain native application
behaviors in web applications. Inertia scrolling is one such
behavior, where, after a finger flick on the screen, the screen
keeps scrolling for a while longer after the finger no longer
touches the screen. There are a number of projects that
attempt to emulate this behavior in the browser, but it has
proven very difficult to do perfectly. Fixed positioning is an-
other behavior that is difficult to achieve in mobile browsers.
A control that has a fixed position, does not move when the
rest of the screen scrolls. A typical example is a screen
header. A header is positioned at the top of the screen and
while the rest of the content scrolls, the header remains fixed
at the top.

5.1 Related work
WebDSL. In previous work we developed WebDSL [14],
a domain-specific language for the development of REST-
ful web applications. WebDSL applications are stateless
— no application state is maintained on the server. The
only state that is maintained is database state. In contrast,
mobl relies heavily on application state. For instance, for
the screen stack and local variables in controls. Navigation
through a WebDSL web application is also different than
mobl. WebDSL defines pages with links between them, while
navigation in mobl applications is purely hierarchical. Simi-

9http://www.phonegap.com

SERG Declaratively Programming the Mobile Web with Mobl

TUD-SERG-2011-001 9

lar to mobl, WebDSL is a statically typed language enabling
static verification of web applications [6]. WebDSL and mobl
generate very different types of web applications. WebDSL
generates Java source code that runs on the server, while
mobl generates JavaScript code that runs on the client. In-
stead of controls, WebDSL pages are composed of templates.
While WebDSL developers can define their own templates,
core controls, such as labels, inputs and buttons are built
into the compiler and cannot easily be defined by the devel-
oper.

DSLs for mobile development. Behrens [1] describes a
domain-specific language for creating native mobile applica-
tions, using a single language from which both iPhone and
Android applications can be generated. Similar to mobl,
the language comes with an IDE plug-in for Eclipse that
supports error high-lighting, code completion and reference
resolving. Berhens’ language has a number of high-level con-
trols built into the language, including sections, detail views
and cells. It can fetch its data from data providers. However,
the DSL currently only supports data viewing and is not as
flexible as mobl; defining custom controls is not supported,
for instance.

Kejriwal and Bedekar developed MobiDSL [7], an XML-
based language for developing mobile web applications. Un-
like mobl, the application is executed on the server and plain
HTML is sent to the mobile device. MobiDSL comes with a
number of built-in controls, such as query views, page head-
ers and search requests that can be used to build pages. It is
not possible to define custom controls, nor is there specific
IDE support available.

Google Web Toolkit is a tool that enables client-side web
applications using Java. The use of Java has the advan-
tage of having excellent IDE support. A GWT plug-in10

enables access to HTML 5 APIs such as geolocation and lo-
cal databases. Like mobl, GWT applications are compiled
to a combination of HTML, Javascript and CSS. Defining
user interfaces using GWT is not very declarative, however.
A Java Swing-like API is used to imperatively create user
interfaces.

Functional Reactive User Interfaces. Courtney and El-
liot developed Fruit [2], a Haskell framework that applies
functional reactive programming [11, 3, 15] to user inter-
faces. It is based on signals (streams of events) and signal
transformers (functions that transform streams of events).
On top of these concepts, Fruit builds a purely functional
user interface library. Mobl’s user interfaces are also re-
active, but not based on pure functions. Concepts such as
signals and signal transformers are not exposed to the devel-
oper in mobl. Instead, events triggered by changes in data
or control events, result in updates to the user interface.

6. CONCLUSION
In this paper we have introduced mobl, a new language for
developing mobile web applications. Mobl integrates lan-
guages for data model definitions, user interface, web ser-
vices and scripting. Mobl is high-level since it supports the

10http://code.google.com/p/gwt-mobile-webkit/

definition of reusable controls, as demonstrated by the ex-
tensive library of controls, all defined using mobl. Mobl is
extensible since it supports use of HTML and Javascript. It
is declarative since its user interface are automatically up-
dated through reactive programming, data is automatically
persisted in the client-side database, data retrieved from web
services is automatically imported into the database. We
built a number of applications using mobl, including task
list managers, twitter clients and ConfPlan. In the future
we intend to work on integrating a styling language similar
to CSS and add mechanisms to adapt user interfaces to the
native platform look-and-feel and take advantage of avail-
able screen estate.

7. ACKNOWLEDGMENTS
This research was supported by NWO/JACQUARD project
638.001.610, MoDSE: Model-Driven Software Evolution. We
would like to thank Google for providing Android phones for
testing and development.

8. REFERENCES
[1] H. Behrens. MDSD for the iPhone. In SPLASH ’10:

Proceedings of Object oriented programming systems
languages and applications companion, pages 123–128,
2010.

[2] A. Courtney and C. Elliott. Genuinely functional user
interfaces. In PLI, pages 41–69, 2001.

[3] C. Elliott and P. Hudak. Functional reactive animation. In
ICFP, pages 263–273, 1997.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
patterns: elements of reusable object-oriented software.
Addison-Wesley Professional, 1995.

[5] D. Harel and A. Pnueli. On the development of reactive
systems. Logics and models of concurrent systems, page
477, 1985.

[6] Z. Hemel, D. Groenewegen, L. C. L. Kats, and E. Visser.
Static consistency checking of web applications with
webdsl. JSC, 2010.

[7] A. A. Kejriwal and M. Bedekar. MobiDSL - a domain
specific langauge for mobile web applications: developing
applications for mobile platform without web programming.
In Proceedings of the 9th OOPSLA Workshop on Domain
Specific Modelling (DSM’09), October 2009.

[8] J. Kim, R. A. Baratto, and J. Nieh. pthinc: a thin-client
architecture for mobile wireless web. In WWW, pages
143–152, 2006.

[9] A. M. Lai, J. Nieh, B. Bohra, V. Nandikonda, A. P.
Surana, and S. Varshneya. Improving web browsing
performance on wireless pdas using thin-client computing.
In WWW, pages 143–154, 2004.

[10] A. Mesbah, E. Bozdag, and A. van Deursen. Crawling ajax
by inferring user interface state changes. In ICWE, pages
122–134, 2008.

[11] H. Nilsson, A. Courtney, and J. Peterson. Functional
reactive programming, continued. In Proceedings of the
2002 ACM SIGPLAN workshop on Haskell, pages 51–64,
2002.

[12] L. Richardson and S. Ruby. RESTful Web Services.
O’Reilly, May 2007.

[13] G. J. Sussman and G. L. S. Jr. Scheme: An interpreter for
extended lambda calculus. AI Memos 349, MIT AI Lab,
1975.

[14] E. Visser. WebDSL: A case study in domain-specific
language engineering. In GTTSE, pages 291–373, 2007.

[15] Z. Wan and P. Hudak. Functional reactive programming
from first principles. In PLDI, pages 242–252, 2000.

Declaratively Programming the Mobile Web with Mobl SERG

10 TUD-SERG-2011-001

TUD-SERG-2011-001
ISSN 1872-5392 SERG

