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ABSTRACT The North Atlantic northern right whale
(Eubalaena glacialis) is considered the most endangered large
whale species. Its population has recovered only slowly since
the cessation of commercial whaling and numbers about 300
individuals. We applied mark-recapture statistics to a catalog
of photographically identified individuals to obtain the first
statistically rigorous estimates of survival probability for this
population. Crude survival decreased from about 0.99 per
year in 1980 to about 0.94 in 1994. We combined this survival
trend with a reported decrease in reproductive rate into a
branching process model to compute population growth rate
and extinction probability. Population growth rate declined
from about 1.053 in 1980 to about 0.976 in 1994. Under cur-
rent conditions the population is doomed to extinction; an
upper bound on the expected time to extinction is 191 years.
The most effective way to improve the prospects of the popu-
lation is to reduce mortality. The right whale is at risk from
entanglement in fishing gear and from collisions with ships.
Reducing this human-caused mortality is essential to the
viability of this population.

The North Atlantic northern right whale (Eubalaena glacialis)
is considered the most endangered of any population of large
whales. The preferred target of commercial whalers during
the 18th and 19th century, it was reduced to near extinction
by 1900 (1, 2). It has recovered only slowly since the elimina-
tion of commercial whaling. There are now about 300 individ-
uals in the western Atlantic; the eastern Atlantic population
is considered extinct (2, 3). Right whales are found along the
eastern coast of North America from Florida to the Bay of
Fundy and are at risk of mortality from entanglement with
fishing gear, collisions with ships, and pollution (2, 4–6).

We report here the first statistically rigorous estimates of
survival for E. glacialis. We also develop a stochastic model
from which we estimate population growth rates and extinc-
tion probabilities. Our results are a first step toward models
that can be used to choose targets for management interven-
tions (for example, see refs. 7–10).

1. METHODS

Individual right whales can be recognized by markings,
scars, and callosity patterns. Since 1980 the New England
Aquarium (NEA) has maintained a catalog of photograph-
ically identified whales (11, 12). These data, supplied to us
by NEA in July 1997, contained sightings from 1980 through
1996.

We used mark-recapture statistics (13, 14) to estimate sur-
vival and sighting probabilities from these data. An individ-
ual is “marked” when first identified and “recaptured” when
sighted in a subsequent year. We treat years as a sampling
unit, but most observations occur in August and September.
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In all years except one, at least 50%, and usually more than
70%, of the individuals sighted are seen in those months.

We define the probabilities

pi = P�survival from year i to i+ 1� [1]

si = P�sighting in year i�: [2]

Each individual has a sighting history, the probability of which
can be written in terms of the pi and si, by using methods in
refs. 14 or 15. The survival probability p is what demogra-
phers call a “crude” rate (16, 17). The term is not an epithet;
it indicates that the probability is averaged over the whole
population rather than calculated separately for age classes,
sexes, or other categories.

1.1. Model Fitting and Model Selection

We fitted 10 models to the data, each representing a different
hypothesis about the pi and si (Table 1). The likelihood of a
model is proportional to the product of the probabilities of
the individual sighting histories. We used the matlab routine
fminu to find parameter values maximizing the likelihood and
the profile likelihood from ref. 14 to generate 95% confidence
intervals or regions.

In models M1–M4, survival and sighting probability are ei-
ther fixed at constant values or allowed to vary freely from
year to year. Model M4, in which both pi and si are free to
vary from year to year, is known as the Cormack–Jolly–Seber
(CJS) model (18–20).

Models M5 and M6 parameterize survival probability as a
logistic function (21) of time

pt =
ea+bt

1+ ea+bt [3]

with sighting probability either constant (M5) or variable (M6).
The parameter b gives the magnitude and direction of any
trend in survival probability, increasing if b , 0 and declining
if b + 0.

After 1990, two offshore sites (Great South Channel and the
Nova Scotian Shelf) were no longer regularly sampled. This
change might artificially reduce survival probability if certain
individuals had a tendency to favor those sites. Sightings of
such individuals would become less likely in the 1990s, and
this might be misinterpreted as a reduction in survival.

To address this possibility, we developed an individual co-
variate to measure the tendency of each whale to be seen
exclusively in the offshore region. This “offshore index,” fj ,
is the proportion of years in which whale j was observed in
which it was seen only in the offshore sites:

fj =
years seen only offshore

years seen
: [4]

Abbreviations: NEA, New England Aquarium; CJS, Cormack–Jolly–Seber;
AIC, Akaike Information Criterion.
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Table 1. The models fitted to the photographic catalog data, with the
log likelihood �L�, number of parameters �n� and the AIC measured
relative to that of the best model �1AIC�

Model Survival Sighting logL n 1AIC

M1 Constant Constant −2421.8 2 372.4
M2 Constant Variable −2282.5 17 123.8
M3 Variable Constant −2397.5 17 353.8
M4 Variable Variable −2257.2 31 101.2
M5 Logistic Constant −2420.2 3 371.2
M6 Logistic Variable −2271.9 18 104.6
M7 Logistic Variable∗ −2170.1 —† —†

M8 Variable Variable‡ −2192.7 47 4.2
M9 Logistic Variable‡ −2203.6 34 0.0
M10 Constant Variable‡ −2211.14 33 13.1

∗Strictly offshore whales excluded.
†Degrees of freedom and AIC not comparable with other models.
‡Sighting probability depends on offshore index.

If fj = 0, elimination of offshore sampling has no effect on
the data obtained from whale j, because we require only a
single sighting to know that a whale is alive in a given year.
If fj = 1, whale j is a “strictly offshore” animal; data on such
animals will be most affected by the change in sampling. The
data set contains 21 strictly offshore whales.

Model M7 removes the 21 strictly offshore whales from the
data set and repeats the analysis of M6. Models M8 and M9
parameterize the sighting probability of individual j in year t
by the logistic function

sj�t� =
ect+dtfj

1+ ect+dtfj : [5]

If dt + 0, individuals with higher offshore index are less likely
to be seen in year t. If the change in sampling affected sighting
probability, dt should become more negative after 1990.

We used likelihood ratio tests and the Akaike Informa-
tion Criterion (AIC; refs. 14, 22, 23) to compare models. If
Mi with ni parameters and likelihood Li is a special case
of Mj with nj parameters, the log likelihood ratio is G2 =
−2�logLi − logLj�. G2 is compared to a χ2 distribution with
nj − ni degrees of freedom. If it is significantly large, the null
hypothesis Mi is rejected in favor of Mj . AIC is

AICi = −2 logLi + 2ni: [6]

The model that minimizes AIC has the best balance of good-
ness of fit and parsimony.

2. RESULTS: SIGHTING AND SURVIVAL
PROBABILITIES

2.1. Sighting Probability

Time-invariant sighting probability estimates are ŝ = 0:656
from M1, ŝ = 0:654 from M3, and ŝ = 0:654 from M5. The
null hypothesis of time-invariant sighting probability is, how-
ever, overwhelmingly rejected (Table 2).

Fig. 1a shows the sighting probability from model M4 (the
CJS model). The estimates from models M2, M6, and M7 are
nearly identical. Thus the pattern of sighting probability is ro-
bust to assumptions about survival. Sighting probability is cor-
related with sampling effort (r = 0:77, P + 0:0005; Fig. 1b),
measured as the total number of sampling days.

2.2. Survival Probability

Time-invariant estimates of survival probability are p̂ =
0:965 from M1 and p̂ = 0:959 (95% confidence interval
�0:951; 0:965�) from M2. The null hypothesis of constant sur-
vival is rejected (Table 2). Fig. 2a shows estimates of survival
probability from M4 (the CJS model).

Table 2. Likelihood ratio tests of temporal variation in sighting prob-
ability, temporal variation in survival probability, and the logistic trend
in survival probability

Test G2 df Probability

Variation in sighting
probability
M2 vs. M1 278.6 14 P � 10−14

M4 vs. M3 280.6 14 P � 10−14

M6 vs. M5 296.6 15 P � 10−14

Variation in survival
probability
M3 vs. M1 48.6 15 P = 2:0 3 10−5

M4 vs. M2 50.6 14 P = 4:9 3 10−6

Logistic trend in
survival
M6 vs. M2 21.2 1 P = 4:1 3 10−6

M9 vs. M10 15.1 1 P = 7:0 3 10−5

2.3. Trend in Survival Probability

Fig. 2 shows the estimated logistic trend in survival from M6.
(The curve is fit directly to individual histories, not to the
points in the figure.) The null hypothesis of no trend (b = 0)
is rejected (Table 2).

The estimates of b are negative in all three models (M6, M7,
and M9) that include variable sighting probability, implying
a declining trend in survival (Table 3). The 95% confidence
regions for â and b̂ exclude b̂ = 0 (Fig. 4).

Fig. 1. (a) The sighting probability and 95% profile likelihood
confidence intervals from model M4, the CJS model. (b) Sighting
probability from M4 as a function of sampling effort. The curve is
a logistic regression fitted by least squares.
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Fig. 2. (a) Survival probability from model M4, with pointwise
95% profile likelihood confidence intervals. (b) The logistic trend in
survival probability from model M6. Points are estimates from the CJS
model (M4), included for comparison.

2.3.1. Changes in Sampling Protocol. As predicted, the off-
shore index has an increasingly negative effect on sighting af-
ter 1990 (Fig. 3). The 95% confidence intervals for the slope
parameters include zero for most of the years before 1990,
but not after 1990.

However, the trend parameter b is, if anything, slightly more
negative in M7, which eliminates strictly offshore whales, and
M9, in which sighting probability is a function of the offshore
index, than in M6 (Table 3).

Survival estimates from models M4 (the CJS model) and
M8 (variable survival, with the offshore index) are very sim-
ilar (Fig. 4). When the offshore index is included, the null
hypothesis of constant survival is rejected (Table 2). The sur-
vival trends projected by models M6, M7, and M9 are also very
similar (Fig. 4). There is thus no evidence for the hypothesis
that the trend in survival is an artifact of the change in sam-
pling.

As yet another check on the results, we used the method
of ref. 24 to correct for extra-binomial variation in the data,
which may result from heterogeneity or lack of independence.
The survival trend is still significant when tests are adjusted
with a variance inflation factor, and the modified AIC (QAIC;
refs. 14 and 23) still picks M9 as the best model.

Table 3. The logistic trend parameters a and b

Model a b

M6 4.28 −0.118
M7 4.60 −0.133
M9 4.46 −0.125

Fig. 3. Estimated sighting probability from 1980 to 1996 as a func-
tion of the offshore index, from model M8.

2.3.2. Model Selection. Model M9 (a logistic trend in sur-
vival probability, with sighting a function of the offshore in-
dex) has the smallest AIC, and is thus the best of the models
considered here. We use it for our analyses of population vi-
ability in the next section.

3. IMPLICATIONS FOR POPULATION VIABILITY

According to model M9, crude survival probability has de-
clined from about 0.99 to about 0.94 in 15 years, a more
than 5-fold increase in mortality rate in less than a genera-
tion. To explore the implications for population viability, we
use a branching process model (25) that includes demographic
stochasticity and allows us to predict population growth rate
and extinction probability.

An individual at time t may produce 0; 1; 2; : : : individuals
at time t + 1. These individuals are customarily called “off-
spring,” but may include survival of the original individual as
well as the production of new individuals. The model is spec-
ified by the probability distribution of offspring number.

A female right whale may produce 0, 1, or 2 females the
following year. We assume that the death of a parent results
in the death of a calf in its first year. Thus a female at t
produces 0 offspring if it dies before t + 1, 1 offspring (itself)
if it survives without reproducing, and 2 offspring (itself and
its calf) if it survives and reproduces. Let p be the survival
probability and let m be the probability of producing a female
calf. The probabilities P�i� of producing i offspring are then

P�0� = �1− p��1−m� + �1− p�m
P�1� = p�1−m� [7]

P�2� = pm:
We calculate m as

m = c

2T
; [8]

where T is the mean inter-birth interval, c is the fraction of
females that are reproductively active, and we assume a 1 x 1
sex ratio at birth (26). The mean inter-birth interval between
1980 and 1992 was 3.7 years (5). Recent analyses (S. D. Kraus,
personal communication) find a significant linear increase in
T , from T 8 3 in 1980 to T 8 5 in the late 1990s. The pro-
portion of reproductively active females is c 8 0:38 (26). Thus
m = 0:063 when T = 3 years, m = 0:051 when T = 3:7, and
m = 0:038 when T = 5. The latter figure is very close to that
obtained by dividing the mean number of calves produced per
year (approximately 11; ref. 5) by the number of females (ap-
proximately 150), and dividing by 2, which gives m = 0:037.
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Fig. 4. (a) Joint 95% profile likelihood confidence regions for the
logistic parameters a and b from models M6, M7, and M9. (b) Survival
probability estimates from model M4 (the CJS model) and M8 (sight-
ing a function of the offshore index). (c) Trends in survival probability
from models M6, M7 (strictly offshore whales excluded), and M9 (with
sighting dependent on offshore index).

3.1. Population Growth Rate

The probability generating function of the offspring distribu-
tion, 7, is

g�s� = P�0�s0 + P�1�s1 + P�2�s2 [9]

= �1− p� + p�1−m�s + pms2; [10]

where s is a dummy variable, �s� + 1. The population growth
rate is

λ = dg�s�
ds

∣∣∣∣
s=1
= p+ pm; [11]

Fig. 5. (a) Population growth rate λ from 11, obtained by combin-
ing the trends in survival (from M9) and inter-birth interval. (b) Con-
tours of extinction probability for the lineage of an individual as a
function of inter-birth interval T and survival probability p. Points
corresponding to 1980 and 1995 are indicated.

which is the familiar sum of the survival probability and the
birth rate. If λ + 1, the population is decreasing. If λ � 1, ex-
tinction is certain. If λ , 1, the mean population increases,
but extinction may still occur due to demographic stochastic-
ity. Combining estimates of p and T , we find the following:

T

p 3 3.7 5

0.99 λ̂ = 1:053 λ̂ = 1:040 λ̂ = 1:028

0.94 λ̂ = 0:999 λ̂ = 0:988 λ̂ = 0:976

[12]

The combination of declining p and increasing T has moved
the population well below the critical value for persistence.
The result is λ̂ = 0:976, a 2:4% decrease per year. By using the
survival trend from M9 and the inter-birth interval trend, we
find that λ̂ reached the critical value λ = 1 circa 1990 (Fig. 5).
Even with T fixed at its mean value (3.7), λ̂ has declined to
0:988. The population cannot persist under the best estimates
of current conditions.

3.2. Extinction Probability

The probability q of extinction of the lineage formed by an
individual is the smallest positive solution of the equation

q = g�q� [13]

= �1− p� + p�1−m�q+ pmq2; [14]
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Fig. 6. The probability distribution of extinction time for a popu-
lation of 150 females, with constant survival probability p = 0:94 and
inter-birth interval T = 5 years.

where g�·� is the probability generating function (25). In 1980,
with p = 0:99 and T 8 3, the probability of extinction was
q = 0:160. By 1995, extinction had become certain, since λ̂ +
1 (Fig. 5).

The probability of extinction of N independent individu-
als is qN . The North Atlantic right whale population contains
N 8 150 females. Thus population extinction due to demo-
graphic stochasticity is highly unlikely as long as λ , 1. How-
ever, under current conditions, λ + 1 and eventual extinction
is certain. If the vital rates were fixed at their current values,
the distribution of time to extinction is shown in Fig. 6. The
mean extinction time is 191 years, the median is 182 years,
and extinction is almost certain by 400 years.

These calculations assume constant vital rates; they do not
include continued trends in survival or fertility. They also as-
sume that females survive and reproduce independently, and
that there are always enough males to fertilize females. If the
population continues to decline, it will eventually reach a point
where breakdowns in social structure or failure to find mates
will reduce reproduction and hasten extinction.

4. CONCLUSIONS AND DISCUSSION

Crude survival probability has declined since 1980 from
about 0.99 to about 0.94. The decline is statistically significant,
and is not an artifact of changes in the sampling program
during the study. The decline in survival and the increase in
inter-birth interval have reduced estimated population growth
rate from λ̂ = 1:053 to λ̂ = 0:976.

The null hypothesis of constant survival is rejected with a
very small probability of Type I error (P = 7:0 3 10−5). Re-
fusal to reject the null hypothesis in face of such evidence dra-
matically increases the probability of a Type II error. In the
case of an critically endangered species like the right whale, a
Type II error, which leads to maintenance of the management
status quo, is more to be feared than Type I error (27).

4.1. Causes of Mortality

The causes of the decline in survival are unknown. Human in-
teractions are a significant source of mortality for this species.
Of 40 known right whale deaths between 1970 and 1997, 35%
were due to ship collisions and 5% to entanglement in fish-
ing gear (4, 6, 28). As many as 70% of the individuals in the
population show scars from entanglement. The National Ma-
rine Fisheries Service estimates an average of 2.6 deaths per

year due to human causes over the period 1990–1994 (2). The
U.S. National Oceanic and Atmospheric Administration has
recently restricted fishing operations in areas frequented by
right whales to reduce mortality caused by entanglement (29).

The birth rate of this population is lower than that of the
South Atlantic population, perhaps because of inbreeding de-
pression, competition, or pollution (5). Increasing reproduc-
tion would increase λ and reduce extinction probability. How-
ever, both λ and extinction probability are more sensitive to
changes in survival probability than to changes in fertility. The
elasticities (proportional sensitivities, ref. 30) of λ to changes
in p and m are, from 11:

ep =
p

λ

∂λ

∂p
= 1 [15]

em =
m

λ

∂λ

∂m
= m

1+m: [16]

Unlike eigenvalue elasticities, these do not sum to 1 (30). De-
pending on the value of m, ep is from 17 to 27 times greater
than em. Proportional increases in survival will have larger im-
pacts than the same proportional increases in fertility. Fig. 5
shows that extinction probability is also more sensitive to p
than to m.

We conclude that reducing human-caused mortality is the
most effective way of improving population performance.

4.2. Comparison with Other Estimates

Here we show that our model successfully predicts previous
estimates (5, 31) of right whale survival and population growth
rate during the 1980s and early 1990s. These studies did not
look for trends in survival.

By using known and presumed deaths (a missing whale was
assumed alive if missing for fewer than 6 years and dead if
missing for 6 or more years), Knowlton et al. (5) reported a
mean mortality rate of 0.021 for the period 1987–1992. Model
M9 yields a mean mortality rate of 0.033 over the same period.
Although not strictly appropriate, a t test finds no significant
difference (P = 0:175) between the two means.

Population growth rate was computed by back-calculating
population size from 1992, adding estimated deaths and sub-
tracting reproduction each year (5). The mean annual growth
rate from 1987 to 1992 was 2.5% (i.e., λ = 1:025). To compare
our results with this value, we constructed an individual-based
stochastic simulation of the female population, with survival
probability declining as in M9 and inter-birth interval increas-
ing (S. D. Kraus, personal communication); see Fig. 7. The

Fig. 7. Replicates (100) of a stochastic simulation for the female
population, including trends in survival probability and inter-birth in-
terval.
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mean annual growth rate from 1987 to 1992, computed from
1000 realizations, was 1.44%, with a 95% confidence inter-
val of �−0:27%; 3:12%�. The growth rate of 2.5% per year in
ref. 5 falls within the 95% confidence interval of the values
predicted by our model.

Although the methods in ref. 5 suffer from statistical weak-
nesses (not accounting for sighting probability, relying on as-
sumptions about presumed mortality, and propagating errors
during the back-calculation process), the results are valuable,
and frequently cited. It is important that our analysis is able
to predict them.

Kenney et al. (31) estimated population growth rate from
1979 to 1989 from aerial sightings of whales in the Great
South Channel. They regressed the log of sighting rate (num-
ber of whales seen per unit distance flown, a proxy for pop-
ulation size) against time and found a mean annual growth
rate of 3.8%. Applying the same regression approach to our
stochastic simulations, we found a mean annual growth rate
from 1980–1990 of 3.28%, with a 95% confidence interval of
�1:88%; 4:53%�.

Thus our estimated trend in survival probability, combined
with the most recent estimates of the trend in inter-birth inter-
val, projects population dynamics fully compatible with previ-
ous published estimates of survival and population growth rate
during the 1980s and early 1990s.

4.3. Prediction of Survival Probability

Our model can explain previous observations, but can it pre-
dict future ones? The NEA catalog data for 1997 have re-
cently become available; this permits us to estimate survival
probability for 1995, and to compare it with the prediction
for 1995 calculated from M9, which is independent of the new
data. M9 predicts a survival probability of 0.93 for 1995. The
observed value, estimated by applying the CJS model to the
1997 data set, is 0.92, with 95% profile likelihood confidence
interval �0:85; 0:95�. Thus model M9 successfully predicts the
next year’s survival estimate.

4.4. Caveats

Like other analyses of this population (e.g., refs. 5 and 31), our
calculations are based on crude, rather than stage-structured,
rates. We are now developing stage structured models, similar
to those in ref. 32, which will provide a more detailed picture
of population performance.

The possibility that a trend in the vital rates is an artifact of
a change in population composition can never be eliminated
(33). For the trend we document here to be such an artifact,
however, would require a truly dramatic change in population
composition, which is unlikely since fully 40% of the individu-
als occur in both the first five and the last 5 years of the study.
Our structured population models will disaggregate the rates
by stage, but we do not expect that to change the trends in
crude survival.
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