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Abstract

Intracortical microelectrode array recordings generate a variety of neural signals with potential

application as control signals in neural interface systems. Previous studies have focused on single

and multiunit activity, as well as low frequency local field potentials (LFPs), but have not

explored higher frequency (>200 Hz) LFPs. In addition, the potential to decode three dimensional

(3-D) reach and grasp kinematics based on LFPs has not been demonstrated. Here, we use mutual

information and decoding analyses to probe the information content about 3-D reaching and

grasping of 7 different LFP frequency bands in the range of 0.3 Hz – 400 Hz. LFPs were recorded

via 96-microelectrode arrays in primary motor cortex (M1) of two monkeys performing free

reaching to grasp moving objects. Mutual information analyses revealed that higher frequency

bands (e.g. 100 – 200 Hz and 200 – 400 Hz) carried the most information about the examined

kinematics. Furthermore, Kalman filter decoding revealed that broadband high frequency LFPs,

likely reflecting multiunit activity, provided the best decoding performance as well as substantial

accuracy in reconstructing reach kinematics, grasp aperture and aperture velocity. These results

indicate that LFPs, especially high frequency bands, could be useful signals for neural interfaces

controlling 3-D reach and grasp kinematics.
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I. Introduction

Intracortical microelectrode recordings in motor cortex, especially primary motor cortex,

generate a variety of neural signals with potential applications in neural interface systems for

motor prostheses: extracellular action potentials or single unit activity (SUA), multiunit

activity (MUA) and LFPs. The use of SUA for decoding of intended and/or executed

movements has been extensively studied in monkeys [1], [2], [3], [4], [5] and recently

demonstrated in humans with tetraplegia [6], [7]. Several groups have also examined neural

decoding of movement parameters based on MUA and intracortical LFPs [8], [9], [10], [11],

[12], [13], [14]. In particular, Mehring et al. [10] using four simultaneously recording

electrodes in each hemisphere, showed that time-domain low-frequency features of LFPs in

monkey motor cortex carried information about movement direction and two-dimensional

(2-D) hand position in a 8-directions center-out task. Using the same data, Rickert et al. [11]

demonstrated that tuning to movement direction was prominent in the frequency bands 0 –

4Hz, 6 – 13 Hz and 63 – 200 Hz. Stark and Abeles [14], using 8 electrodes implanted in

monkey M1, showed that 2-D hand velocity could be decoded from MUA and LFP signals.

However, the use of higher frequency band field potentials in neural decoding has not been

systematically examined in intracortical recordings. With the exception of [15] and [16], this

has also been the case in most studies based on extracortical recordings such as subdural

electrocorticograms (ECoGs) [17], [18], [19], [20]. Furthermore, none of the above

mentioned work has systematically studied decoding of 3-D reach and grasp kinematics

based on LFPs. The addition of signals that increase the dimensionality of control signals,

especially to achieve 3-D reach and grasp is important for corticomotor prostheses that aim

at restoring movement in people with paralysis.

In this paper, we examined how well endpoint hand kinematics and grasp aperture can be

decoded from LFPs recorded from M1 in monkeys performing free reaching and grasping

movements in a 3-D workspace. We chose the power spectrum in seven different frequency

bands as the main LFP features. These frequency bands corresponded to: δ band (0.3 – 5

Hz), θ-α (5 – 15 Hz), β (15 – 30 Hz), γ1 (30 – 50 Hz), γ2 (50 – 100 Hz), γ3 (100 – 200 Hz)

and a broad high frequency band (200 – 400 Hz). This 200–400 Hz broadband high

frequency LFP is henceforth referred to as the bhfLFP. The information content about 3-D

reach kinematics and grasp aperture in these seven different LFP frequency bands was

assessed via mutual information analyses and also evaluated by comparing the performance

of a Kalman filter decoding algorithm based on each of these bands. Our results show that

power in high-frequency LFPs (i.e. γ and bhfLFPs) carried the most information about reach

and grasp kinematics, and that these bands can be used to decode hand 3-D position and

grasp aperture with substantial accuracy. Overall, our findings indicate that local field

potentials, used alone or combined with SUA and MUA, might provide useful control

signals for 3-D reach and grasp control in neural interfaces that aim at restoring motor

function in humans with paralysis.

II. Methods

A. Data acquisition and signal preprocessing

Two male macaque monkeys (C and G) were used in this study. Neural activity was

recorded using 10 × 10 microelectrode arrays (Cyberkinetics Neurotechnolgy Systems, Inc.,

Foxborough, MA) chronically and intracortically implanted in the arm region of the primary

motor cortex (M1, contralateral to the hand used for the task). The array recorded from a 4 ×

4 mm patch of cortex, with minimal inter-electrode distance of 400 μm. Additional details of

array structure and surgical implantation procedures are described in [21]. Neural activity

was recorded and stored using a Cerebus multi-channel data acquisition system (CKI). LFPs

were originally recorded after analog filtering (1st-order Butterworth, high pass with cutoff

Zhuang et al. Page 2

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 March 7.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



edges at 0.3 Hz; 3rd-order Butterworth, low pass with cutoff edge at 7.5 kHz), digital low

pass filtering (4th-order Butterworth, low pass with cutoff edge at 500 Hz), and sampling at

2,000 samples per second. 47 and 96 simultaneous LFP channels were recorded from

monkeys C and G, respectively. Hand kinematics, including 3-D position of the hand

(measured at the wrist) across a natural reach workspace in front of the monkey and the

grasp aperture (the distance between the distal-most joints of the thumb and index finger),

were recorded. We used a Vicon motion capture system (Vicon Motion Systems, Oxford

Metrics Group, plc.) with 29 markers placed to provide position of the entire arm, from the

shoulder to each of the finger tips. The setup of the motion capture system followed that

described in [22]. For the purpose of the present study, the marker system was used to

identify only the location of the hand in space and grasp aperture (see Fig. 1). Position and

grasp aperture were recorded at a rate of 240 samples per second. 3-D hand velocity and

aperture velocity were derived from 3-D hand position and aperture through approximate

time derivative calculations. For computational convenience, all kinematics data were

resampled to 20 samples per second after they were low passed by a Kaiser window FIR

filter with passband cutoff of 2 Hz, stopband cutoff of 8 Hz, passband ripple of 1% and a

stopband attenuation of 20 dB. The spatial resolution of the kinematics data was 1 mm. All

decoding analyses employed in this paper were performed with normalized kinematics

variables, that is, the corresponding mean was subtracted and the resulting value was then

divided by the corresponding standard deviation.

The aim of the behavioral task was to elicit a wide range of 3-D reaching and grasping

movements. Animals were trained to perform a continuous single-handed reaching and

grasping task in which one of six to nine different objects attached to a string swung from

above repeatedly. After successfully grasping the object for about one second, monkeys

were rewarded with fruit juice. The object rotated freely and was swung on each trial by an

investigator through an arbitrary path within an approximately natural reach workspace for a

monkey (25 cm × 20 cm × 25 cm).

After each reach/grasp action, the monkey would typically bring the arm/hand closer to the

body, but there was no specific action to ‘end’ or ‘reset’ a trial. The movements were always

ongoing. In other words, each trial had different epochs or stages, but these were not as

clearly separated as in typical tasks with discrete and fixed sequences such as object

presentation, movement preparation, go cue, etc. Endpoint velocity profiles were commonly

bell shaped, but there were variations, such as multiple peaks. Aperture velocity was

typically ‘bimodal’. Note also that the monkey could grasp the same object in slightly

different manners, and that different trial blocks contained different objects to be grasped.

Correct trials also required the monkey to close a hand-switch using the opposite hand

during the entire duration of the trial (See Fig. 1). Short temporary breaks were given to the

monkeys during the task. Data recorded during the breaks were not included in the analyses.

Datasets from two experimental sessions for each monkey were used in the analyses

reported here: COS080319 and COS071212 (sessions 1 and 2, respectively), for monkey C,

and GAR080702 and GAR080710 (sessions 1 and 2, respectively), for monkey G. All

procedures complied with protocols approved by Brown University Institutional Animal

Care and Use Committee.

B. Spectral analysis and coefficient of variation

We used the power in different frequencies as the LFP features. In the computation of the

LFP spectrogram and coefficient of variation (Fig. 2a, b, c, d), the LFP time series from an

entire session (which lasted close to one hour for each monkey) were segmented into non-

overlapping time windows of 250 ms. Power is given in dB. (We arbitrarily chose 1, with

the appropriate units, as the power reference level.) The multitaper spectral estimation

approach [23] was employed to obtain the power spectrum in each window for all the
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channels. The bandwidth in the multitaper spectral estimation (not to be confounded with

the different frequency bands used in the decoding and mutual information analyses) was set

to 10 Hz.

We assessed the power variability across the non-overlapping time windows during the

session for each frequency. Because the LFP power values across different frequencies can

differ by orders of magnitude, we used a relative quantity of variability given by the

coefficient of variation (CV) of the power at each frequency defined as

(1)

where pi,f denotes the power for channel i at the frequency f, and std denotes the standard

deviation.

C. Frequency bands

The frequency spectrum (0.3 Hz – 400 Hz) was further partitioned into seven different

frequency bands. The upper limit was set, based on a conservative choice, to be lower than

the low pass cutoff of 500 Hz in the original digital filtering to avoid any potential artifacts.

The seven frequency bands corresponded to: δ (0.3 – 5 Hz), θ-α (5 – 15 Hz), β (15 – 30 Hz),

γ1 (30 – 50 Hz), γ2 (50 – 100 Hz), γ3 (100 – 200 Hz) and bhfLFP (200 – 400 Hz).

D. Mutual information

We compared the information content about kinematics in each of the seven frequency

bands by computing the mutual information between a single kinematic variable (e.g. hand

position in one coordinate) and the integrated power in a given frequency band in a single

LFP channel. The power spectrum was computed for windows of 250 ms immediately

preceding the corresponding kinematic state, with the exception when computing power for

the δ band (0.3 – 5 Hz), where a 350 ms time window was chosen instead to improve

sampling at this low frequency band. Therefore, for the mutual information analyses, as well

as for decoding, the windows overlapped in time. Mutual information was computed as [24]

(2)

where Pi,f denotes the integrated power in a given frequency band f for channel i, K denotes

the kinematics in one single coordinate (e.g. hand x-velocity or grasp aperture), and H (·)

and H (·,·) are the marginal and joint Shannon entropies, respectively. The plug-in method

[24] was used to estimate the mutual information, i.e. marginal and joint probability

distributions were derived from the empirical histograms. We tried different quantizations of

the normalized kinematic variables and normalized integrated LFP-power by partitioning the

range of these variables into different number of subintervals (20, 40, 100 and 150 for

kinematic and 20, 40, 100 for power). Our results did not qualitatively change with different

choices of quantization. In this paper, we focus on the relative differences in mutual

information across different bands, rather than on the absolute magnitudes.

E. Decoding of reach and grasp kinematics

We decoded each kinematic variable separately and based on power in a single frequency

band at a time. These kinematic variables corresponded to: (a) hand position and hand
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velocity in the 3-D Cartesian space with x, y and z denoting horizontal (left-right),

horizontal (back-front) and vertical coordinate, respectively; and (b) grasp aperture and

aperture velocity. A linear Gaussian state-space model (Kalman filter) was employed to

decode reach and grasp kinematics from LFP observations. The state-space model was given

by

(3)

where xk is a given (mean subtracted) kinematics state (here horizontal hand position for

concreteness) and k indexes discrete time (50 ms time-steps); Pi,k corresponds to the

integrated power for the ith LFP channel in a chosen single frequency band and computed in

a time window (e.g. 250 ms) immediately preceding the kinematic state (as in the mutual

information analysis, a larger time window was used for the δ band); A and H are the state

and observation matrices, respectively, and εk ~ (0,Q) and ηk ~ (0,W) are the state and

observation Gaussian noise, respectively, with covariance matrices Q and W. Parameters in

the state-space model and Kalman filter solutions were estimated and computed according to

[25].

F. Assessment of decoding performance

Decoding analyses were performed under a 12-fold cross-validation scheme. To evaluate the

decoding performance for continuous reach and grasp kinematics, we report both the

Coefficient of Correlation (CC) and Root Mean Square Error (RMSE). The CC was defined

here as the maximum of the normalized cross-correlation function between the actual and

decoded kinematics, computed for a range of time lags. The cross-correlation at each time

lag was defined as the Pearson correlation coefficient. RMSE values for velocity decoding

were restricted to velocities within the 95% confidence interval of the entire data, to

minimize the contribution of outliers due to the ‘noise’ in the computation of velocity. We

prefer the CC and RMSE, instead of the coefficient of determination (r2), because we are

interested in more informative quantities about shape similarity (CC) and mean distance

(RMSE) rather than simply the amount of explained variance (r2). (As a simple example,

consider two exactly equal sinusoidal signals, except that one is a scaled version of the

other. The coefficient of determination goes to zero as the scaling diverges from 1, while the

Pearson correlation coefficient is always 1, providing thus a measure of shape similarity.)

We also estimated the chance level CC for the Kalman filter performance. The state matrix

in the Kalman filter model already incorporates knowledge about temporal correlations in

hand kinematics and aperture. This by itself could potentially lead to significant CCs even in

the case of non-informative LFP features. A phase-randomization approach was used to

estimate the CC’s chance level. We randomized the phases of the FFT of each Pi,k sequence.

An inverse FFT was then used to obtain a time domain phase-randomized sequence. This

sequence had the same autocorrelation function (power spectrum) as the original sequence,

but had its time relationship to the kinematics randomized. State-space parameters and the

solutions of the Kalman filter were estimated as before. Chance level CCs were computed

under a 12-fold cross-validation scheme.

G. Selection of an optimal LFP-channel subset

We attempted to identify which LFP channel and channel subsets provided best decoding.

An exhaustive search of best LFP-channel subsets for decoding was not computationally

feasible in our case. Instead, we used a greedy selection algorithm to find the optimal subset
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out of 47 (monkey C) or 96 (monkey G) channels. The optimal subset was the subset that

gave the best decoding performance measured in terms of the CC between actual and

decoded kinematics as defined above. This greedy (forward) selection algorithm consisted

of choosing first the best one-channel subset, then the best two-channel subset that included

the best found one-channel, and so forth for n-channel subsets.

III. Results

The reach and grasp task resulted in a wide range of reaches to targets broadly distributed

across the natural workspace. Distributions of these kinematic variables and other details of

the task are shown in Fig. 1. When opening or closing their hands, monkeys tended to move

the four fingers opposite to the thumb in the same manner. Therefore, the aperture variable,

given this large amount of redundancy in finger movement, captured most of the variability

of grasping motion. The range, mean and standard deviation of all kinematic variables are

presented in Table I.

A. Information about reaching and grasping movements in LFP power spectrum features

We examined the variability of the single-channel LFP power in different frequencies during

these reaching and grasping movements. In this case, power was based on spectrograms

computed on 250 ms nonoverlapping time windows (see Methods).

The coefficient of variation (CV) was used to assess the variability of the power in each

band across the entire experimental session. Since the CV normalizes the standard deviation

of a variable by its mean, the CV allowed us to assess power variability across the session

while taking into account the large power differences between low and higher frequencies.

(These large differences reflected an approximately power-law scaling of power with

frequency.) In addition to high CVs at low frequencies (< 50Hz), we observed large CVs for

power in a broad high-frequency band for both monkeys (Fig. 2b, d). For most channels, the

CV in this broadband peaked around 300 Hz. Exceptions included cases where the CV

spectrum showed increasing CVs, but no defined peaks, or cases were the CV spectrum was

flat at these higher frequencies. The latter cases were found even in channels in which well

isolated single unit activity was present, indicating that these properties were not related to

unusual characteristics of the electrode.

Although variability is a requirement for LFP power to convey information about

kinematics, the observed high CVs for certain frequency bands could simply reflect intrinsic

variability of neural processes unrelated to reaching and grasping movements. We therefore

assessed the information content about kinematics, for integrated LFP power in each of the 7

different frequency bands, by computing the mutual information (see Methods). Power was

computed from a 250 ms time window immediately preceding the kinematics variables, and

kinematics were sampled every 50 ms. (For this reason, time windows partially overlapped

in time.) The integrated power in each frequency band is, henceforth, simply referred to as

the spectral power in a given band. We note that our selection of a 200 – 400 Hz band was

motivated by the combination of three main factors: previous studies have indicated that this

high frequency (> 200 Hz) band is likely to also contain multiunit activity [14], [26], in

addition to other commonly considered sources of field potentials; the observed high CVs

for frequencies in this band in the current data; and, as mentioned in the Methods section,

the fact that our maximum frequency was limited by the low pass filtering (500 Hz cutoff) in

the original recorded data. To avoid filtering artifacts close to the cutoff frequency, we set

the boundary of bhfLFP band to 400 Hz. Thus, the upper limit of this band may be

artificially bounded by signal processing.
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Power in γ and bhfLFP bands tended to show the highest mutual information for all of the

kinematic variables (hand position and velocity, and grasp aperture) in both monkeys (Fig.

2e, f). This result was qualitatively insensitive to the choice of bin sizes in the computation

of histogram used in the estimation of marginal and joint distributions (see Methods for

details). Despite this similarity between the two monkeys’ datasets, mutual information

increased with frequency in monkey C, while this relationship was not monotonic (a U-

shaped pattern) for monkey G. The finding of highest mutual information between

kinematics and bhfLFPs suggests that at least some of the variation in the bhfLFPs (Fig.

2b,d) was related to reach and grasp kinematics, and that this band could potentially be a

better source to decode upper limb kinematics compared to other low frequency bands that

have been previously examined.

B. Decoding 3-D hand endpoint kinematics from LFPs

Decoding provides additional means to evaluate the information available in power

fluctuations in different LFP frequency bands. A linear Gaussian state-space model (Kalman

filter) was used to decode a single kinematic variable at a time from observations consisting

of LFP power in a single frequency band in multiple channels. All decoding analyses and

results described below are based on decoding under a 12-fold cross-validation scheme. A

greedy algorithm was employed to select the channel subset (out of 47 or 96 channels, for

monkeys C and G, respectively) that achieved the best decoding performance based on a CC

criterion (see Methods).

Based on the mutual information results, we start by focusing our analysis on decoding

bhfLFPs. 3-D reach kinematics could be decoded with substantial accuracy. This was

suggested by the strength of the CC and low RMSE values, as well as by the visual

inspection of plots of reconstructed trajectory paths (Fig. 3). Table II summarizes the

analysis of decoding performance including hand position and velocity. Overall, decoding of

hand position was better than velocity, with z-coordinate (against gravity) providing the best

decoding in both monkeys. A chance level decoding performance was obtained via phase

randomization (see Methods). Fig. 3c shows a single ‘chance level’ decoded trajectory

example for vertical position (monkey C). In this case, the 99.9% confidence interval for the

chance level CC corresponded to [0.08 – 0.18], while the CC based on the actual bhfLFP

power was 0.73 (17-channel best subset). The largest upper limit of the 99.9% confidence

intervals for chance level CC (including all variables, monkeys and sessions) was about 0.2,

which is much lower than the obtained CCs in the actual decoding results (Table II). Similar

statistical significance results were obtained for the RMSE. These results show that

information in the bhfLFP power was the main contributor to decoding performance, rather

than prior knowledge about a kinematic variable’s temporal correlation structure

incorporated in the Kalman filter state transition matrix. Accuracy of hand position decoding

was also substantial when considering reconstruction of full 3-D hand trajectories, as

demonstrated in Fig. 4. In sum, these results reveal that the bhfLFP power provides

substantial information for the decoding of kinematics of 3-D reaching movements.

In many cases, best channel subsets contained a much smaller number of channels than the

full recorded set (Table II). We did not observe any spatial pattern in the location of these

best channel subsets on the microelectrode array. Impedances of selected channels varied

broadly in the range of a few hundred K Ohms to about 2M Ohms. Furthermore, the

improvement in the CC with the addition of new LFP channels was relatively small,

especially for vertical position (Fig. 3d). For example, decoded vertical hand positions based

on the best single channel and best channel subset were very similar (Fig. 5a). This small

gain in decoding performance could be due to redundancy in information about kinematics

across different LFP channels. In addition, this observation could potentially mean that the

choice of channel matters little for decoding. To test this possibility, we computed the CC
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and RMSE for the decoded kinematics from each single channel in the 47 (96) channels

from monkey C (G). As seen in Fig. 5b, the CCs and RMSEs varied broadly: for example

the CC corresponding to vertical position in monkey C could reach values smaller than 0.1,

a value within the chance level decoding as described above. Therefore, it matters which

channels are selected. We also compared decoding performances based on power computed

from different time window lengths (50, 100, 250 and 500 ms) and frequency bands (Fig. 5c

and 6). Based on CC and RMSE, longer window seemed to provide slightly better decoding

performance. CC and RMSE values for monkey C corresponded to: 0.68 and 11.1% (50

ms), 0.68 and 11.4% (100 ms), 0.73 and 11.2% (250 ms), and 0.74 and 11.3% (500 ms),

respectively; and for monkey G: 0.45 and 12.2% (50 ms), 0.62 and 6.0% (100 ms), 0.67 and

12.0% (250 ms), and 0.69 and 12.1% (500 ms), respectively.

We examined how the decoding performance based on bhfLFP compared to decoding

performances based on the other frequency bands. Decoding examples of vertical hand

position based on each of the 7 frequency bands selected here are shown in Fig. 6. We chose

vertical hand position as the reference since that was the best decoded kinematic variable

based on the bhfLFPs. Similar results were obtained for decoding of horizontal hand

positions (x, y). Consistent with our mutual information analysis, decoding based on power

in the bhfLFPs achieved the best performance (Table III). Nevertheless, decoding

performance based on power in other high-frequency bands, such as γ2 (50 – 100 Hz) and γ3
(100 – 200 Hz), was also substantial.

C. Decoding grasp aperture from LFPs

Beyond decoding hand 3-D endpoint kinematics during reaching movements, we also

investigated whether features of grasping could be reconstructed based on LFP power in

these different frequency bands. The same state-space decoding approach used above was

applied to decode grasp aperture and aperture velocity. Although with smaller accuracy in

comparison with hand position decoding, the decoded grasp aperture and aperture velocity,

based on bhfLFP power, still captured most of the qualitative features of the actual

trajectories (Fig. 7).

Summary statistics regarding decoding performance (CC, RMSE) are given in Table II.

Qualitatively similar results to hand position decoding were also obtained when considering

single versus multi-channel decoding (not shown), different time window lengths for power

spectrum estimation (not shown), variation in CC and RMSE obtained from single channel

decoding (Fig. 8), and different frequency bands (Table III). Overall our findings suggest

that substantial information about grasp aperture is also available in LFP power in high-

frequency bands and that this neural signal can potentially provide an important signal for

grasp control in cortico-motor prostheses.

IV. Discussion

Intracortical recordings provide a variety of signals generated by neural processes occurring

at different spatial and temporal scales. These include single unit activity, multiunit activity

and low and high frequency local field potentials. The encoding and decoding properties of

these signals, and their application in neuromotor prostheses, is an important and recent

topic of research in neuroscience and neural engineering. Here, we have demonstrated that

intracortical field potentials recorded from primary motor cortex carry significant

information about 3-D reach and grasp kinematics in able-bodied monkeys. Among the

studied frequency bands, power in high γ and bhfLFP bands yielded the highest mutual

information. Importantly, 3-D hand position and grasp aperture could be decoded with

substantial accuracy from the power in these high-frequency bands. Neural decoding of

kinematics based on the bhfLFP band outperformed decoding based on other, commonly
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defined, LFP frequency bands. Compared with SUA-based decoding performance on the

same datasets [27], bhfLFP decoding performance is lower but close to that based on SUA.

Overall, our findings indicate that high frequency LFP activity can potentially provide a

useful neural control signal for applications in neural interfaces that aim at restoring

movement in humans with tetraplegia or other motor disorders.

In a recent study, [15] explored decoding of 2-D hand position from different frequency

bands in the range of 1 Hz – 6K Hz in human ECoGs. Similar to our findings, better

decoding performance was obtained for a high-frequency band (300 Hz – 6K Hz). In

contrast, computed average correlation coefficients [15, Table 1], as well differences across

bands, were smaller than the ones obtained in our study. However, a direct comparison of

these two signal sources (ECoGs vs. intracortical recordings) is difficult in this case due to

additional differences in tasks and decoded kinematics (2-D vs. free 3-D reach and grasp as

done here), and differences in signal processing and decoding algorithms.

Previous studies [26], [28], [29], [30] suggest that fluctuations in > 200 Hz LFPs observed in

our study are likely to reflect multiunit activity and possibly spike after potentials, rather

than potentials related to transmembrane currents directly produced by synaptic inputs. In

particular, [14] defined MUA by a series of processing steps that result in a signal similar to

a smoothed version of power fluctuations in bhfLFPs. In that case, band-pass filtering (300

Hz – 6K Hz) of recorded potentials was followed by the clipping of potentials smaller or

larger than the mean ±2SD, therefore largely attenuating the contribution of both SUA and

thresholded but unsorted spikes. The resulting potentials were then squared and lowpass

filtered, resulting in a signal similar to smoothed bhfLFPs. Interestingly, [14] found that the

MUA signal defined in this way provided better decoding of 2-D velocities than either

sorted single-unit spikes or unsorted spikes. Their finding seems to indicate that, once the

contribution of neurons very close to the electrode tip are attenuated, the resulting high-

frequency broadband signal better represents the activity of a larger cluster of functionally

related neurons and therefore achieve higher signal-to-noise ratio. Although we believe

power in high-frequency LFPs in our study might share similar features with MUA as

defined in [14], our data cannot (because of the original lowpass filtering at 500 Hz)

distinguish the relative contribution of various types of potentials to power in high-

frequency LFP bands [28], [29]. We hope to address this problem with new recordings and

analyses in a future study. Regardless of the underlying sources, our results indicate that

power in high-frequency LFPs (γ and bhfLFPs) provides control signals that carry

significant information for the decoding of free 3-D reaching and grasping movements and

are easy to obtain. For example, a simpler implementation (without the need of FFTs) that

would allow for low power consumption and little on board signal processing, important for

miniaturized wireless neural interfaces [31], [32], could consist of analog bandpass filtering

of recorded potentials followed by averaging (analog lowpass filtering) of squared values.

It remains an open question how the stability of both recording and tuning properties of

high-frequency LFPs compare to that of SUA. If, despite the lowpass filtering used here, the

activity in these bands still primarily reflects spiking of large units near the tip of the

electrode, we would expect this activity to have similar recording and tuning stability as that

of SUA. According to several studies, a subset of isolated single units can be stably recorded

over weeks even several months after array implantation [33], [34]. Using the same type of

microelectrode array as the one used here, Dickey et al. [34] reported that 57% (43%) of the

original units in their study remained stable over a period of 7 (10) days. On the other hand,

if these bands reflect primarily MUA as defined in [14], we would expect their recording to

be stable over longer periods. However, even in this case, the issue of how fast the tuning

properties of activities in high-frequency LFPs change with time remains open. We also note

that, because nonstationarities in the brain are likely to happen at many different spatial and
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temporal scales, the issue of tuning stability and the need for adaptive decoders in neural

prostheses is unlikely to be restricted to a particular type of neural signal, but should be

common to all types (SUA, MUA, slow and fast LFPs, ECoGs, EEGs, etc.).

Our analyses show that the decoding performance can be significantly affected by the choice

of channel in the microelectrode array in either single or multichannel decoding. Therefore,

the development of computationally efficient algorithms for channel selection will also be

an important issue for real-time applications. Further, we also note that LFP features in time

domain, involving slow and motor related potentials, might also carry significant

information about 3-D reach and grasp kinematics. The ability to decode kinematics based

on power in the δ band supports this possibility, consistent with previous findings in LFPs

[10] and ECoGs [19]. LFP decoding algorithms based on mixed time and frequency domain

as well as multiple (low and high frequency) bands are therefore also an important topic for

future studies.

We believe high-frequency local field potentials will be important for functional electrical

stimulation systems [35], and prosthetic or robotic arms [36], since this signal carries

enough information to specify hand endpoint position and grasp aperture. Also, one might

expect that real-time closed-loop control based on these signals might achieve higher

performance than that demonstrated here. Our assessment of decoding performance was

based on off-line analyses, i.e. without feedback correction. In real-time closed-loop

applications, the user will actively correct for errors and, therefore, potentially achieve

higher decoding performance than suggested by our offline analyses.
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Fig. 1.

Free reaching and grasping task. (a) Monkeys reached and grasped moving objects in a 3-D

workspace. A motion capture system recorded the hand endpoint position (measured at the

wrist) and the positions of the tip of the thumb and index fingers (see markers). Grasp

aperture was defined as the distance between these two fingers tips. (b) Distribution of hand

endpoint positions in the 3-D space over the whole session time. (c,d,e) Projection of hand

endpoint trajectories on 2-D subspaces. Marginal distributions of hand position, obtained

during one entire experimental session, are shown along each axis. (f) Histogram of grasp

aperture over the session time. (Data from monkey C, session 1. Session 2 showed

qualitatively similar statistics.)
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Fig. 2.

LFP spectrogram, CV, and mutual information. (a) The spectrogram of a single LFP channel

from monkey C shows variations in spectral power across time in various frequency bands.

Color bars show spectral power in dB. (b) The CV of the power at each frequency was

computed across the experimental session (based on the spectrogram in (a)). High variability

is observed for very low frequencies (<50 Hz) and for a broad high-frequency (200 – 400

Hz) band. (c, d) Same as in (a) and (b), but for monkey G. (e, f) To examine whether power

variability was related to hand kinematics during reaching and grasping movements, we

computed the mutual information between each kinematic variable and the integrated power

in each of 7 non-overlapping frequency bands. For both monkeys, power in high γ and

bhfLFPs achieved the highest mutual information regardless of the kinematic variable.

Colored bars represent the 95% interval for mutual information values computed over the

ensemble of 47 (monkey C) or 96 (monkey G) channels. The black square gives the median

and the top/bottom triangles the extremum values. Results refer to session 1. Results from

the same analyses on datasets from session 2 were consistent with those shown in this

figure.
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Fig. 3.

Kalman filter decoding of hand kinematics based on power in bhfLFPs. (a,b) For

illustration, we show the actual (black) and decoded (red) vertical hand position (z) and

corresponding velocities. (Kinematics have been normalized; see Methods.) These sample

segments (computed on test data; 12-fold cross-validation) demonstrate the ability to recover

kinematics with significant accuracy from bhfLFP power. (c) For comparison, these two

plots show a sample trajectory (blue) obtained from a ‘chance level’ Kalman filter decoder

for session 1 of each monkey. In this case, a phase randomization approach was used to

obtain surrogate data (see Methods). As can be seen, the good decoding performance (red

curves) depended primarily on the information about kinematics carried by the bhfLFP

power, not the prior knowledge incorporated in the Kalman filter’s state transition matrix.

(d) Performance of vertical hand position (z) decoding, based on the CC and RMSE (in

percent), varied slightly with the number of channels in a best selected channel subset. This

finding was common also for all the other kinematic variables. Best channel subsets were

identified based on a greedy selection algorithm applied to test data (see Methods). For

example, the best channel subset for vertical position (monkey C) included 17 channels.

Larger subsets tended to decrease CC performance in this case. Because this greedy

selection algorithm optimized only the CC value, addition of new channels could actually

increase the RMSE for certain subsets of intermediate size. For larger subset sizes (e.g.

>15), changes in RMSEs were consistent with the increase in CC. (Examples are from

session 1. See Table II for summary across sessions.)
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Fig. 4.

3-D hand position reconstruction based on Kalman filter decoding. (a)A single selected

sample segment (~2 s, decoded on test data) from monkey C (session 1) illustrates the

effectiveness of bhfLFP power decoding. Position in each coordinate was decoded

separately via a Kalman filter. (b) The 3 plots show two-dimensional projections of the

actual (black) and decoded (red) trajectories in (a). (c) Five different segments provide

additional illustration of 3-D hand position reconstruction. All these sample segments were

extracted from a much longer continuously decoded segment. (e,f,g) Same as in a, b and c,

but for monkey G (session 1). (Kinematics have been normalized. See Table II for summary

across sessions).
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Fig. 5.

Decoding performance of vertical hand position (z) based on single versus multichannel

bhfLFP power, and dependence on time window length. (a) A sample segment (session 1) of

decoded vertical hand position based on bhfLFP power is shown. Best channel subsets

consisted of 17 and 20 channels for monkeys C and G, respectively. (b) Histograms for CC

and RMSE (in %) summarize the decoding performance for vertical hand position based on

each of the recorded single LFP channels. CC and RMSE could vary considerably

depending on the choice of channel. (c) Sample segments of vertical position decoding

based on different time window lengths. Kinematics have been normalized.
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Fig. 6.

Vertical hand position (z) decoding based on different frequency bands. Each plot shows an

example of Kalman filter z-decoding (green curve) based on LFP power observations

computed in a different frequency band (δ, θ, β, γ1, γ2 and γ3). For comparison, grey and

light red curves show the actual and the decoded position based on bhfLFPs (200–400 Hz),

respectively. Examples refer to session 1. (See Table III for summary including results for

both monkeys and sessions.)

Zhuang et al. Page 20

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 March 7.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 7.

Kalman filter decoding of grasp aperture and aperture velocity based on bhfLFP power

observations. Sample segments (session 1), decoded from test data, are shown for each

monkey. Grasp aperture kinematics have been normalized. (See Table II for summary

including results for both sessions.)
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Fig. 8.

Grasp aperture: single channel LFP decoding. Grasp aperture was decoded via Kalman filter

based on bhfLFP power observations from a single channel. The performances based on the

individual decoding of each of 47 and 96 channels, for monkeys C and G, session 1, are

summarized by the histograms. CCs and RMSEs varied broadly, emphasizing the

importance of single channel selection.
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TABLE I

Statistics of 3-D Reach and Grasp kinematics

Kinematics Mean ± SD Max Min

x −6.2 ± 4.8
−7.4 ± 6.5

6.4
9.6

−20.7
−24.9

y 14.2 ± 2.5
7.7 ± 2.6

27.9
42.9

6.3
0.6

z 7.0 ± 3.3
6.0 ± 5.4

27.4
25.5

1.4
−4.7

x-velocity 0.0 ± 10.5
−0.1 ± 18.7

54.1
140.6

−58.9
−105.1

y-velocity 0.0 ± 7.6
0.0 ± 11.8

40.4
270.7

−49.7
−311.7

z-velocity 0.0 ± 12.1
0.0 ± 21.0

83.1
123.0

−70.0
−184.5

aperture 4.2 ± 1.0
4.1 ± 1.1

6.2
8.7

0.9
0.9

aperture velocity 0.0 ± 4.9
0.0 ± 8.6

29.4
35.9

−36.4
−36.9

Numbers in the top and bottom row of each cell in the table correspond to values obtained from experimental session 1 for monkeys C and G,

respectively. Positions are given in cm and velocities in cm/second. (The second sessions showed qualitatively similar statistics.)
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