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Abstract The ability of light gathering of plenoptic

camera opens up new opportunities for a wide range

of computer vision applications. An efficient and

accurate method to calibrate plenoptic camera is

crucial for its development. This paper describes a 10-

intrinsic-parameter model for focused plenoptic camera

with misalignment. By exploiting the relationship

between the raw image features and the depth–scale

information in the scene, we propose to estimate

the intrinsic parameters from raw images directly,

with a parallel biplanar board which provides depth

prior. The proposed method enables an accurate

decoding of light field on both angular and positional

information, and guarantees a unique solution for the 10

intrinsic parameters in geometry. Experiments on both

simulation and real scene data validate the performance

of the proposed calibration method.

Keywords calibration; focused plenoptic camera;

depth prior; intrinsic parameters

1 Introduction

The light field cameras, including plenoptic camera

designed by Ng [1, 2] and focused plenoptic camera

designed by Georgiev [3–5], capture both angular

and spatial information of rays in space. With the

micro-lens array between image sensor and main

lens, the rays from the same point in the scene fall on

different locations of image sensor. With a particular

camera model, the 2D raw image can be decoded

into a 4D light field [6, 7], which allows applications

on refocusing, multiview imaging, depth estimation,

and so on [1, 8–10]. To support the applications, an
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accurate calibration method for light field camera is

necessary.

Prior work in this area has dealt with the

calibration of plenoptic camera and focused

plenoptic camera by projecting images into the 3D

world, but their camera models are still improvable.

These methods make an assumption that the

geometric center of micro-lens image lies on the

optical axis of its corresponding micro-lens, and do

not consider the constraints on the high-dimensional

features of light fields. In this paper, we concentrate

on the focused plenoptic camera and analyze the

variance and invariance between the distribution

of rays inside the camera and in real world scene,

namely the relationship between the raw image

features and the depth–scale information. We fully

take into account the misalignment of the micro-lens

array, and propose a 10-intrinsic-parameter light

field camera model to relate the raw image and

4D light fields by ray tracing. Furthermore, to

improve calibration accuracy, instead of a single-

planar board, we design a parallel biplanar board

to provide depth and scale priors. The method is

verified on simulated data and a physical focused

plenoptic camera. The effects of rendered images on

different intrinsic parameters are compared.

In summary, our main contributions are listed as

follows:

(1) A full light field camera model taking into

account the geometric relationship between the

center of micro-lens image and the optical center of

micro-lens, which is ignored in most literature.

(2) A loop-locked algorithm which is capable of

exploiting the 3D scene prior for estimating the

intrinsic parameters in one shoot with good stability

and low computational complexity.

The remainder of this paper is organized as

follows. Section 2 summarizes related work on
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light field camera models, decoding and calibration

methods. Section 3 describes the ideal model

for a traditional camera or a focused plenoptic

camera, and presents three theorems we utilize

for intrinsic parameter estimation. In Section 4,

we propose a more complete model for a focused

plenoptic camera. Section 5 presents our calibration

algorithm. In Section 6, we evaluate our method on

both simulation and real data. Finally, Section 7

concludes with summary and future work.

2 Related work

A light field camera captures light field in a single

exposure. The 4D light field data is rearranged on

a 2D image sensor in accordance with the optical

design. Moreover, the distribution of raw image

depends on the relative position of the focused point

inside the camera and the optical center of the micro-

lens, as shown in Fig. 1. Figure 1(a) shows the design

of Ng’s plenoptic camera, where the micro-lens array

is on the image plane of the main lens and the rays

from the focused point almost fall on the same micro-

lens image. Figure 1(b) and Fig. 1(c) show the design

of Georgiev’s focused plenoptic camera with a micro-

lens array focused on the image plane of main lens,

(a) Plenoptic camera

(b) Focused plenoptic camera in telescopic case

(c) Focused plenoptic camera in binocular case

Fig. 1 Different designs of light field camera and raw images that

consist of many micro-lens images closely packed.

and the rays from the focused point fall on different

micro-lenses.

Decoding light field is equivalent to computing

multiview images in two perpendicular directions.

Multiview images are reorganized by selecting a

contiguous set of pixels from each micro-lens image,

for example, one pixel for plenoptic camera [2]

and a patch for focused plenoptic camera [3, 10]

However, for a focused plenoptic camera, the patch

size influences the focus depth of the rendered image.

Such decoding method causes discontinuity on out-

of-focus area and results in artifact of aliasing.

For decoding a 2D raw image to a 4D light field

representation, a common assumption is made that

the center of each micro-lens image lies on the optical

axis of its corresponding micro-lens [7, 11, 12] in

ideal circumstances. Perwaß et al. [7] synthesized

refocused images on different depths by searching

pixels from multiple micro-lens images. Georgiev et

al. [13] decoded into light field using ray transfer

matrix analysis. Based on this assumption, the

deviation in the ray’s original direction has little

effect on rendering a traditional image. However, the

directions of decoded rays are crucial for an accurate

estimation of camera intrinsic parameters, which is

particularly important for absolute depth estimation

[14] or light field reparameterization for cameras in

different poses [15].

The calibration of a physical light field camera

aims to decode rays more accurately. Several

methods are proposed for the plenoptic camera.

Dansereau et al. [6] presented a 15-parameter

plenoptic camera model to relate pixels to rays

in 3D space, which provides theoretical support

for light field panorama [15]. The parameters are

initialized using traditional camera calibration

techniques. Bok et al. [16] formulated a geometric

projection model to estimate intrinsic and extrinsic

parameters by utilizing raw images directly,

including analytical solution and non-linear

optimization. Thomason et al. [17] concentrated

on the misalignment of the micro-lens array and

estimated its position and orientation. In this

work, the directions of rays may deviate due to

an inaccurate solution of the installation distances

among main lens, micro-lens array, and image

sensor. On the other hand, Johannsen et al. [12]

estimated the intrinsic and extrinsic parameters
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for a focused plenoptic camera by reconstructing

a grid pattern from the raw image directly. The

depth distortion caused by main lens was taken into

account in their method. More importantly, expect

for Ref. [17], these methods do not consider the

deviation of the image center or the optical center

for each micro-lens, which tends to cause inaccuracy

in decoded light field.

3 The world in camera

The distribution of rays refracted by a camera

lens is different from the original light field. In

this section, we first discuss the corresponding

relationship between the points in the scene and

inside the camera modelled as a thin lens. Then we

analyze the invariance in an ideal focused plenoptic

camera, based on a thin lens and a pinhole model

for the main lens and micro-lens respectively.

Finally we conclude the relationship between the

raw image features and the depth–scale information

in the scene. Our analysis is conducted in the

non-homogeneous coordinate system.

3.1 Thin lens model

As shown in Fig. 2, the rays emitted from the scene

point (xobj, yobj, zobj)
T in different directions are

refracted through the lens aperture and brought to

a single convergence point (xin, yin, zin)T if zobj > F ,

where F denotes the focal length of the thin lens.

The relationship between the two points is described

as follows:
1

|zobj|
+

1

|zin|
=

1

F
(1)







xin

yin
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Fig. 2 Thin lens model.

coordinates of the two points changes with zobj.

Furthermore, there is a projective relationship

between the coordinates inside and outside the

camera. For example, as shown in Fig. 3, the objects

with the same size in different depths in the scene

correspond to the objects with different sizes inside

the camera. The relationship can be described as

T 2

S1S2
=

a1 − a2

b1 − b2
(3)

where the focal length F satisfies:

F =
b2S1 − b1S2

S1 − S2
(4)

3.2 Ideal focused plenoptic camera model

As shown in Fig. 1, there are two optical designs of

the focused cameras. In this paper, we only consider

the design in Fig. 1(b). The case in Fig. 1(c) is

similar to the former, only with the difference in the

relative position of the focus point and the optical

center of the micro-lens.

In this section, the main lens and the micro-lens

array are described by a thin lens and a pinhole

model respectively. As shown in Fig. 4, the main

lens, the micro-lens array, and the image sensor are

parallel to each other and all perpendicular to the

optical axis. The optical center of the main lens lies

on the optical axis.

Let dimg and dlens be the distance between

two geometric centers of arbitrary adjacent micro-

lens images and the diameter of the micro-lens

respectively, as shown in Fig. 4(a). The ratio between

them is
dlens

dimg
=

L

L + l
(5)

where L and l are the distances among the main

lens, the micro-lens array, and the image sensor

respectively. We can find that the ratio L/l is

T
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Fig. 3 Two objects with the same size of T in the scene at different

depths focus inside a camera with focal length F .
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perpendicular to axis Z

Fig. 4 Ideal focused plenoptic camera in telescopic case.

dependent on the raw image and the diameter of

micro-lens, which is useful for our calibration model

in Section 5. Moreover, there is a deviation between

the optical center of micro-lens and the geometric

center of its image, and dimg is constant in the same

plenoptic camera.

Let dlens, scene and dimg, scene be the size of micro-

lens and its image refracted through the main lens

into the scene respectively (Fig. 4(b)), combining

Eqs. (2) and (5), the ratio between them satisfies:

α =
dlens, scene

dimg, scene
=

L2 + lL − LF

L2 + lL − LF − lF
6= 1 (6)

Equation (6) shows that though the rays are

refracted through the main lens, the deviation

between the geometric center of micro-lens image

and the optical center of micro-lens still can not be

ignored. The effect of deviations on the rendered

images will be demonstrated and discussed in

experiment.

In Fig. 4(b), A′ and B′ are the focus points of two

scene points A and B respectively. The rays emitted

from every focus point fall on multiple micro-lens

and focus on the image sensor, resulting in multiple

images A′

i and B′

i. The distance between sensor

points A′

i and A′

i+1 is computed:

dA′ =
∣

∣

∣x′

Ai
− x′

Ai+1

∣

∣

∣ = dlens
LA′ + l

LA′

(7)

where LA′ is the distance between focus point A′

and the micro-lens array, and |·| denotes the absolute

operator. Equation (7) indicates that the distance

between arbitrary two adjacent sensor points of the

same focus point inside the camera is only dependent

on intrinsic parameters. Once the raw image is shot

(thus dA′ is determined), LA′ is only dependent on

l and dlens. According to triangle similarity, we can

get the coordinate of the focus point:

xA′ = xlens,A′

i
−

LA′

l

(

xA′

i
− xlens,A′

i

)

(8)

Based on Eq. (7), we can simplify Eq. (8) as

xA′ =
dA′

dA′ − dlens
xlens,A′

i
−

dlens

dA′ − dlens
xA′

i
(9)

According to Eq. (9), once a raw image is shot

(thus d′

A and xA′ are determined) and dlens is

given, xA′ and yA′ can be calculated and they

are independent on other intrinsic parameters.

Furthermore, the length of AB can be calculated

using only the raw image and dlens.

Imaging that there are two objects with equal size

in the scene, as shown in Fig. 3, the distance between

the focus point and the micro-lens array can be

calculated via Eq. (7). Replacing b1 and b2 in Eq.

(4) and simplifying via Eqs. (5) and (7), we get the

relationship:

F = L −
S1LI′

2
− S2LI′

1

S1 − S2
(10)

where S1, S2, LI′

1
, and LI′

2
are dependent on

only three factors, including the raw image, dlens,

and l. Equation (10) shows that the value of F

can be calculated uniquely once the other intrinsic

parameters are determined.

In the same manner, Eq. (3) can be simplified as

T =
b2S1 − b1S2

b1 − b2
(11)

From Eq. (11), the size of an object in the scene

is independent on l. The size of an object which we

reconstruct from the raw image can not be taken as

a cost function to constrain l.

In summary, given the coordinates of micro-lens

and the raw image, three theorems can be concluded

as follows:
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(1) The size of a reconstructed object inside the

camera and its distance to the micro-lens array are

constant (Eq. (9)).

(2) The unique F can be determined by the prior

of the scene (Eq. (10)).

(3) The size of the reconstructed object in the

scene is constant with changing L (Eq. (11)).

4 Micro-lens-based camera model

In this section we present a more complete model

for a focused plenoptic camera with misalignment

of the micro-lens array [17], which is capable of

decoding more accurate light field. There are 10

intrinsic parameters totally to be presented in

this section, including the distance between the

main lens and the micro-lens array, L, the distance

between the micro-lens array and the image sensor,

l, the misalignment of micro-lens array, xm, ym,

(θ, β, γ), the focal length of the main lens, F , and

the shift of image coordinate, (u0, v0).

4.1 Distribution of micro-lens image

As shown in Fig. 5(a), every micro-lens with its

unique coordinate (xi, yi, 0)T is tangent with each

other. In addition, (xi, yi, 0)T is only dependent on

dlens. To simplify the discussion, we assume the

layout of the micro-lens array is square-like. For

hexagon-like configuration, it is easy to partition

the whole array into two square-like ones. With the

transformation shown in Fig. 5(b), the coordinate of

the optical center of the micro-lens is represented as






xc

yc

zc






= R







xi

yi

0






+ t (12)

where t = (xm, ym, L)T and R is the rotation matrix

with three degrees of freedom, i.e., the rotations

(θ, β, γ) about three coordinate axes, which are

similar to the traditional camera calibration model

[18].

Although the main lens and the image sensor

are parallel, the case between the micro-lens array

and the image sensor is not similar (Fig. 5(c)).

Each geometric center of the micro-lens image is

represented as






x′

c

y′

c

L + l
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


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L + l
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
(13)
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Fig. 5 The coordinate system of a focused plenoptic camera.

4.2 Projections from the raw image

Once the coordinate of a micro-lens’s optical center

(xc, yc, xc)T and its image point (ximg, yimg, L + l)T

are calculated, we can get a unique ray ri represented

as

ri =







xc

yc

zc






+ti













xc

yc

zc






−







ximg

yimg

L + l












, ti ∈ R

(14)
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As shown in Fig. 4(b), the multiple images

{(xA′

i
, yA′

i
)T|i = 1, · · · , n} on the image sensor from

the same focus point A′ can be located if a proper

pattern is shot, such as a grid-array pattern [12].

Thus the multiple rays emitted from point A′

through different optical centers of the micro-lenses

are collected to calculate the coordinate of point A′:

t̂ = argmin
t

n
∑

j=1

∥

∥

∥

∥

∥

rj(tj) −
1

n

n
∑

k=1

rk(tk)

∥

∥

∥

∥

∥

2

(15)

Â′ =
1

n

n
∑

i=1

ri(t̂i) (16)

where ‖·‖2 represents L2 norm. Till now, we have

accomplished the decoding process of light field

inside the camera. To obtain the light field data

in the scene, combining the depth-dependent scaling

ratio described in Eq. (2), the representation of the

focused points Â′ can be transformed using the focal

lens F easily.

5 Calibration

Compared to the ideal focused plenoptic camera

model, the shift caused by the rotations of related

micro-lenses is far less than l and the difference

in the numerical calculation is trivial, therefore

the three theorems concluded for an ideal focused

plenoptic camera still hold for our proposed model

with misalignment. More importantly, when there

is zero machining error, the diameter of the

micro-lens dlens is set, and does not need to be

estimated during the calibration. Consequently,

the unique solution of the intrinsic parameters

PPP = (θ, β, γ, xm, ym, L, l, u0, v0)T and F can be

estimated using the two steps described in the

following.

5.1 Decoding by micro-lens optical center

To locate the centers of the micro-lens images, we

shoot a white scene [19, 20]. Then a template of

proper size is cut out from the white image and its

similarity with the original white image is calculated

via normalized cross-correlation (NCC). To find the

locations with subpixel accuracy, a threshold is

placed on the similarity map such that all values less

than 50% of the maximum intensity are set to zero.

Then we take the filtered similarity map as weight

and calculate the weighted coordinate of every small

region. The results are shown in Fig. 6.

Fig. 6 The template (top-left), the crops of similarity map (top-

right), the filtered similarity map (bottom-left), and the final location

of the micro-lens image centers (bottom-right).

To estimate parameters PPP , we minimize the cost

function:

P̂PP = argmin
PPP

∑

i,j

∥

∥

∥

∥

∥

(

x′

c,i

y′

c,i

)

+

(

u0

v0

)

−

(

x̂′

c,i

ŷ′

c,i

) ∥

∥

∥

∥

∥

2

(17)

where (u0, v0) is the offset between the camera

coordinate and the image coordinate. After this

optimization, PPP is used to calculate micro-lens

optical centers and reconstruct the calibration

points. Then the rays are obtained via Eq. (14).

According to Eq. (5), the solution of Eq. (17),

changing with the initial value of L, is not unique.

Moreover, the ratio L/l is almost constant with

changing initial value of PPP . Although there are

differences between the models described in Section

3.2 and Section 4, the theorems still hold since the

shift caused by the rotations can be ignored. This

observation will be verified in experiment later.

In addition, the value of l influences the direction

of decoded rays. Due to the coupling relationship of

angle and depth, either of them can be used as the

prior to be introduced to estimate the unique PPP .

5.2 Reconstruction of calibration points

To reconstruct a plane in the scene, we may shoot a

certain pattern in order to recognize multiple images

from different scene points. A crop of the calibration

board and its raw image we shoot are shown in Fig. 7.

To locate the multiple images of every point on the

calibration board, we preprocess the grid image by

adding the inverse color of the white image to the

grid image (Fig. 7). Then one of the sensor points

corresponding to the focus point A′, denoted by
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Fig. 7 A crop of calibration board, its raw image, and the

preprocessed image by white image.

(x̂A′

i
, ŷA′

i
)T, is located by the same method described

in Section 5.1. Consequently, the plane we shoot in

the scene, denoted by Π̂ = {Ai|i = 1, · · · , n}, is easy

to be reconstructed using Eqs. (2) and (14).

As shown in Fig. 8, we design a parallel biplanar

board with known distance between the two parallel

planes and the distance between adjacent grids,

which can provide depth prior Prdp and scale prior

Prsc. Equivalently, we can shoot a single-plane board

twice while we move the camera on a guide rail to a

fixed distance.

After the sensor point (x̂A′

i
, ŷA′

i
)T of arbitrary

scene point A is located and the intrinsic

parameters PPP are determined, we can reconstruct

the grid-array plane Π̂1 and Π̂2 in the scene. Then

the minimum distance of arbitrary point on the two

calibration board planes can be calculated, referred

as T̂1 and T̂2 respectively. Finally, we can minimize

the cost function to estimate the focal length F of

main lens:

F̂ = argmin
F

∥

∥

∥T̂1(F ) − T̂2(F )
∥

∥

∥

2
, 0 < F < max(z)

(18)

where T̂1 and T̂2 are only dependent on F in this

step. According to Eq. (10), there is an optimal

solution for Eq. (18) if PPP is determined.

Note that if the values of L or l is incorrect, the

distance between plane Π̂1 and Π̂2 is not equal to

the prior distance. Therefore we take the distance

Scale prior - 

Depth prior - ฀ ฀ ฀ ฀

Pr

Pr

sc

dp

 

Fig. 8 The parallel biplanar board we designed to provide depth

prior for calibration.

between plane Π̂1 and Π̂2 as the last cost function:

L̂ = argmin
L

∥

∥

∥dis(Π̂1, Π̂2) − Prdp

∥

∥

∥

2
, L > 0 (19)

where dis(·, ·) represents the distance between two

parallel planes. In practice, we take the mean

distance of reconstructed points on Π̂1 to plane Π̂2

as the value of dis.

Moreover, T̂1 and T̂2 may not be equal to Prsc due

to possible calculation error, so we must refine the

value of depth prior to ensure the correct ratio of

scale and depth.

5.3 Algorithm summary

The complete algorithm is summarized in

Algorithm 1.

To make the algorithm more efficiently, the search

Algorithm 1: Calibration method for a focused camera

with a parallel calibration board

Input:

Micro-lens images’ centers

{(x̂′

c,i, ŷ′

c,j)T|i = 1, · · · , p, j = 1, · · · , q} extracted from a

white image;

The diameter of micro-lens dlens;

Sensor points of P1 extracted from grid image:

{(x̂′

1′,i, ŷ′

1′,i, ẑ′

1′,i)
T|i = 1, · · · , m1};

Sensor points of P2 extracted from grid image:

{(x̂′

2′,i, ŷ′

2′,i, ẑ′

2′,i)
T|i = 1, · · · , m2};

The resolution of the image sensor H ∗ W ;

The installation parameter L0, l0;

P rdp, P rsc;

Output:

PPP = (θ, β, γ, xm, ym, L, l, u0, v0)T;

F .

Initialize:

PPP0 = (0, 0, 0, 0, 0, L0, l0, H/2, W/2)T;

cnt = 1;

for L0 − searchRange to L0 + searchRange do

Optimize P̂PP using Eq. (17);

Reconstruct focus points on Π̂′

1 using Eqs. (15) and

(16): {(x̂′

1,i, ŷ′

1,i, ẑ′

1,i)
T|i = 1, · · · , n1} ;

Reconstruct focus points on Π̂′

2 using Eqs. (15) and

(16): {(x̂′

2,i, ŷ′

2,i, ẑ′

2,i)
T|i = 1, · · · , n2} ;

Optimize F̂ using Eq. (18);

Reconstruct Π̂1 and Π̂2 using Eq. (2);

distance(cnt) = dis(Π̂1, Π̂2);

P Set(cnt) = P̂PP;

F Set(cnt) = F̂ ;

cnt = cnt + 1;

end for

ind = the index of the closest value to repaired P rdp in

distance;

PPP = P Set(ind);

F = F Set(ind).
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step of the loop of L should be changed with

the value of ‖dis(Π̂1, Π̂2) − Prdp‖2 in Eq. (19).

The same principle is applied to the search step

of F . In addition, because of the monotonicity

of ‖dis(Π̂1, Π̂2) − Prdp‖2 with L, and F with

‖T̂1(F ) − T̂2(F )‖2, we can use dichotomy to search

an accurate value more efficiently.

6 Experimental results

In experiments, we apply our calibration method on

simulated and real world scene data. We capture

three datasets of white images and grid images using

a self-assembly focused plenoptic camera (Fig. 9).

The camera includes a GigE camera with a CCD

image sensor whose resolution is 4008×2672 pixels

that are 9 mm wide, F-mount Nikon lens with 50 mm

focal length, and a micro-lens array whose diameter

is 300 mm with negligible error in hexagon layout.

We use the function “fminunc” in MATLAB to

complete the non-linear optimization in Eqs. (15),

(17), and (18). The initial parameters are set as the

installation parameters, and θ, β, γ, xm, ym are set

to zero.

6.1 Simulated data

First we verify the calibration method on simulated

images rendered in MATLAB, as shown in Fig. 1.

The ground truth and the calibrated parameters are

shown in Table 1. We compare the estimated angle of

the ray passing through each optical center of micro-

Fig. 9 The focused plenoptic camera we installed and its micro-lens

array inside the camera.

Table 1 The parameters we estimated and the ground truth

Parameter Ground truth Calibration

θ (◦) 0.3000 0.2998

β (◦) 0.1500 0.1493

γ (◦) 0.1000 0.0997

(xm, ym) (mm) 0.7200, 0.6300 1.5030, −4.5009

(L, l) (mm) 67.3168, 3.3162 67.1861, 3.3096

(u0, v0) (pixel) −1326.0, −2000.0 −1337.4, −1999.7

F (mm) 50.0000 50.02558

lens and the one of the main lens to the ground truth,

which is shown in Fig. 10. The differences are less

than 1.992×10−3 rad.

We compare the geometric centers of the micro-

lens images we locate and the ones with optimization.

The error maps of 84×107 geometric centers

optimized with different L are shown in Fig. 11(a).

From Fig. 11(b), we find that there are 96.53% of

the centers whose error is less than 0.1 pixel, which

is the input for the following projection step.

The comparison of the locations of optical centers

of micro-lenses with different L is illustrated in

Fig. 12. The difference in x-coordinate and y-

coordinate of the optical center is trivial with

changing L. The maximal difference is 4.2282×

10−6 mm when L changes from 55 to 84 mm, which

proves our observation mentioned in Section 5.1.

The values of F , dis(Π̂1, Π̂2), Ŝ1, Ŝ2, T̂1, and T̂2

are shown in Fig. 13. It is obvious that Ŝ1 and Ŝ2

are almost constant when L changes, proving the

correctness made in Eqs. (9) and (11). In addition,

the values of dis(Π̂1, Π̂2) correlate linearly with L,

which testifies the reasonability of the cost function

described in Eq. (18). The relationship among T̂1,

T̂2, and F is shown in Fig. 14, which proves the

Fig. 10 The histogram of the deviation between the estimated angles

of the rays and the ground truth.



Decoding and calibration method on focused plenoptic camera 65

(a) Error maps with different L

(b) The histogram of errors with different L

Fig. 11 The results of optimization on geometric centers of the

micro-lens image on simulated data.

Fig. 12 The comparison of the locations of optical centers of micro-

lenses with different L from 55 to 84 mm on simulated data. The

value in row i and column j represents the difference in x-coordinate

and y-coordinate between the results optimized in Li and Lj .

analysis about Eq. (10).

6.2 Physical camera

Then we verify the calibration method on the

physical focused plenoptic camera. To obtain the

equivalent data of parallel biplanar board, we shoot

a single-plane board twice while we move the camera

on a guide rail to an accurate fixed distance, as

shown in Fig. 9. The depth prior Prdp is precisely

controlled to be 80.80 mm and the scale prior Prsc

Fig. 13 The values of F , dis(Π̂1, Π̂2), Ŝ1, Ŝ2, and T̂ (T̂2 = T̂1) with

different L on simulated data.

Fig. 14 The relationship of T̂1, T̂2, and F when L = 67.3129 mm.

is 28.57 mm. The calibration results are shown in

Fig. 15.

As shown in Fig. 15(a), there is an obvious error

between the computed geometric centers and the

located centers on the edge of the error map, which

may result from the distortion of lenses or the

machining error of micro-lens. However, we find that

that there are 73.00% of the centers whose error

is less than 0.6 pixel, as shown in Fig. 15(b). The
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(a) Error maps with different L

(b) The histogram of errors corresponding to (a)

(c) The comparison of the locations of optical centers of micro-

lenses with different L from 55 to 85 mm on the physical camera.

The value in row i and column j represents the difference in x-

coordinate and y-coordinate between the results optimized in Li

and Lj .

Fig. 15 The results of optimization on geometric centers of micro-

lens image on physical data.

mean difference of geometric centers of micro-lens

images optimized with different L is 1.89×10−4 pixel

(Fig. 15(c)). The results of F , dis(Π̂1, Π̂2), Ŝ1, Ŝ2, T̂

(T̂1 = T̂2) with different L are similar to the results

on simulated data.

Finally, to verify the stability of our algorithm, we

calibrate intrinsic parameters with different poses of

calibration board. Corresponding results are shown

in Table 2.

6.3 Rendering

We render the focused image with deviations

between the optical center of micro-lens and the

geometric center of micro-lens image.

We shoot a resolution test chart on the same depth

for simulated data (Fig. 16), which indicates that the

deviation surely effects the accuracy of decoded light

Table 2 Parameters estimated with calibration board with different

poses. The third parameter is the angle between the calibration board

and the optical axis

Parameter Dataset 1 Dataset 2 Dataset 3

P rdp (mm) 80.80 80.80 80.80

P rsc (mm) 28.57 28.57 28.57

Angle (◦) 175.8386 151.9994 139.5982

θ (◦) 0.3978 0.3978 0.3978

β (◦) −0.0616 −0.0615 −0.0616

γ (◦) 0.1377 0.1377 0.1378

xm (mm) 0.0300 0.0299 0.0302

ym (mm) −0.0341 −0.0344 −0.0343

L (mm) 67.8059 67.7860 67.8109

l (mm) 2.1215 2.1209 2.1217

u0 (pixel) −12.0622 −12.0623 −12.0620

v0 (pixel) −17.9686 −17.9689 −17.9688

F (mm) 54.1801 53.9759 54.1841

(a) Rendering without deviation of the micro-lens’ optical center and its

image center

(b) Rendering with the calibrated result

Fig. 16 The rendered images from simulated data.
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field. Then we shoot a chess board for simulated

data to evaluate the width of every grid in the

rendered images. We resize the images by setting

the mean width of the grids to be 100 pixels. Then

we calculate the range and the standard deviation

of the grid width. The results are shown in Table

3, which indicates that the calibration contributes

to the uniform scale in the same depth and reduces

the distortion caused by incorrect deviations. The

results on physical camera are shown in Table 4 and

Fig. 17. The decoded light field with the estimated

intrinsic parameters leads to more accurate refocus

Table 3 The range and variance of rendered chess board on

simulated data

State Std (pixel) Range (pixel)

No deviation 0.053281 0.38697

Calibrated 0.040079 0.25109

(a) Rendering without deviation of the micro-lens’ optical center and its

image center

(b) Rendering with the calibrated result

Fig. 17 The image rendered from physical camera.

Table 4 The range and variance of rendered chess board on physical

camera

State Std (pixel) Range (pixel)

No deviation 1.1145 0.042755

Calibrated 0.87151 0.034322

distance [14], which is equivalent to a correct ratio

of scale and depth.

7 Conclusions and future work

In the paper we present a 10-intrinsic-parameter

model to describe a focused plenoptic camera with

misalignment. To estimate the intrinsic parameters,

we propose a calibration method based on the

relationship between the raw image features and the

depth–scale information in the real world scene. To

provide depth and scale priors to constrain the

intrinsic parameters, we design a parallel biplanar

board with grids. The calibration approach is

evaluated on simulation as well as real data.

Experimental results show that our proposed method

is capable of decoding more accurate light field for

the focused plenoptic camera.

Future work includes modelling the distortion

caused by the micro-lens and main lens, optimization

of extrinsic parameters, and the reparameterization

of multiple and re-sampling light field data from

cameras with different poses.
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