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ABSTRACT 

The scientific researches in the field of rehabilitation engineering are increasingly providing mechanisms in order to 

help people with disability to perform simple tasks of day-to-day. Several studies have been carried out highlighting the 

advantages of using muscle signal in order to control rehabilitation devices, such as experimental prostheses. This paper 

presents a study investigating the use of forearm surface electromyography (sEMG) signals for classification of several 

movements of the arm using just three pairs of surface electrodes located in strategic places. The classification is done 

by an artificial neural network to process signal features to recognize performed movements. The average accuracy 

reached for the classification of six different movements was 68% - 88%. 
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1. Introduction 

Researches in Biomedical Engineering and Computatio- 

nal Intelligence are providing mechanisms to help people 

with some disabilities to perform simple tasks of day-to- 

day [1-4]. The development of systems managed by my- 

oelectric signals with the intention to reproduce the hu- 

man arm movement is far from perfect, which makes it 

the target of many investigations [5-16]. In recent years, 

there has been an explosion of interest in computational 

intelligence (CI) as evidenced by the numerous applica- 

tions in health, biomedicine, and biomedical engineering. 

CI techniques are computing algorithms and learning 

machines, including artificial neural networks, fuzzy logic, 

genetic algorithms, and support vector machines [1-13]. 

Develop a robotic prosthesis as similar as possible to a 

human arm is not a simple task. There is great difficulty 

both in the area to distinguish the various degrees of free- 

dom that the arm may have as in the development of a 

robotic prosthesis that can perform all these movements. 

The myoelectric signal is the sign of muscle control of 

the human body that contains the information of the 

user’s intent to contract a muscle and, therefore, make a 

move. Studies shows that the Amputees are able to gen- 

erate standardized myoelectric signals repeatedly before 

of the intention to perform a certain movement [5-7]. It 

makes the use of this signal very advantageous, because 

the control of a robotic prosthesis can be performed ba- 

sed in the intention of the user. 

Many studies are being conducted in able-bodies sub- 

jects to verify the feasibility and performance of different 

algorithms for pattern recognition using EMG signals 

from the forearm muscles [5-15]. In these studies are us- 

ually employed a high number of electrode pairs, ranging 

for 4 to 12. Using classification patterns techniques such 

as LDA [5], fuzzy logic [4,7-9,15], artificial neural net- 

works [16], among others, was found high accuracies 

(>90%) for the classification of different moves [4-10]. 

This suggests that it is possible to achieve high accuracy 

using several pairs of electrodes. 

A recent study estimated that for 12 pairs of electrodes 

was possible to classify 10 different movements with an 

accuracy of 81.2% and decreasing the number of pairs of 

electrode to eight, the classification accuracy dropped 3% 

[5]. The control of the prosthesis can be accomplished in 

several ways. One form of control is performed by a set 

of electrodes to picking up signals of different muscles, 

and depending on the muscle that the patient has con- 

tracted, it should result in a certain movement of the pro- 

sthesis [13,14]. 

Shenoy presented a study using surface electromyog- 

raphy in real time to control a robotic arm using elec- 

trodes in the arm, at eight sites chosen carefully, using 

only the effective value and continuing qualification of a 

window of data signal. An accuracy of 92% - 98% was 

obtained at eight different movements (opening and clos- 

ing the hand, wrist flexion and extension movement, 

right to left wrist and arm rotation). It is also possible to 

control the prosthesis through the recognition of elec- 

tromyographic signals using an artificial neural network 
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(ANN), linking these patterns with the moves that the 

prosthesis hould accomplish [16]. In this case, the num- 

ber of electrodes can be optimized. 

It is important to notice that almost all of the previous 

studies used at least 4 pairs of electrodes to evaluate the 

performance of the pattern recognition algorithms. The 

proposed system uses only 3 pairs of electrodes for sig- 

nals acquisition, and processes these signals with an arti- 

ficial neural network for recognition of performed move- 

ments, including more than one movement performed at 

the same time. In this context, the objective of this work 

is to evaluate the performance of an artificial neural net- 

work model for recognition of performed movements, 

including more than one movement performed at the 

same time. 

2. Materials and Methods 

2.1. sEMG Data Acquisition 

Figure 1 shows the block diagram of the experiment 

developed for the acquisition of myoelectric signals, as 

well as for the characterization of signals indicative of 

movements of hand-arm segment. 

The system includes an electromyography (EMG) of 8 

channels used for the capture of myoelectric signals us- 

ing surface electrodes and, through an acquisition board 

(NI USB-6009, 14 bit sampling rate of 1 kHz—data ac- 

quisition for each 1 ms was sufficient to identify the 

moves being made by volunteers), the signal is digitized 

and inserted into a computer, where it will be filtered, 

processed and analyzed by software, using the technique 

of artificial neural networks to characterize the move- 

ments. The acquisition of signals is carried out through 

bipolar surface electrodes with passive configuration. 

The choice of recording sites for muscle activity is moti- 

vated by the relevance of the chosen muscles to the ges- 

tures must be classified. For this study, the captured sig- 

nals belong to three muscles: Flexor Carpi Ulnaris 

(channel 1), Extensor Carpi Radialis Longus (channel 2)  

and Biceps (channel 3)—in this case, using three chan- 

nels of EMG (electromyography)—see Figure 2. The 

proposed system is based on using myoelectric signals of 

only a few muscles, but performs a complex signal proc- 

essing for the characterization of the movements—see 

Figure 3. 

2.2. sEMG Preprocessing and Feature  
Extraction 

The data was collected from two able-bodies subjects 

over three consecutive trials: calibration, adaptation and 

performance test. The calibration is an important step be- 

cause its aims to check if the electrodes are positioned 

correctly and also to determine a threshold value that will 

be used later to detect the occurrence of a movement. 

This procedure involves capturing the muscle signal du- 

ring one second at a time of relaxation and in a moment 

of maximum voluntary contraction (MVC). If one of the 

electrode’s pairs were not correctly positioned, the signal 

received will have low quality and would be necessary to 

do the reposition of the electrodes until the signal to 

noise ratio reaches at least a rate greater than 10, based 

on the value established in tests of the signal acquisition 

previously performed. A percentage ranging from 15% to 

30% of the average peak values, acquired from the MVC 

movement, is also used as threshold which indicated whe- 

ther occurred or not a muscle contraction. 

The adaptation’s trial has the function to adapt the sys- 

tem for each subject, once it depends on the variability 

due to different muscle activities that each person can 

make. The trial consists in a session with five repetitions 

for each chosen movement to train the pattern classifica- 

tion algorithm. 

In order to verify the feasibility and accuracy of the 

system is accomplished the performance test. The sEMG 

data were collect over 5 sessions. A session consists in 

five repetitions of each of the six determined moves, in 

random order. It’s represents a total of 150 movements. 

 

 

Figure 1. The proposed system diagram blocks. 
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Figure 2. Non-invasive placement of electrodes. 

 

 

Figure 3. Pictures of the movements characterized by the 

developed system: (a) Relaxed; (b) Forearm rotation; (c) 
Wrist flexion; (d) Wrist extension; (e) Hand contraction 

and (f) Forearm flexion. 

 

For every trial, demonstrations of each movement were 

shown in a LCD screen and subjects were instructed to 

perform the movements that appear in random order, as 

shown in Figure 4. Between consecutives movements 

was determined an interval ranging from 3 - 5 seconds. 

Figure 5 shows the signal for the three channels of EMG 

during the tests. 

2.3. Prosthesis Prototype 

A prototype of a mechanical prosthesis of the segment 

hand-arm connected between the interface circuit (motor 

drive) and the computer was developed to carry out the 

tests—see Figure 1. Figure 6 shows the design of the 

arm developed for this application. The design of the 

prosthesis was developed in the CAD Solid Edge ST to 

reproduce a human arm, the most similar as possible. It 

was designed a robotic arm with four degrees of freedom: 

flexion and extension of the forearm, rotation of the arm, 

flexion and extension of the wrist and open and close the 

hand. The prosthesis robotics has about 40 cm long and 8 

cm wide, size that was considered adequate for the pro- 

posed system. 

 

Figure 4. Pictures of the movements of the virtual arm in- 
terface: (a) Hand contraction and (b) Wrist extension. 

 

Besides the development of each piece of robotic pros- 

theses, was also performed in Solid Edge tool, the simu- 

lation of the degree of rotation that each board would 

have to be prototyped. The board representing the elbow, 

responsible for flexion and extension of the forearm, has 

90˚ rotation. The board representing the handle has 180˚ 

rotation. The joint of forearm rotation has rotation of 

360˚, but for that, the joint is limited by software to be as 

anthropomorphic as possible. The joints of the hand, re- 

presenting the phalanxes of the fingers, have 90˚ rotation 

each. The material chosen to construct the prosthesis was 

Technyl (©Rhodia), because it presents the following main 

features: low specific weight, high wear resistance and 

abrasion resistance, high melting point, high resistance to 

chemical agents, self-extinguibilidade flame, self-lubri- 

cating, absorption of vibration, high shock resistance, low 

coefficient of friction and mechanical movements silent, 

among others. 

2.4. Classification with Artificial Neural Network 

The myoelectric signal processing was accomplished th- 

rough an artificial neural network. This network received 

the pre-processed rms value of each channel of data ac- 

quisition. After all the processing, this network produced 

outputs that characterized movements being made by the 

human arm. The selected topology of the artificial neural 

network to implement the recognition of complex move- 

ments is the network of multiple layers perceptions (MLP). 

The MLP typically consists of a set of sensory units that 

constitute the input layer, one or more hidden layers of 

computational nodes and one output layer. The input sig- 

nal is propagated forward through the network, layer by 

layer. Multilayer networks can use a large number of 

learning techniques. For this application, it was selected 

the back propagation algorithm. In this case, was applied 

to the ANN an array of pre-determined entry and were 

analyzed the response of the network through the values 

of the output layer, which were compared with the de- 

sired response to compute the value of the error function. 

In turn, the error signals were propagated back through 

the network, against the direction of synaptic connections. 

The synaptic weights were adjusted, so that the actual re- 

sponse of network moved closer to the desired response 
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Figure 5. Signal acquisition during motion of wrist extension. 

 

 

Figure 6. Lateral view of the robotic prosthesis. 

 

in a statistical sense. 

The ANN developed has two dimensions of hidden 

layers with ten neurons each, with three entries placed in 

the network (rms value of each channel) and five outputs 

are generated that represent the basic moves that experi- 

mental prosthesis can perform (contraction of the hand, 

wrist extension, wrist flexion, forearm flexion and fore- 

arm rotation). The function used for the hidden layers of 

the network is called sigmoid (tansig), and generates va- 

lues in a range of −1 to 1. However, the output layer of 

ANN uses a linear function for the network training and 

also for the use of neural network, was used the routine 

of windowing the signal, in which the rms value of the 

windowed signal was used as input to the network. The 

only difference is that, for the training was provided the 

expected result for that particular input, and, the result 

was equal to 1 if there was an occurrence of certain mo- 

vements and 0 if not. The output of the ANN had gener- 

ated infinite values, because the output layer used a lin-

ear function, so was considered that a certain movement 

occurs only when the corresponding output value is grea- 

ter than 0.8. 

2.5. Experimental Statistical Analysis 

Many experiments involve more than two factors. For 

statistical validation methodology was used the “Design 

and analysis of three-factor experiments—Three-Factor 

Fixed Effects Model”. Consider the three-factor-factorial 

experiment, with underlying model Equation (1): 
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where μ is the overall mean effect, τi is the effect of the 

ith level of factor A (three different muscles or three 

channels 1 - 3), βj is the effect of the jth level of factor B 

(two subjects: 1 and 2), γk is the effect of the kth level of 

factor C (five movements: wrist flexion, wrist extension, 

hand contraction, forearm flexion, forearm rotation, fore- 

arm rotation and hand contraction), (τβ)ij is the effect of 

the interaction between A and B, (τγ)ik is the effect of the 

interaction between A and C, (βγ)jk is the effect of the 

interaction between B and C, (τβγ)ijk is the effect of the 

interaction between A, B and C and εijkl is a random error 

component having a normal distribution with mean zero 

and variance σ2. Notice that the model contains three 

main effects (A, B and C), three two-factor interactions, a 

three-factor interaction, and an error term. This experi- 

mental design is a completely randomized design. 

3. Results and Discussion 

3.1. Data Collection 

The data was collected from two subjects over five ses- 

sions, as mentioned earlier. A session consists by five 

repetitions of the specified movements. The subjects were 

instructed to relax between the movements and maintain 

each gesture comfortably. There wasn’t any restriction or 

measure about the force exerted by the subjects during 

arm movements. 

The classification of each movement occurred during 

the data acquisition. The signal was acquired during the 

following simple movements: contraction of the hand, 

wrist extension, wrist flexion, forearm flexion and fore- 

arm rotation. Was also carried out an assay for the acqui- 

sition of a complex movement: forearm rotation along 

with the movement of contraction of the hand. For train- 

ing the neural network was used one session for each 

move with 5 repetitions, and the training time lasted less 

than 1 second. The training uses the Levemberg-Marquardt 

algorithm and for the calculation of performance was 

used the technique of the mean squared error. The train- 

ing was made for the two subjects separately. The subject 

one reached the mean squared error of 0.0165 as shown 

in Figure 7 and the subject 2 achieved an error of 0.0531. 

3.2. Statistical Analysis 

The F-test on main effects and interactions follows di- 

rectly from the expected mean squares. These ratios fol-  

 

Figure 7. Graph of the mean squared error generated by 
the training of the neural network for the subject one. 

 

low F distributions under the respective null hypotheses. 

We will use α = 0.05 (significance level). The analysis of 

variance for a three-factor experiment showed that the 

main effects due to the three channels, two subjects and 

five movements are significant, in other words. Thus, it 

is possible to say that the output rms for each one of the 

three channels, two subjects and five movements are 

quite distinct from each other, and thus, the myoelectric 

signals are also distinct and so can be treated as distinct 

channels by the developed neural networks model. 

The results of this model showed that the interactions 

are true, ie (τβ), (τγ), (βγ) and (τβγ) are significant. How- 

ever, the ANOVA doesn’t identify which means are dif- 

ferent. Methods for investigating this issue are called 

multiple comparisons methods. In this study we used the 

Fisher’s least significant difference (LSD) method. From 

this analysis, we see that there are significant differences 

between all pairs of means. 

3.3. Classification Accuracy 

The signal processing was performed with two individu- 

als, to verify the difference in system performance. The 

two individuals participated in a same process of training 

and system testing. Thus it was standardized that the 

training stage would receive five repetitions for each mo- 

vement and the step test would receive twenty and five 

repetitions. The average accuracy reached for the classi- 

fication of six different movements was 68% - 88%. It’s 

shown in the Table 1 and Figure 8 the results acquired 

for each subject. 

The system showed a good performance in the use of 

few electrodes. The subject two has shown a worse per- 

formance than the subject one. It can happen due the fact 

that occurred some difficult in order to position the elec- 

trodes and the subject proved tired in the last part of the  
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Table 1. Results for subject 1 and subject 2. 

 Subject 1 

Movements Repetitions Hits Accuracy (%) 

Wrist flexion 25 25 100 

Wrist extension 25 18 72 

Hand contraction 25 25 100 

Forearm flexion 25 25 100 

Forearm rotation 25 25 100 

Forearm rotation and hand contraction 25 14 56 

TOTAL 150 132 88 

 Subject 2 

Movements Repetitions Hits Accuracy (%) 

Wrist flexion 25 16 64 

Wrist extension 25 15 60 

Hand contraction 25 21 84 

Forearm flexion 25 15 60 

Forearm rotation 25 23 92 

Forearm rotation and hand contraction 25 12 48 

TOTAL 150 102 68 
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with the help of a robust digital signal processing verify 

the validity of its performance. When tested, the mean 

peak signal with a maximum voluntary contraction (MVC) 

performed at least 10 times greater than the mean peak 

signal muscle at a time of relaxation. Thus, it was possi- 

ble define a threshold ranging from 15% to 30% of MVC 

to differentiate an occurrence of a muscle contraction, 

representing a movement. With the windowing of the 

signal at the moment that occurred a move, was possible 

to obtain the rms value for each of the three channels and 

use these values as input to a neural network of 2 hidden 

layers with 10 neurons per layer. This network aimed to 

characterize the movements that are running. As can be 

noticed in the results, some movements have achieved a 

lower hit rate, this may occur due to poor signal quality 

and the quantity of motion that was presented to the 

ANN, since some movements had the answer in terms of 

rms value very similar. 

ject 2

 

Figure 8. Achieved results in terms of classification accu- 
racy. 

 
The proposed system achieved a less average accuracy 

than the other studies cited in this paper [4-16], however, 

were used only three pairs of electrodes. But this paper 

verified the performance achieved when the subject real- 

ized more than one movement at the same time, which 

increased the rate error. It is important to notice that al- 

most all proposed studies do not verify the performance 

of simultaneous movements of the arm. One possible 

proposal for future works would be investigate other 

techniques that could improve the performance of neural 

network, making the system able to characterize a wide 

range of complex movements. A practice used to im- 

assay. The subject moved a lot because of the incorrect 

posture in the chair and because the repetitive effort re- 

alized. Another possible cause for the difference of the 

results is the lost of the efficiency of the contact elec- 

trode-skin, decreasing the signal amplitude. Another im- 

portant thing is that the delay on the system is of just 200 

ms, the time of the signal processing. 

4. Conclusions 

The proposed system had the purpose to use a limited 

number of acquisition channels of myoelectric signal and  
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prove the characterization of the movements would be 

increase the number of acquisition channels of myoelec- 

tric signal and, consequently, increase the amount of cap- 

tured muscle signals, so that there will be a greater dif- 

ferentiation between the movements executed. 
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