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Abstract
The last years have seen a rise of interest in using electroencephalography-based brain computer interfacing methodol-

ogy for investigating non-medical questions, beyond the purpose of communication and control. One of these novel

applications is to examine how signal quality is being processed neurally, which is of particular interest for industry,

besides providing neuroscientific insights. As for most behavioral experiments in the neurosciences, the assessment of a

given stimulus by a subject is required. Based on an EEG study on speech quality of phonemes, we will first discuss the

information contained in the neural correlate of this judgement. Typically, this is done by analyzing the data along behav-

ioral responses/labels. However, participants in such complex experiments often guess at the threshold of perception.

This leads to labels that are only partly correct, and oftentimes random, which is a problematic scenario for using super-

vised learning. Therefore, we propose a novel supervised-unsupervised learning scheme, which aims to differentiate true

labels from random ones in a data-driven way. We show that this approach provides a more crisp view of the brain states

that experimenters are looking for, besides discovering additional brain states to which the classical analysis is blind.
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I. INTRODUCTION

Brain-computer interfacing (BCI) aims at establishing

a novel communication channel between man and machine

[1-3]. To this end, brain signals need to be measured non-

invasively (electroencephalography [EEG], magnetoen-

cephalography [MEG], functional magnetic resonance

imaging [fMRI] or near-infrared spectroscopy [NIRS]),

or invasively (multi-unit activity [MUA], electrocorticog-

raphy [ECoG]). Subsequently, the underlying cognitive

states are decoded, and then the user-machine interaction

loop is closed by providing real-time feedback about a

particular cognitive brain state to the user. From the non-

clinical perspective [4], the BCI has also become a very

attractive research topic in recent years, since human

cognitive states and intentions can be decoded directly at

their very origin: the human brain, and not indirectly

through behavioral correlates. Note, however, that we

should think of the neural correlate as complementary to

the behavioral one. A certain cognitive processing might

not be visible in the behavioral signal, but may be clearly

detected from the neural correlate, e.g., in non-conscious

processing [5]. This is particularly interesting in mental

state monitoring (e.g., mental workload [6]) or in visual

[7, 8] and auditory perception tasks [5, 9, 10]. In this

paper, we will report about the latter, as an example of a

complex cognitive task, where the decoding of brain

states is particularly challenging.

BCI technology has advanced significantly with the

advent of robust machine learning techniques [3, 11-16]

that by now have become a standard in the field. Brain

data is characterized by non-stationarity and significant

variability, both between trials and between subjects.

Oftentimes, signals are high-dimensional, with only rela-

tively few samples available for fitting models to the

data, and finally, the signal-to-noise ratio (SNR) is highly

unfavorable. In fact, even what is signal and what is noise

are typically ill-defined, respectively (cf. [3, 11-16]). Due

to this variability, machine learning methods have become

the tool of choice for the analysis of single-trial brain

data. In contrast, classical neurophysiological analysis

methods apply averaging methods, such as taking grand

averages over trials, subjects and sessions, to get rid of

various sources of variability. This approach investigates

the average brain, and can answer generic questions of

neurophysiological interest, but it is rather blind to the

wealth of the dynamics and behavioral variability avail-

able only to single-subject, single-trial analysis methods.

In the following, we will focus on behavioral and neu-

ral data from the speech signal quality judgements of sub-

jects and their respective neural correlates, as measured

by an EEG-BCI. Of particular concern to us is the ques-

tion of whether or not a participant has behaviorally

noticed the loss of quality in a transmitted signal, and

whether and how this is reflected in the respective neural

correlate. Answering this question is crucial for any pro-

vider of signal quality (audio or visual), in order to find

the right balance between customer satisfaction and prof-

itability. However, the behavioral ratings of stimuli given

by participants are particularly spurious, since the loss of

quality is oftentimes at the threshold of perception, so

that the participants’ assessments can be unreliable or

even close to random guessing. In other words, the label

data resulting from such studies lack ground truth. Thus,

the label noise is not independent, but—at a perceptual

level—it consists of a mix of random labels, and only a

few informative ones, and there is no way to tell which is

which. This systematic label noise makes the decoding of

the respective cognitive brain state hard. So the challenge

in our experiment is to decipher, despite a high level of

dependent label noise, whether or not the participant has

processed a loss of quality on a neural level.

Previous attempts to solve this question (using EEG

data for assessing quality perception) employed fully

supervised machine learning approaches only, using the

behavioral responses of participants as labels [5, 7, 8, 17].

This has the obvious drawback that classification is mis-

lead by those spurious labels, exacerbating the problem

of finding the true ‘neural labels’. Additionally, super-

vised approaches are biased towards finding the exact

two classes specified by behavioral labels (‘target is

noticed’, ‘target is missed’), ignoring that there may be

additional states of mind (e.g., ‘participant not on task’).

Finally, psychophysical experiments can lead to highly

unbalanced classes (when targets are unlikely to be

noticed), which also challenges supervised learning

approaches in the presence of high noise.

In the following, we will first introduce the paradigm

of the EEG experiment, and explain why the conven-

tional approach is biased. In the third section, we present

our supervised-unsupervised learning approach that aims

at inferring the correct (neural) labels. The results are

presented in the fourth section, followed by a discussion.

II. EEG EXPERIMENT & CLASSICAL ANALYSIS

Understanding which levels of quality loss are still per-

ceived by users is a crucial question for any provider of

signal quality. Conventionally, behavioral tests are used

for this purpose, asking participants directly for their rating.

Recent work has proposed to complement this approach

by also recording a user’s neural response to a stimulus,

as the neural response may differ from the behavioral

response [7, 8, 17].

A. Paradigm and Stimuli 

Eleven participants (mean age 25 years) took part in

this study, for whom both behavioral and neural response

were recorded using 64-channel EEG. Participants per-

formed an auditory discrimination task, in which they
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had to press a button whenever they detected an auditory

stimulus of degraded quality (target). Stimuli were pre-

sented in an oddball paradigm, using the undisturbed

phoneme /a/ as non-target (NT, 70% of stimuli). Among

these stimuli of high quality, the participant had to find

instances when the phoneme was superimposed with sig-

nal-correlated noise. Participants were instructed to indi-

cate by button press, if they noticed a deviation in the

stimulus. Four noisy target stimuli were used, T1-T4,

consisting of the phoneme /a/ superimposed with decreas-

ing levels of signal-correlated noise (targets, 6% per class).

In an additional 6% of trials, the phoneme /i/ was pre-

sented as control stimulus (C, target). The noise levels of

the target stimuli (T1-T4) were chosen separately for

each participant, in order to account for individual differ-

ences in sensitivity to noise, aiming at perception rates of

100%, 75%, 25%, and 0%, respectively. For this purpose,

a pretest was run; the resulting SNRs for the deviant stim-

uli were set to 5, 21, 24, and 28 dB on average (mean per-

ception rate in the experiment: 99%, 46%, 22%, and 7%).

The disturbed auditory stimuli were created using a mod-

ulated noise reference unit (MNRU [18]). Target stimuli

that were detected by the participant are referred to as

‘hits’ (true positives), and the others as ‘misses’ (false pos-

itives).

Each stimulus had a duration of 160 ms, with 1000 ms

stimulus onset asynchrony. Per participant, 8 to 12 blocks

were recorded, with 300 stimuli each. A parallel port

computer keyboard was employed for recording the but-

ton presses of the participants. For stimulus presentation,

in-ear headphones by Sennheiser, Germany were used.

EEG was recorded using a Brain Products GmbH (Munich,

Germany) EEG system, with 64 electrodes (AF3-4, 7-8;

FAF1-2; Fz, 3-10; Fp1-2; FFC1-2, 5-8; FT7-10; FCz, 1-

6; CFC5-8; Cz, 3-6; CCP7-8; CP1-2, 5-6; T7-8; TP7-10;

P3-4, Pz, 7-8; POz; O1-2 and the right mastoid), and a

BrainAmp (Brain Products GmbH) EEG amplifier. Elec-

trodes were placed according to the international 10-10

system. The tip of the nose was chosen as a reference site,

and a forehead ground electrode. EEG data were sampled

at a rate of 100 Hz. In the following, we investigate

event-related potentials (ERPs), i.e., the differential sig-

nal between the voltage at a given electrode position and

the reference electrode.

B. Taking Wrong Labels at Face Value 

The behavioral responses of the participants provide

labels for each trial, seemingly indicating whether the

stimulus was perceived as disturbed or not. However,

these labels can be assumed to be confounded with label

noise to a large degree, in particular at the threshold of

perception (stimulus T2). As a first step, we take these

spurious labels as ground truth, and analyze the ERPs in

these groups. If the behavioral response indicates that the

quality degradation is processed (hits), the resulting ERP

activation pattern can be characterized by two compo-

nents: early sensory and late cognitive processing stages.

Fig. 1. Scalp distribution of event-related potentials for different stimuli in seven time intervals, grouped by their behavioral label (hit/miss;
participant vp = 1). The maps represent a top view on the head, with nose pointing upwards.
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Fig. 1 shows the spatial distribution of the ERPs as scalp

distributions (head seen from above, nose pointing upwards),

averaged over seven time intervals. The data of one par-

ticipant (vp = 1) is examined here exemplarily. The top

row shows the averaged neural response to a strong deg-

radation that was noticed behaviorally (T1 hit). The four

early intervals represent sensory processing of the stimu-

lus (100–300 ms post-stimulus), which is reflected in a

temporal negativity above the auditory cortices. In con-

trast, the last three intervals can be assumed to reflect

cognitive processing (400–1000 ms post-stimulus). This

elicits an occipital positivity, commonly referred to as P3

component. This component is elicited as a neural reac-

tion to deviating stimuli in an oddball paradigm [19].

In our study, a P3 can be expected to occur when a par-

ticipant notices that the quality of a stimulus is degraded.

Generally speaking, the stronger the degradation, the

higher the amplitude of the EEG signal, in particular that

of the P3 component. This effect becomes obvious when

comparing the first two rows of the figure, with a much

weaker activation during late intervals for stimulus T2

(weak degradation), compared to T1 (strong degrada-

tion). In contrast, the last row shows the neural process-

ing of a stimulus with a subtle degradation that is not

noticed on a behavioral level (T3 miss). While sensory

processing still causes activity in the early intervals, there

is no notable cognitive component.

C. Conclusion 

While the topography of the averaged ERPs seems to

show a consistent picture so far, the presence of label

noise becomes very obvious for the stimulus at the

threshold of perception (T2). As the ratings of partici-

pants become unreliable to the point of guessing, group-

ing according to behavioral labels becomes conspicuously

confounded, as can be seen in the second and third row of

Fig. 1. Even though the participant gave different ratings

in these cases, the neural activation is strikingly similar.

While the presence of label noise is obvious for this stim-

ulus, the labels of the other classes can be expected to be

confounded as well, just to a lesser degree. In the follow-

ing, we will infer the correct labels in a data-driven way

by using a novel learning methodology, in order to obtain

an unbiased view of the EEG data.

III. INFERRING THE CORRECT LABELS

Our supervised-unsupervised learning approach aims

at finding the true labels based solely on the EEG signal,

without taking behavioral labels into account. Techni-

cally, we propose a two-step procedure to tackle the

dependent label noise problem: (1) outlier detection to

remove misleading trials, and (2) a subsequent distinction

between labels that are random guesses and the ones that

are informative. In the following, we will introduce this

novel approach and exemplify it on data from the highly

challenging EEG study on speech signal quality assessment,

which we introduced in the previous section.

A. Abstract Learning Scenario 

We consider a learning scenario where we have vary-

ing confidence in the labels (some are more trustworthy

than others). In the considered setup, this stems from two

sources: first, some data points are just artifacts, and sec-

ond, some data points are labeled with very high error

rate. The presence of falsely labeled data can hamper

learning an accurate decision hyperplane, as illustrated in

Fig. 2. Furthermore, some of the settings considered

include only a single behavioral class label and hence

make supervised learning impossible. As a remedy, we

propose a two-step learning approach based on super-

vised-unsupervised learning, as follows:

1. Artifact removal: in the first step, as depicted in Fig.

3a, we remove measurement noise, which can in

Fig. 2. The examined setting consists of various kinds of
spurious data: artifacts caused by ill-behaving electrodes, as well
as noisy dependent behavioral labels mixed in between
trustworthy data. Hence, supervised methods are prone to find
wrong decision boundaries.

Fig. 3. In a first step, we get rid of the well-identifiable artifacts
(a). In the second step, we train unsupervised, disregarding the
spurious label information, to achieve a decision boundary
based on data evidence (b).
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general stem from broken sensors or, in our case,

from faulty electrodes. The steps taken are described

in Algorithm 1 lines 1–4.

2. Handling label noise: since we are explicitly not

trusting the labels given, we train unsupervised on

the remaining data points in the second step, result-

ing in classes that diverge maximal in the data (not

necessarily in the labels). The setting is depicted in

Fig. 3b, and described in detail in Algorithm 1 lines

6–8.

B. Sparsity-Inducing One-Class Learning 

The first step of our approach is based on the para-

digms of support vector learning [20-22] and density

level set estimation [23]; that is, we are given n data

points x1,...,xn, where xi lies in some input space Rd, and

the goal is to find a model f : Rd → R and a density level-

set Dρ = {x : f (x) ≥ ρ} encompassing the normal data, i.e.,

x ∈ Dρ , while for outliers x' ∉ Dρ holds. In this paper, we

consider linear models of the form

(1)

A popular density level set estimator is the so-called

one-class SVM [24]

      

s.t. , , (2)

where Ω(w) is a smooth regularizer, and v ∈]0, l] is a

hyperparameter controlling the ‘size’ of the level set (the

lower v, the larger the level set). Once the optimal param-

eters w* and ρ* are found, these are plugged into (1), and

new instances x are classified according to sign(f(x) − ρ*).

The learning machine (2) has been intensively studied for

the choice of the regularizer Ω(w) := , which leads

to dense optimal weight vectors w*, i.e., the entries of w*

are strictly different from zero (except in pathological cases),

and thus hinder feature selection (which is required for

the application we have in mind). In contrast, we build

the methodology used in this paper on more general regu-

larizers of the form

Ω(w) := ,

where  =  denotes the Minkowski ℓp-

norm, focusing on the limiting case p = 1, which is likely

to lead to sparse solutions: suppose we minimize an

objective function g(w) subject to  ≤ 1; then, the opti-

mal solution is attained when the level sets of the objec-

tive function ‘hit’ the norm constraint. If the objective

function is convex, the point of intersection is usually at

one of the corners of the constraint, and thus has sparse

coordinates. In linear methods, each dimension in the

solution often corresponds to a measurable cause. The

benefit of having a sparse solution vector lies in the fact

that the solution now becomes interpretable. Since we

have no ground truth, interpretability is mandatory. The

resulting division into three classes, as depicted in Fig. 3b,

seems from a non-sparse viewpoint somehow arbitrary.

However, in a sparse setting, we will encounter three

completely separated classes, where the plateau class is

orthogonal to the core and outlier class. Hence, examples

belonging to the plateau class will lie on the decision

boundary. An elegant way to solve Equation (2) for

Ω(w) =  is to set w = w+ − w- substituting  = w+ + w-,

and to optimize over w+, w- ≥ 0, instead of w. To enhance

numerical stability of sparse one-class learning, we pro-

pose to consider the following sparsity-inducing one-

class learning formulation:

       + C

s.t. , , (3)

(which is reminiscent of the very well known 2-class C-

SVM, given by Cortes and Vapnik [25], or sparse Fisher,

by Mika et al. [26]). The following theorem shows that

Equation (2) is an exact re-formulation of Equation (3).

Note that it is sufficient to consider the cases C ≥  and

v ≤ 1, because otherwise, we trivially have w* = 0.

THEOREM 1. Let Ω(w)=  and denote the optimal

solution of (2) and (3) by ( , , ) and ( , ), ,

respectively. Then, for any v ∈]0, l], setting C := , it

holds that

= ,

i.e., the weight vectors output by (2) and (3) are, besides

a scaling factor, equivalent.

Proof. Let ( , , ) be optimal in (2). It follows

that ( , ) is optimal in the corresponding uncon-

strained formulation:

( , ) = + .

Note that thus = argminw + max(0, 

− ). Now denote  :=  + 

max(0,  − ). By a variable substitution w =

, we observe that =  and hence /  is

optimal in   + max(0, 1 − )

(because  is positive), which, setting C :=  is the

unconstrained version of (3) (and thus equivalent). Thus

/  is optimal in (3), which proofs the assertion. □

C. Remark 

For reasons that will become clear later, we wish to

also include negatively labeled instances ,...,  (i.e.,

instances of which we already know that they are

f x( ) w  x( )=

⊥

min
w,ρ,ξ

Ω w( )
1
vn
----- ξ 1 ρ–+
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outliers) into the learning machine (3). A simple and

effective way of doing so is to constrain the negatively

labeled instances to lie outside of the density level set:

 ≤ 1 + ,  ≥ 0, . This formulation is

a semi-supervised extension of Equation (3), which con-

strains the negatively labeled examples  to lie outside

of the density level set (besides a tolerance ).

D. Processing Pipeline 

In this section, we describe in detail the proposed

supervised-unsupervised processing pipeline. The moti-

vation behind this approach is that, even though it may

seem that other methods (e.g., kernelized methods) could

be more suitable for this problem, EEG data is well sepa-

rable by linear classification (for a comparison of linear

vs. nonlinear methods, cf. [27]). As discussed previously,

the missing ground truth compels us to rely solely on

interpretability of the results, which can be achieved eas-

ily by applying linear and sparse methods.

The inspection of the results of applying step 1 shows

that there is a high chance of finding trials confounded by

measurement noise (faulty electrodes) characterized by

high amplitudes and/or drifts, which we denote as arti-

facts. Therefore, we deliberately force the method to

exclude such examples and search for other features, by

including the highest-ranked data points as outliers in a

semi-supervised manner. Typically, we chose five exam-

ples of each end of the spectrum, to explicitly retain out-

lier labels (Algorithm 1 lines 3 and 4).

As illustrated in Fig. 3a, we divide into three classes:

core, plateau and outlier class. These classes occur natu-

rally, when applying the sparse one-class methods

described in the previous section. Examples belonging to

the plateau class are orthogonal to the core and outlier

class; these data points lie on the decision boundary.

Hence, for division, simple thresholding is sufficient.

E. EEG Features 

Based on the time series of the ERPs, we first reduced

the dimensionality of the data (cf. [12]). Hence, we calcu-

lated the mean of the ERP signal within the seven neuro-

physiologically plausible intervals shown in Fig. 1 (for

each electrode and trial). For this, the EEG signal from 61

recorded electrodes was used (omitting the Fp and EO

electrodes). Thus, the dimensionality of the data was

reduced from 6400 (100 data points × 61 electrodes) to

427 features (7 data points × 61 electrodes). These fea-

tures were then used as input for the processing pipeline.

IV. RESULTS

The supervised-unsupervised learning approach groups

the trials into three classes: a core class, an outlier class

and a plateau class. These three classes can be seen

exemplarily in Fig. 4 for one participant (vp = 1) and the

stimulus at the threshold of perception (T2). Again, the

scalp distribution of ERPs are shown in the seven inter-

vals, which were also used as input features. Remarkably,

the core class (row 2) finds a very typical representation

of hits with distinct auditory processing (first intervals),

and a strong P3 component (last two intervals), suggest-

ing that the degradation was processed consciously. This

pattern is subdued in the plateau class (row 3), where the

auditory cortices still show a strong activation, but only a

very subtle P3 is visible, indicating that the degradation

was processed on a sensory level, but not noticed by the

participant. Finally, there is virtually no activation in early

or late components for the outlier class (row 4), suggest-

ing, at most, subliminal processing of the stimulus. This

distinction is more cogent by far than that based on

behavioral labels, where two classes were assumed (hit/

miss) that were obviously confounded (middle rows of

Fig. 1). Not only does the algorithm find plausible classes,

it also does so on the basis of neurophysiologically plau-

sible features: as can be seen in the top row of the Fig. 4,

the active features reflect the bi-temporal neural activity

in early processing stages (auditory) and the occipital

activity in late processing stages (cognitive). Across all

participants and stimuli, the trials grouped into the core

class show a distinct representation of how the stimulus is

processed, including both sensory and cognitive compo-

nents (‘neural hit’) or only sensory processing (‘neural

miss’). For obvious degradations (C, T1), it is always the

‘neural hit’ that is found, while the algorithm rather assigns

‘neural misses’ to this class for subtle degradations. This

is reasonable; as neural misses can be assumed to be pre-

dominant in those classes (the same is true for hits). In

almost all cases (participants/stimuli), the outlier class

represents trials that reflect a mental state other than these

clear hit/miss patterns. Mostly, these are trials with very

subdued activation (60% of trials show an amplitude lower

Algorithm 1 Processing Pipeline

w  x̂i

⊥

ξi
ˆ ξi

ˆ i∀ 1,...,m{ }∈

x̂1

ξi
ˆ
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than +/-5 µV on average), which indicates that the stimu-

lus was processed at a subliminal level, at most. Finally,

the plateau class, where the EEG signal is orthogonal to

the features chosen by the algorithm, contains a cluster of

trials that differ most widely among participants. These

either reflect measurement noise or eye artifacts (40%), a

subdued pattern of neural hits/misses (30%), or a mental

state other than that (20%). Fig. 5 summarizes these results,

based on visual inspection.

The motivation behind our approach is to find a coher-

ent way to handle dependent label noise that is composed

of a mixture of random labels and accurate ones. Fig. 6

provides an insight into these ratios, as far as our approach

can reveal them. The behavioral perception rate is shown

in black, i.e., the percentage of trials that were labeled as

hits by the participants. As can be seen, the perception

rate is high (almost 100%) for stimuli C/T1 and then

drops markedly for stimuli T2–T4 (left to right). Under-

neath these values, the figure shows which percentage of

these behavioral hits is assigned to the core, plateau or

outlier class (ratios shown in gray, orange and white).

This could be interpreted as the quantitative mixture of

random labels and accurate ones.

V. DISCUSSION

Robustly analyzing EEG signals, despite their high non-

stationarity (cf. [2, 28-30]), their multimodal nature, and

the obviously noisy signal characteristics [2], is a major

challenge that necessitates machine learning. However, in

complex cognitive tasks in particular, the behavioral rat-

ings given by participants are often unreliable, thus intro-

ducing label noise. Although in practice, independent

Fig. 4. Weights of features (filter) assigned in the last step of the Algorithm (top row). Scalp plots of the trials that are grouped into the
core, plateau and outlier class (participant, vp = 1; T2) (bottom rows).

Fig. 5. Overview over all participants (x-axis) and stimuli (y-axis): neural pattern of core, plateau and outlier classes (column 1–3), based
on visual inspection.



Decoding Brain States during Auditory Perception by Supervising Unsupervised Learning

Anne K. Porbadnigk et al. 119 http://jcse.kiise.org

label noise can be handled by most vanilla supervised

learning algorithms, they can fail miserably in the case of

dependent label noise. This set-up is rather common in

behavioral experiments where a subject is required to

assess a given stimulus; in this work we have analyzed

data from speech signal quality judgements. Near perception

threshold, the behavioral responses of subjects provide

labels that are noisy, through a subjective assessment of

the auditory signal. There are two reasons for this: (1) the

subjects guess, i.e., the labels are random, and (2) a very

weakly correlated perception of a change in audio signal

quality is reported that gives rise to a faint structure in the

noisy labels. Computing the neural correlates of behavior

requires labels that reflect the task as cleanly as possible.

To achieve this, we propose a novel supervised-unsuper-

vised learning procedure, that first removes artifactual

trials from the experiment before inferring which of the

remaining labels are reliable and which are random (Fig. 2).

Once these more reliable labels are in place, a better and

more meaningful experimental evaluation of the neural

correlates in our speech signal quality application can be

performed. Moreover, our approach allows for defining

groupings of trials that reflect more finely-grained cogni-

tive states. Furthermore, it is an interesting point to note

that in this manner, a neural correlate may occasionally

be even more sensitive than the conscious behavioral one.

Future work will apply our method in the calibration

phase of a BCI experiment, where subjects are asked to

assume predefined brain states. Here, it is well-known

that subjects occasionally do not comply with the instruc-

tion given [31] or do not maintain a certain cognitive

state throughout the prescribed duration of a stimulus.

Our algorithm could thus again contribute to a cleaning

of the labels and thus to an increased robustness of the

trained BCI system.
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