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Decoding brain states on the intrinsic manifold of
human brain dynamics across wakefulness and
sleep
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Current state-of-the-art functional magnetic resonance imaging (fMRI) offers remarkable

imaging quality and resolution, yet, the intrinsic dimensionality of brain dynamics in different

states (wakefulness, light and deep sleep) remains unknown. Here we present a method to

reveal the low dimensional intrinsic manifold underlying human brain dynamics, which is

invariant of the high dimensional spatio-temporal representation of the neuroimaging tech-

nology. By applying this intrinsic manifold framework to fMRI data acquired in wakefulness

and sleep, we reveal the nonlinear differences between wakefulness and three different sleep

stages, and successfully decode these different brain states with a mean accuracy across

participants of 96%. Remarkably, a further group analysis shows that the intrinsic manifolds

of all participants share a common topology. Overall, our results reveal the intrinsic manifold

underlying the spatiotemporal dynamics of brain activity and demonstrate how this manifold

enables the decoding of different brain states such as wakefulness and various sleep stages.
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T
he brain is an immensely complex dynamical system
capable of generating an extremely large repertoire of
neural activity patterns. Despite such potential, whole-

brain imaging of spontaneous brain activity is shown to exhibit
highly constrained patterns1,2. Hence, in terms of temporal
dynamics, it has been hypothesized that brain activity is governed
by metastable dynamics3–7 and lies on a low-dimensional smooth
manifold embedded in the high-dimensional space of the neu-
roimaging data8–10. Supporting this hypothesis, growing experi-
mental evidence demonstrated the presence of continuous
attractors in the brain11–14. Indeed, the number of degrees of
variability of the recorded neural activity during perception and
memory11, learning15, and motor tasks13 is shown to be sub-
stantially lower than the dimensionality of the space defined by
the number of recorded neurons. Even during task-free condi-
tions, such as sleep and resting wakefulness, populations of
neurons show very structured dynamics, which can be repre-
sented as 1D ring-shaped manifolds12.

The nature of the manifold underlying large-scale dynamical
processes in the human brain can be explored at the whole-brain
level using functional neuroimaging data, such as fMRI or mag-
netoencephalography (MEG). Consider, for instance, a series of
fMRI acquisitions, which yield an ℝα image for each time point,
where α ~ 107 is the number of voxels (even though these voxels
are not completely independent due to the spatial smoothness of
fMRI16). Interestingly, the range of possible configurations of
brain activity derived from this image does not span this high-
dimensional state-space, but is rather limited to a subspace10. In
this work, we hypothesized that due to the anatomical and phy-
siological constraints, and most importantly, due to strong cor-
relations among neural populations17, not only does the large-
scale dynamics of human brain activity span a lower-dimensional
subspace but it actually lies on a smooth manifold. Here, besides
testing this hypothesis we also investigate whether this compact
manifold representation can be utilized to characterize different
dynamical regimes in the space of all brain states, in particular to
characterize different stages of the human sleep cycle. To this end,
we developed a framework to estimate the intrinsic low-
dimensional manifold underlying the brain dynamics as mea-
sured by the fMRI data.

A normal human sleep cycle is divided into wakefulness, rapid-
eye-movement (REM) sleep, and three stages of non-REM
(NREM) sleep18. While wakefulness and REM sleep are both
characterized by low amplitude and high-frequency electro-
encephalography (EEG) signals, the three NREM sleep stages are
defined by a gradual ‘slowing down’ of the EEG oscillations. The
decrease in arousal is mapped onto a path from N1 (light sleep
with increased amplitude of low-frequency EEG oscillations) over
N2 (a deeper sleep stage than N1 that also includes sleep spindles
and K-complexes) to N3 (slow-wave) sleep. Over the years this
mapping has been refined and developed into polysomnography,
the current gold standard description of sleep, where EEG is
combined with recordings of eye movements, muscle tone,
respiration, and heart rate to categorize sleep into stages.

While the polysomnography represents a good mapping
between brain activity and arousal, the limited spatial resolution
achieved through the readout from merely a few EEG electrodes
offers little information about more fine-grained aspects of brain
activity during sleep. Over the past couple of decades, other
functional neuroimaging techniques such as positron emission
tomography (PET) and fMRI have been also utilized to extract
the whole-brain correlates of different sleep stages defined by
polysomnography19–21. More recently, the framework of whole-
brain functional connectivity (FC) and resting-state networks22

have been explored to provide more comprehensive accounts of
how the brain’s large-scale functional architecture changes

between wakefulness and particularly NREM sleep (for review,
see ref. 23). Through the combination of support vector machine
(SVM) algorithms and resting-state networks found in fMRI with
polysomnography-verified stages, it has been thoroughly
demonstrated that sleep alters large-scale FC, to an extent where
SVMs can be trained to perform reliable sleep staging solely based
on FC information derived from the fMRI24–26. These, together
with previous studies investigating sleep-related changes in
resting-state networks27–29 and graph-theoretical properties30–32,
rely on the linearity assumption of the data. As such, these
techniques assume that relations between the time courses of two
different voxels (in fMRI) or electrodes (in EEG) are linear; and
hence neglect the nonlinear properties of brain activity, which
have been suggested to be relevant for sleep processes: evidence
from intracortical recordings have pointed out the differences in
the occurrence of neuronal avalanches between wakefulness and
sleep33, and it has been demonstrated that the addition of non-
linear features of the data can improve the discrimination
between sleep stages using scalp EEG34.

Here we propose an algorithm to find the low-dimensional
smooth manifold underlying fMRI BOLD activity during the
human sleep cycle, which we call the intrinsic manifold of brain
dynamics. To this end, we first estimate a state representation
defined by the time-resolved FC matrix in phase space termed
coherence connectivity dynamics (CCD). This matrix captures
the synchrony characteristics of brain activity at a given time
point by estimating the phase coherence among all pairs of brain
regions35. We utilize a manifold learning technique known as
Laplacian eigenmaps36 to nonlinearly reduce the dimensionality
of the phase coherence space. Laplacian eigenmaps accounts for
nonlinear relationships between individual datapoints (in our
case between the CCD of two different fMRI time points). Fur-
thermore, being a local manifold learning approach based on the
eigenfunctions of the Laplace operator, Laplacian eigenmaps is
computationally efficient to be applied to large datasets36,37 and
has been successfully applied to extract the manifold structure
underlying neural activity from MEG and EEG time series38. In
this work, we utilize the Laplacian eigenfunctions to extract the
relevant information from brain dynamics in the temporal
domain. Remarkably, when applied to the spatial domain, spe-
cifically to the structural connectivity of the human brain, i.e. the
human connectome, Laplacian eigenfunctions yield the con-
nectome harmonics39. Connectome harmonics were shown to
reveal the functional networks of the human brain. Furthermore,
when applied to the cortical structure of the brain, Laplacian
eigenfunctions yield the cortical eigenmodes, which capture the
spatiotemporal patterns of distinct sleep-states40.

In this work, we apply Laplacian eigenmaps to the temporal
dimension of fMRI data in order to reveal the intrinsic manifold
of brain dynamics while also taking advantage of the high spatial
resolution of fMRI data. We acquired recordings of brain activity
simultaneously with fMRI and polysomnography (including
EEG) from 18 participants during wakefulness and sleep (data
acquisition originally published in ref. 24). From these recordings,
we used only the fMRI data to estimate the intrinsic manifold of
brain activity, while utilizing the expert sleep scoring of the
simultaneously acquired EEG recordings to evaluate sleep stage
classification on the intrinsic manifold representation. A simple
linear SVM, when applied to the estimated intrinsic manifold
representation, yielded a classification accuracy of 96% and sig-
nificantly outperformed linear dimensionality reduction methods
such as principal component analysis (PCA). These results not
only reveal the low-dimensional manifold underlying the com-
plex brain dynamics but also demonstrate the intrinsically non-
linear nature of the differences in these spatiotemporal patterns,
in particular between wakefulness and different sleep stages.
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Results
Revealing the intrinsic manifold of brain dynamics. In order to
test whether the dynamics of brain activity lie on a smooth, low-
dimensional manifold (exemplified in Fig. 1a–d), as previously
hypothesized41, we introduce a new method to estimate the
intrinsic manifold underlying human fMRI data. We first extract
the instantaneous phase signal of the ultraslow fluctuations
(0.04–0.07 Hz) of the fMRI BOLD activity and compute the phase
coherence metric for each participant42 (Fig. 1e, f). Phase
coherence is a commonly used estimator of the instantaneous
synchronization between all pairs of brain regions, which are
defined through automated anatomical labelling (AAL)43 in this
study. An important feature of phase coherence connectivity
estimates is that they capture complex dynamics within the data,
they are robust to inter-subject variability, and do not require of
any temporal windowing42. From phase coherence, we then
obtain the CCD matrix35, the matrix containing the temporal
relationships of these spatial synchrony patterns. The estimated
CCD matrix defines the feature space, which describes brain
dynamics by capturing all temporal relations between brain states

occurring in the fMRI data. In order to compute the intrinsic
manifold, we nonlinearly embed the CCD feature space to a
lower-dimensional space. The embedding consists of two main
steps: first, a graph representation of the nonlinear relations
within the data is formed by pruning the weak connections
(similarities) between the spatial synchrony patterns. Commonly,
such pruning of the similarity matrix is preformed through
thresholding or k-nearest-neighbour selection36. However, here
we use a method that is more robust to sampling inhomogene-
ities, the relaxed minimum spanning tree44 (RMST, see the
“Methods” section). Once the graph representation is created, the
second step of the embedding consists of obtaining the eigen-
functions of the graph Laplacian. This embedding method is
commonly known as the Laplacian eigenmaps method36. The
eigenfunctions with the smallest nonzero eigenvalues form the
basis of the new embedding (Fig. 1g). By applying this method to
fMRI data of 18 participants acquired in wakefulness and sleep,
we reveal each subject’s intrinsic manifold underlying their brain
dynamics. For each individual subject, the intrinsic manifold
yields a smooth, continuous representation of the brain dynamics

Fig. 1 Intrinsic manifold framework. a–d A classic example that illustrates manifold embedding; i.e., manifold learning applied to the swiss roll data, which

is intrinsically a two-dimensional dataset yet represented in a higher (three-dimensional) space. To estimate the low dimensional embedding of the

sampled dataset (b), we first create a graph representation (c), where the nodes represent the data points shown in (b), which are sampled from the

underlying manifold illustrated in (a), and the edges indicate the relations (distances and/or similarities) between data points. d The manifold is embedded

into the low-dimensional representation that matches its intrinsic dimensionality using the Laplacian eigenmaps manifold learning. e–g Our framework

applying the same manifold learning approach, i.e. Laplacian eigenmaps, to extract the manifold underlying brain dynamics measured in fMRI data. e For

each time point, the fMRI BOLD signal is parcellated into the 90 brain areas defined by the AAL template and pre-processed as explained in the “Methods“

section. f Using the parcellated fMRI data, the instantaneous phase is computed via Hilbert transform and the phase coherence among brain areas is

estimated. This phase coherency matrix characterizes the pairwise synchrony relations between each pair of brain areas at any given time point. g The

intrinsic manifold (here illustrated as two-dimensional) underlying the set of all instantaneous phase coherence states is estimated using the Laplacian

eigenmaps method. To visualize the changes in phase coherency throughout the intrinsic manifold, for illustration purposes we defined 2-dimensional (2D)

bins using the two manifold dimensions, and computed the average phase coherency of data points in those bins. Different colors indicate different sleep

stages and wakefulness as defined by polysomnography.
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that is implicitly low dimensional (d= 7 in our study) as shown
in Fig. 2 (for eight representative subjects, see Supplementary
Fig. 1 for all subjects’ data). The word continuity, is used here in
the spatial sense referring to the structured and non-random
spatial distribution of data points on the intrinsic manifold and
does not refer to the temporal smoothness, i.e., temporal con-
tinuity of the data points on the manifold. In this low dimen-
sional representation, time-points acquired during the same stage
(sleep stages and wakefulness) lie together, yet different stages fall
onto different branches and are also separated through shortcuts
in the temporal dynamics, where the brain dynamics exhibit a
jump on the intrinsic manifold from one branch (corresponding
to a particular sleep stage, e.g., N3) to that of another (e.g.,
awake). This effect is shown in detail in Supplementary Fig. 2 and
Supplementary Movie 1. From these results, one can appreciate
the effectiveness of the presented intrinsic manifold method to
separate different brain states such as different stages of sleep and
wakefulness.

Decoding brain states in the intrinsic manifold of human brain
dynamics. Following the rationale that different sleep stages are
associated with characteristically different brain states, we hypo-
thesized that they can be accurately decoded using the intrinsic
manifold underlying the brain dynamics. In order to test this
hypothesis, we trained a linear SVM classifier on the intrinsic
manifold of brain dynamics and estimated the discriminative
power of the classifier for each of the sleep stages as well as
wakefulness (see the “Methods” section). For individual subject
analysis, we utilized a multi-class 10-fold cross-validation

approach, using 9/10 of the whole data as training and the
remaining 1/10 as test set in order to test the discriminative
power of our approach for each of the three sleep stages and
wakefulness (i.e., one-vs-all comparisons). Figure 3 shows the
accuracy for each possible stage in low-dimensional spaces (d= 7,
see Supplementary Fig. 3 for accuracy in d= 3). For each stage,
we found significantly high classification accuracy (p-value <
0.001, Monte-Carlo phase randomized simulations, corrected for
multiple comparisons via FDR, see Supplementary Tables 1–3
and see the subsection “Statistical significance analysis” in the
“Methods” section) with average accuracy being 96 ± 4%. We also
decoded brain activity in low-dimensional spaces using a 1-vs-1
SVM approach (explained in the “Methods” section). For each
stage-to-stage comparison, by representing the data in their
intrinsic manifolds we found significantly high decoding accuracy
(p-value < 0.001, Monte-Carlo simulations, corrected for multiple
comparisons via FDR, see Supplementary Tables 1–3 and see
sunsection “Statistical significance analysis” in the “Methods”
section) with average accuracy being 99 ± 3%. These results
demonstrate that the brain activity associated with different brain
states such as different sleep stages and wakefulness becomes
highly separable on intrinsic manifold of brain dynamics and
hence can be robustly decoded in this low-dimensional manifold
representation.

To determine the intrinsic dimensionality of the data, we
performed the sleep-stage classification for all possible dimen-
sionalities (see Fig. 3l, n). Our results indicate that from d= 7 up
to the original dimensionality (90), the addition of dimensions in
the intrinsic manifold does not improve the decoding accuracy
(for all dimensions d > 7, p-value > 0.05, Wilcoxon Rank-sum

Fig. 2 Representation of the brain activity fMRI BOLD data during wakefulness and sleep embedded in lower-dimensional spaces. The plots show the

data embedded into the three first dimensions of the intrinsic manifold (large coordinate system) and into the three principal components derived from

PCA (small coordinate system). a–h Each separate coordinate system corresponds to the data of eight different participants, embedded individually. i

Intrinsic manifolds from all 18 participants, aligned jointly into the group manifold. For all cases, nonlinear embedding of the data into their intrinsic manifold

led to well-structured intrinsic manifolds with a clearer separation of different sleep stages (as defined through polysomnography) compared to the linear

embedding given by PCA.
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two-sided test, corrected for multiple comparisons via FDR).
Thus, the intrinsic dimensionality of the manifold can be
estimated to be d= 7.

These results demonstrate that the intrinsic manifold reveals the
hidden topology underlying brain dynamics, where different brain

states such as distinct sleep stages and wakefulness become highly
separable in a low-dimensional manifold. Moreover, by robustly
decoding different brain states on the intrinsic manifold, our
results strongly suggest that the brain dynamics governing these
different brain states exhibit significantly different characteristics.

Fig. 3 Accuracy of brain state decoding on the intrinsic manifold of brain dynamics and on PCA. Decoding accuracies in the feature space defined by the

intrinsic manifold (IM) and PCA space for different experiments. a–f The accuracies of the SVM 1-vs-1 classification between a wakefulness and N1, b

wakefulness and N2, c wakefulness and N3, d N1 and N2, e N1 and N3, and f N2 and N3. g–j The accuracies of the SVM 1-vs-all classification for each stage:

g wakefulness, h N1, i N2 and j N3. The accuracy is defined as the ratio between the number of true positives and the total number of tested time points.

The boxplots’ centrality is indicated by the median, and the boxes extend between 25th and 75th percentiles. Each colored circle corresponds to the

classification accuracy for each single subject (in the case of individual analysis, left of the dashed line) and to the accuracy of each leave-one-subject-out

round (in the case of group analysis, right to the dashed line). The classification accuracies on the intrinsic manifold and in PCA space are represented by

green and red dots, respectively. Classifications are performed in spaces of dimensionality d= 7 (see Supplementary Fig. 3 for d= 3). For all classifications,

intrinsic manifold classification yields significantly higher accuracies (for all comparisons, p-value < 0.001, Wilcoxon Rank-sum two-sided test, corrected

for multiple comparisons via FDR). k Confusion matrices obtained from the 1-vs-all classification experiments (shown in g–j. l, m show the average

accuracy across all stage-to-stage (1-vs-1) classifications for varying dimensionality of the embedding spaces for individual participants (l) and for group

analysis (m), respectively. n, o show the average accuracy for all stages (1-vs-all) classifications for varying dimensionality of the embedding spaces for

individual participants (n) and for group analysis (o), respectively. The solid lines indicate the median of the distribution across classifications and shaded

areas indicate 25th and 75th percentiles.
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Common intrinsic manifold topology across participants. Next,
we evaluated the consistency of the topology of the intrinsic
manifold of brain dynamics across participants. To this end, we
aligned the intrinsic manifolds of different subjects (see Fig. 2i
and see the “Methods” section) and used the leave-one-subject-
out approach: we trained a linear SVM classifier on the aligned
intrinsic manifolds generated with data from all participants
except for one and performed inference on the left-out subject
(see the “Methods” section). This group analysis yielded sig-
nificantly high classification accuracy with the average accuracy at
the group level being 85 ± 9% (p-value < 0.001, Monte-Carlo
phase randomized simulations, corrected for multiple compar-
isons via FDR, see Supplementary Tables 1–3 and see the sub-
section “Statistical significance analysis” in the “Methods”
section).

In particular, we found that the sleep stages N2 and N3 had the
highest separability on the intrinsic manifold, with an average
classification accuracy of 99 ± 3% (92 ± 15% for group analysis)
(Fig. 3). Comparisons involving the awake and N1 stages were the
least separable, yet still leading to a significantly higher
classification accuracy compared to chance (average accuracies
93 ± 10% and 78 ± 22%, respectively, p-values < 0.001, Monte-
Carlo phase randomized simulations, corrected for multiple
comparisons via FDR). The confusion matrices (see Fig. 3k) show
that the time-points belonging to the awake and N1 stages are
commonly classified as part of the same class.

These findings indicate that the feature space described by the
CCD matrix encodes crucial information about brain dynamics in
sleep, which is generalizable across participants, and that the
intrinsic manifolds successfully reveal the characteristic structure
underlying different brain states with the small number of degrees
of the variability of the data; i.e., its intrinsic dimensionality
(Fig. 3m and o show that classification accuracy is optimal for d
= 7 in our study). Crucially, these results demonstrate that the
intrinsic manifolds underlying brain dynamics of different
participants share a common topology that is primarily
constrained by the brain state (wakefulness and different sleep
stages) and not the individual differences between participants.

Nonlinear transformation of brain activity between different
sleep stages. The intrinsic manifold provides a low-dimensional
representation of brain dynamics, which respects nonlinear
relations between data points (in our case brain states occurring
at different time instances). Unlike linear dimensionality reduc-
tion techniques such as PCA45 or independent component ana-
lysis (ICA)46, the intrinsic manifold is estimated by a nonlinear
mapping from the high to the low-dimensional space and pre-
serves the nonlinear metric properties of the high-dimensional
data. In order to test whether these nonlinearities play a crucial
role in the decoding of different brain states in sleep and wake-
fulness, we compared the accuracies of classifications performed
on the intrinsic manifold and on PCA of brain dynamics. Figure 2
shows the first three dimensions of the individual intrinsic
manifolds and PCA of eight different participants, as well as the
aligned intrinsic manifolds from all participants gathered together
(Supplementary Fig. 4 shows the first 6 dimensions). We observed
that the linear embedding given by PCA performed poorly at
capturing the structure underlying brain dynamics, yielding an
average classification accuracy of 78 ± 3% in individual and 25 ±
7% in group analysis (25% being chance level, see Supplementary
Tables 1 and 2). The reason why the intrinsic manifold provides a
suitable embedding for sleep stage classification becomes evident
by visual inspection of Supplementary Fig. 2, and Supplementary
Movie 1. These show how temporal traces belonging to different
sleep stages are clustered separately on the intrinsic manifold,

while the data points belonging to the same stage lie on the same
branch of the manifold, even though the temporal structure of the
data is disrupted, inducing discontinuities in the temporality of
the used data. Using a nonparametric test, we assessed the sta-
tistical significance of the differences between the classification
accuracies of PCA and intrinsic manifold (see the “Methods”
section). All stages showed significantly higher classification
accuracy on the intrinsic manifolds compared to PCA (for all
comparisons, p-value < 0.001, Wilcoxon Rank-sum two-sided
test, corrected for multiple comparisons via FDR). We cannot be
certain whether PCA’s lower decoding performance is attributed
to its linear nature, or to other details of its framework. We can,
however, be certain that nonlinearities play a crucial role in the
data, as indicated by the significantly improved accuracies on the
intrinsic manifolds with respect to the linear surrogate manifolds
(p-value < 0.001, corrected for multiple comparisons via FDR, see
Supplementary Table 1 and Statistical significance analysis in the
“Methods” section). These results demonstrate that the nonlinear
relations among data samples, which are captured by the intrinsic
manifold, play a crucial role in the decoding and characterization
of the different brain states occurring in wakefulness and in
NREM sleep.

Robustness of temporal harmonics for sleep stage classifica-
tion. So far, our results suggest that classification performed on
the intrinsic manifold of brain dynamics measured with fMRI
allows for an accurate decoding of the different sleep stages as
well as wakefulness (stages being categorized with poly-
somnography in EEG). In order to assess the robustness of this
brain state decoding performed on the intrinsic manifold, we
assessed the receiver-operating characteristic (ROC) of the clas-
sification by varying the decision threshold used for the binary
classification along each of the three dimensions separately. Based
on signal detection theory, ROC is a commonly used analysis to
validate the robustness of binary classifiers. ROC analysis pro-
vides a simple way to evaluate the trade-off between sensitivity
and specificity of the classification. In the ideal scenario, where
two classes are fully separable, a binary classifier would yield a
performance approaching the top-left corner, where sensitivity
and (1-specificity) are 1 and 0, respectively, leading to an area
under the curve (AUC) value of 1. Figure 4 and Supplementary
Table 2 demonstrate the ROC curves for all stage-to-stage com-
parisons for a single dimension for which the best performance
was achieved. We observed an average AUC value of 0.98 ± 0.02
on the intrinsic manifold, while the AUC of the ROC curve of the
classification performed on PCA was 0.51 ± 0.01 on average (for
all comparisons, p-value < 0.001, Wilcoxon Rank-sum two-sided
test, corrected for multiple comparisons via FDR). These findings
point out the crucial role of nonlinear brain dynamics in order to
characterize different brain states; e.g., sleep stages N1–N3 and
wakefulness, as the classification performed on the intrinsic
manifold significantly outperforms the one performed on the
linear dimensionality reduction such as PCA. Furthermore, the
successful classification of different brain states on the intrinsic
manifold also suggests that it reveals the low-dimensional struc-
ture underlying the brain dynamics characteristic to these dif-
ferent brain states.

Discussion
In this work, we presented a method to reveal the intrinsic
manifold underlying brain dynamics measured by fMRI. Patterns
of cortical activity in fMRI data exhibit smooth variations over
time and hence lie on a low dimensional manifold embedded into
the high dimensional space-time representation. In this high-
dimensional space-time representation, the dimensionality of the
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data is artificially defined by the number of voxels in the fMRI
volume. In order to extract the intrinsic manifold underlying the
brain dynamics, our method capitalizes on the description of
these dynamics using phase coherence and on the estimation of
the underlying low-dimensional manifold using the Laplacian
eigenmaps. Our findings reveal several key insights into the
nature of human brain dynamics and how the characteristic of
these dynamics change in wakefulness and sleep:

Firstly, in this work we reveal the hidden topology underlying
brain dynamics and demonstrate that this topology allows for the
decoding and the characterization of different brain states such as
wakefulness and different NREM sleep stages. The robust
decoding of these different brain states on the intrinsic manifold
strongly suggests that the brain dynamics governing these brain
states exhibit significantly different characteristics of brain
activity and these differences can be revealed if the data is
mapped to its intrinsic, low dimensional manifold structure.
Crucially, our leave-one-subject-out group analysis reveals that
the intrinsic manifolds underlying brain dynamics of different
participants share a common topology that is primarily con-
strained by the brain state (wakefulness and different sleep stages)
rather than the individual differences between participants. A
useful analogy would be to think of the geometry versus the
topology of different trees. Every tree has a unique geometry in
their structure, yet all trees in a family of trees (i.e., oak trees)
together may share a common topology, which is the topology of

an oak tree. Similarly, in our results, no two individual manifolds
are the same, yet they share some structural features that con-
stitute their topology, the topology of the intrinsic manifold. The
fact that we can significantly accurately classify the sleep stages of
one subject based on the training in other subjects’ data, strongly
implies that there exists a common topology across the different
subject intrinsic manifolds, even though the geometry of different
subjects’ manifolds may be different.

Secondly, our results suggest that the phase synchrony among
different brain regions (90 AAL regions in this work) encode
crucial information about brain dynamics in different states such
as wakefulness and sleep stages, and forms a feature space, which
shares a common topology across participants, i.e., an intrinsic
manifold.

Finally, a simple classification method (linear SVM) when
performed on the intrinsic manifold of brain dynamics leads to
an accurate decoding of different brain states (in this study
wakefulness and sleep states defined by polysomnography).
Decoding on the intrinsic manifold qualitatively improved our
own previous decoding attempts, based on SVM with nonlinear
(RBF) kernel functions and substantial parameter tuning24,25, and
non-supervised learning methods applied to the same dataset47

(see Supplementary Tables 2 and 4). This improvement is of
particular interest in the sense that our method uses instanta-
neous data, rather than windows of time points. A more con-
ceptual difference is the underlying assumption on the domain
structure of the brain activity data (as estimated by BOLD
intensity). Previous efforts used a nonlinear SVM classifier, which
seeks to find the best linear separation between classes in an
infinite-dimensional feature space. In our approach, we find this
linear separation in a low-dimensional embedding of the data
(d= 7). Considering the nonlinear nature of the low dimensional
embedding utilized in our work, our results clearly demonstrate
that different brain states occurring in wakefulness and NREM
sleep are characterized by nonlinear transformations of brain
dynamics.

Like previous efforts25,26, our approach revealed that the sleep
stage most difficult to decode from brain activity was N1. Our
classification analysis showed that N1 was mostly confused with
wakefulness, a result that goes in line with the current consensus
that N1 stage does not represent a clear sleep stage, but it rather
consists on vaguely defined mix of wakefulness and sleep48. Given
that N1 is not consistently defined in EEG polysomnography, it is
easy to appreciate the difficulty in characterizing this stage using
the fMRI data22. The wakeful conscious state is characterized by
the dynamical exploration of a rich and flexible repertoire of
brain states49. This variability of the awake brain dynamics and
the unclear boundaries of the definition of N1 play a crucial role
in the relatively lower performance of the awake state and N1
classification in comparison to deeper sleep stages. We attribute
the superior classification accuracy achieved by our method to
our method’s ability to capture the nonlinear relationships within
the data. When the nonlinearities play a crucial role, the char-
acteristics of different sleep stages are revealed. A quantitative
comparison to PCA, the most well-known linear dimensionality
method, confirms this conclusion by yielding significantly higher
decoding accuracy on the intrinsic manifold (average accuracy of
96%) compared to PCA (average accuracy of 78%). Hence, our
findings strongly suggest that the linearity assumptions of brain
dynamics, such as those imposed by PCA10, are suboptimal to
reveal the low-dimensional structure underlying the complex
brain dynamics captured by the high dimensional functional
neuroimaging data such as fMRI.

Previous studies have attempted to reduce the dimensionality
of fMRI data by using linear methods such as PCA10,50 and
ICA24–26. The objective of these studies was to explore

Fig. 4 Receiver operating characteristic (ROC) for all pairwise

comparisons between brain states on the intrinsic manifold of brain

dynamics and compared to PCA. ROC reveals the relationship between

sensitivity and 1-specificity. The area under the curve (AUC) indicates how

accurately the two compared states can be classified using only one

dimension of the embedding space. ROC curves of the classifications

performed on the intrinsic manifold (shown in green) and on PCA (shown

in red) are illustrated for all pairwise stage comparisons: a between

wakefulness and N1, b between wakefulness and N2, c between

wakefulness and N3, d between N1 and N2, e between N1 and N3, f

between N2 and N3. For all stage pairwise comparisons between

wakefulness, N1, N2, and N3, intrinsic manifold yield significantly higher

AUC (for all comparisons, p-value < 0.001, Wilcoxon Rank-sum two-sided

test, corrected for multiple comparisons via FDR) in the first three-manifold

dimensions. Shaded areas indicate the distribution of AUC values across

different participants, for performed on their intrinsic manifold, whereas red

dots correspond to the AUC values in the PCA space. The solid lines

indicate the mean of the distribution across classifications and shaded

areas indicate their standard error of the mean (N = 18).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02369-7 ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:854 | https://doi.org/10.1038/s42003-021-02369-7 | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


simultaneous EEG-fMRI recordings in order to devise machine-
learning-based algorithms, allowing sleep staging from the fMRI
data itself24–26. Being aware of the suboptimality of linear
methods, the authors took into account nonlinearities in their
classifiers (SVM with nonlinear kernels), but not in the dimen-
sionality reduction methods (ICA). Conversely, in this work, we
aimed at studying the nonlinear nature of brain dynamics.
Indeed, we have shown that, as long as nonlinear aspects of the
data are taken into account, wakefulness and individual NREM
sleep stages can be classified precisely in a low-dimensional
manifold underlying the fMRI signal, achieving a classification
accuracy of 96%.

Precise dimensionality reduction of high-dimensional record-
ings of brain activity can reveal important aspects of the
mechanisms and principles employed by the brain10,51. Following
this rationale, we unravel a common topology of brain dynamics,
shared by different participants, that was originally hidden in the
high dimensional structure of the data. Our findings show that
taking into account the nonlinearities in the data was necessary to
capture changes in vigilance, which is in line with a developing
appreciation of the importance of nonlinearities in data analyses
of sleep, in EEG52 and fMRI53.

Taken together, these results not only demonstrate that the
intrinsic manifold of brain activity, which in this work estimated
from the fMRI BOLD signal, provides a powerful representation
of the spatiotemporal dynamics of brain activity, but it also
reveals a characteristic feature of brain dynamics that is shared
across different participants and is only dependent on different
brain states, such as different sleep stages and wakefulness. These
findings open the door to investigate characteristic features of
various brain states such as drug-induced altered states of con-
sciousness as well as different psychiatric conditions using the
intrinsic manifold of brain dynamics.

Methods
EEG-fMRI acquisition. EEG data was recorded via a cap (modified BrainCapMR,
Easycap, Herrsching, Germany) continuously during fMRI acquisition (1505
volumes of T2*-weighted echo-planar images, TR/TE= 2080 ms/30 ms, matrix
64 × 64, voxel size 3 × 3 × 2mm3, distance factor 50%; FOV 192 mm2) at 3 T
(Siemens Trio, Erlangen, Germany) with an optimized polysomnographic setting
(chin and tibial EMG, ECG, EOG recorded bipolarly [sampling rate 5 kHz, low
pass filter 1 kHz], 30 EEG channels recorded with FCz as the reference [sampling
rate 5 kHz, low-pass filter 250 Hz], and pulse oximetry, respiration recorded via
sensors from the Trio [sampling rate 50 Hz]) and MR scanner compatible devices
(BrainAmp MR+, BrainAmp ExG; Brain Products, Gilching, Germany) facilitating
sleep scoring during fMRI acquisition18,19,54.

MRI and pulse artifact correction was performed based on the average artifact
subtraction (AAS) method55 as implemented in Vision Analyzer2 (Brain Products,
Germany) followed by objective (CBC parameters, Vision Analyzer) ICA-based
rejection of residual artifact-laden components after AAS resulting in EEG with a
sampling rate of 250 Hz19. Sleep stages were scored manually by an expert
according to the AASM criteria18.

Participants. A total of 18 participants were selected (based on the presence of all
non-REM sleep stages in their sleep cycle) from a larger dataset in which we measured
simultaneously EEG and fMRI, with written informed consent and approval by the
local ethics committee (Ethics Committee of the Goethe University of Frankfurt am
Main, Germany). Any of the subjects exhibited REM sleep as verified by sleep scoring
of the scanner EEG. Participants laid in the scanner during an average time length of
52min, after being asked not to fight sleep. The subset chosen here was selected based
on the condition of spending a minimum of 3min (87 TRs) in each of the three non-
REM sleep stages considered here (i.e., N1–N3), as well as achieving successful EEG,
fMRI, and physiological data recording and quality. Inclusion conditions were set to
get the maximal representative sampling of each stage, while still maintaining a large
number of participants. All participants were scanned during the evening and
instructed to close their eyes and lie still and relaxed.

fMRI pre-processing. Using statistical parametric mapping (SPM8, www.fil.ion.
ucl.ac.uk/spm) echo-planar imaging (EPI) data were realigned, normalized (MNI
space), and spatially smoothed (Gaussian kernel, 8 mm3 full widths at half-max-
imum). Data were re-sampled to 4 × 4 × 4mm resolution to facilitate the removal
of noise and motion regressors.

Cardiac, respiratory (both estimated using the RETROICOR method56) and
motion-induced noise (inter-scan X-, Y-, Z-displacement and pitch, roll, yaw
parameters) were regressed out by least squares. In total, we have modeled 24
motion regressors (6 roto-translations plus their derivatives up to order three).
Data were band-pass filtered in the range 0.04–0.07 Hz42 using a sixth-order
Butterworth filter. We did not perform global signal regression and did not apply
image censoring methods. Data sets with jumps in the motion regressors (head
jerks >0.2 mm inter-scan displacement) were excluded from the cohort analyzed57.

Coherence connectivity dynamics. The functional connectivity dynamics FCD(ti,
tj) matrix captures the similarities between the functional connectivity matrices FC
(ti) and FC(tj) for each pair of time points ti and tj. Here we used CCD(ti, tj), a
frequency-specific adaptation of the FCD matrix that characterizes the time-
dependency homogeneity of the synchronization (i.e. coherence) across all brain
areas35. First of all, we computed the instantaneous phase of the time series by
means of the Hilbert transform (Hilbert.m in MATLAB_2020b). Then we com-
puted the coherence vector V(t), containing the cosine of the phase difference
between all areas of the brain. At each time point, V(t) defines the temporal brain
coherence state. The CCD(ti, tj) matrix is constructed as the cosine similarity
between the coherence vectors at different times:

CCD ti; tj

� �

¼
V ti
� �

V tj

� �

V ti
� �

�

�

�

� V tj

� �
�

�

�

�

�

�

ð1Þ

Solid blocks around the CCD matrix diagonal represent epochs of stable coherence
states. We then used the CCD matrix, which provides information about the time-
dependency of spatial phase coupling dynamics, to construct the time manifolds.

The RMST. In order to link states across time, the CCD are pruned into a graph.
To do so, first, we need to transform this similarity matrix into a distance matrix as
d(ti, tj)= 1−CCD(ti, tj).

The RMST can be used as a way to prune a distance matrix and preserve only
local information while being robust to inhomogeneity of sampling, a common
problem affecting other global sparsification techniques such as the k-nearest-
neighbors or the epsilon-ball techniques used in the original publication of the
Laplacian eigenmaps method36. It involves relaxation of the minimum spanning
tree (MST), a problem consisting of finding, within an undirected weighted graph,
the subgraph, in which all pairs of nodes are connected by exactly one path (i.e., a
tree), which also minimizes the total sum of edge weights. Note that the MST yields
a graph with one connected component while minimizing the number of
connections of each node. The RMST has been proposed to construct a more
informative model of the continuity of the data44 by relaxing the constraint on the
number of connections per node in the MST; i.e. adding more connections at each
node if the following condition is fulfilled:

mwij þ γ dki þ dkj

� �

> dij; ð2Þ

where mwij is the maximum weight in the shortest path of the initial MST graph

between nodes i and j, dki is the value of the distance matrix corresponding to the
node i and its k nearest neighbor, and dij is the distance between nodes i and j. This
condition is applied to each pair of nodes. In order to simplify the solution search,
we limited the maximum number of neighbours of each node to kn (kn= 5 in this

study) while fixing the distance d1i of each node to its nearest neighbor. The γ is the
relaxing parameter and allows to add of weaker connetions (γ= 3 in this study).

Dimensionality reduction and Laplacian eigenmaps. Traditionally, the most
commonly known dimensionality reduction approaches are linear methods, such
as PCA, factor analysis and classical scaling. However, these approximations fail
when applied to complex nonlinear datasets58. Broadly, manifold learning tech-
niques rely on the assumption that the high-dimensional data points lie on a lower-
dimensional manifold and aim to estimate this low-dimensional manifold under-

lying the high-dimensional data points. Let X ¼ x1; ;xn
� �

2M�RD be the high-

dimensional observations. Manifold learning algorithms estimate a function yi= f

(xi) such that 8xi2M, f :MRd with d≪D. This estimated function maps each

data point from the manifold in the high-dimensional space RD to the embedding

in a lower-dimensional space Rd , with dimension d≪D. This low-dimensional

representation has coordinates y1; ;yn
� �

2 Y. Different manifold learning algo-

rithms differ in their estimation of the mapping function f. However, they all share
a basic pipeline structure consisting in: (1) computing a measure of the relationship
between each pair of data points S(xi, xj), (2) defining a similarity matrix H based
on these pairwise relationships, and (3) estimating the eigenvalues {λ1,…, λd} and

eigenvectors {v1,…, vd} of H. The d-dimensional representation y inRd is given by
the eigenvectors of H corresponding to the d smallest, non-trivial eigenvalues.

PCA can be seen as a linear manifold learning technique, in which the matrix
similarity H is defined as the covariance matrix of the data, and its eigenvectors
provide the function basis onto which the high-dimensional observations are
projected. Nonlinear manifold learning algorithms, in contrast, obtain the intrinsic
structure directly using those eigenvectors.
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The rationale underlying the LE algorithm is to find a low-dimensional
embedding that best preserves the local structure of the data. LE uses the discrete
version of the Laplace–Beltrami operator, also known as graph Laplacian (L) as the
similarity matrix H, and estimates its eigenvectors. Here we studied the
implementation of LE to a dataset of fMRI BOLD signal of human participants
among different wakefulness–sleep stages. Note that due to the nature of the
nonlinear dimensionality reduction, the mapping function from the high-
dimensional to the low-dimensional space is not available. Therefore, it cannot be
reversed to project the data points back into the high-dimensional space. Unlike
linear methods like PCA, the nonlinear manifold learning methods reveal directly
the low-dimensional coordinates of the data points, and the nonlinear mapping is
implicitly applied in the estimation of these coordinates by the method.

The PCA was performed on the pre-processed BOLD time-series, with AAL
parcellation, and time-points as observations (pca.m in MATLAB_2020b). The LE
is part of the intrinsic manifold computation and its implementation is explained
in the “Results” subsection “Revealing the intrinsic manifold of brain dynamics“.

Group analysis of individual manifolds. In order to assess how the topology of the
individual intrinsic manifolds generalized across participants, we aligned the low-
dimensional embeddings using a linear transformation. For each subject, the linear
transformation matrix T is defined as follows:

T* ¼ arg min
T
s:t:

T>T¼I

kTXs � XrefkF ;

ð3Þ

where Xs denotes the matrix with columns xi= [arg min(‖ui‖2), arg max(‖ui‖2)],
corresponding to the data-points with minimum and maximum l2—the norm for
each sleep stage i and subject s. Finding the best transformation T* corresponds to
solving for best rotation, translation and scale between the two sets of points. Here we
used procusted analysis59 with its MATLAB_2020b implementation procustes.m.

SVM classifier. In order to evaluate how well the intrinsic manifolds represent the
structure underlying brain activity during sleep and wakefulness, we tested whether
different stages of the wakefulness–sleep cycle can be accurately classified on the
manifold underlying brain activity. To this end, we utilized a SVM classifier. SVMs
are a set of supervised learning tools commonly used in various classification
problems60. In this work, we used a simple linear SVM, so that nonlinearities were
only accounted by the low-dimensional intrinsic manifold.

In order to estimate the efficiency of the intrinsic manifolds for classification of
different sleeps stages, and how well this classification generalizes to independent
datasets, we used cross-validation: we split the data into different subsets which
were used exclusively either in the training or testing phase of the cross-validation.
In the case of individual subject manifolds, we applied 10-fold cross-validation for
each stage pairwise comparison, dividing the data in each stage into 10 parts, using
1 of those parts as the test set and the 9 remaining parts as the training set. The
resulting accuracy was averaged across the 6 possible combinations to obtain a
distribution across the 18 participants. For the group manifold computed by
combining the data of all participants, we performed the classification using the
leave-one-subject-out cross-validation, training each time with 17 participants and
testing with the remaining one, and obtaining the distribution of accuracies across
all the 18 classifications performed.

In the main text, the accuracies of classification are reported sometimes as the
average across different stage-to-stage comparisons. In those cases, the uncertainty is
calculated as follows (in the case of the awake stage):

eAwake ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2A�N1 þ e2A�N2 þ e2A�N3

q

; ð4Þ

where e2A�X is the average classification accuracy uncertainty for each awake stage
comparison (standard deviation across subjects of the mean cross-validation accuracy).

We also tested the manifold decoding capacity, using multi-class classification
on single time points. We trained four one-vs-all classifiers, in which data samples
were binarily categorized as belonging to one stage or not. During the training
phase, a posterior distribution of the scores was fitted for each classifier. During the
testing phase, the posterior distribution was used to determine the probability of
each test sample belonging to each sleep stage. All samples were fed to the four
one-vs-all classifiers, using 10-fold cross-validation in the case of individual
manifolds, and leave-one-subject for the group manifold, and the class with the
highest probability was used to appoint the predicted class.

Statistical significance analysis. In order to test for statistical significance, we
used nonparametric statistical tests. Note that due to the fact that pre-processing
includes low-pass filtering to compute the narrowband instantaneous phase, we
might be introducing a partial, low-frequency structure to the data. As suggested in
ref. 61, phase randomized surrogates of the time series is used to obtain a p-value
against the null hypothesis that clustering of data points in the intrinsic manifold
space is due to the low-pass filtering and not to real similarities.

To this end, we performed a Monte Carlo permutation test by comparing the
results of classification of the original data to the classification on 1000 random-
sampled permutations of the fMRI BOLD time series. The accuracies of the phase

randomized surrogates were used to generate a distribution from which the p-value
is computed as

p ¼

∑

Nperm

i
f a; aiperm

� �

þ 1

Nperm þ 1
;

ð5Þ

where Nperm is the number of permutations of the Monte Carlo test, a is the
accuracy obtained by the SVM in the original data, and aiperm is the accuracy

obtained by the SVM in the ith Monte Carlo simulation, and

f a; aiperm

� �

¼
1; a < aiperm;

0; a ≥ aiperm:

(

ð6Þ

The phase randomization was performed by first obtaining the Fourier
spectrum of the time series, adding uniformly distributed shifts to the phase. The
negative frequencies’ phases are kept equal to their positive counterpart to have a
real surrogate signal, and the DC component is preserved intact. The shift value is
constant across ROIs. The inverse Fourier transform of the phase-randomized
spectrum gives the phase-randomized surrogate.

Receiver-operating characteristic. In binary classification problems, amongst
other measures of performance, we obtained the true positive rate (number of
correctly classified cases of one of two classes, divided by the total number of
classified items) and false positive rate (number of wrongly classified cases of the
other class, divided by the total number of classified items). The ROC curve is the
result of plotting these two measures for all possible discrete thresholds in the
dimension over which we are classifying the data. If two classes are completely
separated in one given dimension, then the best possible prediction would give a
true positive rate of 1 and a false positive rate of 0. Nonetheless, in problems
dealing with noisy observations, two classes are not perfectly separable for any
threshold value. For this reason, we exhaustively measured the rate of true positives
and false positives along the dimension of interest and compute the ROC curve by
varying a classification decision threshold. The area under this curve (AUC) is an
indicator of how separable those two distributions are and consists of the integral
of the ROC curve. An AUC value of 1 indicates that the two classes are perfectly
separable, whereas an AUC value of 0.5 indicates that the two classes have com-
pletely overlapping distributions.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
All data generated in this study are available from the corresponding author upon

reasonable request.

Code availability
All custom scripts used in this study were written in MATLAB_2020b, and are available

in https://github.com/joanrue/intrinsic-manifolds62.
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