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Abstract

■ Multivariate pattern analysis (MVPA) or brain decoding

methods have become standard practice in analyzing fMRI data.

Although decoding methods have been extensively applied in

brain–computer interfaces, these methods have only recently

been applied to time series neuroimaging data such as MEG

and EEG to address experimental questions in cognitive neuro-

science. In a tutorial style review, we describe a broad set of

options to inform future time series decoding studies from a

cognitive neuroscience perspective. Using example MEG data,

we illustrate the effects that different options in the decoding

analysis pipeline can have on experimental results where the

aim is to “decode” different perceptual stimuli or cognitive states

over time from dynamic brain activation patterns. We show that

decisions made at both preprocessing (e.g., dimensionality reduc-

tion, subsampling, trial averaging) and decoding (e.g., classifier

selection, cross-validation design) stages of the analysis can sig-

nificantly affect the results. In addition to standard decoding,

we describe extensions to MVPA for time-varying neuroimaging

data including representational similarity analysis, temporal gener-

alization, and the interpretation of classifier weight maps. Finally,

we outline important caveats in the design and interpretation of

time series decoding experiments. ■

INTRODUCTION

The application of “brain decoding” methods to the anal-

ysis of fMRI data has been highly influential over the past

15 years in the field of cognitive neuroscience (Kamitani

& Tong, 2005; Carlson, Schrater, & He, 2003; Cox &

Savoy, 2003; Haxby et al., 2001; Edelman, Grill-Spector,

Kushnir, & Malach, 1998). In addition to their increased

sensitivity, the introduction of fMRI decoding methods

offered the possibility to address questions about infor-

mation processing in the human brain, which have comple-

mented traditional univariate analysis techniques. Although

decoding methods for time series neuroimaging data

such as MEG/EEG have been extensively applied in brain–

computer interfaces (BCI; Müller et al., 2008; Curran &

Stokes, 2003; Wolpaw, Birbaumer, McFarland, Pfurtscheller,

& Vaughan, 2002; Kübler, Kotchoubey, Kaiser, Wolpaw, &

Birbaumer, 2001; Farwell & Donchin, 1988; Vidal, 1973),

they have only recently been applied in cognitive neuro-

science (Carlson, Hogendoorn, Kanai, Mesik, & Turret,

2011; Duncan et al., 2010; Schaefer, Farquhar, Blokland,

Sadakata, & Desain, 2010).

The goal of this article is to provide a tutorial style guide

to the analysis of time series neuroimaging data for cog-

nitive neuroscience experiments. Although introductions

to BCI exist (Blankertz, Lemm, Treder, Haufe, & Müller,

2011; Lemm, Blankertz, Dickhaus, & Müller, 2011), the

aims of time series decoding for cognitive neuroscience

are distinct from those that drive the application of these

methods in BCI, thus requiring a targeted introduction.

Although there are many reviews and tutorials for fMRI

decoding (Haynes, 2015; Schwarzkopf & Rees, 2011;

Mur, Bandettini, & Kriegeskorte, 2009; Pereira, Mitchell, &

Botvinick, 2009; Formisano, De Martino, & Valente, 2008;

Haynes & Rees, 2006; Norman, Polyn, Detre, & Haxby, 2006;

Cox & Savoy, 2003), there are no existing tutorial intro-

ductions to decoding time-varying brain activity. Although

the approaches are conceptually similar, there are impor-

tant distinctions that stem from fundamental differences in

the nature of the neuroimaging data between fMRI and

MEG/EEG. In this article, we provide a tutorial introduction

using an example MEG data set. Although there are many

possible analyses targeting time series data (e.g., oscillatory

[Jafarpour, Horner, Fuentemilla, Penny, & Duzel, 2013] or

induced responses), we restrict the scope of this article to

decoding information from evoked responses, with statis-

tical inference at the group level on single time points or

small time windows. As with most neuroimaging analysis

techniques, the number of possible permutations for a

given set of analysis decisions is very large, and the par-

ticular choice of analysis pipeline is guided by the experi-

mental question at hand. Here we aim to provide a broad

demonstration of how the analysis may be approached,

rather than prescribing a particular analysis pipeline.
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Early studies using time-resolved decoding methods

have revealed significant potential for experimental in-

vestigation using this approach with MEG/EEG (see

MVPA for MEG/EEG section). However, compared with

the popularity of decoding methods in fMRI, to date only

a small number of studies have applied multivariate pat-

tern analysis (MVPA) techniques to EEG or MEG. Accord-

ingly, the aims of this article are to (a) introduce the critical

differences between decoding time series (e.g., MEG/EEG)

versus spatial (e.g., fMRI) neuroimaging data, (b) illustrate

the time series decoding approach using a practical tutorial

with example MEG data, (c) demonstrate the effect that

selecting different analysis parameters has on the results,

and (d) outline important caveats in the interpretation of

time series decoding studies. In summary, this article will

provide a broad overview of available methods to inform

future time-resolved decoding studies. This tutorial is pre-

sented in the context of MEG; however, the methods and

analysis principles generalize to other time-varying brain

recording techniques (e.g., ECoG, EEG, electrophysiol-

ogical recordings.). As this review is targeted at providing

a broad overview to a general audience, we avoid formal

mathematical definitions and implementation details of

the methods and instead focus on the rationale behind

the decoding approach as applied to time series data.

MVPA for MEG/EEG

The term “multivariate pattern analysis” (or MVPA) en-

compasses a diverse set of methods for analyzing neuro-

imaging data. The common element that unites these

approaches is that they take into account the relation-

ships between multiple variables (e.g., voxels in fMRI or

channels in MEG/EEG), instead of treating them as inde-

pendent and measuring relative activation strengths. The

term “decoding” refers to the prediction of a model from

the data (“encoding” approaches do the reverse, predict-

ing the data from the model, reviewed in Naselaris, Kay,

Nishimoto, & Gallant, 2011; see also, e.g., Ding & Simon,

2012, for an example of encoding models for MEG). The

most common application of decoding in cognitive neu-

roscience is the use of machine learning classifiers (e.g.,

correlation classifiers (Haxby et al., 2001) or discriminant

classifiers (Carlson et al., 2003; Cox & Savoy, 2003) to

identify patterns in neuroimaging data, which correspond

to the experimental task or stimulus. The most popular

applications of MVPA are decoding (for recent reviews on

fMRI decoding, see e.g., Haynes, 2015; Pereira et al., 2009)

and, more recently, representational similarity analysis

(RSA: Kriegeskorte & Kievit, 2013). Within the broad cat-

egory of MVPA analyses, the central focus of this article is

on decodingmethods applied to evoked responses and the

increasingly popular RSA framework (see Representational

Similarity Analysis section).

The decoding approach is illustrated in Figure 1 for

a simple experimental design in which the participant

viewed pictures of blue circles or red squares while their

brain activity was recorded. The goal of the decoding

analysis is to test whether we can predict if the partici-

pant was viewing a blue circle or a red square based on

their patterns of brain activation. If the experimental

stimuli can be successfully “decoded” from the partici-

pant’s patterns of brain activation, we can conclude that

some information relevant to the experimental manipula-

tion exists in the neuroimaging data. First, brain activation

patterns in response to the different stimuli (or experi-

mental conditions) are recorded using standard neuro-

imaging (MEG, fMRI, etc.) techniques (Figure 1A). The

activation levels of the variables (e.g., voxels in fMRI,

channels inMEG/EEG) in different experimental conditions

are represented as complex patterns in high-dimensional

space (each voxel, channel, or principal component is one

dimension). For simplicity, in Figure 1B, these patterns are

shown in two-dimensional space. Each point in the plot

represents an experimental observation corresponding to

the simultaneous activation level in two example voxels/

channels in response to one of the experimental condi-

tions (blue circles or red squares).

The first step in a decoding analysis involves training

a classifier to associate brain activation patterns with

the experimental conditions using a subset of the data

(Figure 1C). In effect, during training the classifier finds

the decision boundary in higher-dimensional space that

best separates the patterns of brain activation correspond-

ing to the two experimental categories into two distinct

groups. As neuroimaging data are inherently noisy, this

separation is not necessarily perfect (note the red square

on the wrong side of the decision boundary in Figure 1C).

Next, the trained classifier is used to predict the condition

labels for new data that were not used for training the

classifier (Figure 1D). The classifier predicts whether

the new (unlabeled) data are more similar to the pattern

of activation evoked by viewing a blue circle or a red

square. If the classifier performs higher than that expected

by chance (in this case 50% is the guessing rate as there

are two stimuli), it provides evidence that the classifier

can successfully generalize the learned associations to

labeling new brain response patterns. Consequently, it is

assumed that the patterns of brain activation contain infor-

mation that distinguishes between the experimental con-

ditions (i.e., the conditions blue circle/red square can be

“decoded” from the neuroimaging data). Decoding accu-

racy can then be compared across brain regions (in fMRI)

or time points (in MEG/EEG) to probe the location or time

course of information processing in the brain. This is

achieved by repeating the classification multiple times for

different data, that is, different time points in MEG/EEG

(Figure 1E) for examining the time course, or for different

brain regions in fMRI (Figure 1F) for examining the spatial

distribution of information in the brain. Thus, the main prac-

tical differences between decoding from MEG/EEG versus

fMRI data lie in the methods used to obtain the patterns of

information (Figure 1A, B) and the nature of the conclusions

drawn from successful decoding performance (Figure 1E, F).
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Decoding time series neuroimaging data is becoming

increasingly popular. To date, most studies have applied

the methods to understanding the temporal dynamics of

the processing of visual stimuli and object categories. For

example, time-resolved decoding has been used to study

the emergence of object representations at the category

and exemplar level using MEG (Carlson, Tovar, Alink, &

Kriegeskorte, 2013), EEG (Cauchoix, Barragan-Jason,

Serre, & Barbeau, 2014), and neuronal recordings (Zhang

et al., 2011; Meyers, Freedman, Kreiman, Miller, & Poggio,

2008; Hung, Kreiman, Poggio, & DiCarlo, 2005); how

invariant object representations emerge over time (Kaiser,

Azzalini, & Peelen, 2016; Isik, Meyers, Leibo, & Poggio,

2014; Carlson et al., 2011); and how objects are rep-

resented in other (e.g., written or auditory) modalities

(Simanova, van Gerven, Oostenveld, & Hagoort, 2010,

2015; Murphy et al., 2011; Chan, Halgren, Marinkovic, &

Cash, 2010). Other studies have also used this approach

to decode the orientation and spatial frequency of gratings

from MEG (Wardle, Kriegeskorte, Grootswagers, Khaligh-

Razavi, & Carlson, 2016; Cichy, Ramirez, & Pantazis, 2015;

Ramkumar, Jas, Pannasch, Hari, & Parkkonen, 2013) and to

study decision-making (Stokes et al., 2013; Bode et al.,

2012), illusions (Hogendoorn, Verstraten, & Cavanagh,

2015), or working memory (Wolff, Ding, Myers, & Stokes,

2015; van Gerven et al., 2013). Notably, classifiers have

been extensively applied to EEG (Guimaraes, Wong, Uy,

Grosenick, & Suppes, 2007) for a different goal, as the

low cost and portability of EEG is ideal for the development

of BCI. These applications use classifiers to predict brain

states to operate computers or robots (Müller et al., 2008;

Allison, Wolpaw, & Wolpaw, 2007; Hill et al., 2006; Müller,

Anderson, & Birch, 2003; Vidal, 1973, p. 2008). However,

the goal of BCI is to achieve the maximum possible usabil-

ity, that is, optimal prediction accuracy, robust real-time

classification, and generalizability. The performance measures

Figure 1. The general decoding

approach. (A) Brain responses

to stimuli (e.g., blue circles

and red squares) are recorded

with standard neuroimaging

techniques. (B) Patterns of

activation evoked by the

two stimulus conditions

(red square and blue circle)

are represented in multiple

dimensions (channels in

EEG/MEG or voxels in fMRI);

here only two dimensions

are illustrated for simplicity.

(C) A classifier is trained on

a subset of the neuroimaging

data, with the aim of

distinguishing a reliable

difference in the complex

brain activation patterns

associated with each stimulus

class. (D) The performance

of the classifier in distinguishing

between the stimulus classes

is evaluated by testing its

predictions on independent

neuroimaging data (not used

in training) to obtain a measure

of decoding accuracy. (E, F)

Steps B–D may then be

repeated for different time

points (when using EEG/MEG)

to study the temporal evolution

of the decodable signal or

repeated for different brain

areas (in fMRI) to examine

the spatial location of the

decodable information.
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of BCI systems are therefore often compared across stud-

ies (and in competitions; see, e.g., Tangermann et al.,

2012). This contrasts with decoding in neuroscience,

where the goal is to understand brain processing by statis-

tical inference on the availability of information (Hebart,

Görgen, & Haynes, 2015), and accuracy differences be-

tween studies are generally not taken as meaningful.

Although the field is relatively new, there have already

been several methodological extensions to standard de-

coding analysis applied to time series neuroimaging data

(see Additional Analyses section). Following its applica-

tion in fMRI, RSA (Kriegeskorte & Kievit, 2013) has been

used with MEG data to correlate the temporal structure of

brain representations with behavior (Wardle et al., 2016;

Redcay & Carlson, 2015). RSA has also been used to link

neuroimaging data from different modalities. For example,

for object representations, the representational structure

that appears early in the MEG data corresponds to repre-

sentations in primary visual cortex measured with fMRI,

whereas later stages instead reflect the representation in

inferior temporal cortex (Cichy, Pantazis, & Oliva, 2014,

2016). A strength of time series decoding is that the dy-

namic evolution of brain representations can be examined.

One example of this is the temporal generalization ap-

proach (see The Temporal Generalization Method sec-

tion), which has been used in MEG to reveal that local

and global responses to auditory novelty exhibit markedly

different patterns of temporal generalization (King,

Gramfort, Schurger, Naccache, & Dehaene, 2014). Further-

more, insights into the spatiotemporal dynamics can also

be gained by combining source reconstruction methods

with the decoding approach (van de Nieuwenhuijzen

et al., 2013; Sudre et al., 2012) or by comparing the inter-

action between subsets of sensors (e.g., Goddard, Carlson,

Dermody, & Woolgar, 2016). Thus, although relatively

few time series neuroimaging studies to date have applied

decodingmethods, thesehave already provided valuable in-

sights, illustrating the rich potential for future applications.

Recently, several toolboxes have been developed that

implement the methods described in the rest of this

paper; the PyMVPA toolbox (Hanke, Halchenko, Sederberg,

Hanson, et al., 2009; www.pymvpa.org) handles both fMRI

and M/EEG data using the open-source Python language

(Hanke, Halchenko, Sederberg, Olivetti, et al., 2009), MNE

(Gramfort et al., 2013, 2014; martinos.org/mne) is a Python

toolbox (and can be accessed in MATLAB [The MathWorks,

Natick, MA]) designed for M/EEG analyses, the Neural

Decoding Toolbox (Meyers, 2013; www.readout.info) is a

MATLAB toolbox created specifically for time-varying input,

and the MATLAB toolbox CoSMoMVPA (Oosterhof,

Connolly, & Haxby, 2016; www.cosmomvpa.org) handles

both fMRI and M/EEG and was inspired by (and interfaces

with) pyMVPA.

Decoding and other variants of MVPA are an alternative

and complementary approach to univariate MEG/EEG

analysis. This article will not cover univariate methods

for MEG and EEG (which are well established; see, e.g.,

Cohen, 2014; Luck, 2005), and as always, the choice of

analysis method must be guided by the experimental

question. One of the central differences between uni-

variate and multivariate methods is that the classifiers

used in decoding approaches can use information that

would not be detected when comparing the averaged sig-

nals in a univariate analysis (see Figure 2 for an illustra-

tion). This can lead to increased sensitivity for detecting

differences between conditions (and on a single-trial

basis). For example, decoding analysis can result in earlier

detection of differences in the signals (Cauchoix et al.,

2014; Cauchoix, Arslan, Fize, & Serre, 2012), and the dif-

ferences found by classifiers can differ from those found

in components (Ritchie, Tovar, & Carlson, 2015). Beyond

sensitivity, the central distinction between univariate and

MVPA analyses are the conceptual differences (activation-

based vs. information-based) in the experimental ques-

tions each approach is suited to addressing. We anticipate

that time series decoding approaches will continue to

evolve alongside univariate methods, as has occurred with

the adoption of decoding in fMRI, where both methods

are used fruitfully.

The main aim of this article is to describe a typical anal-

ysis pipeline for decoding time series data in a tutorial

format. The article is organized as follows. We begin by

describing the experiment and the data recording proce-

dures used to obtain the example MEG data (see Descrip-

tion of experiment section). Next, we illustrate how the

recordings are preprocessed using a combination of

principal component analysis (PCA), subsampling and

averaging (see Preprocessing section). This is followed

by the decoding analysis (see Decoding section). For

all analysis stages, we provide comparisons of how

different choices made at each stage may affect the re-

sults. Following the decoding tutorial, in the Additional

Analyses section we describe three extensions to the

method: (1) temporal generalization (King & Dehaene,

2014), (2) RSA (Kriegeskorte, Mur, & Bandettini, 2008),

and (3) classifier weights projection (Haufe et al., 2014).

Finally, we outline important caveats and limitations of

the decoding approach in the General Discussion section.

See Figure 3 for an overview of the analysis pipeline and

the structure of the article, including the relevant section

heading titles.

DESCRIPTION OF EXPERIMENT

In this tutorial, we use MEG data to illustrate the effect

that different choices made at several analysis stages have

on the decoding results. Object animacy has been shown

to be a reliably decoded categorical distinction in studies

using both fMRI (Proklova, Kaiser, & Peelen, 2016; Sha

et al., 2015; Kriegeskorte, Mur, Ruff, et al., 2008; Downing,

Chan, Peelen, Dodds, & Kanwisher, 2006) and MEG data

(e.g., Cichy et al., 2014; Carlson, Tovar, et al., 2013). Here

we use this robust paradigm as a basis for comparing the
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consequences of different analysis decisions in a decoding

pipeline.

Twenty healthy volunteers (4 men) with a mean age of

29.3 years (ranging between 24 and 35 years) participated

in the study. Informed consent in writing was obtained

from each participant before the experiment, and the

study was conducted with the approval of the Macquarie

University human research ethics committee. The stimuli

were images of 48 visual object exemplars (24 animate

and 24 inanimate), segmented and displayed on a phase-

scrambled background (see Figure 4).1 Stimulus presen-

tation was controlled by custom-written MATLAB scripts

using functions from Psychtoolbox (Kleiner et al., 2007;

Brainard, 1997; Pelli, 1997). The images were shown briefly

for 66 msec (at 9° visual angle) followed by a fixation cross

with a random ISI between 1000 and 1200 msec. Partici-

pants were instructed to categorize the stimulus as “ani-

mate” or “inanimate” as fast and accurately as possible,

using a button press. The response button mapping alter-

nated between 7-min blocks to avoid confounding the

response with stimulus category (see Common Pitfalls

section). This resulted in 32 trials per exemplar, 768 trials

per category (animate/inanimate), and 1536 trials total per

participant. All trials were included in the analysis, regard-

less of response, eye blinks, or other movement artifacts.

Data Collection

The MEG signal was continuously sampled at 1000 Hz

from 160 axial gradiometers2 using a whole-head MEG

system (Model PQ1160R-N2, KIT, Kanazawa, Japan)

inside a magnetically shielded room (Fujihara Co. Ltd.,

Tokyo, Japan) while participants lay in a supine position.

Recordings were filtered online with a high-pass filter of

0.03 Hz and a low-pass filter of 200 Hz. The recordings

were imported into MATLAB using the Yokogawa MEG

Reader Toolbox for MATLAB (v1.04.01; Yokogawa Electric

Corporation). The first step in the pipeline was to slice the

Figure 2. An illustration of

how multivariate analysis can

result in increased sensitivity

compared with univariate

analysis. (A) Example average

ERPs in response to two stimuli

(Class A and Class B) are shown

in two channels (left and right).

The responses to the two

classes in the individual

channels overlap substantially

and potentially nonsignificant

in a univariate analysis. (B) The

same responses represented

as points in two-dimensional

space, showing the activation

in the two channels at one

time point (i.e., location of

the vertical gray bar in the ERP

plots). When combining the

information from both channels

as in a decoding analysis, it is

possible to define a boundary

(dashed line) separating the

two classes (distributions

plotted orthogonal to the

dashed line).
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data into epochs (i.e., trials), time-locked to a specific

event. We extracted from −100 to 600 msec of MEG data

relative to the stimulus onset. The first 100 msec of signal

taken before trial onset serves as a sanity check for decod-

ing accuracy (see Cross-validation section).

Analysis Summary

The effect of different choices on the decoding results

will be described by systematically varying one parameter

relative to a set of fixed parameters. Three caveats of this

approach are that (1) as these parameters are not inde-

pendent, interactions between analysis decisions are

likely; (2), the effects of these analysis decisions will vary

between data sets; and (3) drawing conclusions on dif-

ferences in decoding performances is only valid when

the noise level is the same in all cases. Consequently,

the following results should be interpreted as illustrative

rather than provide prescriptive analysis guidelines. All

analysis code for the examples was written in MATLAB,

using only standard functions unless otherwise specified.

To illustrate the effects of different parameters on the

results, they are consistently shown at the final stage plot-

ted as a function of classifier accuracy over time. The de-

fault methods and fixed parameters are listed here for

reference, and unless otherwise specified, the results in

Figures 6–10 are obtained using this default pipeline:

• Preprocessing (see Preprocessing section)

• Subsampling 200 Hz

• Averaging four trials

• PCA retaining 99% of the variance

• Decoding (see Decoding section)

• Naive Bayes classifier

• Leave-one-exemplar-out cross-validation

Figure 3. A schematic overview

of a typical analysis pipeline.

Refer to the relevant sections

in the article for further details.

This overview illustrates a

general pipeline for decoding

studies. The practical differences

between decoding with

MEG/EEG data versus

fMRI data arise in both the

preprocessing and analysis

stages.
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The results are reported as time-varying decoding accu-

racy, that is, higher accuracies reflect better decoding

(prediction) of stimulus animacy from the MEG data.

To assess whether accuracy was higher than chance, a

Wilcoxon signed-rank test on the grand mean of

decoding performance (n = 20) was performed at each

time point. The resulting p values were corrected for

multiple comparisons by controlling the false discovery

rate (FDR; Benjamini & Hochberg, 1995). Note that these

statistics were chosen for their simplicity and ease of use;

we discuss commonly used options for assessing classifier

performance and statistics in the Evaluation Of Classifier

Performance and Group Level Statistical Testing section.

Figure 5 shows the result of this default pipeline. As

expected, before stimulus onset (−100 to 0 msec), de-

coding performance is at chance (50%), confirming that

there is no animacy information present in the signal.

Then, approximately 80 msec after stimulus presentation,

the classifier’s performance rises significantly above

chance for almost the entire time window (to 600 msec).

Thus, at these time points, we are able to successfully

decode from the MEG activation patterns whether the

presented stimulus in a given trial was animate (parrot,

dog, horse, etc.) or inanimate (banana, chair, tree, etc.).

This indicates that the MEG signal contains information

related to the animacy of the stimulus. The next sections

will describe this pipeline in detail while comparing the

effect of different analysis decisions.

PREPROCESSING

Neuroimaging data are often noisy. The signals in imag-

ing data are weak compared with, for example, environ-

mental noise, baseline activity levels, or fluctuations

caused by eye blinks or other movements. Therefore,

a set of standard procedures is used to increase the

signal-to-noise ratio. Furthermore, neuroimaging data

are high dimensional, and it is common practice to

restrict the analysis to fewer dimensions. In MEG decod-

ing, the dimensions of the data are generally reduced in

the number of features (i.e., channels) that are input to

the classifier. In addition, temporal smoothing is com-

monly applied. There are multiple ways to achieve these

preprocessing steps, the most common are described in

this section.

Data Transformation and Dimensionality Reduction

A standard step in preprocessing is to reduce the dimen-

sionality of the data. Some classifiers require more train-

ing samples than features, and others might overfit to

noise in the data if provided with too many features

Figure 4. Illustration of

the experimental design.

(A) The stimuli consisted of

24 animate and 24 inanimate

visual objects, converted to

gray-scale and overlayed on a

phase-scrambled natural image

background. (B) Stimuli were

presented in random order

for 66 msec followed by a

random ISI between 1000

and 1200 msec. Participants

categorized the animacy of

the stimulus during the ISI

with a button press.
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(Misaki, Kim, Bandettini, & Kriegeskorte, 2010; De Martino

et al., 2008; Bishop, 2006) or require longer computation

time. Raw MEG recordings consist of many channels,

typically 160 or more, and there is considerable redundant

information, for example, in adjacent channels. It is there-

fore common practice to reduce the dimensionality of the

data by feature selection before decoding, which can be

accomplished in multiple ways. One approach is to select

the channels that aremost informative (Hanke, Halchenko,

Sederberg, Hanson, et al., 2009; De Martino et al., 2008).

For example, Isik et al. (2014) use an ANOVA significance

test to select the MEG channels that contain significant

stimulus-specific information.

Alternatively, one can use unsupervised, data-driven

approaches such as PCA, which transforms the data into

linearly uncorrelated components with the same number

of feature dimensions, ordered by the amount of variance

explained by each component (for a detailed introduction

to PCA, see Jackson, 1991). The use of PCA for MEG has a

number of advantages: First, retaining only the compo-

nents that account for most of the variance substantially

reduces the dimensionality of the data. In the example

data (160 channels), on average 48.16 (SD = 7.05, range =

26–79) components accounted for 99% of the variance

in the data. Second, PCA can separate out noise and arti-

facts such as eye blinks (see Improving Signal to Noise

section) into their own components. These components

can then be suppressed by the classifier because they

do not contain class-specific information. Third, as the

resulting PCA components are uncorrelated, it allows for

using simpler (i.e., faster) classifiers that assume no fea-

ture covariance (e.g., naive Bayes; see Classifiers section).

Figure 6 illustrates the effect of the described dimen-

sionality reduction methods on decoding performance

for the example data. For this data set and classifier,

PCA yields much better performance compared with

using the raw channels (cf. Isik et al., 2014). Note that

these differences are classifier dependent (as shown in

the Classifiers section). Here, the PCA transformation

was computed on the training data and applied on the

test data, separately for each time point and separately

for each training fold. Alternatively, one could compute

one transformation for the whole time series and/or do

this on all data before the cross-validation process. How-

ever, this is only viable if the goal of the analysis is sta-

tistical inference (Hebart et al., 2015), as it could result

in more optimistic decoding accuracies that would not

generalize to new data.3

An alternative method is to transform the sensor level

data into activations in virtual source space. Instead of

decoding channel level activations, source reconstruction

(e.g., beamformer [Van Veen, Van Drongelen, Yuchtman,

& Suzuki, 1997] or minimum norm estimate [Hämäläinen

& Ilmoniemi, 1994]) can be applied during preprocess-

ing. Classification is then performed in source space

rather than channel space (Sandberg et al., 2013; van de

Nieuwenhuijzen et al., 2013; Sudre et al., 2012). Using

source space for decoding has the potential to improve

classification accuracies (Sandberg et al., 2013; van de

Nieuwenhuijzen et al., 2013), as source reconstruction

algorithms can ignore channel level noise. Inferences

about the spatial origin of the decoded discrimination

can be made by restricting the classifier to considering

signals from predetermined ROIs (e.g., Sudre et al., 2012)

Figure 5. Decoding animacy from MEG data using the default analysis

pipeline. Classifier accuracy (percent correct averaged across participants)

is shown as a function of time relative to stimulus onset at 0 msec.

The dashed line marks chance classification accuracy at 50%. The shaded

area is the standard error across participants. Discs above the x axis

indicate the time points where decoding performance is significantly

higher than chance.

Figure 6. The effect of dimensionality reduction methods on decoding

performance. The effect of channel selection using ANOVA (yellow line)

is marginally better than using the raw data (blue line). Using PCA

(red line) yields the largest gain in performance. The shaded area is the

standard error across participants. Discs above the x axis indicate the

time points where decoding performance is significantly higher than

chance.
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or by using the complete source space reconstruction

and projecting the classifier weights (see Weight Projection

section) into source space (e.g., van de Nieuwenhuijzen

et al., 2013). The second approach relies on interpreting

classifier weights, and therefore, the reliability of the

sources depends not only on the reconstruction quality

but also on decoding performance (see Weight Projection

section). Source reconstruction methods are still devel-

oping, and reconstruction accuracies are likely to improve

in the future, making source space decoding an attractive

option. However, as source space decoding has not been

widely used to date, we will not cover it in the rest of this

tutorial.

Improving Signal to Noise

MEG data are generally sampled at high frequencies (e.g.,

1000 Hz), and a common strategy to improve signal-to-

noise ratio (the strength of the signal compared with

the strength of the background noise) is by collapsing

data over time. The two main approaches are to classify

on more than one time point using a sliding window

(e.g., Ramkumar et al., 2013) or down-sample the data

to lower frequencies (see Figure 7). The difference be-

tween the methods is that, when using a sliding window,

the classifier has access to all time points in the window

(the number of features is increased), whereas in sub-

sampling, it receives the average (the number of features

at each time point stays the same). For the example data,

subsampling has a small effect on decoding performance

but also benefits the analysis by reducing the compu-

tation time for the decoding analysis as there are fewer

time points to classify. The sliding window approach also

improves performance, but the benefit is marginal espe-

cially considering that the computation time increases

significantly with larger sliding windows, as the classifier

is still trained and tested at each time point. The optimal

parameters will depend on the particular data set and

desired temporal resolution. An important caveat for

both approaches is that estimates of both decoding onset

and the time of peak decoding are affected by the choice

of subsampling or sliding window. When using a sliding

time window, the last time bin in the window should be

used for determining the onset (as in Figure 7) to avoid

shifting the onset forward in time. It is recommended

to apply a low-pass filter before resampling (e.g., sub-

sampling using the decimate function in MATLAB) as

subsampling can cause aliasing. Low-pass filtering, how-

ever, can cause an artifact whereby significant decoding

emerges even when no signal exists in the original data

(Vanrullen, 2011). For the example data, we subsampled

by a factor of 5 to obtain a sampling rate of 200 Hz.

Another source of noise originates from artifacts. Eye

blinks, eye movements, heartbeats, and muscle movement

can cause significant artifacts. Typically, in classical M/EEG

analyses trials containing such artifacts are manually in-

spected and excluded from the analysis, or independent

component analysis is used to separate out these artifacts

into their own components, which are then removed man-

ually or automatically (Mognon, Jovicich, Bruzzone, &

Buiatti, 2011). Experiments can also be designed in a way

to reduce the number of artifacts, for example, by instruct-

ing participants to blink in response to a particular stimulus

that is not part of the analysis (Cichy et al., 2014). We did

not perform any artifact rejection on our data and found

classification performance to be well above chance, but this

can vary across data sets. As classifiers have the capacity to

learn to ignore bad channels or supress noise during train-

ing, artifact correction is likely less critical in decoding

analyses. However, note that if artifacts are confounded

with a condition (e.g., if more eye movements occurred

in one condition than the other due to some property of

Figure 7. The effect of (A) subsampling and (B) sliding window

approaches to improving signal-to-noise ratio on classifier accuracy.

The shaded area is the standard error across participants. Discs above

the x axis indicate the time points where decoding performance is

significantly higher than chance.
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the stimulus), this would make the artifacts a potential

source of discrimination information for the classifier. If

this is the case, it would not be possible to determine

whether the classifier was decoding the experimental con-

dition, or the correlated difference in artifacts (see also

Common Pitfalls section).

Increased signal-to-noise ratio can also be achieved by

averaging trials belonging to the same exemplar before

decoding (Isik et al., 2014). Averaging increases general

decoding performance and makes signatures (e.g., onsets,

maxima or minima) more pronounced. This effect is

shown in Figure 8, where different numbers of trials (be-

longing to the same exemplar) are averaged. Interestingly,

the first onset of decoding is similar regardless of the

number of trials that are averaged. The greatest increase

in performance (in our example data) is observed when

averaging four trials. Averaging more trials does not increase

decoding performance by the same factor, suggesting

that here four trials is a good trade-off between signal-

to-noise ratio and trials per exemplar. The trade-off to

consider when selecting the number of trials to average

is that reducing the trials per exemplar (e.g., averaging

32 trials here produces only one trial per exemplar) typ-

ically increases the variance in (within-subject) classifier

performance. Alternatively, when not enough trials are

available, the trials used for training the classifier could

be sampled with replacement (bootstrapped). The opti-

mal number of trials to average will differ for different

data (e.g., in Isik et al., 2014, averaging 10 trials was used).

Note that trial averaging does not affect model testing

(e.g., RSA, see the Representational Similarity Analysis

section), as relative decoding performance is scaled sim-

ilarly between exemplars or time points.

DECODING

Decoding analysis is performed on the preprocessed

data. To summarize, in preprocessing the raw MEG signal

is sliced into epochs from −100 to 600 msec relative to

stimulus onset, then down-sampled to 200 Hz. Groups of

four single trials are averaged to boost signal-to-noise

ratio, resulting in eight pseudotrials for each object exem-

plar. These preprocessed pseudotrials are the input to

the classifier in the decoding analysis.

To decode the class information (animacy) from the

MEG data, a pattern classifier (see Classifiers section) is

trained to distinguish between two classes of stimuli (ani-

mate and inanimate objects). The classifier’s ability to

generalize this distinction to new data is assessed using

cross-validation (see Cross-validation section). If the clas-

sifier’s performance after cross-validation is significantly

above chance, this indicates that the MEG patterns contain

class-specific information, and we conclude that the class

can be decoded from the MEG data. In time-resolved

MEG decoding studies, this process is repeated on all

time points in the data. Then, for example, one can exam-

ine when the peak in decoding performance occurs, that is,

at what time point the information in the signal allows for

the best class distinction. Another feature often used is the

onset of significant decoding performance to determine

the earliest time that class-specific information becomes

available. These signatures can then be compared across

experimental conditions.

Classifiers

There are numerous types of classifiers that originate

from the machine learning literature. Classifier choice

has the potential to influence experimental results, as dif-

ferent classifiers make different assumptions about the

data. In addition, the goal of classification in machine

learning is high predication accuracy, which drives the

development of increasingly sophisticated classifier algo-

rithms. In contrast, prediction is not the main goal of

decoding in neuroscience, and classifier choice instead

favors simplicity and ease of interpretation over optimiz-

ing prediction accuracies. Therefore, for brain decoding

studies, linear classifiers are generally preferred, as they

are simpler in nature, making interpretation less complex

(Schwarzkopf & Rees, 2011; Misaki et al., 2010; Müller

et al., 2003). The default classifiers used in fMRI decoding

are typically linear support vector machines (SVM) or, to

a lesser extent, correlation classifiers. However, fMRI data

typically have many features/dimensions. SVM is gen-

erally better than other classifiers when dealing with

many features and is therefore a popular choice. In com-

parison with fMRI data, time series data often has fewer

features (e.g., our example MEG data set uses only ∼50

components following PCA). Consequently, it is possible

that there are differences in the suitability of different

classifiers for fMRI versus time series decoding analysis.

Figure 8. The effect of averaging trials on decoding performance.

The shaded area is the standard error across participants. Discs above

the x axis indicate the time points where decoding performance is

significantly higher than chance.
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Here we compare the performance of SVM, correlation

classifiers, and two common alternatives (linear discrim-

inant analysis [LDA] and Gaussian naive Bayes [GNB]) on

the example MEG data (Figure 9), using their built-in

MATLAB implementations (and default parameters).

Notably, LDA, GNB, and SVM have the best overall per-

formance. Taking the complexity of the classifier into

account, which affects the computational requirements

and given that classification is generally repeated many

times (e.g., on multiple time points), this argues in favor

of the discriminant classifiers (GNB and LDA), which are

faster to train than SVM. Interestingly, despite their rela-

tive popularity in fMRI, the correlation classifiers did not

perform as well on our data. However, Isik et al. (2014)

reported correlation classifier performance for their MEG

data on par with other classifiers. This difference could

be due to many factors, for example, different choices in

the preprocessing pipeline or experimental design. To

illustrate that classifier performance depends on prepro-

cessing, we tested the same classifiers using different pre-

processing decisions. For example, Figure 9B shows that

not performing PCA has a large effect on GNB perfor-

mance, but a smaller effect on the performance of LDA

and SVM. These dependencies highlight the difficulty in

attempting to make universal recommendations for decod-

ing analyses. Furthermore, each classifier has a number of

parameters that may be optimized; however, most neuro-

science studies use standard classifier implementations.

Cross-validation

An essential step in decoding analysis is cross-validation:

This provides an evaluation of classifier generalization per-

formance. In standard k-fold cross-validation, the data are

divided into k subsets (i.e., folds), where each subset con-

tains a balanced amount of trials from each class (e.g., ani-

mate and inanimate exemplars in our example experiment).

The classifier is trained using all-but-one subsets (the train-

ing set). Next, the trained classifier is used to predict the

class of the trials from the remaining subset (the test set).

This process is repeated for all subsets, and the average

classifier performance across all folds is reported. This

method makes maximal use of the available data, as all trials

are used for testing the classifier. Note that in fMRI decoding

the sets are often based on experimental runs (leave-one-

run-out cross-validation), as the trials within each run are

not independent (e.g., due to the slow hemodynamic re-

sponse). In MEG decoding, individual trials are generally

assumed to be independent (Oosterhof et al., 2016), and

trials are randomly assigned to train and test sets. The

theoretical optimal performance is obtained by leave-one-

trial-out cross-validation, where the classifier is trained on all-

but-one trial. It is however computationally more intensive,

especially withmany trials (which is typically the case inMEG).

As with other analysis decisions, the most appropriate

implementation of cross-validation is guided by the exper-

imental design. Standard k-fold cross-validation assigns

individual trials to training and testing sets. Depending

on the research question, this may produce a confound

in the class distinction that the classifier learns from the

training data. For example, for decoding animacy, stan-

dard cross-validation would entail that trials belonging

to the same exemplar (e.g., “car”) are assigned to both

training and test sets. Consequently, it may be possible

for the classifier to learn to distinguish the classes based

on the activation patterns evoked by visual properties of

specific exemplars. This makes it unclear whether the

classification boundary is based on animacy or visual fea-

tures. To avoid this, when decoding categories composed

of many exemplars, we recommend leave-one-exemplar-

out cross-validation (see Carlson, Tovar, et al., 2013),

where all trials belonging to one exemplar (e.g., car) are

assigned to the test set and the classifier is trained on the

Figure 9. Comparison of classification accuracy as a function of

classifier type. (A) Using the standard decoding pipeline. (B) Using the

standard pipeline without performing PCA. The shaded area is the

standard error across participants. Discs above the x axis indicate the time

points where decoding performance is significantly higher than chance.
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data from the other exemplars (e.g., “dog” and “chair”).

This is repeated for all exemplars (i.e., every exemplar is

assigned to the test set once).

Figure 10 shows decoding accuracy for different forms

of cross-validation, including an invalid analysis without

cross-validation. Note that without cross-validation, classi-

fier performance is above chance before stimulus onset.

This nonsensical result arises from the test data being

used to train the classifier, violating the constraint of in-

dependence. Time-resolved decoding methods have a

convenient built-in check for this: Above-chance decoding

performance before stimulus onset suggests that an error

exists in either the preprocessing or cross-validation stages.

In our data, 10-fold and leave-one-trial-out cross-validation

yielded very similar results, suggesting that the optimal

split is data specific. Furthermore, by comparing perfor-

mance between traditional cross-validation (e.g., k-fold)

and leave-one-exemplar-out, it is possible to estimate to

what degree classifier performance is driven by individual

stimulus properties (e.g., low-level visual properties of the

exemplar images). The difference between k-fold and leave-

one-exemplar-out cross-validation is observed early in the

time series (consistentwith the timing of early visual feature

processing) and is reduced later in the time course (Fig-

ure 10). Taken together, a valid formof cross-validationwith

independent training and test data is essential. Although

there are several ways of splitting up the data into training

and test sets, the particular version of cross-validation im-

plementedmust be compatible with the research question.

Evaluation of Classifier Performance and

Group Level Statistical Testing

Statistical evaluation of decoding analyses is a complex

issue, and there is no consensus yet on the optimal

approach (Allefeld, Görgen, & Haynes, 2016; Noirhomme

et al., 2014; Schreiber & Krekelberg, 2013; Stelzer, Chen,

& Turner, 2013; Nichols & Holmes, 2002). The statistical

approach used in our example analysis is common in the

literature (e.g., Ritchie et al., 2015; Carlson, Tovar, et al.,

2013) and was chosen for its simplicity; however, there

are several alternative methods that are also valid. For

example, we report classifier performance as accuracy

(percent correct). Accuracy is a less appropriate measure

when dealing with unbalanced data (more trials exist for

one class than for the other), as a trained classifier could

exploit the uneven distribution and achieve high accu-

racy simply by predicting the more frequent class. For

unbalanced data, a measure of performance that is un-

affected by class bias such as d0 is more appropriate. Alter-

natively, “balanced accuracy” includes the mean of the

accuracies for each class and thus is also unaffected by

any class imbalance in the data.

Several options exist for assessing whether classifier

performance is significantly above chance. The nonpara-

metric Wilcoxon signed-rank test (Wilcoxon, 1945) was

used in our example (see also Ritchie et al., 2015; Carlson,

Tovar, et al., 2013), as it makes minimal assumptions

about the distribution of the data. Alternatively, the Student’s

t test is also commonly used (but see Allefeld, Görgen, &

Haynes, 2016). Another popular alternative is the permu-

tation test, which entails repeatedly shuffling the data

and recomputing classifier performance on the shuffled

data to obtain a null distribution, which is then compared

against observed classifier performance on the original set

to assess statistical significance (see, e.g., Kaiser et al., 2016;

Cichy et al., 2014; Isik et al., 2014). Permutation tests are

especially useful when no assumptions about the null dis-

tribution can be made (e.g., in the case of biased classifiers

or unbalanced data), but they take much longer to run

(e.g., repeating the analysis ∼10,000 times).

Importantly, as is the case in fMRI analyses, time series

neuroimaging analyses also require addressing the prob-

lem of multiple comparisons (Nichols, 2012; Bennett,

Baird, Miller, & Wolford, 2011; Bennett, Wolford, & Miller,

2009; Pantazis, Nichols, Baillet, & Leahy, 2005) as typically

multiple tests are conducted across different time points.

The FDR adjustment used in our example analysis is straight-

forward, but a limitation is that it does not incorporate

the relation between time points (Chumbley & Friston,

2009). Alternatively, cluster-based multiple-comparison

correction involves testing whether clusters of time points

show above-chance decoding and therefore can result in

increased sensitivity to smaller, but more sustained effects

(Oosterhof et al., 2016; Mensen & Khatami, 2013; Nichols,

2012; Smith & Nichols, 2009).

ADDITIONAL ANALYSES

In the sections above, we illustrated the standard approach

to decoding time series neuroimaging data. Here we out-

line three extensions for decoding analysis. The first is

Figure 10. Classification accuracy as a function of cross-validation

method. The shaded area is the standard error across participants. Discs

above the x axis indicate the time points where decoding performance

is significantly higher than chance.
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temporal cross-decoding (see The Temporal General-

ization Method section), which tests the degree to which

activation patterns in response to the experimental condi-

tions are sustained or evolve over time. The second is the

RSA framework (see Representational Similarity Analysis

section), which facilitates the testing of models of the struc-

ture of decodable information over time. Finally, we outline

a method that involves projection of the classifier weights

to determine the spatial source of the signal driving the

classifier in sensor space (see Weight Projection section).

The Temporal Generalization Method

An advantage of time series decoding is that it has the

potential to reveal the temporal evolution of brain activa-

tion patterns, rather than providing a single, static estimate

of decodability for a stimulus or task. One method is to

train a classifier on a particular time point and then test

its decoding performance on different time points. This

form of cross-decoding reveals to what degree the acti-

vation patterns for a particular stimulus or task evolve.

Classifiers effectively carve up multidimensional space to

distinguish between the experimental conditions; thus,

when a classifier that is trained on one time point can

successfully predict class labels for data at other time

points, it suggests that the structure of the multidimen-

sional space is similar across time. Conversely, if cross-

decoding is unsuccessful across two time points, it suggests

that the multidimensional space has changed sufficiently

for the boundary between classes determined at one time

point to be no longer meaningful by the second time

point. Beyond temporal characterization of the decoding

results, this method has the potential utility to test cogni-

tive models, which make theoretical predictions about

the generalizability of representations (see also Figure 4

in King & Dehaene, 2014). For example, the temporal

generalization of classifiers can be tested between two

completely separate data sets. Isik et al. (2014) tested

the temporal generalization performance of a classifier

that was trained on stimuli that were presented foveally

and then tested on peripherally presented stimuli. Simi-

larly, Kaiser et al. (2016) used this method to distinguish

category-specific responses from shape-specific responses.

Figure 11A shows cross-validated temporal cross-

decoding performed on the example MEG data. The

diagonal in this figure is analogous to the standard one-

dimensional time series decoding plot (e.g., Figures 5–10).

Significant points (shown in Figure 11B) off the diagonal

indicate that the classifier, when trained on data from time

point A, can generalize to data from time point B. The

generalization accuracy normally drops off systematically

away from the diagonal. In this case, classifier perfor-

mance generalizes well for neighboring time points (red

region on the diagonal) as expected and, additionally, to

some extent between 150–200 and 300–500 msec, indi-

cating that the MEG activation patterns are similar in these

windows.

Representational Similarity Analysis

Standard decoding analysis reveals whether class-specific

information is present in the neuroimaging signal.

Approaches such as cross-decoding (e.g., temporal gen-

eralization) can begin to probe the underlying repre-

sentational structure of the information in the brain

activation patterns used by the classifier. RSA takes this

concept further and provides a framework for testing

hypotheses about the structure of this information

(Kriegeskorte, Mur, & Bandettini, 2008). RSA is based

on the assumption that stimuli with more similar neural

representations are more difficult to decode. Conversely,

Figure 11. (A) Temporal generalization of decoding performance.

A classifier is trained at one time point and tested at a different time

point. This is repeated for all pairs of time points. The figure shows

the generalization accuracy averaged over participants. (B) Map of

time point pairs where the generalization was significantly different

(red area) from chance (Wilcoxon signed rank test, controlled for

multiple comparisons using FDR).
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stimuli with more distinct representations are expected

to be easier to decode. Thus, the central idea is that

representational similarity can be indexed by the degree

of decodability. By comparing the decodability of all

possible pairwise combinations of stimuli, a represen-

tational dissimilarity matrix (RDM) is calculated. That is,

for each pair of stimuli, the distance between their acti-

vation patterns is computed using one of several distance

metrics (e.g., correlation between the activation patterns

or difference in classifier performance (Walther et al.,

2016).

An example RDM is shown in Figure 12A, in which

each cell in the matrix corresponds to the dissimilarity

of two of the object stimuli in the MEG animacy experi-

ment. For data with high temporal resolution such as

MEG, a series of RDMs can be created for each time point

Figure 12. Model evaluation

within the RSA framework.

(A) The empirical MEG RDMs

averaged across participants.

One cell in the matrix

represents the dissimilarity

between the MEG activation

patterns for one pair of object

exemplars. RDMs are shown

for four time points: −50 msec,

100 msec, 250 msec, and

400 msec. (B) Three model

RDMs, which predict the

representational similarity of

the brain activation patterns

for all object pairs based on

different stimulus properties: an

Animacy model (Animate vs.

Inanimate objects), a Natural

model (Natural vs. Artificial

objects), and a Silhouette

model (based on the visual

similarity of the objects’

silhouettes). (C) RSA model

evaluation. At each time point,

the empirical RDMs for each

participant are correlated with

the three candidate model

RDMs in B. The strength of

the average correlations shows

how well the candidate models

fit the data. Shaded areas

represent the standard error

over participants, and the marks

above the x axis indicate time

points where the mean

correlation was significantly

higher than zero (Wilcoxon

signed-rank test, controlled for

multiple comparisons using

FDR). The gray dotted line

represents the lower bound

of the “noise ceiling” at each

time point, which is the

theoretical lower bound of

the maximum correlation of

any model with the reference

RDMs at each time point,

given the noise in the data

(Nili et al., 2014).
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and used to investigate the temporal dynamics of repre-

sentations over time. The time-varying RDMs in Figure 12A

are constructed by decoding all pairwise stimuli using the

same pipeline (using twofold cross-validation, as leave-

one-exemplar-out is not possible when decoding between

two exemplars); thus, one square in the RDM represents

the decoding accuracy for classifying between one pair.

Following calculation of the RDM (either time-varying or

static) from the empirical data, the empirical RDM can be

compared with model RDMs that make specific pre-

dictions about the relative decodability of the stimulus

pairs. In RSA studies to date, model RDMs have been con-

structed from predictions based on a wide range of

sources, including behavioral results, computational models,

stimulus properties, or neuroimaging data from a com-

plementary imaging method such as fMRI (e.g., Cichy

et al., 2014, 2016; Wardle et al., 2016; Redcay & Carlson,

2015; Carlson, Simmons, Kriegeskorte, & Slevc, 2013;

Kriegeskorte, Mur, Ruff, et al., 2008).

Figure 12 shows the results of RSA model evaluation

for the example MEG data. For each time point, the

empirical RDMs (Figure 12A) are correlated with three

theoretical models (Figure 12B); a model of stimulus

animacy, a model that distinguishes artificial versus natu-

ral stimuli, and a control model based on the visual sim-

ilarity of the exemplar’s silhouettes (which correlates well

with early stimulus discriminability; see, e.g., Redcay &

Carlson, 2015; Carlson et al., 2011). Each of these models

predicts the relative (dis)similarity of the MEG activation

patterns for each exemplar pair based on their specific

stimulus features. The extent of the correlation between

the model and empirical MEG RDMs is interpreted as re-

flecting the degree to which the “representational struc-

ture” characterized by each model exists in the brain

activation patterns. The results in Figure 12C are plotted

as the correlation between the three model RDMs with

the MEG RDM over time. The Animacy model (blue line)

has a better fit to the MEG data than the Natural model

(orange line), and both models have a better fit than the

Silhouette model (yellow line) later in the time series.

The Silhouette model has the best fit early in the time

series, which is expected as it represents early visual fea-

tures. This suggests that animacy is a relatively good pre-

dictor of the similarity of the MEG activation patterns for

the exemplar pairs: object pairs from the same category

(e.g., both animate) are more difficult to decode than

object pairs from different categories (e.g., one animate

and one inanimate). Within the RSA framework, this is

interpreted as evidence that animacy is a key organizing

principle in the representational structure of the object

exemplars.

Despite its strengths, a current limitation of the RSA ap-

proach is that valid statistical comparison of different can-

didate models is difficult (Thirion, Pedregosa, Eickenberg,

& Varoquaux, 2015; Kriegeskorte & Kievit, 2013). A recent

development proposes evaluating model performance by

comparing it to the highest possible performance given

the noise in the data, called the “noise ceiling” (Nili et al.,

2014). When applied to MEG data, the performance of

various models relative to the noise ceiling (computed

from the empirical data as described in Nili et al., 2014)

can be evaluated over time, as shown in Figure 12C.

Despite the present limitations in directly comparing dif-

ferent models, RSA is a useful tool for investigating the

structure of the decodable signal in neuroimaging data,

which will undoubtedly continue to evolve in its sophis-

tication and utility. For a more detailed introduction,

see Nili et al. (2014), Kriegeskorte and Kievit (2013), and

Kriegeskorte, Mur, and Bandettini (2008).

Weight Projection

Following successful classification of experimental condi-

tions, it is sometimes of interest to examine the extent to

which different voxels (fMRI) or sensors (MEG/EEG)

drive classifier performance. During standard classifica-

tion analysis, each feature (e.g., MEG sensors) is assigned

a weight corresponding to the degree to which its output

is used by the classifier to maximize class separation.

Therefore, it is tempting to use the raw weight as an index

of the degree to which sensors contained class-specific in-

formation. However, this is not straightforward, as higher

raw weights do not directly imply more class-specific in-

formation than lower weights. Similarly, a nonzero weight

does not imply that there is class-specific information in a

sensor (for a full explanation, proof, and example sce-

narios, see Haufe et al., 2014). This is because sensors

may be assigned a nonzero weight not only because they

contain class-specific information but also when their

output is useful to the classifier in suppressing noise or

distractor signals (e.g., eyeblinks or heartbeats). An ele-

gant solution to this issue was recently introduced by

Haufe et al. (2014) and has been applied to MEG decod-

ing (Wardle et al., 2016). This consists of transforming the

classifier weights back into activation patterns. Following

this transformation, the reconstructed patterns are inter-

pretable (i.e., nonzero values imply class-specific infor-

mation) and can be projected onto the sensors. It is

important to note, however, that the reliability of the

patterns depends on the quality of the weights. That is,

if decoding performance is low, weights are likely sub-

optimal, and reconstructed activation patterns have to be

interpreted with caution (Haufe et al., 2014).

Here we summarize this transformation for MEG data

and plot the results in Figure 13. First, the classifier

weights (we used LDA instead of GNB in this example,

as this method only applies to classifiers that consider

the feature covariance) are transformed into activation

patterns by multiplying them with the covariance in the

data: A = cov(X ) × w; where X is the N × M matrix of

MEG data with N trials and M features (channels) and w is

a classifier weight vector of length M. A is the resulting

vector of length M containing the reconstructed activa-

tion patterns (i.e., the transformed classifier weights).
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For display purposes, the reconstructed activation pat-

terns can be projected onto the scalp location of the

channels. Figure 13B shows the result for the example

MEG data at four time points (using the FieldTrip toolbox

for MATLAB: Oostenveld, Fries, Maris, & Schoffelen,

2010); here the results are scaled by the inverse of the

source covariance (A × cov(X × w)−1) to allow for com-

parison across time points. Note that this method cannot

be directly used if multiple time points are used for clas-

sification (e.g., the sliding window approach described in

the Improving Signal to Noise section). The uncorrected

(raw) weight projections are shown for comparison in

Figure 13A. We can now observe that, for the activation

patterns in Figure 13B, the information source is located

approximately around the occipital lobes (back sensors)

at 100 msec and later around the temporal lobes (side

sensors) at 300 msec, as expected from the visual pro-

cessing hierarchy. Notably, this pattern is not as easily

identifiable in the raw weight topographies shown in

Figure 13A. For an in-depth explanation (with examples)

of the weights interpretation problem and its solution,

see Haufe et al. (2014).

GENERAL DISCUSSION

Time series decoding methods provide a valuable tool for

investigating the temporal dynamics and organization of

information processing in the human brain. In the pre-

vious sections, we outlined an example decoding analysis

pipeline for time series neuroimaging data, illustrated effects

of different methods and parameters (and their inter-

actions), and introduced extensions of the method such as

temporal generalization (see The Temporal Generalization

Method section), RSA (see Representational Similarity

Analysis section), and weights projection (see Weight Pro-

jection section). In the final section, we discuss some

important aspects to consider when performing these

analyses and interpreting the results. One of the central

issues concerns the interpretation of classifier accuracy.

Classifiers are extremely sensitive and will exploit all pos-

sible information in the data. This means that careful exper-

imental design and interpretation of the results is required

to draw meaningful conclusions from decoding studies

(see, e.g., de-Wit, Alexander, Ekroll, & Wagemans, 2016;

Carlson & Wardle, 2015; Naselaris & Kay, 2015). The next

section outlines a number of such pitfalls to avoid in the

implementation of time series decoding methods.

Common Pitfalls

The first caveat applies to all studies using classifiers and is

well described in the literature (Kriegeskorte, Lindquist,

Nichols, Poldrack, & Vul, 2010; Kriegeskorte, Simmons,

Bellgowan, & Baker, 2009; Pereira et al., 2009). It is im-

portant that the classifier has no access to class-specific

information about the data contained in the test set, as

this will artificially inflate classifier performance. This

analysis confound is referred to as “double dipping” and

was demonstrated in the analysis without cross-validation

in Figure 10 (see Cross-validation section). One advantage

of time series decoding is that, in most cases, data obtained

before stimulus onset serve as a first check. If classifier

Figure 13. Classifier weights projected onto MEG sensor space. The corresponding time points are shown beneath the scalp topographies.

Darker colors indicate channels that contribute to animacy decoding. (A) Uncorrected (raw) weights projections cannot be interpreted directly,

as classifiers can assign nonzero weights to channels that contain no class-specific information. (B) The activation patterns computed from

transformed weights (following the method of Haufe et al., 2014) can be interpreted.
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accuracy is above chance before stimulus onset, it indi-

cates possible contamination from double dipping.

A second caveat specific to time series decoding is that

caution is required when interpreting (differences in)

onsets of significant decoding. The time at which decod-

ing is first significant for an experimental condition is

determined by the underlying strength of the signal. For

example, when the strength of peak decoding differs

between two conditions (e.g., one is much easier to de-

code than the other), this will also affect the relative onset

of decoding. This is illustrated in Figure 14. Three simu-

lated data sets were constructed to have the same de-

coding onset (50 msec) and peak latency of decoding

(100 msec), but different signal strengths (see Figure 14A).

To evaluate how signal strength influences decoding

onset, Gaussian noise was added to each data set and

significance testing was conducted to find the onset of

decoding (signed-rank test across time points, FDR-

corrected). The outcome of the simulation is plotted in

Figure 14B. Note that, although these simulated data sets

were constructed to have an identical “true” onset of

decoding, the onset of significant decoding is earlier for

the set with a strong signal and much later for the set with

the weak signal. This underscores the ambiguity in inter-

preting onset differences: It cannot be assumed that an

earlier decoding onset reflects a true onset difference in

the availability of decodable information between condi-

tions. Isik et al. (2014) addresses this issue by using less

data for the condition that had higher peak decoding and

by equalizing the peaks across conditions before deter-

mining decoding onset.

Third, as noted earlier, filtering the signal can smear

out information over time. An extreme example (using a

step function) is illustrated in Figure 15, using simulated

Figure 14. Demonstration

of how the strength of peak

decoding affects decoding

onsets using stimulated data.

(A) Three data sets were

simulated to have the same

onset and peak decoding

latencies, but different peak

strengths. (B) Gaussian noise

was added to the underlying

signals in each set (500 trials

per set, σ = 1), and significant

decoding (above zero) was

assessed across the time

course (signed-rank test,

FDR-corrected). Colored discs

above the x axis indicate time

points with significant

decoding.

Figure 15. The effect of low-pass filtering on decoding onset. In this

example, a signal with onset at 50 msec was simulated with added

Gaussian noise (500 trials, σ = 1). The signal was then low-pass filtered

using different cutoff frequencies. Time points where the trial average

differed significantly from zero (signed-rank test, FDR-corrected) are

indicated by the colored discs above the x axis.
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data with a signal occurring at 50 msec. To demonstrate

the effect of filtering, Gaussian noise was added to the

signal, and low-pass filters were applied with different

cutoff frequencies using the ft_preproc_lowpassfilter

function (using the default Butterworth fourth-order two-

pass IIR filter) from the FieldTrip toolbox (Oostenveld

et al., 2010). The result of lowering the cutoff frequency

is increased signal distortion. Applying a 30-Hz low-pass

filter resulted in a signal that was significantly different

from zero 40msec earlier in the time series, compared with

the simulated “true” onset at 50 msec. However, the effect

is substantially reduced by applying much higher filter

cutoffs, for example, 200 Hz. Therefore, interpretations

based on the timing of decoding signatures relative to

the stimulus should be avoided when using filters with a

low cutoff frequency (Vanrullen, 2011).

Finally, decoding studies require careful experimental

design to avoid confounds in the classifier analysis. The

considerations vital to designing decoding studies are

not necessarily the same as that for univariate analysis.

Accordingly, care must be taken when reanalyzing data

not originally intended for a decoding analysis. The high

sensitivity of classifiers means that, if there are any dif-

ferences between classes other than the intended manipu-

lations, it is likely that the classifier will exploit this

information, making it easy to introduce experimental

confounds. An example is the effect of the participant’s

behavioral responses. In our example MEG experiment,

the response buttons (to respond “animate” and “in-

animate”) were switched every block. If response mapping

were uniform across blocks, response would be con-

founded with stimulus category, as a left button response

would always correspond to “animate” and right for “in-

animate.” The physical pressing of the button would gen-

erate corresponding brain signals, for example, in motor

areas, and this would provide a signal in the whole-brain

MEG data that would correlate perfectly with the class

conditions. In this case, it would be unclear whether the

classifier decoded the intended experimental manipu-

lation of “animacy” or simply the participant’s motor

responses. Alternatively, a classifier may distinguish be-

tween two conditions or categories of stimuli based on a

confounding factor that covaries with class membership

(e.g., differential attention to two conditions, leading to

greater overall signal for one class) rather than the ma-

nipulation (e.g., difference in visual features or task

difficulty) intended by the experimental design.

Furthermore, even with carefully controlled designs, the

interpretation of decoding studies must be executed with

caution. Decoding studies may conclude that Condition A

is decodable from Condition B; however, the source of

decodable information usually remains elusive (Carlson &

Wardle, 2015; Naselaris & Kay, 2015). One notable example

of this is the current debate surrounding the source of

orientation decoding in fMRI (e.g., Pratte, Sy, Swisher, &

Tong, 2016; Carlson & Wardle, 2015; Clifford & Mannion,

2015; Carlson, 2014; Alink, Krugliak, Walther, & Kriegeskorte,

2013; Freeman, Ziemba, Heeger, Simoncelli, & Movshon,

2013; Freeman, Brouwer, Heeger, & Merriam, 2011;

Mannion, McDonald, & Clifford, 2009; Kamitani & Tong,

2005). Despite a decade of orientation decoding in early

visual cortex with fMRI, it is still debated whether any

information at the subvoxel level (e.g., within-voxel biases

in orientation-specific columnar responses) contributes to

the decodable signal (Op de Beeck, 2010). The inter-

pretation of the source of decodable signals in neuro-

imaging remains one of the central challenges facing the

application of MVPA techniques to advancing our under-

standing of information processing in the human brain

(de-Wit et al., 2016).
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Notes

1. The main study consisted of two conditions, stimuli in a
clear or degraded state; however, for the purpose of this article,
we only use the data for stimuli in the clear state (normal photo-
graphs of objects).
2. Other MEG systems also include magnetometers, and there
are possible differences in decodability from gradiometers and
magnetometers (Kaiser et al., 2016).
3. Note that when comparing PCA performed inside the cross-
validation loop on separate time points with PCA performed
before the cross-validation on all time points, we did not find
any difference in classifier accuracy (data not shown), but this
may not hold for different data sets.

REFERENCES

Alink, A., Krugliak, A., Walther, A., & Kriegeskorte, N. (2013).
fMRI orientation decoding in V1 does not require global
maps or globally coherent orientation stimuli. Frontiers in
Psychology, 4, 493.

Allefeld, C., Görgen, K., & Haynes, J.-D. (2016). Valid
population inference for information-based imaging: From
the second-level t test to prevalence inference. Neuroimage,
141, 378–392.

Allison, B. Z., Wolpaw, E. W., & Wolpaw, J. R. (2007).
Brain–computer interface systems: Progress and prospects.
Expert Review of Medical Devices, 4, 463–474.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false
discovery rate: A practical and powerful approach to multiple
testing. Journal of the Royal Statistical Society, Series B,
Methodological, 57, 289–300.

Bennett, C. M., Baird, A., Miller, M. B., & Wolford, G. L. (2011).
Neural correlates of interspecies perspective taking in the
post-mortem Atlantic salmon: An argument for proper
multiple comparisons correction. Journal of Serendipitous
and Unexpected Results, 1, 1–5.

694 Journal of Cognitive Neuroscience Volume 29, Number 4



Bennett, C. M., Wolford, G. L., & Miller, M. B. (2009). The
principled control of false positives in neuroimaging.
Social Cognitive and Affective Neuroscience, 4, 417–422.

Bishop, C. M. (2006). Pattern recognition and machine
learning (Vol. 4). New York: Springer.

Blankertz, B., Lemm, S., Treder, M., Haufe, S., & Müller, K.-R.
(2011). Single-trial analysis and classification of ERP
components—A tutorial. Neuroimage, 56, 814–825.

Bode, S., Sewell, D. K., Lilburn, S., Forte, J. D., Smith, P. L.,
& Stahl, J. (2012). Predicting perceptual decision biases from
early brain activity. Journal of Neuroscience, 32, 12488–12498.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial
Vision, 10, 433–436.

Carlson, T. A. (2014). Orientation decoding in human visual
cortex: New insights from an unbiased perspective. Journal
of Neuroscience, 34, 8373–8383.

Carlson, T. A., Hogendoorn, H., Kanai, R., Mesik, J., & Turret, J.
(2011). High temporal resolution decoding of object
position and category. Journal of Vision, 11, 9.

Carlson, T. A., Schrater, P., & He, S. (2003). Patterns of activity
in the categorical representations of objects. Journal of
Cognitive Neuroscience, 15, 704–717.

Carlson, T. A., Simmons, R. A., Kriegeskorte, N., & Slevc, L. R.
(2013). The emergence of semantic meaning in the ventral
temporal pathway. Journal of Cognitive Neuroscience, 26,
120–131.

Carlson, T. A., Tovar, D. A., Alink, A., & Kriegeskorte, N. (2013).
Representational dynamics of object vision: The first 1000 ms.
Journal of Vision, 13, 1.

Carlson, T. A., & Wardle, S. G. (2015). Sensible decoding.
Neuroimage, 110, 217–218.

Cauchoix, M., Arslan, A. B., Fize, D., & Serre, T. (2012). The
neural dynamics of visual processing in monkey extrastriate
cortex: A comparison between univariate and multivariate
techniques. In G. Langs, I. Rish, M. Grosse-Wentrup, &
B. Murphy (Eds.), Machine learning and interpretation in
neuroimaging (pp. 164–171). Berlin/Heidelberg: Springer.

Cauchoix, M., Barragan-Jason, G., Serre, T., & Barbeau, E. J.
(2014). The neural dynamics of face detection in the wild
revealed by MVPA. Journal of Neuroscience, 34, 846–854.

Chan, A. M., Halgren, E., Marinkovic, K., & Cash, S. S. (2010).
Decoding word and category-specific spatiotemporal
representations from MEG and EEG. Neuroimage, 54,
3028–3039.

Chumbley, J. R., & Friston, K. J. (2009). False discovery rate
revisited: FDR and topological inference using Gaussian
random fields. Neuroimage, 44, 62–70.

Cichy, R. M., Pantazis, D., & Oliva, A. (2014). Resolving
human object recognition in space and time. Nature
Neuroscience, 17, 455–462.

Cichy, R. M., Pantazis, D., & Oliva, A. (2016). Similarity-based
fusion of MEG and fMRI reveals spatio-temporal dynamics in
human cortex during visual object recognition. Cerebral
Cortex, 26, 3563–3579.

Cichy, R. M., Ramirez, F. M., & Pantazis, D. (2015). Can visual
information encoded in cortical columns be decoded from
magnetoencephalography data in humans? Neuroimage,
121, 193–204.

Clifford, C. W. G., & Mannion, D. J. (2015). Orientation
decoding: Sense in spirals? Neuroimage, 110, 219–222.

Cohen, M. X. (2014). Analyzing neural time series data: Theory
and practice. Cambridge, MA: MIT Press.

Cox, D. D., & Savoy, R. L. (2003). Functional magnetic
resonance imaging (fMRI) “brain reading”: Detecting and
classifying distributed patterns of fMRI activity in human
visual cortex. Neuroimage, 19, 261–270.

Curran, E. A., & Stokes, M. J. (2003). Learning to control brain
activity: A review of the production and control of EEG

components for driving brain–computer interface (BCI)
systems. Brain and Cognition, 51, 326–336.

De Martino, F., Valente, G., Staeren, N., Ashburner, J., Goebel,
R., & Formisano, E. (2008). Combining multivariate voxel
selection and support vector machines for mapping and
classification of fMRI spatial patterns. Neuroimage, 43,
44–58.

de-Wit, L., Alexander, D., Ekroll, V., & Wagemans, J. (2016).
Is neuroimaging measuring information in the brain?
Psychonomic Bulletin & Review, 23, 1415–1428.

Ding, N., & Simon, J. Z. (2012). Neural coding of continuous
speech in auditory cortex during monaural and dichotic
listening. Journal of Neurophysiology, 107, 78–89.

Downing, P. E., Chan, A. W.-Y., Peelen, M. V., Dodds, C. M., &
Kanwisher, N. (2006). Domain specificity in visual cortex.
Cerebral Cortex, 16, 1453–1461.

Duncan, K. K., Hadjipapas, A., Li, S., Kourtzi, Z., Bagshaw, A., &
Barnes, G. (2010). Identifying spatially overlapping local
cortical networks with MEG. Human Brain Mapping, 31,
1003–1016.

Edelman, S., Grill-Spector, K., Kushnir, T., & Malach, R.
(1998). Toward direct visualization of the internal shape
representation space by fMRI. Psychobiology, 26, 309–321.

Farwell, L. A., & Donchin, E. (1988). Talking off the top of
your head: Toward a mental prosthesis utilizing event-related
brain potentials. Electroencephalography and Clinical
Neurophysiology, 70, 510–523.

Formisano, E., De Martino, F., & Valente, G. (2008). Multivariate
analysis of fMRI time series: Classification and regression
of brain responses using machine learning. Magnetic
Resonance Imaging, 26, 921–934.

Freeman, J., Brouwer, G. J., Heeger, D. J., & Merriam, E. P.
(2011). Orientation decoding depends on maps, not columns.
Journal of Neuroscience, 31, 4792–4804.

Freeman, J., Ziemba, C. M., Heeger, D. J., Simoncelli, E. P., &
Movshon, J. A. (2013). A functional and perceptual signature
of the second visual area in primates. Nature Neuroscience,
16, 974–981.

Goddard, E., Carlson, T. A., Dermody, N., & Woolgar, A.
(2016). Representational dynamics of object recognition:
Feedforward and feedback information flows. Neuroimage,
128, 385–397.

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A.,
Strohmeier, D., Brodbeck, C., et al. (2013). MEG and EEG
data analysis with MNE-Python. Brain Imaging Methods,
7, 267.

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier,
D., Brodbeck, C., et al. (2014). MNE software for processing
MEG and EEG data. Neuroimage, 86, 446–460.

Guimaraes, M. P., Wong, D. K., Uy, E. T., Grosenick, L., &
Suppes, P. (2007). Single-trial classification of MEG
recordings. IEEE Transactions on Biomedical Engineering,
54, 436–443.

Hämäläinen, M. S., & Ilmoniemi, R. J. (1994). Interpreting
magnetic fields of the brain: Minimum norm estimates.
Medical & Biological Engineering & Computing, 32, 35–42.

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J.,
Haxby, J. V., & Pollmann, S. (2009). PyMVPA: A Python
toolbox for multivariate pattern analysis of fMRI data.
Neuroinformatics, 7, 37–53.

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Olivetti, E., Fründ,
I., Rieger, J. W., et al. (2009). PyMVPA: A unifying approach
to the analysis of neuroscientific data. Frontiers in
Neuroinformatics, 3, 3.

Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D.,
Blankertz, B., et al. (2014). On the interpretation of weight
vectors of linear models in multivariate neuroimaging.
Neuroimage, 87, 96–110.

Grootswagers, Wardle, and Carlson 695



Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten,
J. L., & Pietrini, P. (2001). Distributed and overlapping
representations of faces and objects in ventral temporal
cortex. Science, 293, 2425–2430.

Haynes, J.-D. (2015). A primer on pattern-based approaches
to fMRI: Principles, pitfalls, and perspectives. Neuron, 87,
257–270.

Haynes, J.-D., & Rees, G. (2006). Decoding mental states from
brain activity in humans. Nature Reviews Neuroscience, 7,
523–534.

Hebart, M. N., Görgen, K., & Haynes, J.-D. (2015). The
Decoding Toolbox (TDT): A versatile software package for
multivariate analyses of functional imaging data. Frontiers
in Neuroinformatics, 8, 88.

Hill, N. J., Lal, T. N., Schröder, M., Hinterberger, T., Widman,
G., Elger, C. E., et al. (2006). Classifying event-related
desynchronization in EEG, ECoG and MEG signals. In
K. Franke, K.-R. Müller, B. Nickolay, & R. Schäfer (Eds.),
Pattern recognition (pp. 404–413). Berlin/Heidelberg:
Springer.

Hogendoorn, H., Verstraten, F. A. J., & Cavanagh, P. (2015).
Strikingly rapid neural basis of motion-induced position
shifts revealed by high temporal-resolution EEG pattern
classification. Vision Research, 113, 1–10.

Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J. (2005).
Fast readout of object identity from macaque inferior
temporal cortex. Science, 310, 863–866.

Isik, L., Meyers, E. M., Leibo, J. Z., & Poggio, T. (2014). The
dynamics of invariant object recognition in the human
visual system. Journal of Neurophysiology, 111, 91–102.

Jackson, J. E. (1991). A user’s guide to principal components
(Vol. 587). New York: John Wiley & Sons.

Jafarpour, A., Horner, A. J., Fuentemilla, L., Penny, W. D., &
Duzel, E. (2013). Decoding oscillatory representations and
mechanisms in memory. Neuropsychologia, 51, 772–780.

Kaiser, D., Azzalini, D. C., & Peelen, M. V. (2016). Shape-
independent object category responses revealed by MEG
and fMRI decoding. Journal of Neurophysiology, 115,
2246–2250.

Kamitani, Y., & Tong, F. (2005). Decoding the visual and
subjective contents of the human brain. Nature Neuroscience,
8, 679–685.

King, J.-R., & Dehaene, S. (2014). Characterizing the dynamics
of mental representations: The temporal generalization
method. Trends in Cognitive Sciences, 18, 203–210.

King, J.-R., Gramfort, A., Schurger, A., Naccache, L., & Dehaene,
S. (2014). Two distinct dynamic modes subtend the detection
of unexpected sounds. PLoS ONE, 9, e85791.

Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R.,
Broussard, C., et al. (2007). What’s new in Psychtoolbox-3.
Perception, 36, 1.

Kriegeskorte, N., & Kievit, R. A. (2013). Representational
geometry: Integrating cognition, computation, and the brain.
Trends in Cognitive Sciences, 17, 401–412.

Kriegeskorte, N., Lindquist, M. A., Nichols, T. E., Poldrack, R. A.,
& Vul, E. (2010). Everything you never wanted to know
about circular analysis, but were afraid to ask. Journal of
Cerebral Blood Flow & Metabolism, 30, 1551–1557.

Kriegeskorte, N.,Mur,M.,&Bandettini, P. (2008). Representational
similarity analysis—Connecting the branches of systems
neuroscience. Frontiers in Systems Neuroscience, 2, 4.

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J.,
Esteky, H., et al. (2008). Matching categorical object
representations in inferior temporal cortex of man and
monkey. Neuron, 60, 1126–1141.

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. F., & Baker,
C. I. (2009). Circular analysis in systems neuroscience: The
dangers of double dipping. Nature Neuroscience, 12, 535–540.

Kübler, A., Kotchoubey, B., Kaiser, J., Wolpaw, J. R., & Birbaumer,
N. (2001). Brain–computer communication: Unlocking the
locked in. Psychological Bulletin, 127, 358–375.

Lemm, S., Blankertz, B., Dickhaus, T., & Müller, K.-R. (2011).
Introduction to machine learning for brain imaging.
Neuroimage, 56, 387–399.

Luck, S. J. (2005). An introduction to the event-related
potential technique. Cambridge, MA: MIT Press.

Mannion, D. J., McDonald, J. S., & Clifford, C. W. G. (2009).
Discrimination of the local orientation structure of spiral
Glass patterns early in human visual cortex. Neuroimage, 46,
511–515.

Mensen, A., & Khatami, R. (2013). Advanced EEG analysis using
threshold-free cluster-enhancement and non-parametric
statistics. Neuroimage, 67, 111–118.

Meyers, E. M. (2013). The neural decoding toolbox. Frontiers
in Neuroinformatics, 7, 8.

Meyers, E. M., Freedman, D. J., Kreiman, G., Miller, E. K., &
Poggio, T. (2008). Dynamic population coding of category
information in inferior temporal and prefrontal cortex.
Journal of Neurophysiology, 100, 1407–1419.

Misaki, M., Kim, Y., Bandettini, P. A., & Kriegeskorte, N. (2010).
Comparison of multivariate classifiers and response
normalizations for pattern-information fMRI. Neuroimage,
53, 103–118.

Mognon, A., Jovicich, J., Bruzzone, L., & Buiatti, M. (2011).
ADJUST: An automatic EEG artifact detector based on the
joint use of spatial and temporal features. Psychophysiology,
48, 229–240.

Müller, K., Anderson, C. W., & Birch, G. E. (2003). Linear and
nonlinear methods for brain-computer interfaces. IEEE
Transactions on Neural Systems and Rehabilitation
Engineering, 11, 165–169.

Müller, K.-R., Tangermann, M., Dornhege, G., Krauledat, M.,
Curio, G., & Blankertz, B. (2008). Machine learning for
real-time single-trial EEG-analysis: From brain–computer
interfacing to mental state monitoring. Journal of
Neuroscience Methods, 167, 82–90.

Mur, M., Bandettini, P. A., & Kriegeskorte, N. (2009).
Revealing representational content with pattern-information
fMRI—An introductory guide. Social Cognitive and Affective
Neuroscience, 41, 101–109.

Murphy, B., Poesio, M., Bovolo, F., Bruzzone, L., Dalponte, M.,
& Lakany, H. (2011). EEG decoding of semantic category
reveals distributed representations for single concepts.
Brain and Language, 117, 12–22.

Naselaris, T., & Kay, K. N. (2015). Resolving ambiguities of
MVPA using explicit models of representation. Trends in
Cognitive Sciences, 19, 551–554.

Naselaris, T., Kay, K. N., Nishimoto, S., & Gallant, J. L. (2011).
Encoding and decoding in fMRI. Neuroimage, 56, 400–410.

Nichols, T. E. (2012). Multiple testing corrections,
nonparametric methods, and random field theory.
Neuroimage, 62, 811–815.

Nichols, T. E., & Holmes, A. P. (2002). Nonparametric
permutation tests for functional neuroimaging: A primer
with examples. Human Brain Mapping, 15, 1–25.

Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W.,
& Kriegeskorte, N. (2014). A toolbox for representational
similarity analysis. PLOS Computational Biology, 10, e1003553.

Noirhomme, Q., Lesenfants, D., Gomez, F., Soddu, A., Schrouff,
J., Garraux, G., et al. (2014). Biased binomial assessment
of cross-validated estimation of classification accuracies
illustrated in diagnosis predictions. Neuroimage: Clinical,
4, 687–694.

Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006).
Beyond mind-reading: Multi-voxel pattern analysis of fMRI
data. Trends in Cognitive Sciences, 10, 424–430.

696 Journal of Cognitive Neuroscience Volume 29, Number 4



Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2010).
FieldTrip: Open source software for advanced analysis
of MEG, EEG, and invasive electrophysiological data.
Computational Intelligence and Neuroscience, 2011,
156869.

Oosterhof, N. N., Connolly, A. C., & Haxby, J. V. (2016).
CoSMoMVPA: Multi-modal multivariate pattern analysis of
neuroimaging data in MATLAB/GNU octave. Frontiers in
Neuroinformatics, 10, 27.

Op de Beeck, H. P. (2010). Against hyperacuity in brain
reading: Spatial smoothing does not hurt multivariate fMRI
analyses? Neuroimage, 49, 1943–1948.

Pantazis, D., Nichols, T. E., Baillet, S., & Leahy, R. M. (2005).
A comparison of random field theory and permutation
methods for the statistical analysis of MEG data. Neuroimage,
25, 383–394.

Pelli, D. G. (1997). The VideoToolbox software for visual
psychophysics: Transforming numbers into movies. Spatial
Vision, 10, 437–442.

Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning
classifiers and fMRI: A tutorial overview. Neuroimage,
45(Suppl. 1), S199–S209.

Pratte, M. S., Sy, J. L., Swisher, J. D., & Tong, F. (2016). Radial
bias is not necessary for orientation decoding. Neuroimage,
127, 23–33.

Proklova, D., Kaiser, D., & Peelen, M. V. (2016). Disentangling
representations of object shape and object category in
human visual cortex: The animate–inanimate distinction.
Journal of Cognitive Neuroscience, 28, 680–692.

Ramkumar, P., Jas, M., Pannasch, S., Hari, R., & Parkkonen, L.
(2013). Feature-specific information processing precedes
concerted activation in human visual cortex. Journal of
Neuroscience, 33, 7691–7699.

Redcay, E., & Carlson, T. (2015). Rapid neural discrimination of
communicative gestures. Social Cognitive and Affective
Neuroscience, 10, 545–551.

Ritchie, J. B., Tovar, D. A., & Carlson, T. A. (2015). Emerging
object representations in the visual system predict reaction
times for categorization. PLOS Computational Biology, 11,
e1004316.

Sandberg, K., Bahrami, B., Kanai, R., Barnes, G. R., Overgaard, M.,
& Rees, G. (2013). Early visual responses predict conscious
face perception within and between subjects during binocular
rivalry. Journal of Cognitive Neuroscience, 25, 969–985.

Schaefer, R. S., Farquhar, J., Blokland, Y., Sadakata, M., &
Desain, P. (2010). Name that tune: Decoding music from
the listening brain. Neuroimage, 56, 843–849.

Schreiber, K., & Krekelberg, B. (2013). The statistical analysis of
multi-voxel patterns in functional imaging. PLoS ONE, 8,
e69328.

Schwarzkopf, D. S., & Rees, G. (2011). Pattern classification
using functional magnetic resonance imaging. Wiley
Interdisciplinary Reviews: Cognitive Science, 2, 568–579.

Sha, L., Haxby, J. V., Abdi, H., Guntupalli, J. S., Oosterhof, N. N.,
Halchenko, Y. O., et al. (2015). The animacy continuum in
the human ventral vision pathway. Journal of Cognitive
Neuroscience, 27, 665–678.

Simanova, I., van Gerven, M., Oostenveld, R., & Hagoort, P.
(2010). Identifying object categories from event-related EEG:
Toward decoding of conceptual representations. PLoS ONE,
5, e14465.

Simanova, I., van Gerven, M. A. J., Oostenveld, R., & Hagoort,
P. (2015). Predicting the semantic category of internally

generated words from neuromagnetic recordings. Journal
of Cognitive Neuroscience, 27, 35–45.

Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster
enhancement: Addressing problems of smoothing, threshold
dependence and localisation in cluster inference. Neuroimage,
44, 83–98.

Stelzer, J., Chen, Y., & Turner, R. (2013). Statistical inference
and multiple testing correction in classification-based multi-
voxel pattern analysis (MVPA): Random permutations and
cluster size control. Neuroimage, 65, 69–82.

Stokes, M. G., Kusunoki, M., Sigala, N., Nili, H., Gaffan, D., &
Duncan, J. (2013). Dynamic coding for cognitive control
in prefrontal cortex. Neuron, 78, 364–375.

Sudre, G., Pomerleau, D., Palatucci, M., Wehbe, L., Fyshe, A.,
Salmelin, R., et al. (2012). Tracking neural coding of
perceptual and semantic features of concrete nouns.
Neuroimage, 62, 451–463.

Tangermann, M., Müller, K.-R., Aertsen, A., Birbaumer, N.,
Braun, C., Brunner, C., et al. (2012). Review of the BCI
competition IV. Neuroprosthetics, 6, 55.

Thirion, B., Pedregosa, F., Eickenberg, M., & Varoquaux, G.
(2015). Correlations of correlations are not reliable statistics:
Implications for multivariate pattern analysis. In ICML
Workshop on Statistics, Machine Learning and Neuroscience
(Stamlins 2015). Retrieved from https://hal.inria.fr/hal-01187297/.

van de Nieuwenhuijzen, M. E., Backus, A. R., Bahramisharif, A.,
Doeller, C. F., Jensen, O., & van Gerven, M. A. J. (2013).
MEG-based decoding of the spatiotemporal dynamics of
visual category perception. Neuroimage, 83, 1063–1073.

van Gerven, M. A. J., Maris, E., Sperling, M., Sharan, A., Litt, B.,
Anderson, C., et al. (2013). Decoding the memorization of
individual stimuli with direct human brain recordings.
Neuroimage, 70, 223–232.

Van Veen, B. D., Van Drongelen, W., Yuchtman, M., & Suzuki, A.
(1997). Localization of brain electrical activity via linearly
constrained minimum variance spatial filtering. IEEE
Transactions on Biomedical Engineering, 44, 867–880.

Vanrullen, R. (2011). Four common conceptual fallacies in
mapping the time course of recognition. Perception Science,
2, 365.

Vidal, J. J. (1973). Toward direct brain-computer communication.
Annual Review of Biophysics and Bioengineering, 2, 157–180.

Walther, A., Nili, H., Ejaz, N., Alink, A., Kriegeskorte, N., &
Diedrichsen, J. (2016). Reliability of dissimilarity measures for
multi-voxel pattern analysis. Neuroimage, 137, 188–200.

Wardle, S. G., Kriegeskorte, N., Grootswagers, T., Khaligh-Razavi,
S.-M., & Carlson, T. A. (2016). Perceptual similarity of visual
patterns predicts dynamic neural activation patterns measured
with MEG. Neuroimage, 132, 59–70.

Wilcoxon, F. (1945). Individual comparisons by ranking methods.
Biometrics Bulletin, 1, 80–83.

Wolff, M. J., Ding, J., Myers, N. E., & Stokes, M. G. (2015).
Revealing hidden states in visual working memory using
electroencephalography. Frontiers in Systems Neuroscience,
9, 123.

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G.,
& Vaughan, T. M. (2002). Brain–computer interfaces for
communication and control. Clinical Neurophysiology, 113,
767–791.

Zhang, Y., Meyers, E. M., Bichot, N. P., Serre, T., Poggio, T. A., &
Desimone, R. (2011). Object decoding with attention in
inferior temporal cortex. Proceedings of the National
Academy of Sciences, U.S.A., 108, 8850–8855.

Grootswagers, Wardle, and Carlson 697


