Decoding fingerprints: elemental composition of vertebrae correlates to age-related habitat use in two morphologically similar sharks

Bree J. Tillett^{1,2,5,*}, Mark G. Meekan⁴, David Parry^{3,5}, Niels Munksgaard³, Iain C. Field^{1,6}, Dean Thorburn⁷, Corey J. A. Bradshaw^{8,9}

 ¹School for Environmental Research, ²Tropical Rivers and Coastal Knowledge Research Hub and ³School of Environment and Life Sciences, Charles Darwin University, Northern Territory 0810, Australia
⁴Australian Institute of Marine Science, UWA Oceans Institute (MO 96), 35 Stirling Highway, Crawley, Western Australia 6009, Australia
⁵Australian Institute of Marine Science, Arafura Timor Research Facility, Northern Territory 0810, Australia
⁶Graduate School of the Environment, Macquarie University, New South Wales 2109, Australia
⁷Indo-Pacific Environmental, Mount Hawthorn, Western Australia 6010, Australia
⁸The Environment Institute and School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia

⁹South Australian Research and Development Institute, PO Box 120, Henley Beach, South Australia 5022, Australia

*Email: bree.tillett@cdu.edu.au

Marine Ecology Progress Series 434: 133-142 (2011)

Supplement 1. Vertebral microchemistry of bull (*Carcharhinus leucas*) and pig-eye (*C. amboinensis*) sharks through ontogeny

Table S1.	Sampling	details for	r fishery	indep	endent	surveys	(species	combi	ned). I	Location,	sample	e size
(sex ra	atio), specie	es, averag	e total le	ngth ($TL) \pm s$	tandard	deviation	(mm)	, date ((months /	years).	

Location	Sample size	Species	Average TL	Date
	(sex ratio)		(± st dev) (mm)	
Darwin harbour	4 (2 male, 2	C. amboinensis	753.75 (43.28)	March 2008
	female)			
Fitzroy R	16 (8 male, 8	C. leucas	994.18 (295.36)	June 2003
	female)			
Daly R	15 (9 male, 6	C. leucas	862.53 (99.77)	July / August
	female)			2007
Liverpool R	7 (5 male, 2	C. leucas	904 (96.87)	June 2002
	female)			
East Alligator R	14 (7 male, 7	C. leucas	767.62 (26.87)	April 2008
	female)			
Roper R	11 (5 male, 6	C. leucas	836.18 (47.5)	July 2002
	female)			
Towns R	11 (5 male, 6	C. leucas	1092.92 (130.85)	July 2002
	female)			

Table S2. Average percent composition of calcium in shark vertebrae from the regions scanned in Fig. S1.

Sample	Species	% composition Calcium	
		(± St Dev)	
PE168	Carcharhinus amboinensis	35.16 (0.76)	
PE169	Carcharhinus amboinensis	35.41 (0.74)	
B201	Carcharhinus leucas	34.63 (0.84)	
B229	Carcharhinus leucas	35.81 (0.73)	

Fig. S1. Scanning electron microscopy of sagitally sectioned ablated shark vertebrae. Boxes represent areas in the corpus calcareum which elemental compostion were quantified and compared (1 mm x 1 mm). (a) sample PE168 (*Carcharhinus amboinensis*); (b) sample PE169 (*Carcharhinus amboinesis*); (c) sample B201 (*Carcharhinus leucas*); (d) sample B229 (*Carcharhinus leucas*).

Fig. S2. Typical Sr:Ba net cps ratios (counts per second) with age (years) of pig-eye sharks; total n = 39. (a) Female patterns, n = 18; (b) Male patterns, n = 21

Fig. S3. Typical element:Ca net cps ratios (counts per second) with age (years) of pig-eye sharks; total n = 39. (I) Lithium; (II) Magnesium; (III) Manganese; (IV) Zinc. (a) Female patterns, n = 18; (b) Male patterns, n = 21.

Fig. S4. Principal component analysis of bull shark nurseries identified from juvenile vertebrae; adults birthbands and return periods. Variation explained by the first 2 principal components is represented. Fitzroy River n = 16, Daly River n = 15, Liverpool River n = 7, East Alligator River n = 14, Roper River n = 11, Towns River n = 11, adult n = 18, adult returns n = 28; total n = 120.