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Abstract—The possibility of controlling dexterous hand 

prostheses by using a direct connection with the nervous system 
is particularly interesting for the significant improvement of the 
quality of life of patients, which can derive from this 
achievement. Among the various approaches, peripheral nerve 
based intra fascicular electrodes are excellent neural interface 
candidates, representing an excellent compromise between high 
selectivity and relatively low invasiveness. Moreover, this 
approach has undergone preliminary testing in human 
volunteers and has shown promises.  

In this manuscript, we investigated whether the use of 
intrafascicular electrodes can be used to decode multiple sensory 
and motor information channels with the aim to develop a finite 
state algorithm that may be employed to control neuroprostheses 
and neuro-controlled hand prostheses. The results achieved both 
in animal and human experiments show that the combination of 
multiple sites recordings and advanced signal processing 
techniques (such as wavelet denoising and spike sorting 
algorithms) can be used to identify both sensory stimuli (in 
animal models) and motor commands (in a human volunteer). 
These findings have interesting implications, which should be 
investigated in future experiments.  
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I. INTRODUCTION 
 

everal research groups are currently working to develop 
artificial limbs aimed at restoring or enhancing natural human 
functions lost/reduced for different reasons (neurological 
disorders, injuries, amputations). In order to achieve an 
effective solution, one of the most important requisites is the 
development of an intuitive interface between the natural and 
the artificial systems, allowing the user to interact with the 
artificial system in a simple and natural manner. In recent 
years, several attempts have been carried out [1–6] to restore 
this natural link by developing different Hybrid Bionic 
Systems (HBSs, [5-6]). Among HBSs, active hand prostheses 
represent an interesting example of the need for natural 
interfaces between biological and artificial devices. In fact, 
real usability and comfort of a robotic limb can be 
accomplished only if the user can feel and control it naturally 
as if it were part of his/her body. Therefore, a fast, intuitive, 
bi-directional flow of information between the user’s nervous 
system and the smart robotic device, needs to be established. 
Presently, this is limited by the interface between biological 
and mechatronic systems. Several approaches are possible and 
are currently investigated by different groups as shown in 
Table 1 and Figure 1. 

Among these approaches, Kuiken et al. [12-13] developed a 
new method based on transferring amputees’ residual nerves 
to other muscles in or near the residual limb (see Figure 1). 
This approach has the advantage of physiologically 
correlating the nerve function to the function it is controlling 
in the prosthesis. Therefore, the user operates in a natural 
context that is more logical and easier to learn than current 
EMG-based control paradigms. Moreover, the delivery of 
sensory feedback via external stimulation seems to be possible 
both with mechanical and electrical stimuli [3,17-18]. 
However, the approach seems most suitable for subjects with 
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a proximal amputation (shoulder or near axillary level) and 
requires the use of external devices, for recording and 
stimulating, without being completely non-invasive. 

 

 
 

 
At the same time the use of invasive neural interfaces 

directly connected to the peripheral nervous system (PNS) is 
potentially appealing because it may provide, in most cases, 
an almost “physiological” condition in which efferent and 
afferent fibers, previously connected with the natural hand, 
return to their limb/hand control role.  

Several invasive PNS interfaces have been developed in the 
past [4,19-20] (see Figure 2).  

Although most devices were originally developed for 
functional electrical stimulation (FES) in spinal cord injured 
persons [21-23], they can also be the key component of neuro-
controlled hand prostheses. In this case, they are used to 
record efferent motor signals and to stimulate afferent nerves 

(i.e., in a complementary way with respect to FES systems) 
[4]. Among them, Longitudinal intra-fascicular electrodes 
(LIFEs), intraneural electrodes inserted longitudinally into the 
nerve tissue [24], are potentially very interesting due to their 
selectivity and relatively low level of invasiveness. In fact, a 
recent study showed that the principle of bidirectional control 
of artificial devices [1-2] was possible in short-term clinical 
trials with amputees. In particular, it was shown that the 
subjects were able to control a one-degree of freedom 
prosthesis by processing efferent neural signals and to receive 
robust and reliable sensory feedback by stimulating the 
afferent nerves.  

 

 
 
However, there are some important questions yet to be 

investigated in order to fully understand the risk/benefits of 
this approach: (i) whether more advanced processing 
algorithms can improve the performance of multiple 
information coding; (ii) whether it is possible to extract motor 
commands to control more than one degree of freedom from 
efferent signals recorded from human volunteers. 

To address the first question, experiments in the animal 
model were carried out. The second question was addressed 
by implanting a new version of LIFEs in a right-handed male 
(P.P.) who had suffered left arm trans-radial amputation due 
to a car accident 2 years earlier.  

In the next two sections the results achieved in these two 
cases are given. 

II. EXPERIMENTS IN THE ANIMAL MODEL 

A. Physiological basis 
Extracellular electrodes (e.g., LIFEs) measure the activity 

of and act upon the population of axons in their immediate 
vicinity. In general, the interface is non-specific, and the 
information they measure in the unit activity conveys a  
mixture of different and time-overlapping data. They can 
originate from efferent and afferent units. Motor commands 
can project to different size motor units, or even to different 
muscle groups. The sensory information set can be varied and 

Fig. 2.  Different invasive PNS interfaces according to their properties in 
terms of selectivity and invasiveness. 

 
Fig. 1.  Schematic (left) of a hand prosthesis based on myoelectric sensors 
implanted in the muscles of the forearm [11] and schematic (right) of the 
targeted muscle reinnervation technique and of the high density EMG 
experimental setup used in unilateral short transhumeral amputee subject 
[13].  

TABLE I 
COMPARISON BETWEEN THE CHARACTERISTICS OF THE DIFFERENT HUMAN-

MACHINE INTERFACES FOR THE CONTROL OF HAND PROSTHESES IN 
AMPUTEES  

Approach Main Advantages Main Disadvantages 

Surface EMG 
[7-9] 

Non-invasive Non-natural control 
strategies must be 
learnt by the subject 

Implantable 
EMG [10-11] 

Improved quality of 
EMG signals 

Non-natural control 
strategies must be 
learnt by the subject 

Targeted 
reinnervation 
[12-13] 

More natural control 
strategies, effective 
sensory feedback  

Requires a surgical 
implantation but works 
with non-invasive 
signals. More suitable 
for amputations at the 
shoulder level 

Implantable 
cortical 
interfaces [14] 

Direct connection with 
the cortex 

Too invasive for the 
disability related to 
amputation 

Non-invasive 
cortical 
interfaces [15] 

Non-invasive approach  Limitations in the 
number of controllable 
degrees of freedom. 
Non-natural control 
strategies 

Implantable 
peripheral 
interfaces [1-
2,4,6,16] 

Potentially selective and 
not very invasive (if 
compared with other 
implantable solutions)  

Limitations in terms of 
controllable degrees of 
freedom and sensory 
feedback not clear 
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can originate from kinesthetic, temperature, touch, and pain 
sensors. 

In single-unit recordings, the shape of the action potential is 
generally believed to carry  individual and selective 
information, with the information coded in the action potential 
rate and population firing distribution; in other words, the 
signal-to-noise ratio is remarkably superior. In multi-unit 
recordings, this information is lost unless it is possible to 
recover single-unit spike trains from the interleaved spiking 
activity. 

Signals related to different nerve fibers can be identified 
and extrapolated  on the basis of the shape of the unit 
extracted from the multi-unit recording. The shape of the 
spike is determined by: the surface area of the membrane 
(which depends on the axon diameter), the type of  fiber 
(myelinated or not), the orientation of the nodes of Ranvier, 
the distance between the fiber and the electrode, and the 
inhomogeneity of the conductivity of the intrafascicular space. 
Once identified using spike sorting (since different nerve 
fibers carry different information: e.g., which motor units to 
activate to perform a given grasp), the spike sorted data can be 
used to extract specific information, which is carried in the 
single unit activity, from the mixed population record, thus 
effectively increasing the resolution of the information that 
can be extracted from a single electrode. This represents an 
improvement in the performance of the neural interface and 
can be used to further reduce invasiveness since fewer 
electrodes would be required to obtain the needed number of 
information channels. Spike sorting techniques have been 
successfully used to process neural activity recorded from 
cortical interfaces. In the work presented in this section, the 
applicability of these techniques to peripheral recordings was 
tested. 

 

B. Thin-film LIFEs 
Thin-film LIFEs (tfLIFE) [25-26] were used in the 

experiments. These electrodes were developed on a 
micropatterned polyimide substrate, which was chosen 
because of its biocompatibility, flexibility and structural 
properties [27]. The structure (shown in Figure 3) is double 
sided and has eight evenly spaced recording sites with four 
sites per side. 

 

C. Protocol of the experiments for classification 
TfLIFEs were implanted in the sciatic nerve of five adult 

female rabbits. More information can be found in [28]. 
Various sensory stimuli were applied to the hind limb (i.e., 
ankle flexion/extension, flexion/extension of one or more toes, 
and stroking of cutaneous receptive fields) and the elicited 
signals were recorded using the tfLIFEs. Each stimulus was 
repeated 4 to 6 times. The complete list of stimuli for each 
rabbit is provided in Table 2. 

 

 
For each animal, the recording site with best signal to noise 

ratio was chosen using the automated procedure described in 
[28]. 

A scheme of the general processing and classification 
approach is shown in Figure 4. 

 

 
D. Processing algorithms 

Wavelet denoising (WD) is a set of techniques for 
removing noise from signals and images [29]. The main idea 
is to transform the noisy signal into noisy wavelet coefficients 
in an orthogonal time-frequency domain. In this domain, the 
coefficients are thresholded to reduce the noise. Finally the 

Fig. 4. Scheme of the algorithms used in these experiments 

TABLE II 
THE DIFFERENT STIMULI APPLIED TO THE ANIMALS. ANIMAL B IS NOT 
INCLUDED IN THE ANALYSIS BECAUSE IT WAS NOT POSSIBLE TO RECORD ANY 
SIGNAL FROM THAT ANIMAL. REPRODUCED WITH PERMISSION FROM [28].  

Session Stim. Description Stim. Label  

A 

Squeezing of the foot 
Ankle flexion  
Toe extension 
Toe extension combined with ankle flexion 

sqf 
af 
te 
af_te 

C 

Stroking of medial plantar area   
Stroking of distal plantar area   
Extension of toes (2nd,3rd,4th)   
Ankle flexion     

smpp   
sdpp   
et     
af     

D 
Ankle flexion at 90°    
Release from ankle flexion   
Ankle extension at 175°    

a90     
a90r    
a175    

E 

Stroking of paw with ankle at 90°  
Stroking of paw with ankle at 175° 
Ext. 2nd and 3rd toes (with ankle neutral)  
Ext. 2nd and 3rd toes (with ankle flexed)  
Flex. 2nd and 3rd toes (with ankle flexed)  
Flex. 2nd and 3rd toes (with ankle extended) 

sp_a90  
sp_a175 
te_an 
te_af 
tf_af 
te_ae 

Fig. 3. Picture and unfolded overview of tfLIFE [26]. Total length: 60 mm. 
Length without pad areas: 50 mm. Each end of the tfLIFE carries a ground 
electrode (GND), an indifferent recording electrode (L0, R0) and the 
recording sites (L1–L4, R1–R4). 
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coefficients are transformed back into the original time 
domain denoised. A decomposition scheme based on the 
translation-invariant wavelet transform [30] was used. 

After this preliminary step, an algorithm for spike detection 
and sorting was applied to the data. The spike sorting process 
consisted of two phases. During the first phase, a subset of the 
recordings (training set) was used to individuate recurring 
spike shapes and to build a dictionary of spike templates. 
During the second phase, the remaining part of the recordings 
(test set) was scanned looking for occurrences of the spike 
templates previously identified. The wavelet denoising and the 
spike sorting algorithms allowed the extraction of specific 
spike waveforms as those shown in Figure 5. 

 

E. Classification Algorithms 
The different epochs related to the different classes (i.e., the 

types of stimuli from Table 2) were labeled and used as 
examples to train the classifier or to test its generalization 
skills. For each example, the feature vector was composed of 
the ratios between the number of spikes matching each 
template and the total number of spikes in the epoch [28]. 
Therefore, the absolute spike rates were not used, but rather 
the relative spike rates of each waveform w.r.t. the others 
(Srt). This should prevent classification of the epochs based 
on the “quantity of activity” and favor the use of the “quality 
of activity”, intended in terms of different waveforms for 
different stimuli. The reason for this approach has been 
previously described. In order to infer the type of stimulus 
applied during a given epoch, a classifier based on support 
vector machines (SVMs) [31] was used. 

F. Validation scheme 
A validation scheme was developed by using a single 

example per class (stimulus type) as the test set (i.e., never 
used for tuning any parameter, creating spike templates, or 
training the machine). The remaining examples were used as 
the training set. For example, if a given session had 9 epochs 
for each of the five different types of stimuli, the test set 
would consist of 5 epochs while the training set of 40 epochs.  

In order to obtain an average performance with small 
confidence intervals, a random subsampling cross-validation 
was used. The following procedure was repeated 5000 times: 
(i) build the test set by randomly selecting one epoch for each 
stimulus type (e.g., one set of 5 epochs among 95 
combinations for the example above); (ii) build the training set 
by selecting the remaining epochs; (iii) run the template 
creation phase of the spike sort algorithm on the training set; 
(iv) run the template matching phase of the spike sort 
algorithm on the whole set; (v) use the features from the 
training set to train a SVM machine; (vi) make the SVM 
machine predict the stimuli type for the test set and compare it 
with the ground truth. 

G. Results 
The performance of the system for each experimental 

session is reported in Table 3. The first column (WD/Srt) 

shows the performance in terms of percentage of correct 
classifications and channel capacity, for the approach 
presented here. For comparison, the last column reports the 
results of a typical ENG approach (FIR/RBI) using a bandpass 
filter (FIR) between 700 and 2000 Hz and a rectification and 
bin-integration (RBI) evaluated as the mean over the epoch of 
the RBI computed on 50ms windows. The other columns 
present the performance of hybrid configurations. 

 

 
 
These results confirm that more advanced processing 

algorithms can improve performance. The proposed approach 
does so by trying to un-mix the combined activity in multi-
unit recordings and recover the information carried by the 
single (or smaller groups of) nerve fibers. 

Figure 5 is an example that helps to illustrate how the 
system works internally. It contains two minute data from 
session D. The left panel shows 5 of the 17 templates that 
were found. Templates #3 and #4 were considered together 
because they have similar properties and behaviors. Templates 
#9 and #10 were similarly combined. The abscissa of the right 
panel is time, and shows time epochs delineated by the 
segments separated by dotted lines where different types of 
stimuli were applied to the paw. Each row shows the 
frequency of template “hits” for a given template, with the 
first row corresponding to template #1, the 2nd row 
corresponding to template #3 and #4, and the 3rd row 
corresponding to template #9 and #10. The relative “hit” rate 
of template #1 is maximum during ankle flexion (a90), while 
the maximum rate for templates #3 and #4 is maximum during 
release from flexion (a90r) and for templates #9 and #10 is 
maximum during extension (a175). The example illustrates 
that 3 different types or channels of information are extracted 
through the use of spike sorting from a single electrode 
channel. 

III. CASE STUDY WITH AN AMPUTEE 

A. Subject and methods 
P.P. was a 26 year-old male who had suffered left arm 

amputation two years earlier. Phantom awareness and 

TABLE III 
PERFORMANCE OF SESSIONS WITH 4 (A, C, E) OR 5 (D) STIMULI IN TERMS OF 
PERCENTAGE OF CORRECT CLASSIFICATIONS (PC [%]) AND CHANNEL CAPACITY 
(C [BIT/SYMB]). TWO DIFFERENT PREPROCESSING METHODS - WAVELET 
DENOISING (WD) AND BANDPASS FILTER (FIR) – AND TWO DIFFERENT FEATURE 
CREATION METHODS -  RELATIVE SPIKE ACTIVITY (SRT) AND RECTIFICATION 
AND BIN-INTEGRATION (RBI) – WERE COMPARED. REPRODUCED WITH 
PERMISSION FROM [28]. 

Session Measure WD/Srt FIR/Srt WD/RBI FIR/RBI 

A PC 
C 

92.6  
1.59 

66.7 
0.87 

68.6 
1.01 

52.8 
0.84 

C PC 
C 

99.1 
1.92 

95.2 
1.72 

88.8 
1.50 

69.0 
1.28 

D PC 
C 

94.5 
2.01 

80.4 
1.64 

76.0 
1.61 

66.5 
1.54 

E PC 
C 

90.1 
1.51 

60.7 
0.64 

92.6 
1.71 

89.1 
1.51 
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presence 

 
of Phantom Limb Syndrome were evaluated pre-surgically 
and were followed up at the end of the training period and 3 
months after LIFEs removal. Following epineural 
microdissection, two tf-LIFE4s separated by 3 cm, were 
inserted in ulnar and median nerves 45° obliquely to assure 
stability and to increase the probability of intercepting 
nerve fibers. The distal handle of the electrode was 
anchored to the epineurium. Four weeks later, tf-LIFE4s 
were removed as required by the European Health 
Authorities. P.P. worked on the project 4-6 hours/day for 6 
days/weekly and did not report any complication during the 
3 month follow-up period.  

A. Experimental protocol 
Electroneurographic (ENG) and electromyographic 

(EMG, biceps/triceps, surface belly-tendon recordings) 
signals were recorded. P.P. was trained to dispatch three 
individual movement commands to the missing hand : (i) 
power grip; (ii) pinch grip; (iii) flexion of the little finger. 
Each movement was identified by an individual trigger that 
was used during signal processing in order to discriminate 
voluntary activities only in the expected parts of the signal. 
Imagined movements consisted in alternating moments of 
immobility (2-4 s) with hand movements (around 1 sec), 
and were synchronized with the recording system. Signals 
both from the tf-LIFEs and EMG electrodes were 
simultaneously recorded, sampled at 48 kHz, and mean 
rectified in data-windows of 1000 samples. In order to 

reduce cognitive burden and to help P.P. to dispatch 
selective motor orders, two different recording phases were 
designed: (1) P.P. was asked to imagine only one class of 
movement (power grip) during the first two weeks and then 
(2) all three classes during the final week. 

Immediate off-line signal evaluation identified the best 
contacts for repeatability and signal-to-noise ratio. After the 
best candidate-channels had been identified, P.P. was asked 
to control their online modulation - this being the most 
efficient training protocol - and to maintain EMG activity 
as low as possible.  
More detailed information about the protocol and the 
clinical results can be found in [32]. 

B. Processing and classification algorithms 
The algorithms presented in the previous section for 

animal experiments were also used in the experiments with 
P.P. Figure 6 provides some examples of classes extracted 
from the ENG efferent signals. 

However, the possibility of using signals simultaneously 
acquired from more than one channel for classification was 
also considered. Wavelet denoising allowed the 
identification of several classes of spikes. The different 
features were then used as inputs to classify grip types and 
rest. In Table 4, the best performance achieved with the 
best combination of tfLIFE channels is shown for the 
classification of rest plus one, two, or three grip types. 

Moreover, in order to understand the importance of 

Fig. 5. Analysis of how different “spike waveforms” could help the detection of specific stimuli (a90, a90r, a175, see Table 1). On the left, some of the spike 
waveforms found are given. The thick gray lines represent the waveforms identified during the “template creation” phase and their support is delimited in the 
plots by the dotted vertical bars. The thin black lines represent some of the spikes identified as belonging to that specific template. On the right, the black lines 
(scales on the left) represent the ratio fi between the occurrence of the correspondent “spike waveform” shown on the left and the total spikes detected for each 
epoch. The gray lines (scales on the right) are the absolute spike rate of the corresponding spike waveforms evaluated on 1-s sliding windows. Reproduced with 
permission from [28]. 
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multi-channel electrodes, classification performance was 
calculated for the different number of channels. 

 
The results are shown in Figure 7 for two different 

classification methods: (1) discrimination of four classes 
simultaneously (rest, three grip types); (2) hierarchical 
discrimination (rest versus activities and then selection of 
grip type). The results indicate that the use of several 
channels can increase performance not only due to the 
increased amount of information but also due to increased 
flexibility. In fact, by using hierarchical discrimination, 
different channels and classes can be used for the two steps 
and performance is increased with respect to the non-
hierarchical classification approach. 

 

IV. DISCUSSION  
The aim of our study was to increase knowledge on the 

possibilities and limits of computerized analysis of signals 
emitted by peripheral fibers during in general by means of 
intrafascicular electrodes and in particular during tf-LIFE 
simultaneous recordings from multiple nerve sites. In 
particular, our assumption was that different neural 
commands can generate different classes of spikes recorded 
with the LIFEs and that these classes can be used to 
discriminate different sensory or motor information.  

 

 
The experiments with animal models showed that the 

combination of wavelet denoising and spike sorting 
techniques can increase the amount of information 
extracted from ENG signals recorded with intraneural 
electrodes. This approach could be used in the future to 
develop closed-loop controlled neuroprostheses based on 
natural sensory information.  

The same processing approach was then used to analyze 
the ENG efferent signals recorded during an experiment 
with a human volunteer. In this case, the results in terms of 
classification of motor tasks showed that a state control 
algorithm can be implemented. Three different hand 
movements can be identified with quite good performance. 
Even more interesting was P.P.’s ability to improve his 
performance during the trials. This shows that the 
performance of chronic implantations could possibly 
improve.  

Unfortunately, given the time limitations of our 
experiments it was not possible to increase the number of 
grip types that subjects were asked to dispatch to the 
missing hand . However, it is now clear that several 
movements can be classified and that probably they can 
easily be more than three as in our study. This goal can be 
easily and rapidly achieved by the subject due to the fact 
that he has nearly nothing to learn, since the emitted signal 
follow about the same programming/execution parameters 
as in the natural life when using an intact hand.  
Performance can also be improved by using more 
intraneural channels. This is due to the intrinsic blindness 
of the implantation procedure: a greater number of channels 
can increase the probability of receiving more useful 
signals for classification. Another possibility is to embed 
micro-actuators [33-34] in the structure of the neural 
interface to move the different electrical contacts in the 
nerve (see Figure 8). 

 

 
 
Fig. 7. Maximum performances obtained using direct and hierarchical 
classification are shown as a function of the number of channel for Day 30
signals. 

TABLE IV 
THE BEST PERFORMANCE (DAY 30) FOR THE CLASSIFICATION PERCENTAGE 
(PC [%])  FOR ONE, TWO, AND THREE CLASSES AGAINST REST.  

# of classes Class(es) description PC 

3 classes (and rest) little, fist, and pich 85 
2 classes (and rest) little , fist 92 
2 classes (and rest) little, pinch 90 
2 classes (and rest) fist , pinch 87 

1class (and rest) little 93 
1class (and rest) fist 95 
1class (and rest) pinch 100 

 
Fig. 6. Examples of templates of spikes extracted from efferent ENG signals.
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The results showed in this manuscript indicate that some 

specific “states” (i.e., grip types) can be decoded from 
intraneural ENG signals. This “high-level” finite state 
approach has been implemented with very good results in 
EMG-controlled prostheses [5, 13, 35]. It is achieved by 
combining information on the grip together with fixed 
parameters embedded in the robotic controller (e.g., on the 
pre-shaping phase of the hand before grasping) and selected 
by trial and error. This kind of information could then be 
used as desired state to be achieved by a low-level control 
algorithm (from very simple PID controllers to complex 
force-position algorithms). The level of “shared-control” 
between the user’s brain and the robotic controller can be 
modified according to the performance of the 
neurocontrolled hand prosthesis. In particular, the 
extraction of more reliable information can reduce the 
importance of the robotic controller, by relaying more on 
the user’s intentions and during the training  phase.  

As already shown for the decoding and control of upper 
limb movements using cortical signals [36], this “shared-
control” approach can significantly increase the 
performance and the effectiveness of the overall system.  
The information from the artificial sensors embedded in the 
hand can be used to define different low-level control 
strategies (for example, avoid slippage or achieve obstacle 
avoidance and accurate grasping) and to check the 
correspondence between the actual desired activity and the 
current task of the robotic system. The shared-control 
paradigm can be introduced in the form of the artificial 
field potentials described in [37]. In this case the robot 
moves in fields of forces generated by the user (through the 
decoding algorithms,) and by the different sensors (i.e., the 
total potentials will be Udecoding+Usensors). When, for example, 
one or more sensors placed in the artificial hand detects the 
proximity of an object, it causes a sensor-based field 
potential, which may have local attractive or repulsive 
regions depending on the control laws of the individual 
sensors. These shared-control strategies can be 
continuously updated on-line according to the information 
provided, for example, by a reinforcement learning 
algorithm. This could be done by learning the 
parameterisation of a specific additional force field to be 
added (i.e., the total potentials will be 

Udecoding+Usensors+Ulearning). The learning process could affect not 
only the user (through invasive or non-invasive sensory 
feedback) but also the artificial components of the 
neurocontrolled hand prosthesis. Similar examples of co-
learning between the user and the decoding algorithm have 
been exploited for cortical neuroprostheses with very 
promising results [38]. 

All these preliminary results need to be confirmed during 
more extensive chronic experiments both in animals and 
selected human volunteers. It would be particularly 
interesting to understand the maximum amount of 
information, which can be extracted, and the robustness of 
this approach in terms of need for frequent recalibration of 
the algorithms used for classification. 

REFERENCES 
[1] G.S. Dhillon, T.B. Krüger, J.S. Sandhu, and K.W. Horch,” Effects of 

short-term training on sensory and motor function in severed nerves 
of long-term human amputees,” J Neurophysiol. vol. 5, pp. 2625-33, 
2005. 

[2] G.S. Dhillon and K.W. Horch, “Direct neural sensory feedback and 
control of a prosthetic arm”, IEEE Trans Neural Syst Rehabil Eng., 
vol 13 pp. 468-72, 2005.  

[3] N.G. Hatsopoulos and J.P. Donoghue, “The science of neural 
interface systems”, Annu Rev Neurosci, vol 32, pp. 249-66, 2009. 

[4] X. Navarro, T.B. Krueger, N. Lago, S. Micera, T. Stieglitz and P. 
Dario, “A critical review of interfaces with the peripheral nervous 
system for the control of neuroprostheses and hybrid bionic systems,” 
J Peripher Nerv Syst ,vol. 10, pp. 229–258, 2005. 

[5] S.Micera, M.C. Carrozza, L. Beccai, F. Vecchi, and P. Dario, 
“Hybrid Bionic Systems for the Replacement of Hand Function,” 
Proc IEEE, vol. 94, pp. 1752-1762, 2006. 

[6] S. Micera, X. Navarro, J. Carpaneto, L. Citi, O.Tonet, P. Rossini, M. 
Carrozza, K. Hoffmann, M.Vivò, K. Yoshida, and P. Dario, "On the 
use of longitudinal intrafascicular peripheral interfaces for the control 
of cybernetic hand prostheses in amputees," IEEE Trans Neural Syst 
Rehabil Eng, vol. 16,  pp. 453-472, 2008. 

[7] M. Zecca, S. Micera, M.C. Carrozza and P. Dario, "Control of 
multifunctional prosthetic hands by processing the electromyographic 
signal," Crit Rev Biomed Eng, vol. 30, pp. 459-485, 2002. 

[8] M.A. Oskoei and H. Hu, "Support Vector Machine-Based 
Classification Scheme for Myoelectric  Control Applied to Upper 
Limb," IEEE Trans Biomed Eng, vol. 55, pp.1956-65, 2008. 

[9] K. Englehart and B. Hudgins, "A robust, real-time control scheme for 
multifunction myoelectric control," IEEE Trans Biomed Eng, vol. 50, 
pp.848-854, 2003. 

[10] T.R. Farrell and R.F. Weir, "The optimal controller delay for 
myoelectric prostheses," IEEE Trans Neural Syst Rehabil Eng, vol. 
15, pp. 111-118, 2007.  

[11] R.F. Weir, P.R. Troyk, G.A. DeMichele, D.A. Kerns, J.F. Schorsch, 
and H. Maas, “Implantable myoelectric sensors (IMESs) for 
intramuscular electromyogram recording,” IEEE Trans Biomed Eng, 
vol. 56, pp.159-171, 2009. 

[12] T. Kuiken, L. Miller, R. Lipschutz, B. Lock, K. Stubblefield, P. 
Marasco, P. Zhou and G Dumanian, “Targeted reinnervation for 
enhanced prosthetic arm function in a woman with a proximal 
amputation: a case study,” The Lancet, vol. 369 pp. 371-380, 2007. 

[13] H. Huang, P. Zhou, G. Li, and T. A. Kuiken, “An analysis of EMG 
electrode configuration for targeted muscle reinnervation based 
neural machine interface,” IEEE Trans Neural Syst Rehabil Eng,  vol. 
16, pp. 37-45, 2008. 

[14] L.R. Hochberg, M.D. Serruya, M.G. Friehs,  J.A. Mukand, M. Saleh, 
A. H. Caplan, A. Branner, D. Chen, R.D. Penn and J.P. Donoghue, 
"Neuronal ensemble control of prosthetic devices by a human with 
tetraplegia," Nature, vol. 442 pp.164-71, 2006. 

[15] J. Wolpaw and J.  McFarland “Control of a two-dimensional 
movement signal by a noninvasive brain-computer interface in 
humans,” Pnas,vol.101 pp.17849-54, 2004. 

Fig. 8. Corrugated profile (Vc = height of the peaks), (b) drawing of the 
multiactuation layout, and (c) cross section of  an actuated intraneural 
electrode [34]. 



0201-SIP-2009-PIEEE.R1 8

[16] X. Jia , M.A. Koenig, X. Zhang , J. Zhang , T. Chen and Z. Chen, 
“Residual motor signal in long-term human severed peripheral nerves 
and feasibility of neural signal-controlled artificial limb,” J Hand 
Surg [Am], vol.32 pp.657-66 , 2007.  

[17] L.G. Cohen , S. Bandinelli , T.W. Findley and M. Hallett, “Motor 
reorganization after upper limb amputation in man. A study with 
focal magnetic stimulation,” Brain vol. 114, pp. 615-27 , 1991 

[18] K. Yoshida and K. Horch,  “Selective stimulation of peripheral nerve 
fibers using dual intrafascicular electrodes,” IEEE Trans Biomed 
Eng., vol. 40 pp. 492-4,1993  

[19] M. Haugland, A. Lickel, J. Haase, and T. Sinkjær, “Control of FES 
thumb force using slip information obtained from the cutaneous 
Electroneurogram in Quadriplegic Man,” IEEE Trans Neural Syst 
Rehabil Eng, vol. 7,  pp. 215–227, 1999. 

[20] R.B. Stein, D. Charles, J.A. Hoffer, J. Arsenault, L.A. Davis, S. 
Moorman and B. Moss,  “ New approaches for the control of 
powered prostheses particularly by high-level amputees,” Bull 
Prosthet Res, vol. 10, pp. 51–62, 1980. 

[21] D. Guiraud, T. Stieglitz, K.P. Koch, J.L. Divoux and P. Rabischong, 
“An implantable neuroprosthesis for standing and walking in 
paraplegia: 5-year patient follow-up,” J Neural Eng, vol. 3, pp. 268–
275, 2006. 

[22] M. Haugland and J. Hoffer, “Slip information provided by nerve cuff 
signals: application in closed-loop control of functional electrical 
stimulation,” IEEE Trans Rehabil Eng , vol. 2, pp. 29–36, 1994. 

[23] A. Inmann and M. Haugland, ” Implementation of natural sensory 
feedback in a portable control system for a hand grasp 
neuroprosthesis,” Med Eng Phys, vol. 26, pp. 449–458, 2004. 

[24] S.M. Lawrence, G.S. Dhillon, and K.W. Horch, “Fabrication and 
characteristics of an implantable, polymer-based, intrafascicular 
electrode,” J Neurosci Methods. vol. 131, pp.9-26, 2003. 

[25] K. Yoshida, K. Hennings, and S. Kammer, "Acute performance of the 
thin-film longitudinal intra-fascicular electrode", in First IEEE/RAS-
EMBS International BioRob Conference, Pisa,  p.296–300, 2006.  

[26] K.P. Hoffmann and K.P. Kock, "Final report on design consideration 
of tLIFE2," Tech Rep IBMT, 2005. 

[27] F.G. Zeng "Trends in cochlear implants," Trends Amplif vol. 8 pp.1–
34, 2004 

[28] L. Citi, J. Carpaneto, K. Yoshida, K.P. Hoffmann, K.P. Koch, P. 
Dario, and S. Micera, "On the use of wavelet denoising and spike 
sorting techniques to process electroneurographic signals recorded 
using intraneural electrodes", J Neurosci Methods vol.172 pp.294-
302, 2008 

[29] D.B. Percival and A.T. Walden, "Wavelet Methods for Time Series 
Analysis," Cambridge University Press, 2000 

[30] R.R. Coifman and D.L. Donoho "Translation-invariant de-noising," 
in: Wavelets and statistics. Springer-Verlag; pp. 125–50; 1995 

[31] C. Cortes and V. Vapnik, "Support-Vector Networks," Machine 
Learning, 20, 1995 

[32] P.M. Rossini, S. Micera, A. Benvenuto, J. Carpaneto, G. Cavallo, L. 
Citi, C. Cipriani, L. Denaro, V. Denaro, G. Di Pino, F. Ferreri, E. 
Guglielmelli, K.P. Hoffmann, S. Raspopovic, J. Rigosa, L. Rossini, 
M. Tombini, and P. Dario, “Double nerve intraneural interface 
implant on a human amputee for robotic hand control,” submitted, 
2009. 

[33] S. Bossi, A. Menciassi, K. P. Koch, K. P. Hoffmann, K. Yoshida, P. 
Dario, and S. Micera, “Shape Memory Alloy Microactuation of tf-
LIFEs: Preliminary Results,” IEEE Trans Biomed Eng, vol. 54, pp. 
1115 – 1120, 2007. 

[34] S. Bossi, S. Kammer, T. Dörge, A. Menciassi, K. P. Hoffmann, and 
S. Micera, “An Implantable Microactuated Intrafascicular Electrode 
for Peripheral Nerves,” IEEE Trans Biomed Eng, vol. 56, pp. 2701–
2706, 2009. 

[35] C. Cipriani, F. Zaccone, S. Micera, M.C. Carrozza, “On the shared 
control of an EMG controlled hand prosthesis: analysis of user-
prosthesis interaction,” IEEE Trans Robotics, vol. 24, no. 1, pp. 170-
184, 2008.  

[36] H.K. Kim, S.J. Biggs, D.W. Schloerb, J.M. Carmena, M.A. Lebedev, 
M.A. Nicolelis, and M.A. Srinivasan, “Continuous shared control for 
stabilizing reaching and grasping with brain-machine interfaces,” 
IEEE Trans Biomed Eng, vol. 53, pp. 1164-1173, 2006. 

[37] O. Kathib, “Real-time obstacle avoidance for manipulators and 
mobile robots,” Int J Robot Res, vol. 5, pp.90-98, 1986. 

[38] J. DiGiovanna, B. Mahmoudi, J. Fortes, J.C. Principe, and J.C. 
Sanchez, “Coadaptive brain-machine interface via reinforcement 
learning,” IEEE Trans Biomed Eng,  vol. 56, pp.54-64, 2009. 

 


