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Abstract—Neural end-to-end text-to-speech (TTS) is superior
to conventional statistical methods in many ways. However, the
exposure bias problem, that arises from the mismatch between
the training and inference process in autoregressive models,
remains an issue. It often leads to performance degradation
in face of out-of-domain test data. To address this problem,
we study a novel decoding knowledge transfer strategy, and
propose a multi-teacher knowledge distillation (MT-KD) network
for Tacotron2 TTS model. The idea is to pre-train two Tacotron2
TTS teacher models in teacher forcing and scheduled sampling
modes, and transfer the pre-trained knowledge to a student model
that performs free running decoding. We show that the MT-KD
network provides an adequate platform for neural TTS training,
where the student model learns to emulate the behaviors of
the two teachers, at the same time, minimizing the mismatch
between training and run-time inference. Experiments on both
Chinese and English data show that MT-KD system consistently
outperforms the competitive baselines in terms of naturalness,
robustness and expressiveness for in-domain and out-of-domain
test data. Furthermore, we show that knowledge distillation
outperforms adversarial learning and data augmentation in
addressing the exposure bias problem.

Index Terms—End-to-end TTS, autoregressive model, exposure
bias, knowledge transfer, knowledge distillation

I. INTRODUCTION

ITH the advent of deep learning, text-to-speech (TTS)
W studies have seen significant progress. The neural TTS
solutions [1], [2] are the examples. Unlike the conventional
TTS pipeline [3]-[6], the neural solutions employ a network
to learn the mapping directly from the <text, wav> pair [7].
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For instance, Tacotron [1], Tacotron2 [2] and their variants
[8]-[10] are based on an encoder-decoder architecture with
an attention mechanism [11]. The recurrent neural network
(RNN) [12] based decoder predicts the acoustic features
frame-by-frame in an autoregressive manner [13], [14].
Furthermore, the studies of novel neural vocoders [2], [15],
[16] also greatly improve the speech quality.

Despite much progress, run-time stability remains a chal-
lenge for neural TTS [17]-[20]. The autoregressive based
TTS decoding often produces unpredictable outputs during
run-time inference, that include deletion or repetition of
words, incomplete utterance, and inappropriate prosody phrase
breaks [21]-[24], especially for out-of-domain text input. It
suffers from the exposure bias problem [25], [26] that arises
from the mismatch between training and inference data, and
adversely affects the autoregressive decoding process [13],
[14]. Typically, in the training stage, the decoder predicts
the current frame based on the natural speech frames in the
previous steps in a teacher forcing (TF) mode. There is no
doubt that the teacher forcing mode optimizes the decoder to
produce samples close to the ground-truth. However, during
run-time inference, the natural speech frames are replaced by
predicted speech frames in a free running (FR) mode.

To address the exposure bias problem, there have been
studies on data augmentation strategy, which uses predicted
sequence during training. Bengio et al. [27] proposed to
mix ground-truth natural and predicted sequences in training
stage with a sampling strategy, i.e., scheduled sampling (SS),
where the decoder takes one of the two kinds of sequences
randomly as input. While the scheduled sampling strategy
clearly shows improvements in terms of the robustness [28],
it has an adverse effect on the audio quality as it ignores
the temporal dependency of the acoustic sequence [25], [28].
More recently, generative adversarial network (GAN) [29] is
studied, such as professor forcing [30], [31], which learns to
generalize the model trained in teacher forcing model for free
running decoding. With the generative adversarial network,
knowledge from teacher forcing model is transferred to free
running decoder via adversarial learning. All the studies point
to the direction that increasing the exposure to the predicted
samples during training is an effective way to remedy the
exposure bias problem. The question is how to make full use of
the knowledge from both ground-truth sequence and predicted
sequence in the training stage, which is the focus of this paper.

Recently, knowledge distillation has attracted increasing
attention, in which a student model is trained to emulate the
behavior of a teacher model [32]. In other words, knowledge is
transferred from the teacher model to the student model. In our
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previous work [33], we show that knowledge distillation can
serve as an appropriate framework to transfer the knowledge
of temporal dependency of speech to a free running decoder.
In this paper, we formulate a novel decoding strategy based on
knowledge distillation to address the exposure bias problem.

Inspired by the previous findings, we would like to
incorporate teacher forcing, scheduled sampling, and free
running decoding modes into a single training process to
benefit from the best of all. This paper makes the following
contributions: 1) We formulate a decoding knowledge transfer
paradigm for mitigating the exposure bias problem, and
discuss multiple possible implementations, including data
augmentation, adversarial learning and knowledge distillation;
2) We propose a novel multi-teacher knowledge distillation
(MT-KD) strategy to transfer knowledge from teacher forcing
and scheduled sampling models to a free running decoder; 3)
We show that knowledge distillation is more effective than
adversarial learning and data augmentation in addressing the
exposure bias problem. To the best of our knowledge, this
is the first attempt to leverage the knowledge of multiple
decoding strategies into the training of a single TTS network.

While this work shares a similar motivation with our
previous work [33] in terms of teacher-student training, it is
different in many ways. 1) We formulate a general paradigm
for decoding knowledge transfer that addresses the exposure
bias problem, and its multiple implementations, of which the
teacher-forcing knowledge distillation in [33] is just a special
case; and 2) We propose a novel multi-teacher knowledge
distillation scheme for Tacotron TTS under the decoding
knowledge transfer paradigm, that wasn’t discussed in [33].

The rest of this paper is organized as follows. In Section
II, we discuss the background to motivate our research. In
Section III, we study the proposed multi-teacher knowledge
distillation scheme for decoding knowledge transfer. We report
the experiments in Section IV. Finally, Section VI concludes
the study.

II. BACKGROUND

We first review the Tacotron2 end-to-end TTS model [2],
followed by a brief description of TTS training strategies and
exposure bias. At last, we discuss the background of decoding
knowledge transfer to set the stage for our study.

A. Tacotron2 TTS model

An encoder-decoder network learns to map an input
sequence to an output sequence. Tacotron2 TTS system is one
of the successful encoder-decoder network implementations,
as illustrated in Figure 1. It consists of an encoder, attention-
based decoder and two alternatives for waveform generation,
that are described next in detail.

1) Encoder: The encoder converts the input text to feature
representations [2]. It consists of a CNN [34] module armed
with 3 convolution layers, and a bidirectional LSTM [35]
module.

2) Decoder: The decoder takes the feature representations
as input and predicts the hidden states [2], which are then
converted to mel-spectrum features by a fully connected
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Fig. 1: Block diagram of Tacotron2 based reference baseline
that has three modules, an encoder, an attention-based decoder,
and two alternative methods for waveform generation.

operation [2]. It consists of a 2-layer pre-net, 2 LSTM layers, a
linear projection layer, and a post-net of 5 convolution layers.
The decoder is a standard autoregressive recurrent neural
network that generates the mel-spectrum features and stop
tokens frame by frame. The location-sensitive attention [36]
is applied to learn the linguistic-acoustic alignment.

3) Waveform Generation: To synthesize the output audio
from the mel-spectrum features, there are two common
techniques. We may either use Griffin Lim [37] algorithm,
or alternatively a WaveNet-based neural vocoder [7].

During training, the decoder predicts the current frame in a
teacher forcing mode. However, during run-time inference, the
decoder performs in a free running mode because the natural
speech frames are unavailable, that leads to the exposure bias
problem.

B. TTS decoding strategy

There have been studies to address the exposure bias
problems in image generation [38], image captioning [39]-
[41], text generation [25] and neural machine translation [42].
The exposure bias problem in TTS is fundamentally caused
by the autoregressive decoding mismatch between training and
inference [30].

In Figure 2, we summarize three decoding strategies in TTS.
As shown in Figure 2 (a), with a teacher forcing mode, the
decoder predicts current frame y’ using its previous natural
speech frames y.; as input [14]. The probability distribution
p(y', x) can be formulated as follows,

T/
Py, 2) = p(yily<s, ) (1)
t=1

As the training process only exposes the model to natural
speech data, it optimizes the model distribution to be close
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Fig. 2: Three decoding strategies of autoregressive model. (a)
teacher forcing, (b) free running, and (c) scheduled sampling,
represents the sampling function.

to that of natural speech data. However, during run-time
inference, a decoder always runs in a free running mode.
In other words, the decoder predicts a frame y’ using its
previously predicted frames y’, instead of natural speech
frames as the history, that is illustrated in Figure 2 (b). The
probability distribution p(y’, ) can be expressed as follows,

T/
Py x) = pyilyl ) 2)
t=1

As a result, the predicted speech frames at training and
inference are drawn from different distributions, i.e., natural
speech data vs model predicted data, resulting in accumulated
prediction errors.

In recent neural TTS studies [1], [43], a scheduled sampling
strategy [27] is introduced during training as a way to mitigate
the exposure bias. As shown in Figure 2 (c), at each time step,
the training process decides whether a natural speech frame
or a predicted frame is to be added to the prediction history.

I

P x) =D pWilS(y<t, v-y), ) 3)
t=1

where S(-) means the sampling function, which is represented

by @ in Figure 2 (c). Scheduled sampling is shown to

be effective in learning robust model distribution [26] as it

exposes the model to both natural speech data and predicted

data.

The scheduled sampling strategy seeks to address the
exposure bias problem by augmenting teacher-forcing data
with free-running data. While it mitigates the exposure bias
problem to some extent, it leads to other issues such as speech

discontinuity because of the misalignment between the real
data and the predicted data. In other words, it doesn’t consider
the temporal dependency of the acoustic sequence [25],
[28], [44]. The ignorance of temporal dependency has an
adverse impact on speech quality [44]. Furthermore, as the
inference stage is in a complete free-running mode, the
scheduled sampling strategy doesn’t fully solve the exposure
bias problem.

C. Decoding knowledge transfer

Besides the data augmentation strategy, another school
of thought to address the exposure bias problem is to
transfer the decoding knowledge from one model to another,
instead of solely training the model from data. The studies
of knowledge transfer can be generally grouped into two
categories, adversarial learning [29] and knowledge distillation
[32].

Adversarial learning, such as GAN, has been used in many
sequential training tasks, for example, text classification [45],
machine translation [46], and speech recognition [47]. It is
also used to learn a domain-invariant representation to improve
model generalization in target domains [48]. In practice,
one can employ a pre-trained discriminator to distinguish
between the hidden state sequences generated by two models
in different domains [30]. With such adversarial learning, the
discriminator seeks to minimize the difference of behaviors
between the two models so as to transfer knowledge from one
another.

Knowledge distillation is another technique for knowledge
transfer, usually from a high-performing teacher network into
a simple student network [32]. To this end, the probability
distribution derived by a teacher network is regarded as
the ‘soft target’ to help the student network to learn the
behavior of the teacher network. Knowledge distillation has
been successfully applied to natural language processing [49],
[50], computer vision [51], [52] and speech processing [53],
[54]. Recently, knowledge distillation with multiple teachers
was studied to integrate multi-level knowledge [55], to perform
ensemble learning for model compression [56], [57].

In the context of TTS synthesis, knowledge transfer has
been studied as one of the ways to transfer the desired
decoding knowledge to the run-time decoder. The professor
forcing strategy [44] is one such example, which seeks to
improve the generalization ability of TTS model by jointly
training a discriminator in a GAN architecture so as to
minimize the hidden states between two generators running
in teacher forcing (or scheduled sampling) mode and free
running mode respectively. Unfortunately, the implementation
of the adversarial learning process is not straightforward [58].
In the professor forcing strategy, the two generators act as
peers to each other without the distinctive role of ‘professor’ or
‘teacher’. Furthermore, the quality of the pre-trained discrim-
inator has an impact on the overall performance. Nonetheless,
the study of professor forcing strategy suggests that teacher
forcing and scheduled sampling decoding knowledge each has
it own merits. The question is how the free running decoding
can benefit from the best of both.
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Fig. 3: The proposed multi-teacher knowledge distillation
(MT-KD) training strategy, that consists of two teacher models
and one student model.

A knowledge distillation strategy [33] was studied to
address the exposure bias problem differently from the
scheduled sampling strategy. In [33], the student model is
trained in a free-running mode, with the knowledge transferred
from a teacher model pre-trained in teacher forcing mode.
We consider that knowledge distillation technique provides
an adequate platform for transferring the decoding knowledge
from one model to another not only because it benefits from
well pre-defined teacher models, but also from models of
multiple desired behaviors. As the student model is trained
in a free-running mode, it is inherently consistent with
the inference process. In this paper, we expand the idea
of knowledge distillation in [33] to a decoding knowledge
transfer paradigm.

We note that the teacher-student transfer learning as a
knowledge distillation technique clearly defines the role of
teacher and student models, while the professor forcing
training as an adversarial learning technique doesn’t. We
consider that the former is better motivated than the latter as
far as decoding knowledge transfer is concerned. We will study
a new way to take full advantage of both teacher forcing and
scheduled sampling decoding knowledge for the free running
run-time decoder.

III. MULTI-TEACHER KNOWLEDGE DISTILLATION FOR
DECODING KNOWLEDGE TRANSFER

We propose a multi-teacher knowledge distillation (MT-KD)
training strategy in Figure 3, that employs two teacher models
to guide the training of a student model, for a neural TTS
system. All teacher and student models share a similar network
architecture as Tacotron2 [2] in Section II-A.

The training of MT-KD is conducted in two phases. First,
we pre-train two teacher models, one in teacher-forcing
mode (Teacher-TF) and another in scheduled sampling mode
(Teacher-SS), following the Tacotron2 training protocol. We
then train the Student-FR model in a similar way, except that
its decoder is trained in a free running mode, and jointly
supervised by two pre-trained decoders, and the target speech.
At run-time, the Student-FR model predicts the speech frames
in a free running mode that is consistent with its training mode.
Next we discuss the training and inference process in detail.

A. Phase I: Multi-teacher pre-training

1) Teacher-TF pre-training: As shown in Figure 4,
Teacher-TF consists of an Encoder (Encr) and an attention-
based Decoder (Dectr), where Decty is trained in a teacher
forcing mode, which takes the previous natural speech frames
as the input to predict the current speech frame.

Next we briefly recap the training process. Given an input
character sequence © = (x1,x2,...,x7) and its target mel-
spectrum features y = (y1,¥y2,...,y7/), the text encoder
Encrr reads x and outputs a hidden feature h; at each step ¢
(t € [1,T)):

hi = Encrr(at) 4

The decoder Dectr takes the previous frames 1, ..., yr—1
from the target natural speech as input to output a new hidden
state s; at time step ¢, as formulated next,

s¢ = Dectr(st—1,Ye—1,0(ht)) )

where y,_; represents the ground truth acoustic feature, and
o(-) represents a function to calculate the context vector by
using location-sensitive attention mechanism [36]. After this, a
fully connected layer g(-) generates the mel-spectrum features
y; from the hidden states s,

U = Q(St) (6)

The Teacher-TF model adopts the feature loss function
Lossy to minimize the frame-level distance between the
generated speech and the natural speech,

-
Lossg =Y La(i, y) (7)
t=1

As the Teacher-TF model is trained on natural speech frame
sequence as the input of decoder, we expect that the Teacher-
TF model reflects the true distribution of the natural speech
data, and capture the temporal dynamic of speech signal.

2) Teacher-SS pre-training: As shown in Figure 4, the
Teacher-SS model also consists of an Encoder (Encgg) and
a Decoder (Decgg). The Teacher-SS pretraining is performed
in a similar way to the Teacher-TF except that its Decgg is
trained in a scheduled sampling mode.

The Encgg performs the same task as Enctr. However,
the Decgg works differently from the Decty, which randomly
takes the previous predicted frame y;_; or the natural speech
frame y;_; as the input [27]. The decoding process of the
Decgg is defined as:

s¢ = Decss(5:-1, S(Ji—1,Yi—1), 0 (hy)) 8

where S(-) represents a sampling function as mentioned in
Eq. 3. At last, we convert the hidden states s to the output
sequence y and calculate the loss function Lossy.

As the Teacher-SS model is trained on both natural and
predicted speech frames, it has the adequate exposure to the
distributions of both type of data, that reduces the mismatch
between training and free running inference.

B. Phase II: Student training

The Student-FR model has the same network architecture
as the teacher models, which includes Encpr and Decggr.
On the right panel of Figure 4, we illustrate the schematic
diagram of the training process. To benefit from the pre-
trained models, we use Encrg or Encgg to initialize Encgg,
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Fig. 4: An illustration of our multi-teacher knowledge distillation (MT-KD) scheme for a neural TTS system. The parameters in
the blue boxes are initialized with random values, while those in green boxes are initialized by taking the pretrained parameters

from Phase I.

which generates the linguistic encoding from input text. In
a pilot experiment, we found no difference between the two
initialization methods in terms of naturalness. Therefore, we
adopt Encrr to initialize the student encoder Encpg in future
experiments.

Next, the student encoder Encpr takes the given input
text © = (x1,29,...,27), and outputs linguistic encoding
h= (h1, hg, veny hT)Z

h = Encpr(x) 9

We train the Student-FR model following the Tacotron2
training process. During training, the teacher decoders and
student decoder take the same encoder output sequence as the
input, and generate their own hidden states respectively. We
apply two distillation loss functions, Lossq; and Lossge, to
supervise the hidden states derived by the student decoder to
be close to those of the teacher models. At the same time,
we adopt the feature loss function Lossy to ensure that the
predicted speech is close to the reference natural speech. The
decoder is trained in a free running mode that is consistent
with the decoding process during run-time inference. We next
formulate the training of Decpg.

o The pre-trained Dectr takes the previous hidden states
sTF,_,, hatural speech frame y;_; and the attention score
o(ht) as input, and outputs the hidden state str, at each
time step ¢ as the Eq. 5:

str, = Decrr(sTR, 1, Yi—1,0(ht)) (10

e The pre-trained Decgg outputs another hidden state sgg,
at each time step ¢ by following Eq. 8:

sgs, = Decgs(sss, ,,S(J—1,yi—1),0(h)) (A1)

e At the same time, the student decoder Decpr takes the
previous hidden states spr, ,, estimated speech frame
§:—1 and the attention score o (h;) as input, and predicts
the hidden state sygr, at each step t:

s¥R, = Decrr(SFR,_,, Ut—1,0(he)) (12)

Finally, we follow Eq. 6 to generate the output speech frame
Ut

Ut = 9(SFR,) (13)

The training is supervised by three three objective functions,
Lossy, Lossqy and Lossga. Lossy is the speech generation
loss between the predicted speech §j; and the reference speech

Yt
T/
Lossy = Z Lo (G, yt)

t=1

(14)

The two distillation loss Lossg; and Lossgo ensure that the
hidden states of Decpgr are as close to Dectr and Decgg as
possible.

T

1
Lossg = T Z |sTr — spR|? (15)
=1
1 &
LOSSd2 = FZlSSS _SFR|2 (16)
=1

We formulate a total loss for the training of Student-FR as

follows,
Lossiotqr = Lossy + A - Lossg1 + (1 — A) - Lossqa  (17)

where )\ is a scaling factor between the two distillation loss
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Algorithm 1: The pseudocode of the MT-KD training.

Input:
Training set: D = {z,y}
x: character sequence
y: mel-spectrum feature sequence
Output:
©: TTS model including Enc and Dec
Begin
>> Phase-I: Multi-Teacher Pre-training
1: Initialize Teacher-TF model: O1r (Enctr and
Dectr)
2: for each iteration do
h = Encrr(z)
STEF = DecTF(h)
9 =9g(sTr)
3: update O1r with Lossy :
O1F ¢ Veors(Lossi(y,¥))
4: return Org (Enctr and Dectr)
5: Initialize Teacher-SS model: Ogs (Encgg and
Decss)
6: for each iteration do
h = Encsg(x)
538 = DeCSs(h)
g =9g(sss)
7 update Ogg with Loss;y :
Oss  Voss (Loss(y, ¥))
8: return Ogg (Encgs and Decgg)
>> Phase-II: Student Training
1: Initialize Student-FR model Opg:
Encgr < Encrr or Encgg
2: Load pretrained teacher decoders Dectr and Decgg:
DecTF — DeCTF
Decgg + Decgg
3: for each iteration do
h = Encpr(x)
SFR — DecFR(h)
STF = DeCTF(h)
sgg = Decgg(h)
g =g(s¥r)
4: update Opr with total Loss:
OFR < Vorg (Losst(y,¥) + A - Lossq: (StF, SFR)
+(1 = X) - Lossa2(sss, SFR))
5: return Opr (Encpr and Decpgr)
End

terms. Algorithm 1 describes the complete training process of
the proposed MT-KD.

C. Run-time inference

At run-time, only Student-FR model is involved, where
we use Encpr to process input text, and Decpgr to generate
an acoustic feature sequence. With multi-teacher knowledge
distillation, we expect that Student-FR to generate natural,
robust and expressive synthesized speech. We will validate the
performance of the MT-KD training scheme in Section IV.

D. Decoding knowledge transfer paradigm

It is apparent that, if we remove the Teacher-SS from MT-
KD, MT-KD is reduced to a 1-teacher knowledge distillation
model, that is referred to as the teacher forcing knowledge

TABLE I: Three knowledge distillation schemes for decoding
knowledge transfer. (TF: Teacher forcing; SS: Scheduled
sampling; FR: Free running)

Svstem Teacher Student
y TF ss FR
TF-KD [33] yes no yes
SS-KD (new) no yes yes
MT-KD (new) yes yes yes

distillation or TF-KD, as in our previous work [33]. By
removing the Teacher-TF from MT-KD, we arrive at another
1-teacher knowledge distillation model, that is referred to as
a scheduled sampling knowledge distillation model or SS-
KD. In this paper, we will implement TF-KD and SS-KD
together with MT-KD in a comparative study, where SS-KD
and MT-KD are studied for the first time, while TF-KD is a
re-implementation of [33]. The comparison of three different
teacher-student training schemes are summarized in Table I for
ease of reference. The TF-KD, SS-KD, and MT-KD systems
are under the same decoding knowledge transfer paradigm
based on knowledge distillation.

IV. EXPERIMENTS

We conduct a series of experiments to benchmark the
proposed multi-teacher knowledge distillation against other
competitive training schemes under the same Tacotron2
framework. Through comparative study, we would like to
observe the individual contributions by multi-teacher and
knowledge distillation.

A. Experimental data

We report the experiments on a Chinese and an English
TTS dataset that are publicly available. The Chinese dataset,
denoted as CSMSC!, includes a total of 12 hours of standard
Mandarin speech in 10,000 sentences by a native female
speaker. The speech data are sampled at 48 kHz and encoded
at 16 bits. The English dataset, denoted as LJSpeech? consists
of 13,100 short clips with a total of nearly 24 hours of speech
from one single speaker. The speech data are sampled at 22.05
kHz and encoded at 16 bits.

We partition all TTS corpora into training, validation,
and test set at a ratio of 8:1:1. The training set is used
for the training of all models, including pre-trained models.
The validation set is used to regulate the early stopping
scheme [59] to avoid overfitting to the training set. The test set
serves as the in-domain evaluation data. We further select an
additional set of data to serve as the out-of-domain evaluation
data. We will discuss the overall evaluation data next.

We design two subsets, in-domain and out-of-domain, to
form an evaluation dataset. The in-domain subset consists
of 200 utterances from both Chinese and English test sets,
resulting in a total of 400 utterances.

Uhttps://www.data-baker.com/open_source.html
Zhttps://keithito.com/LJ-Speech-Dataset/
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The out-of-domain subset is a more challenging test set.
We select 500 Chinese utterances from the Blizzard Challenge
2019 Chinese dataset [60]. These utterances have rich text
content, including long sentences (180 characters on average),
digital sequence and abbreviation, etc. We further collect 150
English utterances from FastSpeech [61] and ParaNet [62].
These utterances also include single letters, abbreviations,
spellings, repeated numbers and long sentences (128 characters
on average).

As the out-of-domain subset is not well covered during
training, we expect that its TTS outputs have a lower
intelligibility than those of the in-domain set. We use
the in-domain set to conduct the objective and naturalness
evaluations, while using both in-domain and out-of-domain
set to compare the system robustness (intelligibility) and
expressiveness.

B. Comparative study

We implement seven training schemes with the Tacotron2
model in a comparative study. TF and SS are two Tacotron2
models trained in teacher-forcing and scheduled sampling
mode. We follow the TF-GAN and SS-GAN network
architecture and training protocol in [44]. TF-GAN and SS-
GAN are collectively referred to as adversarial learning
systems, while TF-KD, SS-KD, and MT-KD are three teacher-
student training schemes, collectively referred to as knowledge
distillation systems.

o TF [2]: Tacotron2 TTS model trained in the teacher
forcing mode, which involves neither data augmentation,
distillation, nor adversarial learning.

e SS [27]: Tacotron2 TTS model trained in the scheduled
sampling mode for data augmentation.

o TF-GAN [44]: Tacotron2 TTS model with GAN-based
training, which learns to minimize the difference between
teacher forcing and free running decoding by adversarial
learning.

e SS-GAN [44]: Tacotron2 TTS model with GAN-based
training, which learns to minimize the difference between
scheduled sampling and free running decoding by
adversarial learning.

o TF-KD [33]: Tacotron2 TTS model with 1-teacher
knowledge distillation, i.e., Teacher-TF only, that was
previously reported in [33]. TF-KD seeks to transfer
teacher forcing knowledge to free running decoder.

e SS-KD (new): Tacotron2 TTS model with knowledge
distillation of 1-teacher, i.e., Teacher-SS only. SS-KD
seeks to transfer scheduled sampling knowledge to free
running decoder.

e MT-KD (new): Tacotron2 TTS model with the proposed
multi-teacher knowledge distillation scheme.

We will compare the three knowledge distillation systems,
i.e., TF-KD, SS-KD, and MT-KD, with the adversarial learning
systems, i.e., TF-GAN and SS-GAN. We will also compare the
2-teacher MT-KD system with its 1-teacher counterparts, i.e.,
TF-KD, and SS-KD systems.

While the systems are trained with different training
schemes, they perform decoding in a free running mode at

run-time. We use Griffin-Lim algorithm [37] and Parallel-
WaveGAN vocoder [63] for waveform generation. It is known
that Griffin-Lim is a widely used waveform reconstruction
algorithm, that compromises speech quality for rapid turn-
around, while Parallel-WaveGAN is a real-time and small-
footprint neural vocoder, that requires more computation and
produces high speech quality in general. We will conduct
comprehensive experiments with both waveform generation
techniques. The speech samples are available at the demo site?.

C. Experimental setup

The Chinese text is first converted to pinyin* sequence

with tones, that share the character set with English text. We
collectively call the Chinese and English text as character
sequence, that is taken by the encoder as input. For both
languages, the decoder takes a sequence of 256-dimensional
encoder outputs as input and predicts a sequence of 80-channel
mel-spectrum features. A mel-spectrum is extracted with 12.5
ms frame shift and 50 ms frame length. We follow the
parameter settings in > to normalize all mel-spectrum features.
The reduction factor is set to 2.

In TF and SS experiments, we train all Tacotron2 models
for 150 k steps. In TF-GAN and SS-GAN experiments, we
follow the generator and discriminator architecture in [30],
and the training method in [44]. In TF-KD, SS-KD and MT-
KD experiments, all teacher models and student models are
trained with 150 k steps.

In a preliminary study, we evaluate the effect of the
linear decay [27] based scheduled sampling strategy in model
training. We find that the quality and clarity of speech
deteriorate significantly when we linearly decay the sampling
probability from 1 to 0 . When the sampling probability is
reduced to 0, the training is reduced to a free-running mode.
While the free-running mode matches the inference process,
it doesn’t guarantee that the model learns to predict the real
data well. Our finding corroborates that of [44]. Therefore,
we follow [44] and employ a scheduled sampling strategy with
a linear decaying probability from 1 to 0.5 in the first 50 k
steps, for SS, SS-GAN, SS-KD and MT-KD systems. Hyper-
parameter A in Eq. 17 is empirically set to 0.4.

All models are trained with a batch size of 32 and the Adam
optimizer with 51 = 0.9, B2 = 0.999. The learning rate is
exponentially decayed from 1072 to 10> after 50k steps.

3https://ttslr.github.io/MT-KD/

“The standard romanization of Chinese.

5 https://github.com/TensorSpeech/TensorFlow TTS/blob/master/preprocess
/baker_preprocess.yaml and https://github.com/TensorSpeech/TensorFlowTTS
/blob/master/preprocess/ljspeech_preprocess.yaml

SNote that this finding was based on the linear decay strategy and 150
K training steps. In our preliminary experiments, using some better decay
strategies (such as exponential decay in the original paper of scheduled
sampling) and training more steps (such as 600 k steps), we could further
improve the decoding performance after the sampling probability drops to
0. However, It is not the focus of this paper to study how to improve the
training strategy of SS during training stage. The experimental part of this
paper mainly verifies the effectiveness of knowledge distillation in solving the
exposure bias or decoding mode mismatch problem in SS while ensuring the
fairness of the experiment.
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TABLE II: A summary of objective and subjective evaluation experiments in terms of mel-spectrum distortion (MCD) and Root
Mean Squared Error (RMSE), Mean Opinion Score (MOS), and Best Worst Scaling (BWS) over seven comparative systems.

(GL: Griffin-Lim Algorithm; PW: Parallel-WaveGAN Vocoder)

System

Language

Objective Evaluation

MOS Evaluation

BWS Evaluation

MCD [dB] RMSE [Hz] GL PW Best (%)  Worst (%)
T English 843 2035 368 £ 0.02 391 £ 003 0 66
Chinese 8.17 20.28 361 £ 002 440 + 0.05 0 80
- English 8.32 20.22 370 + 0.04  3.95 + 0.02 0 2
Chinese 7.99 20.12 3.62 £ 0.04 443 + 0.03 0 14
TF-GAN English 833 20.17 369 + 0.04 393 £ 0.03 4 5
Chinese 7.98 20.09 370 £ 005 3.97 + 0.02 8 6
SS.GAN English 831 20.18 370 + 0.03  3.95 + 0.05 0 7
Chinese 7.92 20.15 371 £ 002 3.99 + 0.03 0 0
TEKD# English 829 20.09 371 + 0.0 4.00 + 0.03 8 0
Chinese 783 20.03 378 £ 002 4.02 + 0.01 6 0
SS.KD# English 8.27 20.10 379 4 002  4.03 + 0.04 6 0
Chinese 7.85 20.01 380 £ 0.07  4.06 + 0.05 0 0
MILKD? English 8.13 19.98 382 + 0.04  4.09 £ 0.03 82 0
Chinese 7.61 19.85 385 + 0.02  4.12 £ 0.01 86 0
English NA NA 439 £ 0.02 NA NA
Ground Truth —= o0 NA NA 443 £ 0.03 NA NA

(*: data augmentation; T: adversarial learning; #: knowledge distillation; both adversarial learning and knowledge

distillation systems perform decoding knowledge transfer.)

D. Objective evaluation

We use Mel Cepstral Distortion (MCD) [64] and Root Mean
Squared Error (RMSE) [4] as the objective evaluation metrics.

As the duration of the synthesized speech is usually
different from that of the reference speech, we apply dynamic
time warping (DTW) algorithm [65] to obtain a frame-level
alignment between the two to facilitate MCD and RMSE
calculation. We calculate a MCD between a reference speech
and a synthesized speech of 1" frames as follows,

10v21 [ 1 | o
= 107 2 | W 2o = 9r)
t=1

k=1

MCD (18)

where N represents the dimension of the mel-spectrum, yy j
denotes the k" mel-spectrum component of t*" frame for the
reference speech, and ), ; for that of the synthesized speech.
Similarly, we calculate a RMSE between a reference speech
and a synthesized speech of T' frames as follows,

!

RMSE = | 7 3™ (F0, ~ 0,)

t=1

19)

where F0O; and F/‘ﬁt denote the reference and predicted FO
at t'" frame. Smaller value for both metrics indicates lower
distortion, thus better performance.
1.1) Knowledge transfer vs data augmentation

The MCD and RMSE results are reported in the third and
fourth columns of Table II. We observe that all models obtain
lower MCD and RMSE than TF model, which corroborates
the prior studies [27], [33], [44]. In other words, both data
augmentation and knowledge transfer methods are effective in

MOS
4.20
4.10 l
4.00 i
- LB
3.90 "
3.80
370 3.97 3.96 4.02 4.08 3.96 3.98 3.88 3.90
1=0.2 1=0.4 1=0.6 1=0.8
m English Chinese

Fig. 5: Comparison of various trade-off parameter A 0.2,
0.4, 0.6, 0.8 of the proposed MT-KD system in terms of
mean opinion scores (MOS), with 95% confidence intervals
computed from the t-test.

addressing the exposure bias problem. We note that knowledge
transfer systems, including both knowledge distillation and
adversarial learning systems, consistently outperform SS
system, a data augmentation solution.
1.2) Knowledge distillation vs adversarial learning

We also observe that knowledge distillation systems
consistently outperform their adversarial learning counterparts,
i.e., TF-KD vs TF-GAN, and SS-KD vs SS-GAN. For English,
TF-KD and TF-GAN achieve MCD of 8.29 dB and 8.33
dB respectively. For Chinese, they achieve 7.83 dB and 7.98
dB respectively. Similarly, TF-KD also achieves lower RMSE
values than TF-GAN for both languages. We observe the same
trend between SS-KD and SS-GAN.

These results suggest that knowledge distillation allows
for the explicit transfer of the knowledge from a well-
defined teacher to a student model. Adversarial learning is
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TABLE III: The results of expressiveness evaluation in
a listening experiment in terms of sentence-level Break
Error Rate (BER %) for both in-domain and out-of-domain
utterances.

System  Language In-Domai1]13 ERO(u‘Ziz)f-Domain
TE e T 5
- English 22 38
Chinese 19 30
R s
T
TekD! a1 i
T E
i - — 2

(*: data augmentation; ': adversarial learning; #: knowle-
dge distillation; both adversarial learning and knowledge
distillation systems perform decoding knowledge transfer.

less effective than knowledge distillation in this study.
1.3) 2-teacher KD vs I-teacher KD

MT-KD, TF-KD, and SS-KD systems share the same
network architecture and knowledge distillation strategy. The
difference between MT-KD and TF-KD/SS-KD lies in the fact
that MT-KD employs two teachers, while TF-KD and SS-
KD only employ one of the two teachers. TF-KD benefits
from temporal dependency through teacher forcing training,
while SS-KD benefits from adequate data exposure through
scheduled sampling strategy. MT-KD benefits from the both.

We observe in Table II that the performance gain of MT-KD
over TF-KD/SS-KD is the most prominent, that is attributed to
the multi-teacher strategy. Specifically, we can find that MT-
KD achieves the lowest MCD and RMSE scores of 8.13 dB
and 19.98 Hz for English that are lower than those of TF-KD
and SS-KD. We observe the same trend for Chinese. To sum,
2-teacher knowledge distillation is more much effective than
1-teacher counterpart in addressing the exposure bias problem.

In summary, TF and SS training techniques each has its
own advantages. The 2-teacher transfer learning benefits from
the best of both, that effectively mitigates the exposure bias
problem.

We note that MCD and RMSE measure the distortion of
acoustic features. They do not reflect the perceptual quality
of speech [66]. We next report the listening tests, in terms
of mean opinion score (MOS) [67] and Best Worst Scaling
(BWS) [68], [69] evaluations as the indicators of overall
speech quality.

E. Naturalness evaluation

1) Subjective evaluation (MOS): We conduct the first
listening experiment by reporting the MOS scores [67] across

all systems, and summarize in the fifth and sixth columns of
Table II.

Each speech sample is rated on a scale of 1 to 5 with an
interval of 0.5. “5” for excellent, “4” for good, “3” for fair,
“2” for poor, and “1” for bad. We recruit 30 English and 30
Chinese listeners. Each listener listens to 200 speech samples
of his/her native language. The listeners are instructed to pay
attention to the naturalness of speech. We adopt both Griffin-
Lim algorithm [37] and Parallel-WaveGAN vocoder [63] for
speech waveform generation.

1.1) Experiment results

It is observed that data augmentation, adversarial learning,
and knowledge distillation are all effective in addressing
the exposure bias problem, outperforming the TF baseline.
While TF-KD and SS-KD obtain comparable results, both
of them consistently outperform TF-GAN, SS-GAN, and SS
systems. Furthermore, MT-KD clearly stands out in both
English and Chinese experiments, benefiting from multi-
teacher and knowledge distillation strategy. Comparing MT-
KD with others, we observe that its performance gain is
attributed mainly to the 2-teacher strategy.

With Griffin-Lim waveform generator, MT-KD achieves a
MOS of 3.82 for English, that is significantly higher than
others; and 3.85 for Chinese. With Parallel-WaveGAN neural
vocoder, MT-KD also outperforms the reference systems by a
large margin, which is consistent with previous observations.
It achieves a MOS of 4.09 for English and 4.12 for Chinese,
that is very close to those of natural speech reference.

The MOS listening tests confirm that MT-KD outperforms
other competing systems in terms of naturalness.

1.2) MT-KD training

Among the hyper-parameters that affect the MT-KD system
performance, we would like to discuss the scaling factor A
in Eq. 17, that balances the contributions between Lossg;
and Lossge. We perform a MOS listening experiment for 4
systems with A € {0.2,0.4,0.6,0.8}. We follow the same
experimental protocol as that for the MOS listening tests
in Section IV-El. Parallel-WaveGAN vocoder is used to
synthesize speech.

Figure 5 summarizes the performance of MT-KD with
different A\ values. We can see that the performance peaks
when \ = 0.4. We note that a higher value of A does not lead
to better performance. By adjusting A\, we can balance the
contributions from the two teachers. Overall, we empirically
find that A = 0.4 is a proper choice for our multi-teacher
knowledge distillation.

2) Subjective evaluation (BWS): We conduct the second
listening experiment through BWS [68], [69], which is an
effective method to provide a ranking of a long list of listening
samples [70]. In so doing, we randomly select 80 utterances
from the in-domain set for Chinese and English respectively.
We also recruit 15 English and 15 Chinese listeners. For
each utterance, seven speech samples produced by these seven
systems form a group. A listener picks the best and worst
samples in terms of naturalness for each group. In other words,
each listener listens to all 80 groups, 560 utterances in total,
of his/her native language. All speech samples are generated
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Fig. 6: The results of robustness evaluation in terms of Word Error Rate (WER %) in a listening experiment for both in-domain

and out-of-domain utterances.

by Parallel-WaveGAN vocoder. We report the results in the
last two columns of Table II.

We observe from Table II that TF is selected for 66%
of time as the worst model for English, and 80% for
Chinese. No listener indicates the TF as the best system.
The results suggest that both knowledge transfer and data
augmentation systems clearly outperform TF baseline. In
general, the listeners favor knowledge transfer systems to data
augmentation systems. Within knowledge transfer systems, the
listeners prefer knowledge distillation systems over adversarial
learning systems.

We also observe that MT-KD consistently outperforms all
other systems, with 80% best votes for English and 86% best
votes for Chinese. The results suggest that the listeners have
a clear preference towards MT-KD system. The BWS gain
by MT-KD over other systems is mainly attributed to the
2-teacher strategy. This is a strong indication that MT-KD
fuses the knowledge of TF and SS to effectively enhance the
decoding capability of SS for more natural speech synthesis.

F. Robustness evaluation

In Tacotron-based neural TTS, the exposure bias problem
leads to unexpected errors during autoregressive inference
[62], [71]. We further conduct a listening experiment for
robustness evaluation and report the Word Error Rate (WER
%), which reflects the robustness of speech [61]. WER
is defined as the total number of errors, i.e., repetition,
mispronunciation, and deletion, over the total number of words
in a listening experiment. We follow the experiment protocol
in [61], [62].

We recruit 15 English and 15 Chinese listeners to identify
the errors [61], [62] in the synthesized utterances. We select
80 utterances from the in-domain set and 80 utterances from
the out-of-domain set, for Chinese and English respectively.
In other words, each listener listens to 160 utterances. In
this experiment, we generate speech waveform with Parallel-
WaveGAN vocoder. The word error rates (WER %) for seven
systems are reported in Figure 6.

As shown in Figure 6, generally all systems perform better
on in-domain test data than on out-of-domain test data. All
knowledge transfer and data augmentation systems outperform
the TF baseline. Furthermore, just like in the naturalness exper-
iments, knowledge distillation systems outperform adversarial
learning systems consistently.

Among the knowledge distillation systems, while TF-
KD and SS-KD provide similar results, MT-KD clearly

outperforms TF-KD and SS-KD, that highlights the advantage
of 2-teacher strategy. For English, MT-KD achieves WER
of 2% for in-domain set and 3% for out-of-domain set. For
Chinese, MT-KD shows consistent performance and achieves
WER of 1% for in-domain set and 2% for out-of-domain set.

The WER reported in this listening experiment is an
indicator of perceptual quality of speech as perceived by
human listeners. We are encouraged by the fact that robustness
evaluation results in Figure 6 are highly correlated with the
objective evaluation results in Table II.

G. Expressiveness evaluation

One of the typical symptoms of the exposure bias problem
[33] in Tacotron2 TTS system is inappropriate prosody phrase
breaking. Prosody phrase breaks separate a long utterance into
a sequence of breath groups [72], that are semantically and
syntactically appropriate in natural speech.

We use Break Error Rate (BER %) as the proxy of
expressiveness of utterances. BER is defined as the ratio
between the number of utterances with errors over the total
number of utterances in the listening experiment. On the same
evaluation data in Section IV-F, we report the expressiveness
performance. The same 15 English and 15 Chinese listeners
in Section IV-F are invited to identify incorrect phase breaks,
i.e., errors, in the synthesized utterances. Each listener also
accesses 160 utterances for their own language, including 80
utterances from the in-domain set and 80 utterances from
the out-of-domain set. The Parallel-WaveGAN is used to
synthesize the speech. The results are reported in Table III.

1) Experiment results

We observe that all knowledge transfer and data augmen-
tation systems outperform the TF baseline. The scheduled
sampling systems achieve lower BER than their teacher
forcing counterparts, e.g., SS vs TEF, SS-GAN vs TF-GAN,
SS-KD vs TF-KD, in both in-domain and out-of-domain
utterances, which suggests that scheduled sampling is effective
in addressing the exposure bias problem. The knowledge
distillation systems consistently show better prosodic phrase
breaking results than their adversarial learning counterparts.
Furthermore, MT-KD clearly outperforms all baselines for
both in-domain and out-of-domain utterances. In particular,
in the out-of-domain test, MT-KD achieves BER of 8% for
English and 5% for Chinese, that is encouraging; in the in-
domain test, our MT-KD achieves BER of 2% for English,
and doesn’t see any phrase breaking error for Chinese. The
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Fig. 7: Visualization of synthesized out-of-domain utterances for an English and a Chinese scripts. The orange boxes denote
the prosodic phase breaks in the utterances. The black boxes for “(g) MT-KD” denote the predicted natural breaks in the
utterances that coincide with the appropriate phrase breaks. The red bars in the scripts suggest the appropriate phrase breaks
which are consistent with human intuition as can be verified at our demo site.

Give so much time to improving yourself | that you won't have time | to criticize
others.

TABLE IV: The naturalness evaluation results in terms of Mean Opinion Score (MOS), the robustness evaluation results in
terms of Word Error Rate (WER %), and the expressiveness evaluation results in terms of sentence-level Break Error Rate
(BER %) for a listening experiment based on the GST-Tacotron network architecture.

MOS
System Language GL PW WER (%) BER (%)
EAgHSH 375 £ 0.04 3.04 £ 0.02 6 i
GST-TF Chinese 375 £ 0.03 3.06 £ 0.02 7 9
GSTSS Ieiribi 3.78 + 0.04 3.95 + 0.05 5 9
Chinese 379 £ 0.04 3.99 £ 0.02 i g
EAghsh 3.80 £ 0.01 3.07 £ 0.03 3 4
GST-TF-KD Chinese 384 £ 0.03 202 L 0.02 p 5
Ieiriibi 3.83 £ 0.02 405 + 0.04 2 4
GST-SS-KD Chinese 3.85 + 0.04 4.06 £ 0.01 2 3
Enghish 3.85 = 0.01 410 - 0.02 0 1
S Chinese 3.87 £ 0.03 413 £ 0.03 1 0
EAEISh 440 £ 0.01 NA NA
Ground Truth Chinese 442 1 0.03 NA NA
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results confirm the individual contributions by multi-teacher
and knowledge distillation.

2) Case study

We now provide a case study to illustrate the prosodic
phrase breaking behaviors. Figure 7 shows a waveform plot
of all comparative systems. It is clear that MT-KD produces
better prosodic phrase breaks than others. We have added
orange boxes to indicate the natural prosodic phrase breaks.
For example, in the English utterance, we have “Give so much
time to improving yourself | that you won't have time | to
criticize others.” with the bars representing the natural breaks.
Examples with different prosodic phrase breaking behaviors
across different systems are available at our demo site.

In sum, all the above experiments confirm that the MT-
KD system effectively addresses the exposure bias problem
in naturalness, robustness and expressiveness evaluations. The
performance gain of MT-KD over data augmentation and
adversarial learning systems is attributed to the knowledge
distillation strategy, and the performance gain over other
knowledge distillation systems is attributed to the 2-teacher
strategy.

V. EVALUATION ON GST-TACOTRON

The proposed (multi-teacher) knowledge distillation frame-
work is generally applicable to other network architectures. We
further validate it on GST-Tacotron [73], the state-of-the-art
TTS framework. The GST-Tacotron model [73] was originally
designed for style control and transfer. It also attempts to
address the run-time stability during speech generation, such
as deletion or repetition of words, incomplete utterance, and
inappropriate prosody phrase break, arising from the exposure
bias problem.

We implement five training schemes with the GST-Tacotron
model in a comparative study, and refer ‘Tacotron’ in GST-
Tacotron to the Tacotron2 TTS framework.

o GST-TF: GST-Tacotron TTS model [73] trained in the
teacher forcing mode.

e GST-SS : GST-Tacotron TTS model [73] trained in the
scheduled sampling mode [27] for data augmentation.

e GST-TF-KD : GST-Tacotron TTS model [73] with 1-
teacher knowledge distillation, i.e., Teacher-TF only.

e GST-SS-KD: GST-Tacotron TTS model [73] with knowl-
edge distillation of 1-teacher, i.e., Teacher-SS only.

o GST-MT-KD: GST-Tacotron TTS model [73] with the
proposed multi-teacher knowledge distillation scheme.

We only compare all systems under the parallel style
transfer scenario [73] to observe the naturalness, robustness
and expressiveness, because the non-parallel style transfer
scenario [73] introduces extra varying factors, that make it
difficult to draw conclusions. In the parallel style transfer
scenario, the ground truth speech data is required as the
reference. As the out-of-domain set does not have ground truth
speech, we only select 100 utterances from the in-domain
set as the evaluation utterances for Chinese and English
respectively.

1) Naturalness evaluation

We generate speech waveform with Griffin-Lim algorithm
[37] and Parallel-WaveGAN vocoder [63] and recruit 15
English and 15 Chinese listeners to conduct the naturalness
evaluation in terms of MOS score. The MOS scores for five
systems and ground truth speech are summarized in the third
and fourth columns of Table IV.

We can observe that all knowledge distillation and data
augmentation (GST-SS) systems achieve higher MOS scores,
that are closer to the ground truth speech, than the GST-TF
baseline. Furthermore, we’re happy to see that GST-MT-KD
outperforms GST-TF-KD and GST-SS-KD consistently, which
validates the effectiveness of the multi-knowledge distillation.
2) Robustness evaluation

As shown in the fifth column of Table IV, all knowledge
distillation and data augmentation (GST-SS) systems outper-
form the GST-TF baseline. Furthermore, just like in the former
experiments, multi-knowledge distillation system, GST-MT-
KD outperforms single teacher systems, namely, GST-TF-KD
and GST-SS-KD, consistently.

3) Expressiveness evaluation

The expressiveness results are reported in the last column
of Table IV. We observe that all knowledge distillation and
data augmentation systems outperform the GST-TF baseline.
The knowledge distillation systems consistently show better
prosodic phrase breaking than others. Furthermore, GST-MT-
KD obtains the best performance. All results suggest that
knowledge distillation is effective in addressing the exposure
bias problem.

It is encouraging to observe that, while the GST-Tacotron
network architecture has addressed the run-time stability prob-
lem in its own way, the proposed MT-KD framework further
improves its naturalness, robustness and expressiveness.

VI. CONCLUSION

We have studied a novel decoding knowledge transfer
strategy and a multi-teacher knowledge distillation (MT-KD)
scheme to address the exposure bias problem in neural
TTS. In the experiments, we confirm our intuition that
knowledge distillation in general is more effective than
data augmentation and adversarial learning, and 2-teacher
knowledge distillation outperforms 1-teacher counterpart by
a large margin. MT-KD framework outperforms all reference
systems in terms of naturalness, robustness and expressiveness.
Further experiments show that our MT-KD method is also
effective on the GST-Tacotron network architecture. The MT-
KD is focused on transferring knowledge from a pre-trained
teacher to a student model to mitigate the exposure bias issue,
where the pre-trained teacher is not used at run-time inference.
As a future work, we will investigate how to take advantage of
the pre-trained models in the decoding process for multi-pass
decoding [74].
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