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Abstract

The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using
resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the
whole-brain functional network in seven decades (8–79 years) of the human lifespan. We first used parametric curve fitting
to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support
vector machine methods to predict individuals’ ‘‘brain ages’’ from rs-fcMRI data. We found that age-related changes in
interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from
childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the
sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive
functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a
low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent
structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold
representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains’ functional
development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive
changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental
progression of human brain function using rs-fcMRI.

Citation: Wang L, Su L, Shen H, Hu D (2012) Decoding Lifespan Changes of the Human Brain Using Resting-State Functional Connectivity MRI. PLoS ONE 7(8):
e44530. doi:10.1371/journal.pone.0044530

Editor: Yu-Feng Zang, Hangzhou Normal University, China

Received April 21, 2012; Accepted August 3, 2012; Published August 30, 2012

Copyright: � 2012 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the National Basic Research Program of China (2011CB707802), the National High-Tech Program of China (2012AA011601),
and the National Science Foundation of China (90820304, 61003202). The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dwhu@nudt.edu.cn

Introduction

Resting-state functional connectivity MRI (rs-fcMRI) has

emerged as a powerful tool for investigating functional brain

organization. This method is based on the discovery that

functionally related brain areas have correlated spontaneous

low-frequency (,0.1 Hz) blood oxygen level-dependent (BOLD)

signal fluctuations [1,2], and has been used to explore brain

networks involved in motor [3], language [4], sensory [5], memory

[6,7], attention [8], and reading [9] systems. Age-related changes

of resting-state functional networks may provide neural substrates

that underlie the maturation of behavioral and cognitive functions,

and the inevitable functional decline in advanced aging. Further-

more, better understanding the developmental dynamics of

normal brain organization is urgently needed for early diagnosis

and therapy of developmental neuropsychiatric disorders such as

Alzheimer’s disease and autism.

Increasing developmental rs-fcMRI studies have shown signif-

icant age effect on the organization of functional brain networks.

For example, over maturation, the organization of multiple

functional networks shifts from a local anatomical emphasis in

children to a more distributed architecture in young adults, by the

weakening of short-range functional connections and the strength-

ening of long-range functional connections [10–14]. It has also

been demonstrated that normal aging is associated with functional

segregation of large-scale brain systems that support higher-level

cognition [15–17]. To date, the majority of research efforts are

focused on investigating functional brain development within a

limited age range. However, the developmental dynamics of the

resting human brain across the lifespan have not yet been well

studied. Moreover, the spatial and temporal patterns of age effect

on resting-state functional networks remain unclear. Previous

structural brain imaging studies have found regional differences in

brain maturation and aging [18–21]. A recent rs-fcMRI study has

also observed regionally specific age-related changes in functional

homotopy [22]. It is probable that functional connectivity in

different brain systems exhibit specific developmental trajectories

of varying levels of complexity.

Based on previous findings of reliable changes in resting-state

functional networks over age, an emerging field is to predict single

individuals’ ‘‘brain ages’’ from rs-fcMRI data, which is potentially

useful to aid in the diagnosis of individuals with disordered brain

function. The advantage of resting-state neuroimaging includes

that it is easy to acquire without any complicated task design, and

thus can be readily accepted by participants who lack the ability to

perform task, such as children and patients. Recently, Dosenbach

et al. [23] used rs-fcMRI to make predictions about brain maturity

of typically developing individuals (ages 7 to 30 years). However,

due to the complex patterns of age-related changes in functional

brain networks from childhood into senescence, it is more
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challenging to learn a predictable model of functional brain

development across the human lifespan. A possible way to resolve

this issue is to find compact representations that capture the

intrinsic dimensions of brain maturation and aging. Similar to the

manifold way of face image analysis for age estimation [24,25], we

hypothesized that the developmental dynamics of human brain

function reside on a low-dimensional manifold embedded in the

high-dimensional functional connectivity space. From this point of

view, we expected that powerful manifold learning algorithms

could uncover the inherent structure of age-related changes in

resting-state functional networks that affords physiological inter-

pretability.

In this study, we investigated the developmental dynamics of the

resting human brain encoded in the whole-brain functional

network of 137 normal subjects ranging in age from 8 to 79 years.

The BOLD time series were extracted from 116 brain regions

according to the anatomically labeled (AAL) atlas [26]. All possible

interregional functional connections were computed to create the

whole-brain functional network. We first examined linear and

nonlinear age effect on each functional connection using

parametric curve fitting. For functional connections exhibiting

nonlinear developmental trajectories, the ages associated with

maximum or minimum connectivity strength were also examined

to study at what age the brain stop ‘‘maturing’’ and start ‘‘aging’’.

We then proposed a pattern regression framework to predict

individuals’ ‘‘brain ages’’ from the whole-brain functional network.

In the framework, a supervised Locality Preserving Projections

(LPP) algorithm [27] was employed to learn a low-dimensional

representation of brain development from many individuals at

different ages; and support vector regression (SVR) models were

designed in the manifold coordinate space for making continu-

ously valued predictions about the functional development levels

of individual brains.

Methods

Subjects and imaging protocols
Two public resting-state fMRI datasets with broad age range

were selected from the freely accessible image repository for the

1000 Functional Connectomes Project (http://www.nitrc.org/

projects/fcon_1000/) [2]. These data were scanned at two centers:

New York University (NYU) and International Consortium for

Brain Mapping (ICBM). Freely publishing any portion of the data

in the web-based repository is approved by the 1000 Functional

Connectomes Project.

At NYU, 84 normal subjects (age range 8–49 years; 43 males)

underwent resting-state scans on a 3-T MRI scanner with the

following parameters: 192 time points; 39 axial slices; repetition

time = 2000 ms; voxel size = 36363 mm3; slice acquisition order

= interleaved ascending. At ICBM, 86 normal subjects were

collected for brain imaging on a 3-T MRI scanner. Only the 53

subjects (age range 19–79 years; 22 males) with full brain coverage

scanning were included in the present analyses, each of which had

two resting-state scans. The imaging parameters were as follows: 128

time points; 23 axial slices; repetition time = 2000 ms; voxel size =

46465.5 mm3; slice acquisition order = sequential descending.

Characteristics of different age groups in this study are shown in

Table 1.

Data preprocessing
The first five functional images of each scan have already been

discarded in the ‘‘1000 Functional Connectomes Project’’ release,

to remove possible T1 stabilization effects. All resting-state images

were preprocessed using the statistical parametric mapping

software package (SPM5, Wellcome Department of Cognitive

Neurology, Institute of Neurology, London, UK). The data were

corrected for within-scan acquisition time differences between

slices, and realigned to the first volume to correct for inter-scan

head motions. Six realignment parameters [dx, dy, dz, a, b, c] were

obtained from the rigid body correction of head motion

(translational and rotational displacements along x, y, and z axes).

For the i-th time point, we used framewise displacement to

represent instantaneous head motion, which is defined by [28]:

FDi~DDdixDzDDdiyDzDDdizDzDDai DzDDbi DzDDci D ð1Þ

where Ddix~d i{1ð Þx{dix, and similarly for the other realignment

parameters. Rotational displacements were converted from

degrees to millimeters by calculating displacement on the surface

of a sphere of radius 50 mm, which is approximately the mean

distance from the cerebral cortex to the center of the head. For

each subject, the framewise displacements were averaged across

time points to express his/her mean head motion during scanning.

In this study, the mean head motion of every subject was less than

1 mm. Even though head motion was small, it varied among

different age groups (Table 1). In general, children and old adults

had larger head motion than young adults.

The volumes were normalized to the standard EPI template in

the Montreal Neurological Institute (MNI) space and resliced to

36363 mm3. Then the data were spatially smoothed with a

Gaussian filter of 8 mm full-width half-maximum kernel. The

smoothed images were temporally band-pass filtered (0.01–

0.1 Hz), followed by linear detrending to remove any residual

drift. Nine nuisance signals were removed from the time series of

each voxel via linear regression, including white matter (WM)

signal, cerebrospinal fluid (CSF) signal, the whole-brain signal, and

six motion parameters. The whole-brain signal was generated by

averaging across the times series of all voxels in the brain. The

WM and CSF signals were generated by averaging across the

times series of a region centered in the white matter and a

ventricular region of interest, separately. The six motion

parameters were obtained by rigid body correction of head

motion. This regression procedure was utilized to reduce spurious

variance unlikely to reflect neural activity.

The fMRI volumes registered with the MNI template were

further divided into 116 gray matter regions according to the AAL

atlas [26]. This template parcellates the cerebrum into 90 regions

(45 in each hemisphere) and the cerebellum into 26 regions (9 in

each cerebellar hemisphere and 8 in the vermis). All region of

interest (ROI) masks were generated by using the software

WFU_PickAtlas (http://www.ansir.wfubmc.edu). Regional mean

time series were extracted by averaging the fMRI time series over

all voxels in each of the 116 regions. The mean time series from

each region was then correlated with the time series from all other

regions using Pearson’s correlation coefficient, creating a whole-

brain functional network captured by a 1166116 symmetric

matrix. Fisher’s z-transform was applied to the correlation values

to ensure normality. Finally, the upper triangle elements of the

functional connectivity matrix were extracted as features in all

subsequent analyses.

Parametric curve fitting
Following previous studies of brain development [19,22], we

used the following two models to fit linear and quadratic functional

connectivity changes over age.

FCi~bi0zbi1|agezbi2|sexzbi3|centerzei ð2Þ

Lifespan Changes of the Resting Human Brain
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FCi~bi0zbi1|agezbi2|age2zbi3|sexzbi4|centerzei ð3Þ

where FCi denotes the i-th interregional functional connection,

and ei denotes the random error. Both sex and center factors were

modeled as 0–1 covariates (e.g., 0: male; 1: female; 0: the NYU

center; 1: the ICBM center). Akaike’s information criterion [29,30]

was used to select the best-fit model, which reflects a trade-off

between the likelihood and complexity of a model.

For each functional connection, the T statistic for coefficients of

age in Equation (1) was used to measure the significance of linear

developmental trajectories, and the T statistic for coefficients of

age2 in Equation (2) was used to measure the significance of

quadratic developmental trajectories once the linear effects of age

had been removed. Significance level was set at p,0.0001. The

underlying mechanisms of negative functional connectivity are still

under debate, which can correspond to a state of anticorrelation

between brain regions [31], or be introduced by whole-brain

signal regression [32]. In this study, we hence focused on

functional connections exhibiting positive values across subjects

(one sample t-test, p,0.001). To obtain robust statistical results,

the parametric curve fitting was performed N times (N is the

number of available subjects), each time leaving one subject out.

Functional connections were selected as significant only if they

satisfied the above two criterions for each time of the analyses. For

functional connections exhibiting quadratic developmental trajec-

tories, the ages associated with maximum or minimum connec-

tivity strength were calculated from the first derivatives of the fitted

quadratic curves, to study at what age the brain stop ‘‘maturing’’

and start ‘‘aging’’.

Age prediction framework
In this study, the whole-brain functional connectivity pattern

was used as the feature for age prediction. Our age prediction

framework consisted of two steps. In the training step, the LPP

algorithm was used to find a low-dimensional manifold that

represented the lifespan dynamic process of the whole-brain

functional network; a regression model was then designed to

characterize the relationship between manifold coordinates and

age. In the test phase, the low-dimensional embeddings of new

test samples were extracted and fitted with the learned

regression model to make prediction of their ‘‘brain ages’’.

The flow chart of age prediction via rs-fcMRI is shown in

Figure 1.

We hypothesized that the lifespan developmental dynamics of

the resting human brain reside on or close to a smooth low-

dimensional manifold embedded in the functional connectivity

space. Suppose the high-dimensional connectivity space consists

of N data points X~ xi : xi[RM
� �N

i~1
with dimensionality M.

Z~ zif gN
i~1 associated with the data points provides the

corresponding subjects’ chronological age labels. Our goal was

to find a low-dimensional discriminative manifold embedded in

the functional connectivity space and a low-dimensional

representation Y~ yi : yi[Rmf gN
i~1 with mvM. To easily

generalize the embeddings to new data points, we chose the

LPP algorithm to learn a manifold associated with functional

brain development across the human lifespan. The manifold

preserved characterization of local geometric structure in the

functional connectivity space by nearest-neighbor graph. The

algorithmic procedure of LPP is formally stated in Text S1 and

the theoretical foundation of LPP is detailed in He et al. [27].

We incorporated the age labels into the embedding process in a

supervised manner. The basis idea is to multiply a penalty term

m on the Euclidean distance between xi and xj if the age gap of

the i-th and j-th subjects was larger than e, which was defined as

follows:

dij~
xi{xj

�� �� Dzi{zj Dƒe

m: xi{xj

�� �� otherwise

(
ð4Þ

To validate the effectiveness of LPP, a classical dimensionality

reduction algorithm, Principle Component Analysis (PCA), was

also used to find a low-dimensional embedding of the rs-fcMRI

data, which projects the data along the directions of maximal

variance.

Support vector machine belongs to a learning system based on

recent advances in statistical learning theory, and is widely used in

computational biology [33]. By introducing a loss function,

support vector machine can be applied to regression problems.

As in Dosenbach et al. [23], chronological age served as the

measure for brain development prediction, which is easily

obtained and free of measurement error. In this study, support

vector regression (SVR) was employed to characterize the

relationship between the embedded features, y, and the age labels,

Z. Based on these regression models, the ‘‘brain ages’’ of new

subjects can be predicted as an estimate of their functional

development levels.

Using a quadratic loss function, SVR determines the parameter

vector, v[Rm, and bias, b[R, of a linear function, f yð Þ~v:yzb,

via minimizing the following regularized risk function:

Table 1. Characteristics of different age groups in this study.

Age group Number of subjects Gender (M/F) Handedness (L/R) Head motion in mm (mean ± sd)

8–20 34 18/16 2/32 0.19460.123

21–30 50 22/28 1/49 0.12160.048

31–40 11 5/6 0/11 0.16060.060

41–50 16 7/9 0/16 0.17360.067

51–60 7 5/2 0/7 0.19960.045

61–70 10 5/5 0/10 0.24760.129

71+ 4 1/3 0/3a 0.28860.053

ain the 71+ group, the handedness of one subject is ambidextrous.
doi:10.1371/journal.pone.0044530.t001

Lifespan Changes of the Resting Human Brain
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Rreg f½ �~ 1

2
vk k2

zC
XN

i~1

zi{v:yi{bð Þ2 ð5Þ

The term vk k2
is characterized as model complexity; C is a

constant to trade off the empirical risk and model complexity. In

this study, the parameter C was selected from the range of

0:1,0:5,1,10,100,1000f g. Regression models can be made nonlin-

ear by using a kernel trick, which entails mapping the data points

to a higher dimensional feature space and applying a linear

function in this space. Though the regression function is linear in

the higher dimensional feature space, it is nonlinear in the input

space. In this study, the Gaussian radial basis function kernel was

used for nonlinear SVR. A radial basis function is of the form:

K y1,y2ð Þ~ exp { y1{y2k k2
.

2s2
� �

ð6Þ

where y1 and y2 are two data points in the input space, and s
adjusts the width of the Gaussian kernel. We selected s from the

range of 0:25c,0:5c,c,2c,5cf g, where c was the average distance

from all pairs of training data points.

Assuming that brain development in a small age range was close

to linear, multiple piecewise linear functions can be used to

approximate the nonlinear age-related changes in the brain. In

this study, we proposed a locally adjusted SVR (LASVR) method

for local adjustment of the global regression results. For a new

sample y, suppose the estimated age value by linear SVR is f yð Þ.
The idea of the LASVR method is to learn a local model f ’ using

training samples within a limited range of ages centered at the

global regression result, i.e., f yð Þ{h,f yð Þzh½ �, and adjust the

initially estimated age value f yð Þ to f ’ yð Þ. The parameter h is a

predefined parameter indicating the range of ages for local

adjustment. Therefore, the LASVR method is a multistage

regression scheme with four steps: (1) learn a global linear SVR

model based on all the training samples; (2) make prediction about

a new sample using the global linear SVR; (3) learn a local linear

SVR model based on training samples within a limited range of

ages centered at the global regression result; (4) adjustment of the

estimated age of the new sample using the local regression model.

Because of the limited number of samples, leave-one-out cross-

validation (LOOCV) was conducted to estimate the prediction

accuracy of our method. In each LOOCV round, one sample was

designated the test sample while the remaining ones were used as

the training samples. Note that subjects collected by ICBM

scanned twice, so we performed LOOCV across subjects, not

scans; and the estimated age for each subject in ICBM was an

average of the predictions from the two scans of this subject. The

prediction performance was quantified by the mean absolute error

(MAE) and cumulative score (CS) on the basis of LOOCV results.

MAE was defined as the average of the absolute errors between

the estimated ages and chronological ages:

MAE~
XN

i~1

D̂zzi{zi D ð7Þ

where zi is the chronological age for sample i, ẑzi is the estimated

age, and N is the total number of subjects. The cumulative scores

were defined as the percent of samples correctly predicted at

different error levels. Let Neƒj be the number of samples on which

the age prediction makes an absolute error no higher than j years,

the cumulative score at error level j was calculated by:

CS(j)~Neƒj

�
N|100% ð8Þ

Results

Age-related changes in interregional functional
connectivity

A summary of functional connections that exhibited significant

linear or quadratic changes over age (p,0.0001) are graphed in

Figure 2. The four types of typically developmental trajectories are

also shown in Figure 3. Linear decreases with age were mainly

found in functional connectivity between central parts of the brain,

comprising bilateral regions of motor, somatosensory, temporal

and parietal association cortex, and insula, as well as several

prefronto-basal ganglia connections (Figure 2, blue connections).

In contrast, linear increases with age were found in functional

connectivity of brain regions related to the affective function, such

as the superior temporal pole [34], amygdala [35], parahippo-

campal gyrus [36], and fusiform gyrus [37] (Figure 2, green

connections).

Many prefronto-temporal and prefronto-parietal connections

exhibited negative quadratic developmental trajectories (Figure 2,

red connections). These connections showed age-related increases

during childhood and early stage of adulthood, whereas decreases

later in life (inverted U-shaped). In contrast, positive quadratic

developmental trajectories were found in functional connections

between brain regions close in anatomical space, such as

connections within the cerebellum and prefrontal cortex, and

connections between cerebellum and posterior parts of the cortex

(Figure 2, magenta connections). These connections exhibited age-

related decreases during childhood and early stage of adulthood,

Figure 1. Flow chart of age prediction via rs-fcMRI.
doi:10.1371/journal.pone.0044530.g001
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whereas increases later in life (U-shaped). The mean peak ages for

connections exhibiting positive and negative quadratic trajectories

were 38 and 40 years, respectively. Moreover, we did not observe

significant variation of these two types of peak ages across

functional connections (positive range of 34–45 years, SD of 3.2;

negative range of 34–47 years, SD of 2.9).

The developmental trajectories of resting-state functional

connectivity (Figure 3) were further examined in the NYU data

and ICBM data, respectively. Adolescents (ages 8–15 years) and

young adults (ages 21–30 years) were selected from the NYU data,

and young adults (ages 21–30 years) and old adults (ages 61–

79 years) were selected from the ICBM data. Though there were

center-related variations in the strength of functional connectivity,

reliable age effect remained appreciable in each single center

(Figure 4). For the ICBM data, significant group differences

between young adults and old adults were observed in both linear

and nonlinear developmental trajectories of functional connectiv-

ity. For the NYU data, significant group differences between

adolescents and young adults were observed only in the nonlinear

developmental trajectories, suggesting that the linear developmen-

tal trajectories mainly represented the aging process.

Low-dimensional embeddings
Figure 5 shows the 2-D and 3-D embeddings of age-related

changes in the whole-brain functional network (6,670 functional

connections) based on the LPP and PCA algorithms. The

embedding achieved by LPP approximately formed a nonlinear

curve with subjects distributing on it in the chronological way.

Moreover, the typically maturational and aging processes of the

resting human brain resided on two ‘‘branches’’ of the curve. The

intersection of the two ‘‘branches’’ was in the fourth decade, which

was consistent with the mean peak age of functional connections

exhibiting quadratic developmental trajectories. In contrast, PCA

produced a mapping with no clear manifold trend or structure and

failed to capture the nonlinear structure of age-related changes in

the resting human brain in a low-dimensional linear subspace. A

parameter, the number of nearest neighbors k, was set to be 8 in

LPP algorithm. Some different values of k were also tested

(Figure S1). We found that the low-dimensional structure obtained

by LPP was relative stable to k. However, a too small k could

falsely divide the continuous developmental progression into

disjointed sub-manifolds. In contrast, if k was too large, important

structures of the manifold were smoothed or eliminated, causing

that the positions of children and old subjects were adjacent on the

manifold. It should be pointed out that the low-dimensional

embedding coordinates might be changed when the LPP

algorithm runs at another time, but the geometric structure holds

all along.

Prediction performance
Two parameters (age gap and penalty) should be set in the

supervised LPP algorithm. In our age prediction framework, we

first evaluated how the age gap and penalty parameters in LPP

impact the prediction performance. Linear SVR was chosen as the

Figure 2. Age-related changes in interregional functional connectivity displayed on (A) a surface rendering of the brain and (B) a
schematic diagram. Connections with positive linear, negative linear, positive quadratic and negative quadratic developmental trajectories are
shown in green, blue, magenta, and red, respectively. Also displayed are the brain regions scaled by their weights (sum of the T statistics for all the
connections passing through that brain region).
doi:10.1371/journal.pone.0044530.g002

Lifespan Changes of the Resting Human Brain
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regression model (C was fixed to 0.1). The mean absolute error

curves under different age gap and penalty parameters are plotted

in Figure 6. We found that increasing the penalty parameter could

sharply reduce the mean absolute error. When the penalty was

sufficient large (.100), the prediction performance did not

change. On the other hand, a too large age gap would potentially

reduce the supervisory ability of LPP, and resulted in lower

prediction performance. In the following analyses, we set age gap

to be 8 and penalty to be 100.

Several SVR algorithms were further employed to model the

manifold coordinates with age. Table 2 shows the best prediction

results of different SVR algorithms with respect to the number of

reduced dimensions. Using linear SVR, the mean absolute error

between the predicted ‘‘brain ages’’ and chronological ages was

8.3 years, and there were about 67% and 93% test samples with

an absolute error no higher than 10 years and 20 years,

respectively. The performance of nonlinear SVR was slightly

higher than that of linear SVR, with a mean absolute error of

8.2 years. Different local adjustment ranges, e.g. 4, 8, and 16, were

tried for LASVR. When the adjustment range was set to be 8, the

mean absolute error was reduced to about 7.5 years, and the

percent of test samples with an absolute error no higher than

10 years was increased to about 75%. For all regression

algorithms, the mean absolute error decreased as the dimension-

ality of the manifold increased to a particular number. There was

no significant improvement of prediction performance if more

dimensions were used, suggesting that age-related changes in the

whole-brain functional network can be parameterized by a small

number of variables.

Discussions

In this study, we used machine learning methods to decode the

developmental dynamics of the whole-brain functional network in

seven decades (8–79 years) of the human lifespan. We observed

significant age-related changes in interregional functional connec-

tivity with spatially and temporally specific patterns. During brain

development from childhood to senescence, functional connec-

tions tended to linearly increase in the emotion system and

decrease in the sensorimotor system; while quadratic trajectories

were observed in functional connections related to higher-order

cognitive functions. We further demonstrated that the complex

Figure 3. The typically developmental trajectories of resting-state functional connectivity. (A) positive linear change; (B) negative linear
change; (C) positive quadratic change; (D) negative quadratic change.
doi:10.1371/journal.pone.0044530.g003

Lifespan Changes of the Resting Human Brain
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age effect on the whole-brain functional network could be

effectively represented by a low-dimensional, nonlinear manifold,

which uncovered the inherent structure of brain maturation and

aging. Regression of the manifold coordinates with age showed

that the manifold representation extracted sufficient information

from rs-fcMRI data to make prediction about individual brains’

functional development levels.

Spatially and temporally specific development of the
whole-brain functional network

Linear decreases with age were mainly found in functional

connections between central parts of the brain, comprising

bilateral regions of motor, somatosensory, temporal and parietal

association cortex, and insula. In addition, some prefronto-basal

ganglia connections were also linearly decreased with age. It is

consistent with recent rs-fcMRI evidence that the sensorimotor

system may be disrupted in aging [17,38]. Compared with young

adults, old subjects exhibit a great extent of activation in the

sensorimotor cortex, as well as the recruitment of additional areas

(particularly the prefrontal and basal ganglia regions) for successful

motor performance [39–41]. The functional connections between

these brain regions are vulnerable to age-related effects, resulting

in an imbalance of ‘‘supply and demand’’. Based on previous

studies elucidating relationships between age-related brain differ-

ences and sensorimotor deficits in old subjects [42], we conjecture

that the disruptive alterations of functional connectivity within the

sensorimotor system may be an important neural mechanism

contributing to the deteriorated sensorimotor control and func-

tioning in aged subjects.

Previous task-related neuroimaging studies have reported better

affective well-being and emotional stability with increasing age,

which is associated with an adaptive shift toward greater

controlled processing of negative emotion, with less control for

positive emotion [43,44]. In this study, linear increases with age

were found in functional connectivity of emotion-related brain

regions, possibly reflecting increased emotional regulation. We

also observed that many linearly increased functional connections

were associated with the superior temporal pole, which plays an

important role in coupling social and emotional responses to

highly processed sensory stimuli [34]. For example, functional

connectivity between the superior temporal pole and parahippo-

campal gyrus may be involved in emotion-mediated memory

formation [36]. Besides, the fusiform gyrus combining with

superior temporal pole may be involved in the perception of

emotional facial expression [37]. It has been demonstrated that

correlated spontaneous brain activity can reflect histories of

coactivation between brain regions [45,46]. Therefore, cumulative

effect of experiences across the human lifespan may not only alter

Figure 4. Group- and center-related differences for the developmental trajectories of resting-state functional connectivity shown in
Figure 3. (A) positive linear change; (B) negative linear change; (C) positive quadratic change; (D) negative quadratic change. The error bars
represent standard error of mean. *: p ,0.05, **: p ,0.005, two-sample t-test.
doi:10.1371/journal.pone.0044530.g004
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the activation pattern for emotional stimuli, but also strengthen

resting-state functional connectivity within the emotion system.

Many prefronto-temporal and prefronto-parietal connections

exhibited inverted U-shaped developmental trajectories. Such

connections were found to be related to the brain’s default mode

Figure 5. Low-dimensional embeddings of age-related changes in the whole-brain functional network. The first 2-D and 3-D
embeddings learned by LPP are plotted in (A) and (C). The first 2-D and 3-D embeddings learned by PCA are plotted in (B) and (D). Each data point
represents one subject. The data points of age from 8 to 79 years are colored from blue to red.
doi:10.1371/journal.pone.0044530.g005

Figure 6. The mean absolute error curves under different age
gap and penalty parameters in LPP.
doi:10.1371/journal.pone.0044530.g006

Table 2. Comparison of prediction performance using
different SVR algorithms.

Methods dimension MAE CS(5) CS (10) CS(20)

linear SVR 7 8.3 39% 67% 93%

nonlinear SVR 4 8.2 40% 69% 94%

LASVR (4) 13 7.8 43% 73% 93%

LASVR (8) 7 7.5 45% 75% 92%

LASVR (16) 4 7.7 46% 72% 93%

MAE denotes the mean absolute error between the predicted ages and
chronological ages. CS(j) denotes the percent of test samples with an absolute
error no higher than j years. Different local adjustment ranges (4, 8, and 16)
were tried for LASVR.
doi:10.1371/journal.pone.0044530.t002
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network (DMN), which is involved in monitoring internal and

external environment, memory, and self-referential thought

[6,7,31,47,48]. In addition, some prefronto-parietal connections

were related to the task-positive network (TPN), which is

associated with top-down modulation of attention and working

memory [8,31]. Previous studies have shown that normal aging is

accompanied by marked reductions of functional correlations

within higher-order brain systems, and the reduced correlations

are associated with poor cognitive performance across a range of

domains [15,16,49]. Other reports on children have shown that

brain regions related to cognitive functions are only sparsely

connected at children; over development, these regions integrate

into cohesive, interconnected networks [10,11,13]. These findings

strongly support our result that the strength of anterior-posterior

functional connectivity within the DMN and TPN increased from

childhood to adulthood but subsequently declined in old age.

Moreover, we found that the mean peak age for the inverted U-

shaped developmental trajectories was in the fourth decade.

Interestingly, a recent longitudinal study has found that cognitive

decline is already evident in middle age from the examination of

more than 7,000 individuals aged 45–70 years at baseline [50].

Therefore, the progressive integration and disruption of the DMN

and TPN may actually participate in the improvement and

deterioration of cognitive abilities across the human lifespan.

Functional connections with U-shaped developmental trajecto-

ries were found between regions close in anatomical space.

Previous studies have shown that the maturation of functional

brain organization is characterized by simultaneously weakening

of short-range functional connections and strengthening of long-

range functional connections [12,14,23]. It is, to some extent,

consistent with our findings that there was no significant difference

between the mean peak ages for the inverted U- and U-shaped

functional connectivity changes. An intriguing possibility is that in

children and old subjects, the lack of efficient communication

between distant regions may be compensated for by facilitating

communication between anatomically proximal regions. It should

be noted that some short-range functional connections in the

prefrontal cortex exhibited inverted U-shaped developmental

trajectories (Figure 2). Fair et al. [12] proposed that these short-

range connections likely contributed to the most efficient

‘‘solution’’ for general task completion and remain in use during

the adulthood.

Age-related changes in resting-state functional connectivity may

be originated from multiple sources of developmental change.

Because increased brain activity can be partly explained by

increased GM volume [51,52], it is possible that some of the trends

seen here are related to GM volume changes with age. For

example, sensorimotor-related brain regions, including the pre-

and postcentral gyri, and insula, have been found to exhibit

significant age-related loss in GM volume [53,54], which may be

responsible for the disruptive alterations of functional connectivity

within the sensorimotor system in normal aging. Previous diffusion

tensor imaging studies have demonstrated that the timing of

protracted growth in white matter microstructure is in the fourth

decade [20,21,55–58], which is consistent with the mean peak age

for the functional connections with inverted U-shaped develop-

mental trajectories. Therefore, the lifespan development of

functional connectivity within higher-order brain systems may

relate, in part, to the development of myelinated fibers that

connect neurons in different cortical regions. By the combination

of PiB PET and fMRI imaging techniques, it is shown that

amyloid deposition is associated with abnormal brain activity in

the DMN in older adults without dementia [59], suggesting that

amyloid deposition could also be a potential biophysical factor for

functional disruption of higher-order brain systems.

Manifold representation of lifespan developmental
dynamics in the human brain

Some recent studies have shown that manifold learning can be

used to extract exciting new information from high-dimensional

neuroimaging data [60–62]. In this study, we used manifold

learning to uncover the inherent structure of age-related changes

in the whole-brain functional network. The manifold achieved by

LPP approximately formed a nonlinear curve, and the typically

maturational and aging processes resided on two ‘‘branches’’ of

the curve. The intersection of the two ‘‘branches’’ was in the

fourth decade, which was consistent with the mean peak age of

functional connections exhibiting quadratic developmental trajec-

tories. Moreover, we found that the best prediction result could be

achieved using only a few number of manifold coordinates

(Table 2). Therefore, it is reasonable to consider that the complex

patterns of age effect on the whole-brain functional network could

be effectively represented by a nonlinear manifold embedded in

the high-dimensional functional connectivity space. These impres-

sive results provide the promise that manifold learning may aid

visualization of the developmental dynamics of human brain

function in a low-dimensional space.

PCA failed to capture the inherent structure of brain

development in a low-dimensional linear subspace. As we

discussed before, age-related changes in the whole-brain functional

network probably reside on a nonlinear manifold. However, PCA

finds a low-dimensional embedding that preserves most of the

variance of the data, and lacks of the ability to discover the

underlying structure if the data points lie on a nonlinear manifold

hidden in the high-dimensional space. LPP optimally preserves

local neighborhood information of the data by finding the optimal

linear approximations to the eigenfunctions of the Laplace

Betrami operator on the manifold [27]. As a result, LPP shares

many of the data representation properties of nonlinear techniques

such as Laplacian Eigenmaps [63] or Locally Linear Embedding

[64], and is capable of discovering the nonlinear structure of the

manifold. Another important reason is that, the age information

was incorporated into the LPP embedding process for manifold

learning in a supervised manner, while the traditional PCA

method only worked in an unsupervised manner in learning the

subspace representation.

Predicting individual brains’ functional development
levels from rs-fcMRI data

It is argued that a suitable machine learning method in

neuroimaging data analysis not only provides accurate predictions

by exploiting discriminative information encoded in ‘‘hidden’’

physiological quantities, but also enables an intuitive and

mechanistic interpretation [65]. In this study, we addressed these

two issues by incorporating discriminative compact representation

of rs-fcMRI data into regression models. Our method made

continuously valued predictions about individual brains’ functional

development levels with a mean absolute error of 7.5 years, and

there were about 75% test samples on which the age estimation

made an absolute error no higher than 10 years. Moreover, the

low-dimensional structure associated with brain maturation and

aging underlying spontaneous brain activity was successfully

extracted.

There are two reasons for the disparity between the predicted

‘‘brain ages’’ and chronological ages. On the one hand, imprecise

of the regression model could cause prediction errors. Because of
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nonlinear age-related changes of the human brain, linear SVR

could not model individual brains’ functional development levels

accurately. However, we found that nonlinear SVR did not

provide a significant advantage in performance. A possible

explanation is that the number of training samples available in

this study was too small to reflect complicated relationships

between features, and nonlinear SVR would overfit the regression

model [33,66]. We further proposed an algorithm to locally adjust

linear SVR results, which resulted in better prediction perfor-

mance. On the other hand, due to interindividual variations in

experience and gene, a systemic error will be introduced when

using chronological age as the measure of brains’ functional

development level [46,67]. Only future experiments can determine

the magnitude of this systemic error; however, our primary results

suggest that a general developmental pattern of human brain

function can be learned from many individuals at different ages.

Methodology consideration
Smoothing or not smoothing the fMRI data is under debate. In

this study, we have included smoothing as a preprocessing step to

improve the signal-to-noise ratio, by assuming that adjacent voxels

may have some independent noise, but similar signals of interest.

However, smoothing the data will potentially introduce artificial

connections, especially for voxel-based connectome analysis. The

bias smoothing introduces is not expected to have significant

impact on large-scale (here AAL parcellation) connectome

analyses. To test this, the same analysis was repeated with

unsmoothed data. We found that the pattern of age-related

changes in the whole-brain functional network obtained with

unsmoothed data (Figure S2) was very similar to that obtained

with smoothed data. Moreover, our results showed that smoothing

had little impact on the prediction accuracy of individual brains’

functional developmental levels (Table S1).

AAL atlas is a structural parcellation of the brain and would

combine functionally distinct ROIs [68,69]. We additionally

performed the analysis using 160 functional ROIs derived from

a series of meta-analyses of task-related fMRI studies [23], and

found that the majority of our results were not altered (see

Figure S3 and Table S2). There were also some disparities. For

example, more functional connections were identified to exhibit

significant age-related changes, suggesting that accurate function-

ally defined ROIs have increased sensitivity in measuring

functional connectivity. However, it is not suitable to study age

effect on the emotional system using the 160 functional ROIs, due

to that the generation of these functional ROIs did not include

emotional tasks. Therefore, a well-established functional atlas that

covers most of human brain functions need to be further explored.

Two recent rs-fcMRI studies have shown that head motion has

significant, systematic effects on functional network measures

[28,70]. In this study, we observed that children and old adults had

larger head motion than young adults. To test whether the

developmental trajectories of resting-state functional connectivity

covary with the motion factor, subjects’ mean head motion was

regressed from the functional connections that exhibited signifi-

cant linear or quadratic changes over age (Figure 3). After

regression, all the linear and quadratic age effects on functional

connectivity were reduced (remaining significant, p,0.001)

(Figure S4). Thus, head motion can introduce systematic but

spurious relationships between age and functional connectivity,

but it is not the main variable explaining the human brain

functional development. It should be noted that the regression of

summary statistics of head motion could not remove all motion-

induced artifacts. Carefully controlling the head motion of each

subject may be required to refine the results.

Limitations and future directions
Several limitations should be considered. First, we pooled rs-

fcMRI data from two sites to generate a dataset spanning the

majority of the lifespan. The two datasets pooled have different

voxel size, spatial and temporal signal-to-noise ratios, and total

time of acquisition, raising cautions for the interpretation of our

findings. However, recent studies have demonstrated the feasibility

of sharing and pooling rs-fcMRI data across multiple centers

[2,22]. The general accordance of our findings with previous

studies further mitigates this concern. Second, there was limited

number of children and old subjects in this study. To avoid

overfitting, we only used quadratic trajectories to model nonlinear

age effect on resting-state functional connectivity. It is likely that

given sufficient number of subjects at different age ranges, more

complex developmental trajectories may be detected. Finally,

functional disruption of large-scale brain systems has been

hypothesized to be responsible for many developmental neuro-

psychiatric disorders such as Alzheimer’s disease [71] and autism

[72]. It is interesting to evaluate ‘‘brain ages’’ of patients with

neuropsychiatric disorders using the age prediction model learned

from normal subjects. Patients may have a larger absolute error

between the predicted ‘‘brain ages’’ and chronological ages due to

their atypical development of functional brain networks.

Supporting Information

Figure S1 The LPP embeddings by varying the number of

nearest neighbors k. Each data point represents one subject. The

data points of age from 8 to 79 years are colored from blue to red.

(TIF)

Figure S2 Age-related changes in interregional functional

connectivity obtained with unsmoothed data.

(TIF)

Figure S3 Age-related changes in interregional functional

connectivity using 160 functional ROIs.

(TIF)

Figure S4 The typically developmental trajectories of resting-

state functional connectivity after regression of the mean head

motion factor. (A) positive linear change; (B) negative linear

change; (C) positive quadratic change; (D) negative quadratic

change.

(TIF)

Table S1 The best prediction results of different SVR

algorithms using unsmoothed data.

(DOC)

Table S2 The best prediction results of different SVR

algorithms using 160 functional ROIs.

(DOC)

Text S1 The algorithmic procedure of LPP.

(DOC)
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