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Decoding lip language using triboelectric sensors
with deep learning
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Zhong Lin Wang 3,4,5✉

Lip language is an effective method of voice-off communication in daily life for people with

vocal cord lesions and laryngeal and lingual injuries without occupying the hands. Collection

and interpretation of lip language is challenging. Here, we propose the concept of a novel lip-

language decoding system with self-powered, low-cost, contact and flexible triboelectric

sensors and a well-trained dilated recurrent neural network model based on prototype

learning. The structural principle and electrical properties of the flexible sensors are mea-

sured and analysed. Lip motions for selected vowels, words, phrases, silent speech and voice

speech are collected and compared. The prototype learning model reaches a test accuracy of

94.5% in training 20 classes with 100 samples each. The applications, such as identity

recognition to unlock a gate, directional control of a toy car and lip-motion to speech con-

version, work well and demonstrate great feasibility and potential. Our work presents a

promising way to help people lacking a voice live a convenient life with barrier-free com-

munication and boost their happiness, enriches the diversity of lip-language translation

systems and will have potential value in many applications.
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Humans can use lip language for communication without
audible acoustic signals generated from the speaker. Lip
language can be used in the following typical scenarios:

persons who have undergone laryngectomy only mouthing words
rather than pronouncing them; covert conversations occurring on
public occasions; and the speech process with interference in a
high background noise environment. However, lip language is
notoriously difficult for audiences to master, although it is user
friendly for speakers. Most people can only understand a few
words by lip reading. Decoding lip language easily and directly for
audiences is a valuable challenge. Sign language1 is another widely
used method for inaudible communications via vision, especially
for hearing-impaired persons. Many studies have been carried out
into sign language2–5. However, lip language has some advantages
over sign language, such as lip language frees one’s hands in
speech compared with sign language; lip language uses the
existing human speech process while mastering sign language
requires one to learn a new norm from the beginning; and lip
language has more semantic diversity than sign language.

Researchers have performed many excellent studies into lip-
language recognition6,7. Silent speech interfaces (SSIs)8,9 are sys-
tems enabling speech in inaudible scenarios, including magnet-
based solutions10–12, vision-based solutions13,14, ultrasound-based
solution15, inaudible acoustic-based solution16 and surface elec-
tromyography (sEMG) based solutions17,18. With the enhance-
ment of rapidly developed machine learning and deep learning in
recent years19–23, many works have achieved higher recognition
rates than traditional algorithms. However, noncontact visual
methods suffer interference from facial angles, light intensity, head
shaking and blocking objects. When a speaker’s mouth is covered
by an opaque mask, as is the case in an epidemic of respiratory
infectious diseases (currently, the coronavirus disease 2019
(COVID-19) pandemic), vision-based solutions fail. Lip language
is demonstrated by a series of mouth shapes13,14, also known as
the motion of essential mouth muscles. Non-invasive and contact
sensors capturing the motion of muscles are immune to the
problems of the vision-based solutions encountered above, which
is a promising way of acquiring data from muscle movement.

Recently, triboelectric nanogenerators (TENGs)24–26 have
attracted increasing attention worldwide. TENGs based on charge
electrification (CE) and electrostatic induction convert tiny
mechanical energy into electricity and harvest scattered
mechanical energy27,28. TENG-based sensors29–31 are low-cost,
self-powered and generate electrical signals without an additional
power supply source. Self-powered characteristics help simplify
the circuit structure for sensor data acquisition. Studies of TENG-
based sensors in human motion detection32–34, human-computer
interaction35–40, respiratory41, vibration42 and sound43,44 detec-
tion, tactile45,46 and pressure sensing47,48 and wearable detection
devices have been openly reported.

In this article, we propose a novel lip-language decoding sys-
tem (LLDS) for capturing motions of mouth muscles aided by
flexible, low-cost and self-powered sensors and recognizing sig-
nals with a deep learning classifier. Self-powered sensors placed
into the junction of mouth muscles are fabricated with flexible
polymer films to improve the sensation of the skin on the mouth.
A dilated recurrent neural network model based on prototype
learning is adopted to cope with the challenges of signal diversity
and personalized small samples and test accuracy of 94.5% is
reached. A mask is chosen to assist the positioning and fixation of
the sensors, which increases privacy and confidentiality and
interrupts the transmission of respiratory infectious diseases. This
approach opens up a new possibility for translating lip motion to
speech or text directly and conveniently by capturing muscle
movements providing assistance to people with a missing voice
with few resources occupied. This work presents a promising way

to help people with speech disorders live a happy life with barrier-
free communication and will enrich the diversity of lip-language
translation systems in human-machine interfaces and silent
speech interfaces.

This article is arranged as follows: the structure and compo-
nents of the LLDS and its workflow, structure and mechanism of
the triboelectric sensors attached around the mouth are described
in detail. The fundamental characteristics of the triboelectric
sensors, such as open-circuit voltage, short-circuit current, series-
parallel connection, load curve and durability, at different forces
and frequencies are carefully investigated. The lip-motion signals
for typical words are collected and compared with the synchro-
nized sound. The impact of speaking speed and lip-motion pat-
tern on the lip signals, signals of silent speech and voiced speech
are compared and analysed. The time required for mouth motion
ahead of the sounds heard is counted at specific words. The lip
signals are sampled in a specific word group for training with a
machine-learning (ML) model. The applications supported by
LLDS, such as identity recognition to unlock a gate and direc-
tional control of the movement of a toy car, work well and
demonstrate the potential feasibility of improving communica-
tion for people with speech barriers with lip language aided by
triboelectric sensors.

Results
Design of the lip-language decoding system and the tribo-
electric sensors. Here, we propose the concept of the lip-language
decoding system (LLDS) supported by flexible triboelectric sen-
sors to capture signals and use a deep learning-assisted classifier
to translate the lip language, as shown in Fig. 1a. The system is
composed of triboelectric sensors, fixing masks, readout electro-
nics, and neural network classifiers. Flexible triboelectric sensors
are placed at the junction of the orbicularis oris, depressor anguli
oris, risorius, zygomaticus and buccinator to capture muscle
motions. One can take the process of a person saying the word
‘apple’ as an example. When he or she speaks, the triboelectric
sensor detects the movements of the lip muscles and generates a
series of electrical signals. The relevant electronic equipment
reads out the electrical signals and performs routine processing.
Finally, the signals due to the lip muscle movements are recog-
nized following transfer to the trained neural network, and the
recognized information is transmitted by sound or text on a
screen. A mask is used to assist with locating and fixing the
triboelectric sensors at specific positions corresponding to the
relevant mouth muscles. Both the mask and sponge help to
provide pretension to adjust the amplitude of the signals.

The structure scheme for the triboelectric sensor is shown in
Fig. 1b. This is a typical contact-separation mode for TENGs with
double electrode structures. The sponge in the middle of the
sensor recovers its shape when the compression disappears. A
rectangular hole cut in the centre of the sponge is used to
complete the charge transfer via contact of the materials.
Polyvinyl chloride (PVC) and polyamide (nylon) films are
distributed on both sides of the sponge and covered by copper
films. The sensor is packaged with polyimide (PI) film to keep
human skin, sweat, and skin flakes away from the copper
electrodes. The materials used to build the sensor are low-cost
and easily obtained. The components of the sensor are thin plastic
films, sponge and thin copper foils, which are flexible to fit the
deformation of facial muscles.

The working mechanism of electric signal generation for the
triboelectric sensor is shown in Fig. 1c. Electric charges are
generated by contact and separate motion of materials; PVC gains
electrons, and nylon loses electrons. The charge transfer in one
mouth open-close cycle (pressing and releasing) process is
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divided into four stages. No charge changes during stage I when
the mouth remains closed, and nylon and PVC films induce
corresponding positive and negative charges on the copper
electrodes, respectively. When the mouth opens, the muscles
press the sensor in stage II, and the nylon films move closer to the
PVC. The induced charges on the relevant copper electrodes
decrease, and the current flows from the PVC-side electrode to
the nylon-side electrode. When the mouth opening reaches its
maximum at stage III, the current is reduced to zero, and the
charges induced on the electrodes decrease to almost zero. In
mouth-closing stage IV, when the nylon film moves away from
the PVC, the charges induced on the copper electrode increase,
and the current flows from the nylon-side electrode to the PVC-
side electrode. The sponge shifts to its original shape and enters
stage I again, completing an entire mouth open-close cycle. The
distributions of the electric field for the sensor at different press-
releasing states are simulated by COMSOL, as shown in
Supplementary Fig. 1, and from left to right correspond to stages
I, II(IV), and III in Fig. 1c, respectively.

Fundamental characteristics of triboelectric sensors. The elec-
trical characteristics of the triboelectric sensor are crucial for lip
reading. The influences of parameters such as force, frequency,
sensor size, series and parallel structure on electrical signals were
investigated. The output voltages and powers with various
external load resistances and durations were studied. The
experimental platform including the linear motor and ergometer
is shown in Fig. 2a. The sensor fixed onto the ergometer was
pushed periodically by a linear motor at a given frequency. The

pushing forces were varied by adjusting the spacing. The sensor is
a square with length D and thickness T, as shown in the inset of
Fig. 2b. Electrical signals generated by various materials (Paper/
Polyethylene terephthalate (PET)/ Poly tetra fluoroethylene
(PTFE)/ Polyimide (PI) / Polyvinyl chloride (PVC)/ Fluorinated
ethylene propylene (FEP)) contact nylon were recorded using a
20 × 20 × 5 mm3 sensor with a force of 5 N at a frequency of 2 Hz,
as shown in Supplementary Fig. 2a. Both PVC and FEP show
better output performance with nylon, and PVC is chosen for its
better toughness. The open-circuit voltage and short-circuit
current curves are shown in Supplementary Fig. 2b, c.

Electrical signals generated with a variable force at different
frequencies are shown in Fig. 2b–e. Voltages and currents
obtained using a 20 × 20 × 5 mm3 structure with variable forces
(from 1 N to 5 N) at 1 Hz are shown in Fig. 2b, c. The sensor is
sensitive at the pressure above 1 N, and the sensitivity is 0.376 V/
N. Voltages and currents obtained using a 20 × 20 × 5 mm3

structure with 5 N forces at various frequencies (from 1 Hz to
5 Hz) are shown in Fig. 2d, e. The current increases with
increasing frequency, from 1.88 nA to 9.66 nA, while the output
voltage signal basically remains the same, and the voltage
fluctuation is <0.02 V (0.89–0.91 V).

Voltages and currents obtained with 5 N forces at 1 Hz using a
D ×D × 2mm3 (variable length D from 20mm to 50 mm)
structure are shown in Fig. 2f, g. The output voltage and current
increase with the area, the voltage increases from 1.10 V to 3.08 V,
and the current increases from 1.52 nA to 4.39 nA. The larger the
contact area, the more charges generate and transfer between the
electrodes, resulting in a greater current output. The voltage
increases with the contact area due to the increased friction
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Fig. 1 The concept, structure and mechanism of the lip-language decoding system supported by triboelectric sensors. a Schematic illustration of the lip-
language decoding system and its components, including triboelectric sensors, signal processing and deep learning classifiers. b Structure scheme for the
flexible triboelectric sensor. c Schematic diagram of four stages of charge transfer in one mouth open-close cycle. The mouth-opening process pushes the
sensor, and the mouth-closing process releases the sensor, resulting in the flow of current in opposite directions.
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produced by the sensor structure. For better output, the area of
the sensor needs to be increased. However, the sensor area is
restrained by the size of the muscle being monitored. Voltages
and currents obtained with a force of 5 N at 1 Hz using a
20 × 20 × Tmm3 (variable thickness T from 1mm to 5 mm)
structure are shown in Fig. 2h, i. The output voltage and current
increase with thickness until the thickness T reach 2 mm, and
then the output voltage and current barely change. The

electrostatic induction of the charge decreases hyperbolically
with increasing spacing; when the thickness reaches 2 mm, the
electrostatic induction becomes weak, with only a little charge
increase on the electrodes.

The series and parallel connection of the two sensors are
investigated in Fig. 2j. Voltage signals in series are stronger than
those in parallel due to the greater area in the series connection.
Current signals in series and parallel are shown in Supplementary
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Fig. 2 Electrical characteristics of the TENG sensors. a Platform with adjustable pressing force and frequency consists of a linear motor, ergometer and
sensor. b, c The open-circuit voltage and short-circuit current obtained by pressing the sensor at 1 Hz frequency with different forces (from 1 N to 5 N).
Inset: schematic diagram of the sensor size. d, e The open-circuit voltage and short-circuit current output of the sensor at the pressing frequency (from
1 Hz to 5 Hz) with a force of 5 N. f, g Open-circuit voltage and short-circuit current output obtained from sensors with different areas at a frequency of 1 Hz
with a force of 5 N. h, i The open-circuit voltage and short-circuit current output obtained from sensors with different thicknesses at a frequency of 1 Hz
with a force of 5 N. j The open-circuit voltage for two sensors placed in series and in parallel. k The maximum output power and maximum voltage curves
for the triboelectric sensor used as a power supply with different external load resistances (ranging from 107 to 1011Ω) with a force of 5 N at a frequency of
2 Hz. l Mechanical durability test for up to 2000 press-release cycles. Inset: the voltage signals generated for the initial 10 s and the final 10 s.
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Fig. 2d. The curves for power and voltage with different external
load resistances are shown in Fig. 2k. The maximum output
power of the sensor is 3.50 nW with an external resistance of
97.1 MΩ, which indicates that the internal resistance of the sensor
is ~100MΩ. The current curve with an external load is shown in
Supplementary Fig. 2e. The signal duration of the sensor changes
with the number of presses, as shown in Fig. 2l. Under the
periodic pressing of a 5 N force at 2 Hz, the output voltage of the
20 × 20 × 2 mm3 sensor is basically attenuated less (from 1.40 V in
the beginning to 1.38 V at the end) after 2000 cycles of
continuous pressing, indicating a good voltage signal duration.

The impact of artificial sweat (Artificial sweat, PH5.5, CF-001,
Chuangfeng Co., LTD) on the sensor’s performance is shown in
Supplementary Fig. 2f, g. The open-circuit voltage and short-
circuit current are measured with 0–4 drops (0.0157 ml/drop).
The result shows that the artificial sweat has little effect on the
electrical output performance of the sensor. The comparison of
this triboelectric sensor with capacitive, piezoresistive and
piezoelectric sensors are discussed in Supplementary note 3.

Electrical signals generated by mouth motion and their com-
parison with sound signals. The mouth shape signal was
detected during normal vocalization with the manufactured
sensor, as shown in Fig. 3. Two types of signals are mainly
observed: one is the waveform signal corresponding to the pro-
nunciation of vowels, and the other is the waveform signal for
words and phrases. To highlight the difference in signal wave-
forms, the amplitude interference is removed by normalization.

The corresponding relationship between the sensor signals and
the mouth shapes in detail is shown in Fig. 3. Taking speaking
“Open Sesame” as an example, the lip-motion signals and video
are collected simultaneously for 1.5 s. The recorded lip-motion
signals are normalized. Three typical shape types in the signal
curve correspond to the closed, opening, and closing-mouth
states. The signal curve shape divides the time region into eight
parts, including two closed-mouth parts, two opening-mouth
parts and four closing-mouth parts. There are two peaks in the
curve: “Open” corresponds to a small peak, and “sesame”
corresponds to a large peak. Vowels have a larger influence on
mouth movements than consonants, and 12 vowel signals and
corresponding mouth shapes are collected in Supplementary
Fig. 5a–l. The lip-motion signals when pronouncing /a:/ with
different mouth-opening sizes are shown in Supplementary
Fig. 6a.

To understand the differences and similarities of the
pronunciation between phrase and words in the phrase, the lip
signals corresponding to the pronunciation of words and phrase
were captured, as shown in Fig. 3b. Take the Chinese phrase “zhi
ma kai men” for example. The Chinese phrases can be
disassembled into Hanzi combinations, as can signals captured.
There are 3 rows: the front, middle and back rows corresponding
to different combinations in Fig. 3b. The back row shows the
consecutive lip-motion signals for the Chinese phrase “zhi ma kai
men”, while the middle row shows the lip-motion signals for the
Chinese phrase combination: “zhi ma” and “kai men” one by one,
and the front row shows lip-motion signals for the Hanzi
characters: “zhi”, “ma”, “kai”, and “men” one by one. Signal
waveforms in the front and middle rows are assembled the same
as the signal waveform in the back row. To express information
faster, humans automatically omit some parts of pronunciation,
and this feature can be clearly observed from the signal difference
in Fig. 3 b. The lip signal corresponding to a single word in the
phrase is shorter, and the signal duration efficiency is improved.
For “zhi ma kai men”, the efficiency of continuous signals in the
back row (1.648 s) is 31.3% higher than that of single-Hanzi

signal combinations in the front row (total 2.398 s). For “open
sesame”, it takes 1.10 s to continuously read the phrase and a total
of 1.286 s to read two words separately, which increases the
efficiency by 14.5%. More details are stated in Supplementary
Fig. 6b. The data manipulation process is demonstrated in
Supplementary note 6.

The sound and lip motion are related naturally when speaking.
The lip-motion signals and the sound signals are synchronously
collected and compared, and the relationship between the signals
is studied. Low-pass filtering is used to remove power-frequency
interference signals with a cut-off frequency of 20 Hz. To remove
the interference in the waveform amplitudes caused by different
conditions, the amplitudes of the signals are normalized, as
shown in Fig. 3c–e.

The lip-motion signals and sound signals for “open sesame”
were collected in the sound-on-lip-on and sound-off-lip-on
modes, distinguished by a grey surface, as shown in Fig. 3c.
The sound-on-lip-on mode is listed in the front, and the sound-
off-lip-on mode is listed in the back. The lip-motion signals have
good consistency in the sound-on and sound-off modes. The
vocalization does not twist the lip-motion signal waveform. This
phenomenon is useful for people with throat injuries to
communicate with lip language. In addition, the data volume
for lip-motion signals (12 KB) is much smaller than that for
sound signals (576 KB), only 1/48, which means that the data
acquisition, storage and transmission of lip-motion signals
consumes fewer resources.

The influence of speaking speed on lip-motion signals is
studied. Figure 3d shows the difference between the lip-motion
signal and the sound signal of the phrase “nice to meet you”
collected simultaneously for one person at different speech
speeds. The start and endpoints of the sound are easy to identify
and are used as to identify the phrase length, and the phrase
durations are obtained, as shown in Fig. 3d. There are four
durations based on sound: very slow (3.988 s), slow (3.383 s),
normal (1.636 s) and fast (0.857 s). The signal waveforms are
basically similar at different speech speeds, but the relative
amplitude of the lip movements at the end of the phrase changes.
The relative amplitudes of the signal “meet” are shown in Fig. 3d,
and the normalized peak values are 0.6725, 0.4922, 0.3170, and
0.0879.

Figure 3e shows the difference in lip motion and sound signals
collected from four persons (Pan, Bo, Bin and Han) when they
pronounce the phrase “zhi ma kai men”. Both lip-motion signals
for Bo and Bin show slight downwards troughs at the beginning
of each word, but the signals for Pan and Han do not show this
feature. In addition, the four participants showed obvious
differences in speech speed. The differences in these signal curves
are due to the unique speaking and pronunciation habits formed
for each people over many years. Different muscle stretching
habits lead to significant individual variation in the details for the
lip-motion signals of people, indicating potential for use in
applications for identification.

The duration of the lip-motion signal is longer than the
duration of the sound signal, as shown in Fig. 3f, g. The phrase
durations for the sound signals account for 60.8%-85.4% of the
lip-motion signal durations. Each word exhibits different
proportions at different speech speeds for continuous reading
and omission of syllables. The proportion of words has a strong
relationship with the number of syllables. The proportions of
polysyllabic words increase with speech speed. The proportion of
“nice” sound signals increases from 26.5% to 36.2%, and the
proportion of lip signals increases from 20.7% to 28.1%; the
proportion of “meet” sounds increases from 26.0% to 32.3%, and
the proportion of lip signals changes from 19.8% to 19.9%.
Meanwhile, the proportion of one-syllable words decreases with
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Fig. 3 Signals generated by mouth muscles and a comparison of sound and lip-motion signals. a In a typical speaking sequence (“Open Sesame”), the
mouth shape synchronizes with the signal, and the regions separated by the mouth state are denoted as closed, opening and closing. b The combined and
decomposed lip-motion signals for “Zhi”, “Ma”, “Kai”, “Men”, “Zhi Ma”, “Kai Men”, and “Zhi Ma Kai Men”. c The lip-motion signals for silent and vocal
speaking remain the same, and sounds are recorded synchronously when speaking “Open Sesame”. d Sound and lip-motion signals are collected
simultaneously at four speeds of reading “Nice To Meet You”. e Sound and lip-motion signals collected simultaneously when four participants (Han, Bo,
Pan and Bin) read “Zhi Ma Kai Men”. f The time used for lip-motion signals for each word in “Nice To Meet You” at four different reading speeds. g The
time used for sound signals for each word in “Nice To Meet You” at four different reading speeds. h The time statistics for the lip-motion signals ahead of
the sound signals for each word in “Zhi Ma Kai Men” spoken by four participants.
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speech speed. The proportion of “to” sound signals decreases
from 24.4% to 16.8%, and the lip signals decrease from 23.9% to
14.0%; the proportion of “you” sound signals decreases from
23.1% to 14.8%, and the lip signals change from 35.5% to 38.0%.
One-syllable words are much more compressed than polysyllabic
words in fast speech in both sound and lip signals.

The lip-motion signal starts earlier than the sound signal
because people open their mouth firstly and then speak. Figure 3h
counts the time advances for the lip-motion signal relative to the
sound signal when four persons (Pan, Bo, Bin, and Han) say the
phrase “zhi ma kai men”, and the overall time advance is
~18–417 ms. There are individual variations in the time advance
due to the habits of the speakers. The first syllable of “zhi” and
“kai” are /zh/ and /k/, respectively, which are open sounds, so the
time advance is larger, between 124–417 ms; the first syllable of
“ma” and “men” /m / is a nasal sound, which does not require the
opening of the mouth, and the time advance is small, 18–295 ms,
as shown by the data obtained for Pan, Bo, and Bin. Han has
obvious lip motions when pronouncing /m/, leading to a larger
time advance, as shown in Han’s data.

Neural network classifier trained for lip language recognition.
A typical scenario of lip language is to help people with speech
impairment communicate without barriers. For people with
speech impairments, a lip-language recognition system helps
them quickly interpret lip motion through algorithms and finally
achieve barrier-free communication with normal people through
sound and light media. Considering the frequency and com-
plexity of daily communication and the distinguishability of the
lip-motion signals detected by the sensor, it is necessary to use
deep learning algorithms to accomplish the intelligent recognition
of lip language. LLDS contains two data flow processes: training
and inference, as shown in Fig. 4a. In the training stage, the
dataset that consists of lip-motion signals is used to train the deep
learning model. At the inference stage, new signals are decoded
by the trained model for recognition. However, deep learning
models are typically data hungry, which presents a major chal-
lenge for training a high-accuracy model with limited lip-motion
samples.

To address the above issue, we propose a dilated recurrent
neural network (dilated RNN) model49 based on a prototype
learning approach50, and more details are shown in Supplemen-
tary note 7. Figure 4b illustrates the framework of our lip signal
recognition method in this study. For each category, the model
learns a prototype in the deep feature space. In the classification
stage, signals are classified by prototype matching. Specifically,
the training sample passes through the feature extractor to obtain
its representation in the deep feature space. By calculating the
Euclidean distance between the feature vector of the sample and
the category prototypes, the category to which it belongs is
obtained. Figure 4c shows a schematic diagram of the structure of
the feature extractor in the model. The feature extractor is a
multilayer dilated recurrent neural network. The recurrent neural
network helps capture long-term dependencies in the sequence.
The dilated mechanism effectively reduces the number of model
parameters and significantly improves the training efficiency. In
particular, the gated recurrent unit (GRU)51 is chosen as the basic
unit of the recurrent neural network, including the update gate
and reset gate used to capture the dependencies in the sequence.
The structure is shown in Fig. 4d. The data collection process is
described in Supplementary note 8. Data preprocessing for
machine learning is demonstrated in Supplementary note 9.

To facilitate comparison, we use the softmax-classification
layer and prototype learning in dilated RNN to classify the
collected signals. The experimental data contain 20 categories (20

fruit names are selected in Supplementary Fig. 7a–t, and lip-
motion signals are collected in Supplementary Fig. 8a–t). Each
category contains 100 training samples, among which 80 are used
for training and 20 are used for testing. A 4-layer dilated
recurrent neural network with 50 neurons in each layer is
adopted. Figure 4e shows the training accuracy and testing
accuracy for the learning process for the two models. After
training for 500 epochs, the test accuracy of the dilated RNN with
the softmax-classification layer reaches 91.75%, and the test
accuracy of the prototype learning reaches 94.50%, which is
significantly higher than that of the model based on the softmax-
classification layer. In addition, it can be observed from the
accuracy curve in the training process that the model based on
prototype learning converges faster than the model of the
softmax-classification layer.

The 2D feature space is selected to visualize the distribution of
samples in the feature space. Figure 4f shows the distribution of
training samples in the feature space for the prototype learning
models (for the distribution of training samples in the softmax-
classification-layer model, see Supplementary Fig. 9a). Different
colours represent different categories. The distribution of samples
in the feature space with the prototype learning model shows
stronger interclass separability and intraclass compactness than
the softmax model.

In particular, small sample classification experiments were
carried out. The test accuracy curves for the models based on
prototype learning and softmax for a training sample number
gradually decreased to 100/80/60/40/20% of the original number
are shown in Supplementary Fig. 9b, c. Figure 4g compares the
accuracy of the two models with different sample sizes. The
model based on prototype learning has a significantly better
performance on the test accuracy than the softmax model when
there are fewer training samples. When the training data are 20%,
the model based on prototype learning has a test accuracy of
85.23%, while the model based on softmax only has a test
accuracy of 31.46%; the former is ~2.7 times the latter. The
impact of hyperparameters, including the number of layers and
neurons in each layer, on the test accuracy is shown in
Supplementary Fig. 9d–f.

Figure 4h shows the different lip-motion signals for 20 words.
Each word repeated five times in each lip-motion signal line
gives good repeatability, and the intercepted signal line lasts for
20 sec. The lip motion for most words shows significantly
unique waveforms, while some words show similar waveforms,
such as Berry and Olive. The detailed confusion probabilities for
the 20 words’ lip-motion signals based on prototype learning are
shown in the confusion matrix in Fig. 4i. The much closer
signals have a higher confusion probability. The total recogni-
tion accuracy of the current model is 95%, while each word has a
different recognition accuracy on the diagonal. Forty-five per
cent of words have 100% recognition accuracy, 80% of words
have >90% accuracy, and 100% of words have >80% accuracy.
Some confusion happens; for example, with 10% probability,
Berry is recognized as Date or Olive. Words with similar lip-
motion signals can be searched out with the help of a confusion
matrix and guide further improvement of the sensor. The
detailed confusion probabilities for 20 words’ lip-motion signals
based on softmax are shown in Supplementary Fig. 10a, and a
comparison of the loss function curves is shown in Supplemen-
tary Fig. 10b.

Applications of the lip-language decoding system. The lip-
motion signals detected by the sensors are collected and prepared
for the development of applications, such as identity authenti-
cation to unlock gates and control the direction of car motion by
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lip-motion and providing assistances with communication for
people lacking a voice.

Figure 5a shows the schematic process for unlocking a door by
lip-motion signal recognition. When the host (Han) speaks out
the unlock instruction (“Open Sesame”), the system recognizes

the host’s lip signal and the door opens; when the guest (Bin)
speaks out the same unlock instruction, the lip-motion signal
identification fails and the door remains closed. This application
demonstrates the ability of personal identity verification by lip-
motion recognition. The lip-motion signals of the host and guest

Lip Muscle 
Motion

Signal 
Acquisition

Signal 
Processing

Lip Motion 
Dataset

Multi-class 
Classifier

Signal 
Decoded

Training

Inference

a

b c d

gfe

ih

Fig. 4 A signal classification experiment based on deep learning. a Deep learning aided data process flow, including a training and an inference process.
b Schematic diagram of the overall structure of the dilated recurrent neural network model based on prototype learning. c Structure diagram of the feature
extractor in the model. d The basic unit of the dilated recurrent neural network GRU. e The training and testing accuracy curves obtained during the
learning process for the dilated recurrent neural network based on the softmax-classification layer and prototype learning. f Visualization of the two-
dimensional features of the dilated recurrent neural network based on prototype learning. g Comparison of the test accuracy for two models with different
sample sizes. h 3D plot of the lip-motion signals generated for 20 spoken words (fruit) in the dataset. i The confusion matrix for lip-motion signals for 20
words (fruits).
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in the time domain (shown in Fig. 5b) and in the frequency
domain (in Supplementary Fig. 11a) are compared. Short-time
Fourier transform (STFT) graphs for the lip-motion signals from
Han and Bin are compared in Fig. 5c and Supplementary Fig. 11b.
The normalized voltage waveform and amplitude of Han’s signals
are all clearly distinguishable from that of Bin’s and can be used

as discrimination criteria. See Supplementary Movie 1 for the
video.

Figure 5d shows the application process for controlling the
movement direction of a toy car with lip-motion signal
recognition, which demonstrates the lip-motion recognition
ability of distinguishing instructions from one person. There

c

b

e

f

Han

Bin

a

Unlock

Lock

d
Go forward

Go 
backward

Left

Right

Han

g
Nice to 

meet you

Without LLDS
Nice to 

meet you

Nice to 
meet you

With LLDS

Fig. 5 The applications for lip-language decoding in personal identity verification (PIV), toy-car control and lip motion to speech conversion for
assisting with communication for people lacking a voice. a Schematic diagram of unlocking a gate by lip motion with personal identity verification. b A
comparison of lip-motion signals from participants (Han and Bin) in the time domain. c Short-time Fourier transform (STFT) analysis of the lip-motion
signals from Han. d Schematic diagram of direction control for toy car motion by lip motion. e Comparison of lip-motion signals from Han in the time
domain. f STFT analysis of the lip-motion signals for ‘Go forwards’ from Han. g Schematic diagram of the daily voice communication for people lacking a
voice with and without lip-language decoding system (LLDS).
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were four directional instructions: “Go forwards”, “Go back-
wards”, “Left” and “Right”. Figure 5e shows the time-domain
curves for the lip motion for instructions sent by Han to control
the four directions of movement for a car. The corresponding
frequency-domain curves are shown in Supplementary Fig. 11c.
There are some differences in the normalized voltage amplitudes
for the four instructions from Han. The waveforms of the four
instructions are significantly different. STFT graphs for the
forward instructions from Han are shown in Fig. 5f, and graphs
for the backward, left and right instructions are shown in
Supplementary Fig. 11d–f. Lip-motion signals for the instructions
from one person show a difference and can be recognized and
used for direction control. See Supplementary Movie 2 for
the video.

Figure 5g shows a possible scenario for daily voice
communication with friends for a person lacking a voice with
and without LLDS, which demonstrates the possibility of using
LLDS in helping voice-missing persons regain the ability of
daily voice communication. A person missing a voice cannot
respond to greetings from friends in natural voice. However,
with the assistance of LLDS, such a person is able to respond to
a friend with lip motions, which are captured, analysed,
decoded into specific expressions (words or sentences) and
translated into voice and text. In this application, the
participant (Han) speaks out phrases with the voice-off, LLDS
captures the related lip-motion signals, completes the recogni-
tion and invokes the voice play. See Supplementary Movie 3 for
the video. With such technology, people lacking a voice can
enjoy ordinary daily life with no barrier in voice communica-
tion, which helps boost their happiness and offers great
convenience in conversation.

Discussion
In this study, we proposed and investigated a lip-language
interpretation system based on triboelectric sensors operated in
contact-separation mode. The triboelectric sensors attach to the
lip muscles and capture lip motion and transfer the measured
electrical signals to a decoding system, which are then translated
into a communication language. The principles and mechanical
and electrical properties of the TENG sensor were tested and
analysed. Signal patterns for selected vowels and words were
collected, and signal characteristics analysed. The lip and sound
signals were compared simultaneously, proving that the lip
motion for silent speech equals that of voiced speech. The impact
of different parameters, such as speaking speed and lip-motion
pattern, on collected signals was analysed. A dilated recurrent
neural network model based on prototype learning is proposed
and employed in lip language recognition, which achieves a test
accuracy of 94.5% for the case of 20 classifications and 100 sam-
ples per classification. Applications based on the lip-language
interpretation system with triboelectric sensors, such as identity
recognition to open a door, directional control of a moving toy
car and voice translation, work well and show feasibility and
potential for lip-language recognition. This enriches the ways and
means of helping people with speech disorders live a convenient
life with barrier-free communication. This work has potential
value in applications involving robot control, personal identity
verification, human-machine interfaces, disability assistance,
silent speech, intelligence, anti-terrorism mission implementa-
tion, rehabilitation, biomedical engineering and VR.

Methods
Fabrication of sensors. The preparation of TENG sensors can be divided into
electrode preparation and assembly. In the TENG sensor, nylon and PVC were
used as friction materials, and a copper foil was used as the electrode material.
Square sheets with a side length of 40 mm were cut from the purchased nylon

(0.08 mm) and PVC (0.08 mm) films. A square copper foil with a side length of
30 mm was attached to the diaphragm as electrodes. Copper wires with a diameter
of 0.71 mm were soldered onto the copper foil. Polyurethane sponge was used as a
spacer material; a 3.5 mm thick polyurethane sponge was cut into a square block
with a side length of 40 mm, and a square block was cut out with a side length of
20 mm in the middle to make a spacer block 10 mm wide on each side. The two
electrodes were fixed onto both sides of the gap, and PI material was used to
package the sensor as a whole.

Mask Fabrication. The mask was prepared using nonwoven fabric, with a folded
structure in the middle and exposed lip area to minimize the impact on normal
speech. The mask was fixed onto the face by three rubber bands at the top, middle
and bottom. Two triboelectric sensors were installed at the left and right corners of
the mouth (corresponding to the orbicularis oris muscle) to capture the movement
signals for the orbicularis oris muscle. The two sensors are connected in series to
increase the signal amplitude.

Fabrication of the hardware used for lip motion activated gate unlocking.
Geometric models (Solidworks) of two gates and gate frames were 3D printed using
PLA materials. The lip-motion signals collected by the mask were analysed by
software to obtain control signals, and the control signals were transferred to a
single-chip microcomputer through conversion (Wison CH340G USB to TTL
module) (STM32F103C8T6 small system version). Then, the steering gear
(SG90 steering gear) was controlled to open the door.

Fabrication of the hardware used for lip motion activated remote control of a
toy car. The purchased modules were assembled into the toy car. The lip-motion
signal collected by the mask was analysed by the software to obtain the control
signal and transmitted to a Bluetooth module on the car (Vision BT08B Bluetooth
serial module). The signal was transmitted to the main board (Arduino UNO), and
the rotation of the motor (1:48 strong magnetic anti-interference carbon brush
motor) was controlled to execute the forward, backward and steering tasks of
the car.

Measurement of force and electric characteristics. In the output performance
experiment for the TENG sensor, a linear motor (LinMot P01-37×120-C_C1100)
was used to load cyclic pressure, and a dynamometer (PUYAN DS2) was used to
measure the pressure in the experiment in real time to ensure the uniformity of the
experimental conditions. In this study, an NI 9215 acquisition card was used to
collect data. A 6514 electrometer was used to measure the voltage, current and
other signals. The software platform was built based on LabVIEW for real-time
acquisition, analysis and processing of the experimental data. A microphone was
used to collect real-time voice signals when speaking for the corresponding
analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All experimental data generated in this study are available and presented in the paper and
the Supplementary Information. Source data are provided with this paper.
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