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In this article, a decoding method for a (23,12) Golay code is extended to the impor-

tant 1�2-rate (24,12) Golay code.

I. Introduction

The 23-bit Golay code is a very useful code, particularly for

those applications where a parity bit is added to yield a 1/2-

rate code. Recently a simplified procedure was developed for

decoding this important (24,12) Golay code [1]. It is shown

here that this procedure can be extended to any decoding

method which can correct three errors in the (23,12) Golay

code.

There are several known decoding procedures for correct-

ing the three possible errors of (23,12) Golay code:

(1) The minimum-distance method [2]

(2) The standard-array method [2], [3]

(3) The majority-logic method, suggested by Goethals [4]

(4) Kasami's error-trapping algorithm [5]

(5) The shift-and-search procedure [1]

(6) Algebraic algorithms which include Berlekamp's method

[2], [6] as well as the extended Bose-Chaudhuri-

Hocquenghem (BCH) algorithm suggested recently by

M. Ella in [7]

In this article, a simple method is given to extend any of these

procedures to the 1/2-rate (24,12) Golay code so that three

errors can be corrected and four errors can be detected.

II. Theorem for Close-Packed Error-

Correcting Codes

The (23,12) Golay code is a close-packed error-correcting

code for which the following theorem can be proved:

Theorem: Let C be the set of codewords of a Golay code.

Also let _. be the set of vectors of weight i. Then for any

c _ C, and anye 4 E E4, there is a £' E C such that

where£3 _ E 3.

c+e. = £'+£3

Proof: See Appendix and [1].

III. The (24,12) Golay Code

A (24,12) Golay codeword can be formed by adding an

even or odd parity-check bit to the (23,12) Golay codeword.

It is well known that such a (24,12) Golay code has the mini-

mum distance dmi n = 8. Thus any decoding algorithm can be

extended to the (24,12) Golay code with the correction of

three or fewer errors and the detection of four errors.
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There is no loss in generality to assume that the parity of a

(24,12) Golay codeword is even. That is, the sum of the 24

bits modulo 2 is equal to zero. Now assume during trans-

mission that four errors are added to the codeword. There are

two cases to consider:

(1) If the four errors occur in the first 23 bits, then by the

Theorem in Section lI, the addition of an error vector

of Hamming weight 4 to a codeword produces a 23-

bit vector that is equal to some other (23,12)Golay

codeword plus an error vector of weight 3. Thus if one

of the decoding algorithms in Section I is applied to

the first 23 bits, an error vector of weight 3 is added to

the received codeword. As a consequence the parity of

the (24,12) codeword also is changed. Hence by check-

ing the parity of the decoded codeword, the decoder

detects the presence of four errors.

(2) On the other hand, if three errors occur in the first 23

bits, and one error occurs in the parity bit, the decod-

ing algorithm corrects the three errors in the first 23

bits. The parity of the 23-bit decoded codeword now

differs from the received parity bit. Hence the decoder

detects the presence of four errors.

The extended decoding algorithm for the (24,12)Golay

code is summarized as follows:

Apply any decoding algorithm which can correct three

errors to the first 23 bits. If the number of errors is less

than three, the decoding procedure terminates normally.

If the number of errors is greater than or equal to three,

the parity of the decoded codeword is compared with

the received parity bit. If they are different, the decoder

detects four errors. The detailed flowchart of this decod-

ing procedure is shown in Fig. 1.

IV. An Example of Implementation

A complete algebraic decoding algorithm for the (23,12)

Golay code was found recently by M. Ella [7]. To illustrate

this method, define

E(x) = e22x22 +e21x21 +.--+elx +e 0

to be the error polynomial. Then the received codeword has

the form

R(x) = C(x) + E(x) = q(x)g(x) +g(x)

Suppose that three errors occur in the received code word

R(x) and assume that 2t _ d - 1. Since c_, a 3, and ¢x9 are the

roots of g(x), one has

s 1 = E(a) = R(a), s 3 = E(o_ 3) = R(o_3), s9 = E(a 9) = R(a 9)

where Sl, s3, and s 9 are called the syndromes of the code.

Assume zl, z2, and z 3 are the positions of the three errors.

Then the error-locator polynomial is defined by

3

o(z) = 1-I (z-zi) -- z3 +% z2 *%z+°3
i=1

where O 1 = gl + Z2 ÷ g3' 02 = 212"2 + Z2Z3 + 217"3' and 03 =

z lz 2z 3. Then from [7],

O 1 = S1

2 +DID
02 = S1

03 = $3 + Sl D1/3

where

D =

($3 + S3)2 + (S9 + $9 )

Hence under different conditions for the syndromes, the error

location polynomial has the following forms:

o(z) =

If S1 = S3 = S9 = 0

then no error

3 and s3 = S9Z + S1 If S3 = S1

then one error

Z2 + $1 Z

+ (s_ +D 1/3)

Z3 + $1 22

+(S_ +D'I3)z

+(s 3 + stD 1/3)

Ifs t :_s a and s3 = slD*/3

then two errors

Otherwise three errors
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Note that the cube root Dl/3 is in GF(211) and can be com-

puted recursively, i.e.,

O1/3 = 01365 = O21°+28÷26+24+22+2°=

D 21°D28D26D24D22 D

After using the Chien search to find the error locations, one

can apply the decoding procedure in this article to decode the

(24,12) Golay code as described in Fig. 2.

A shift-and-search procedure for decoding Golay codes is

given in [1]. In a computer simulation, this procedure is corn-

pared with the Elia algebraic technique in terms of CPU time.

For three and four errors this comparison shows that the alge-

braic method is more than twice as fast as the shift-and-search

method in [1]. These results are shown in detail in Table 1.

V. Conclusion

The procedure given in this article extends the decoding of

the (23,12) Golay code to the (24,12)Golay code. This exten-

sion generalizes to any close-packed error-correcting code.

However, since there is only one other nontrivial multiple-

error-correcting perfect code-the (11,6)Golay code over

GF(3)-such a generality may be somewhat academic.
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Table 1. Computer CPU time for decoder simulations

Number of errors

CPU time, ms 0 1 2 3 4

Algebraic method 15.5 16 20 21 22

Shift-and-search method 15 15.5 20 44.5 47

205



(23,t2) GOLAY CODE IPrl
T

START

1
ANY 123,12) GOLAY CODE

DECODING PROCEDURE
WHICH CORRECTS 3 ERRORS

c_ COMPUTE
PA RITY O F .¢..',p

]NO
END

Fig. 1. Flowchart for decoding (24,12) Golay codes.
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Fig. 2. Flowchart of Elia's algebraic procedure.
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Appendix

Proof of Theorem

It is well known that the (23,12) Golay code is a close-

packed code, i.e.. the following equation holds:

Let C be the set of codewords of the Golay code. Also let E i

be the set of vectors of weight i. Therefore, for any £ _ C, and

any e 4 E E4, then x = c + _e4 = C' + e where weight ofe satis-

fies w(e) _< 3. Hence e = x + c' so that by property w(x +y)

Iw(x) - w(,v)[ one has the inequality

w(e_) = w(_c c +e4)/>lw(£+c')-w(e4)l

where w(£ + _c') = dis(cc.,£'). Since minimum distance of the

code is dmi n = 7, one has finally that w(e__)/> 3, and the theor-

em is proved.
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