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The hybrid brain-computer interface (BCI)’s multimodal technology enables precision

brain-signal classification that can be used in the formulation of control commands. In the

present study, an experimental hybrid near-infrared spectroscopy-electroencephalography

(NIRS-EEG) technique was used to extract and decode four different types of brain signals.

The NIRS setup was positioned over the prefrontal brain region, and the EEG over the

left and right motor cortex regions. Twelve subjects participating in the experiment were

shown four direction symbols, namely, “forward,” “backward,” “left,” and “right.” The

control commands for forward and backward movement were estimated by performing

arithmetic mental tasks related to oxy-hemoglobin (HbO) changes. The left and right

directions commands were associated with right and left hand tapping, respectively. The

high classification accuracies achieved showed that the four different control signals can

be accurately estimated using the hybrid NIRS-EEG technology.

Keywords: electroencephaelography, near-infrared spectroscopy, hybrid brain-computer interface, motor

execution, arithmetic mental task, linear discriminant analysis

INTRODUCTION

Brain-computer interface (BCI) is a methodology that corre-

lates brain activities with external devices. The recent research

and trend have demonstrated the enormous potential of the

BCI approach (Matthews et al., 2008; Nicolas-Alonso and

Gomez-Gil, 2012; Ortiz-Rosario and Adeli, 2013). The material

advances in the cutting-edge technology, moreover, has reduced

the cost of BCI equipment. The BCI domain comprehends

both invasive and non-invasive methods. Invasive methods such

as electrical-corticography (ECoG), though showing promising

signal-acquisition results, are not recommended, as they entail

very significant risks. Non-invasive methods are much safer alter-

natives in this regard (Min et al., 2010).

The major non-invasive modalities include electroencephalog-

raphy (EEG), magneto encephalography (MEG), functional mag-

netic resonance imaging (fMRI), and functional near-infrared

spectroscopy (fNIRS). Each has its own strengths and limitations;

the selection of one over another for brain-imaging applications

will rely on the cost of the equipment as well as the spatial and

temporal resolution required for the given objective (Min et al.,

2010).

EEG is a medical imaging technique that gauges brain activity

by measuring, via metal electrodes positioned on the scalp, the

voltage fluctuations on the scalp resulting from neurons’ action

potentials (Niedermeyer and Lopes da Silva, 1999; Rehan and

Hong, 2012). The drawback of EEG is the poor spatial resolution

that does not allow an accurate localization, that is, identification

of the brain source signal (Ball et al., 2009).

NIRS is another non-invasive brain-imaging technique that

alternatively utilizes the near-infrared (NIR) spectrum of

light (wavelength 600–1000 nm) to measure the hemodynamic

response represented by oxygenated hemoglobin (HbO), deoxy-

genated hemoglobin (HbR), cytochrome oxidase (CytOx) and

water (H2O) concentration changes (Nagdyman et al., 2003; Irani

et al., 2007; Bhutta et al., 2014). In most analyses, two hemo-

dynamic variations due to brain activites are focused: increased

oxygenation (resulting from the increased neural activity) and

decreased deoxygenation (Matsuyama et al., 2009). Increased

oxygen consumption in the course of performing increasingly dif-

ficult mental tasks has been demonstrated (Verner et al., 2013).

fNIRS has also shown the ability to detect the fast optical response

(Hu et al., 2011), however the hemodynamic response is mostly

used for analysis.

EEG offers good temporal resolution (∼0.05 s) but poor spa-

tial resolution (∼10 mm), while fNIRS provides only moderate

temporal resolution (∼1 s) and also moderately better spatial

resolution (∼5 mm) (Nicolas-Alonso and Gomez-Gil, 2012).

Another advantage of fNIRS to EEG is its robustness to noise

(Waldert et al., 2012). The objective of a hybrid BCI (Pfurtscheller

et al., 2010) is either to improve the classification accuracy or/and

to generate more control commands than the case of a single

modality. The reason why Fazli et al. (2012) could improve the

classification accuracy by using a hybrid EEG and fNIRS config-

uration is that they used the union of two cases (i.e., detected by

either EEG or fNIRS). This was possible because the window size

for which the features are identified has been set to include both

fNIRS and EEG data. Even for some cases that EEG could not

detect, fNIRS could detect them. For motor execution, the aver-

age classification accuracy by EEG alone was 90%, but EEG +

HbR provided 93%, see Table 1 in Fazli et al. (2012). The previous

studies on single modality have shown that the classification accu-

racy for two commands using fNIRS was about 65% (Stangl et al.,
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2013), and that for four commands using EEG (rotations and

movements of the left/right wrists) was about 65% (Vuckovic and

Sepulveda, 2012). The objective in this paper, however, is to gen-

erate more commands without losing the classification accuracy.

In this paper, four commands will be generated: two from the

prefrontal cortex and two from the motor cortex by configuring

fNIRS and EEG in such a way that each control signal is generated

from its associated brain region. In this way, a new command can

be generated in every 0.6 s and the achieved classification accuracy

was over 80%.

The BCI techniques to control a wheel chair are diverse: eye

movement and blinking based (Gneo et al., 2011; Lin and Yang,

2012), emotions based (Fattouh et al., 2013), and event related

and state control (Galán et al., 2008; Huang et al., 2012; Carlson

and Millán, 2013). All these are reactive BCI, in which output

from the brain is generated in reaction to an external stimulation.

The novelty in this work is the proposition of a hybrid config-

uration of EEG and fNIRS for active BCI, whose classification

accuracy is over 80%. Using four brain tasks (left/right motor exe-

cution, mental counting, and mental arithmetic), four commands

were generated. In the proposed configuration, EEG electrodes

are placed on the motor cortex region and NIRS optodes on

the prefrontal cortex region. The left and right directions were

decoded by tapping of the left or the right hand, and the mental

arithmetic and the mental counting was used to decode back-

ward and forward directions. The classification accuracies of the

12 subjects justify that the proposed configuration is suiltable for

BCI and direction decoding which can be used for the generation

of control commands for movement executions for the patients

suffering from lower-limb disorders.

FIGURE 1 | Experimental paradigm. One complete data set over the span

of a minute, consisting of four rest periods, two task periods detected by

NIRS from the prefrontal brain region and two motor execution periods

detected from C3 and C4 regions of brain using EEG.

METHODS

PARTICIPANTS AND EXPERIMENTAL PARADIGM

Twelve healthy volunteers (all male;10 right handed, two left

handed; aged 24–34 years) participated in the experiment. The

experiment was conducted under the declaration of Helsinki and

consent was taken from the subjects priror to the start of exper-

iment. The experiment was performed in a confined room to

reduce disturbance from the environment. The subjects were sat

in a comfortable chair with their arms on arm rests and instructed

to relax. A screen nearly 70 cm away from the subjects was placed

on which left, right, forward, and backward arrows were dis-

played. On display of each arrow, a time marker starts at the

bottom of screen indicationg the start and end of stimulus. For

right and left directions, the subjects were asked to tap their asso-

ciated hands 10 times during the time period shown on the screen

for 10 s. For forward and backward directions, the subjects were

FIGURE 2 | Optode location for EEG and NIRS. (A) 8 EEG electrodes

placement over the Cz of the brain, (B) 12 channel locations on the

prefrontal brain region using three sources and eight detectors.
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asked to do mental counting for 10 s and arithmetic subtraction

for 10 s. A training session was performed before the start to

make the subjects familier with the paradigm. The total duration

of each experiment for each subject was 5 min, divided into rest

and activity periods. The time duration of each data sample was

60 s. The initial 5 s of the experiment was the rest period, after

which the subjects were shown left or right direction symbols

and requested to physically tap their left or right hand accord-

ingly, at a frequency of 1 Hz over a 10 s interval. The subjects

were also instructed to increase the strength of tap for left hand

for better discrimination of signals. The next 5 s was another rest

period, subsequent to which the subjects were shown a forward

or backward direction symbol for an interval of 10 s. The subjects

were instructed to perform arithmetic subtraction, on a task sheet

placed 25 cm away prior to the start of the experiment, upon the

display of the backward direction symbol. For the mental arith-

metic task, the subjects were asked to mentally perform a series

of arithmetic calculations that were given on the sheet in a pseu-

dorandom order. These calculations consisted of subtraction of a

two-digit number (between 10 and 20) from a three-digit number

throughout the task period with successive subtraction of a two-

digit number from the result of the previous subtraction (e.g.,

695-19, 706-12, 894-15, etc). This mental activation period was

followed by a 5-s rest period, after which the subjects were again

shown the left or right direction symbol and instructed, once

again, to tap their hand at a 1 Hz frequency over the time span

of 10 s. If in a previous case the subjects were shown the left direc-

tion symbol, the next time the indicated direction symbol was the

opposite one. The directed hand activity was followed by 5 s rest,

which was followed in turn by 10 s of mental activation. In this

case as well, the next shown direction was reversed, according to

which the subjects were asked to perform an arithmetic counting

for indicated forward direction. For the mental counting task, the

subjects were asked to mentally count down from number “99”

backwards. For “Stop” the subjects were asked not to perform any

activity. A check on EEG and NIRS data values was placed to dis-

tinguish the activation and resting state by defining the baseline

and activity. The movement command can only be produced if

there is activity in any one of the four brain regions else the state

should be termed as “Stop” state. Figure 1 shows one complete

sample process; the second sample was taken immediately after

the obtainment of the first.

SENSOR CONFIGURATION

Eight EEG electrodes were placed on the motor cortex region

on the scalp and 12 channel NIRS was placed on the prefrontal

brain region. The reason for using NIRS on the prefrontal cor-

tex is because it can discriminate between two activities from the

prefrontal region with high classification accuracies (Naito et al.,

2007; Power et al., 2010; Verner et al., 2013; Naseer et al., 2014)

whereas the same cannot be done using EEG (Knyazev, 2013).

Meanwhile NIRS signals are affected by dense hairs (Gervain

et al., 2011) making EEG a better option for the detection of

brain activities from the motor cortex region. Furthermore, if

both modalities are positioned at the same brain location, they

induce noise in each other thus reducing the strength of obtained

signals for BCI (Safaie et al., 2013). Using the current setup, four

signals were obtained thus enhancing the performance of NIRS

by combining with EEG setup.

DATA ACQUISITION

The brain activities related to the mental tasks and motor exe-

cutions were measured from the NIRS and EEG, respectively.

Eight Ag/AgCl EEG electrodes were placed on C3, C4, T3, T4,

FIGURE 3 | System block diagram. The complete process from signal acquisition to control commands generation.
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P3, P4, F3, and F4 locations according to the International

10–20 system (Homan et al., 1987; Pivick et al., 1993; Jurcak

et al., 2007), and the data were recorded by g-MOBIlab+

biosignal acquisition device (Christoph Guger, Austria) at a

sampling rate of 256 Hz. The NIRS-System (DYNOT, NIRx

Medical Technologies, USA) was used in this experiment with

wave length of 760 and 830 nm, respectively. A total of three

sources and eight detectors forming a combinational pair of

12 channels were used in the experiment. This assembly was

placed on Fp1 and Fp2 regions of the brain and the optodes

were placed in the way that they cover the whole prefrontal

area in order to maximize the probability of locating the acti-

vated region of brain. The sampling frequency used for the

acquisition of NIRS signals was 1.81 Hz. Figure 2 shows the

source-detector locations for the optode placement for EEG and

NIRS.

DATA ANALYSIS

The fNIRS signals were obtained using the modified
Beer-Lambert law (Coyle et al., 2007; Hu et al., 2010, 2012;

Kamran and Hong, 2013; Naseer and Hong, 2013).

A (t; λ) = ln
Iin (λ)

Iout (t; λ)
= α (λ) × c (λ) × l × d (λ) + η, (1)

[

�cHbO(t)

�cHbR(t)

]

=

[

αHbO (λ1) αHbR (λ1)

αHbO (λ2) αHbR (λ2)

]−1 [

�A (t; λ1)

�A (t; λ2)

]

·
1

l × d(λ)
, (2)

where A is the absorbance of light (optical density), Iin is the inci-

dent intensity of light, Iout is the detected intensity of light, α is

the specific extinction coefficient in µM−1cm−1, c is the absorber

concentration in µM, l is the distance between the source and

detector in cm, d is the differential path-length factor, and η is the

loss of light due to scattering. In order to remove noise from the

hemodynamic response, different techniques are used (Santosa

et al., 2013). In the present study, respiration- and pulse-related

FIGURE 4 | Brain-signal acquisition: Each spike from the left or right motor cortex represents a hand tapping with the right or left hand, respectively. The

concentration change in the prefrontal brain region reflects the change from rest to mental counting (“forward”) and mental subtraction (“backward”).
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noises were removed from the data using Gaussian low-pass fil-

tering and wavelet transform (Ye et al., 2009; Hu et al., 2013).

The β-band falling within the 12–30 Hz range was obtained by

online band-pass filtering of the EEG signals (Zaepffel et al.,

2013; Kaiser et al., 2014). The epochs lasting 10 s were estimated

by segmenting the recordings from +1 to +11 s relative to the

onset of the tapping stimulus, thus yielding five epochs for each

left and right hand activity (Delorme and Makeig, 2004; Subasi

and Gursoy, 2010; Turnip et al., 2011; Turnip and Hong, 2012).

Linear discriminant analysis was used as the classifier. The fea-

tures in the case of EEG were the mean values of peak amplitudes

of channels C3 and C4 whereas in the case of NIRS, the mean

values of HbO and HbR were used (Lotte et al., 2007; Zhang

et al., 2013; Naseer et al., 2014). An online analysis was performed

on the data by downsampling EEG data to 1.82 Hz to synchro-

nize with the NIRS sampling rate. For both modalities, one data

sample was obtained approximately after 0.5 s, which was then

processed at 250 Hz to obtain the control command. Figure 3

shows the complete process for control command genereation

for BCI.

RESULTS

The signals extracted from the left and right brain hemispheres

(the C3 and C4 regions) and the frontal brain hemisphere (the

Fp1 and Fp2 regions) are shown in Figure 4. The signal from

the motor cortex region reflects the action potential generated

due to the firing of neurons when an motor execution task was

performed. The signal from the prefrontal region is the hemo-

dynamic change of HbO from the rest to mental execution

period.

The association between movement and rest state was devel-

oped by taking the common rest state as “Stop” indication. This

is also beneficial as using this methodology only one command

can be generated at one time and thus reduces the chance of miss-

classification. The movement command can only be produced if

there is activity in any one of the four brain regions else the state

should be termed as “Stop” state as shown in Figure 5 and Table 1.

The left- and right-signal classifications are shown in Figure 6.

Similary forward and backward mental tasks are represented in

Figure 7. Figures 5, 6 show changes of state of data with respect

to time. The results indicate a significant difference between the

FIGURE 5 | Stop condition: Common rest state of the three signals is selected as stop command. The “Stop” command can only be generated if absolute

rest is detected from three brain regions.
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states. Table 2 lists the classification accuracies for all trials of the

12 subjects.

DISCUSSION

The first objective of this study, which was achieved, was to detect

four different classes of signal for generation of control com-

mands for movement estimation suitable for BCI purposes. Two

classes of signal were obtained by EEG using motor execution

from the left and right motor cortex regions, and two classes are

Table 1 | Brain activities of EEG and NIRS for different control

commands.

Brain activity Command

EEG NIRS

Left hand tapping Rest Left

Right hand tapping Rest Right

Rest Mental arithmetic Back

Rest Mental counting Forward

Rest Rest Stop

obtained by NIRS from the prefrontal brain region using mental

counting and arithmetic. These two tasks are simple tasks that

are very easy to perform and can be detected from the prefrontal

cortex. For the decoding application they serve their purpose

well and have already been used in several BCI studies (Naito

et al., 2007; Power et al., 2012; Naseer et al., 2014). Figure 4

clearly shows that each tap recorded from the left and right brain

hemispheres due to the motor execution was recorded as a signal

spike from the reference position. The time interval between each

tap was maintained consistent at approximately 1 s. In order to

differentiate between the left- and right-executed signals, each

trial was separated by a time interval of 20 s. It was observed that

the HbO concentration changes during the mental task began to

increase 2 s after the subjects were prompted, and that the HbO

level required almost 12 s to settle after the termination of that

signal. Accordingly, the time gap between the two NIRS tasks was

set at 20 s.

The classification of left and right hand tapping is per-

formed by increasing the magnitude of left hand tapping from

the right hand tapping. It has been reported in Jochumsen

et al. (2013) and Robinson et al. (2013) that the neuronal

FIGURE 6 | EEG data classification for left and right control commands. (A) Shows the classification of trials for “Left” and “Stop” command signals for

Subject 7, (B) Shows the classification of trials for “Right” and “Stop” command signals for Subject 6.
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FIGURE 7 | NIRS data classification for forward and backward control commands. (A) Shows the classification of trials for “Forward” and “Stop”

command signals for Subject 3, (B) Shows the classification of trials for “Backward” and “Stop” command signals for Subject 7.

response due to fast and slow movement is different and can

be distinguished with high classification accuracy. Figures 6,

7 show clearly that the four corresponding signals are sep-

arable and, thus, utilizable for generation of BCI control

commands.

The observed classification accuracies for the 12 subjects sig-

nificantly show that the proposed research is suitable for BCI

purpose. In comparison to other studies in which two control

commands are generated based on motor and arithmetic tasks

with low classification accuracies results (Stangl et al., 2013), the

results have shown potential for control command generation

with high classification accuracy. Moreover four stage classifier is

required if only one modality is used for four signals acquisition

which may results in significant decrease in accuracy (Vuckovic

and Sepulveda, 2012). Using the current setup, the same results

with better accuracy are achieved: The accuracies of “Forward

vs. Stop” and “Backward vs. Stop” trials were 80.2% and 83.6%,

respectively, due to the selection of oxy-hemoglobin (HbO) as a

classification feature for both control commands. This is the first

time that four intended movements are decoded using a hybrid

BCI. Wolpaw and McFarland (2004) and the previous two hybrid

EEG-NIRS studies (Fazli et al., 2012; Kaiser et al., 2014) have

shown discrimination of two signals that can be used to gen-

erate two control commands whereas in this paper four control

commands have been generated.

The generated commands can be used for those people who

cannot perform motor imagery (Vidaurre and Blankertz, 2010) or

in such cases that the patient cannot touch any machine directly,

for instance, prosthetic legs, working with remote controlled

devices, etc. Naseer et al. (2014) have shown binary decision

decoding for rehabilitation, whereas in this research the four

control commands can be associated to four different decisions.

Moreover, the previous hybrid EEG based researches for rehabili-

tation have shown the use of P300 and steady state visual evoked

potentials (Li et al., 2013; Xu et al., 2013) to generate four con-

trol commands based on reactive tasks. As motor imagery and

motor execution activate the same brain area (Beisteiner et al.,

1995; Porro et al., 1996), the same goal can be achived by this
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Table 2 | Classification accuracies: four control command accuracies

of 12 subjects for left vs. stop, right vs. stop, forward vs. stop, and

backward vs. stop.

Subject Left vs. Right vs. Forward vs. Back vs.

Stop (%) Stop (%) Stop (%) Stop (%)

1 98.4 98.7 81.1 86.5

2 99.8 99.2 79.1 84.1

3 93.2 94.7 81.2 85.4

4 97.7 96.5 80.1 80.8

5 98.1 88.2 81.2 86.9

6 91.1 99.5 84.2 86.6

7 99.2 98.1 77.2 81.1

8 98.0 98.2 83.1 87.1

9 91.2 90.4 80.2 83.1

10 85.0 84.1 74.1 76.3

11 94.5 95.2 82.8 86.1

12 90.1 94.0 78.2 79.3

Mean 94.7 ± 4.6 94.7 ± 4.8 80.2 ± 2.7 83.6 ± 3.5

research using active tasks. Also, it is known that fNIRS can

decode multiple signals from the same brain area: for instance,

mental counting and music imagery (Power et al., 2012) and pic-

ture imagery and mental arithmetic (Naito et al., 2007) from the

same prefrontal cortex. Therefore, there is a potential that the

total number of commands in the current EEG and fNIRS config-

uration can be increased to up to seven. Further research can be

carried out using advanced adaptive filtering techniques (Rehan

and Hong, 2013), optimal feature sets, and/or combined EEG-

NIRS features to achieve better classification results that can be

used by patients with lower limb disorder to control wheelchair

or prostheses.

CONCLUSION

In this research, a hybrid fNIRS and EEG configuration for decod-

ing four movment commands was proposed. The NIRS setup was

used to decode the prefrontal activities based on hemodynamic

changes of HbO using mental arithmetic and mental count-

ing as tasks. The EEG response detected from the motor cortex

region was used to decode other two direction commands. Both

modalities were synchronized to obtain control commands at the

same time. The results of classification accuracies were highly

encouraging and certainly will prove fruitfully applicable to BCI

systems and purposes. The use of wirelss systems and transla-

tion of the control commands into machine codes will enable

effective control of a robotic system suitable for rehabilitation

purposes.
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