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Decoding of Pain Perception using 
EEG Signals for a Real-Time Reflex 
System in Prostheses: A Case Study
Zied Tayeb  1*, Rohit Bose2,3, Andrei Dragomir2,4, Luke E. Osborn5,6, Nitish V. Thakor5,7 & 

Gordon Cheng  1

In recent times, we have witnessed a push towards restoring sensory perception to upper-limb 

amputees, which includes the whole spectrum from gentle touch to noxious stimuli. These are essential 
components for body protection as well as for restoring the sense of embodiment. Notwithstanding 

the considerable advances that have been made in designing suitable sensors and restoring tactile 

perceptions, pain perception dynamics and its decoding using effective bio-markers, are still not fully 
understood. Here, using electroencephalography (EEG) recordings, we identified and validated a 
spatio-temporal signature of brain activity during innocuous, moderately more intense, and noxious 
stimulation of an amputee’s phantom limb using transcutaneous nerve stimulation (TENS). Based on 

the spatio-temporal EEG features, we developed a system for detecting pain perception and reaction 

in the brain, which successfully classified three different stimulation conditions with a test accuracy of 
94.66%, and we investigated the cortical activity in response to sensory stimuli in these conditions. Our 
findings suggest that the noxious stimulation activates the pre-motor cortex with the highest activation 
shown in the central cortex (Cz electrode) between 450 ms and 750 ms post-stimulation, whereas the 
highest activation for the moderately intense stimulation was found in the parietal lobe (P2, P4, and 
P6 electrodes). Further, we localized the cortical sources and observed early strong activation of the 
anterior cingulate cortex (ACC) corresponding to the noxious stimulus condition. Moreover, activation 
of the posterior cingulate cortex (PCC) was observed during the noxious sensation. Overall, although 
this is a single case study, this work presents a novel approach and a first attempt to analyze and classify 
neural activity when restoring sensory perception to amputees, which could chart a route ahead for 

designing a real-time pain reaction system in upper-limb prostheses.

Nociception is commonly known as the sense of pain1. Specialized receptors called nociceptors that cover the skin 
and organs react to harmful chemical, mechanical and thermal stimuli2. Some of these microscopic pain receptors 
react to all kinds of noxious stimuli while others only react to speci�c pain like burning or pricking your �nger on 
something sharp. Jolts of sudden pain activate the A-type �bers to send an electrical signal up to the spinal cord3. 
Pain signals then activate the thalamus, which relays the signal to the di�erent brain regions4. Subsequently, the 
signal activates the somatosensory cortex which is responsible for physical sensations; the signals are then relayed 
to the frontal cortex where higher-order cognitive processing occurs, and �nally to the limbic system, which is 
linked to emotions5. �is pain processing network, along with pain re�ex pathways in the spinal cord6, are con-
sidered of the utmost importance for body protection from damaging stimuli7. �ese insights into brain networks 
have therefore spurred research on unraveling the processes within the body that lead to the unpleasant sensation 
of pain8 and on understanding the pain perception mechanism in the brain9. Authors in10 investigated percep-
tual, motor, and autonomic responses to short noxious heat stimuli using electroencephalography (EEG) and 
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con�rmed that pain perception is subserved by a distinct pattern of EEG responses in healthy subjects. Functional 
magnetic resonance imaging (fMRI) was used in11 to demonstrate pain-related activation of the anterior cingu-
late cortex (ACC) and the posterior cingulate cortex (PCC) during transcutaneous electrical nerve stimulation 
(TENS) in healthy participants. A template of nociceptive brain activity that is sensitive to analgesic adminis-
tration and suitable for clinical trials and research investigations was identi�ed and validated in12. Furthermore, 
di�erent somatosensory evoked potential (SEP) components and latency di�erences a�er stimulation of prox-
imal and distal sites of the median nerves were studied and identi�ed in eight healthy right-handed males13. 
Similarly, other previous studies showed that primary and secondary somatosensory cortices, insular cortex, 
anterior cingulate cortex (ACC), prefrontal cortex (PFC), and thalamus are activated during experimental pain 
stimuli14–16. Authors in17 showed the important role of the parietal lobe in pain perception and understanding. 
Notwithstanding the enormous number of studies on pain perception and brain responses to di�erent painful 
stimuli using EEG and fMRI, most of these studies focused on studying brain responses in healthy subjects and 
have not investigated brain responses when perceiving the sense of pain in amputees nor in human-robot inter-
action settings7. It has, therefore, become imperative to study amputees’ brain activity when integrating the sense 
of touch and pain in their arm prostheses7. �e core novelty and the main contribution of this paper reside in the 
use of non-invasive EEG activity to analyze somatosensory evoked responses recorded when receiving three dif-
ferent types of stimulations. �ese stimulations were chosen to convey di�erent sensation pro�les, ranging from 
pleasant to uncomfortable sensation. For that, we identi�ed a brain activity template during innocuous (INNO), 
moderately intense (MOD) and noxious (NOX) stimulation of an amputee’s phantom hand delivered through a 
transcutaneous nerve stimulation system (TENS)18. Based on the identi�ed spatio-temporal brain activity pat-
terns, we developed an o�ine system for detecting pain reaction in the brain which can recognize the three 
stimulation conditions from recorded EEG responses by using e�ective spatio-temporal bio-markers to identify 
the di�erent brain regions involved in noxious stimuli processing as well as latency responses for each stimula-
tion condition. �e overall goal of this study was to extend upon the work performed by Osborn et al.7, where 
the re�ex system was implemented in the arm prosthesis and the amputee was not involved in the withdrawing 
reaction. �is is thought to be of the utmost importance when designing a better bidirectional-control system 
between the human and the prosthesis, and hence increase the amputee’s sense of embodiment and the sense 
of ownership19,20. Additionally, detecting this perceived pain sensation and reaction would have an important 
role in protecting the prosthesis from being damaged by external stimuli21. To the best of our knowledge, even 
though the presented results are from a case study, this work is among the very few to investigate brain responses 
to di�erent types of NOX and INNO stimuli and the �rst study to investigate and characterize spatio-temporal 
brain activities in amputees during a range of noxious and innocuous sensory feedback to the phantom hand, en 
route to designing a real-time withdrawal system in upper-limb prostheses. Extending upon the �ndings of the 
aforementioned studies, we also investigate attention and perceptual brain circuitry involved in the withdrawal 
reaction. An overview of the real-time withdrawal system in upper-limb prostheses is shown in Fig. 1.

Figure 1. System implementation overview of a prosthetic arm that can restore the sense of touch and pain. 
An upper-limb amputee wears a prosthesis equipped with e-dermis sensors capable of measuring pressure and 
object curvature. Tactile sensations from innocuous to noxious, based on detected pressures at the �ngertips, 
are conveyed to the user’s phantom hand through TENS on the residual limb. Brain responses are analyzed 
and decoded to understand the tactile sensory perception, including pain, and identify activated brain regions. 
Neural activity can be used to design a prosthesis that mimics natural pain withdrawal behavior in humans.
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Results
All stimulation conditions activate the parietal lobe and noxious stimulation activates the cen-
tral motor cortex. Sensory feedback of the three conditions (NOX, MOD, and INNO) tactile stimuli was 
delivered to the phantom hand using TENS on the transhumeral amputee’s residual limb. �ree di�erent stim-
ulation sites were used on the residual limb, which activated the thumb/index, wrist, and pinky of the phantom 
hand. �e NOX stimulation was reported by the subject as uncomfortable but tolerable7, the MOD stimulation 
was reported as slightly more noticeable/intense compared to the INNO stimulation. EEG was used to quantify 
brain activity during each stimulation and to identify the activated brain regions as well as the physiological prin-
ciples underlying the perception of pain in amputees. For that, brain activity topography and time course were 
performed by analyzing all electrodes’ activities in the �rst second post-stimulus period. Our analysis shows that 
all stimulation conditions elicit early activation of the parietal lobe (around 54 ms) which persists over time for 
all types of sensation. Interestingly, the MOD stimulation elicits higher activation of the parietal lobe compared 
to the INNO and the NOX stimulations. In contrast to both INNO and MOD stimulations, only the NOX stim-
ulation activates the central cortex. Based on our �ndings, we postulate that the NOX stimulation started in the 
parietal (54 ms) and centro-parietal lobe, rapidly activated the perceptual mechanism in the subject’s brain but 
moved therea�er towards the pre-motor and central cortex, which could, therefore, explain that the NOX stim-
ulation activated the pain perception and reaction mechanism in the brain and the amputee had the intention to 
move away his residual limb during the stimulation. Results of brain activity topography for the three types of 
stimuli are illustrated in Fig. 2. As shown in Fig. 2, deactivations of the ipsilateral centro-parietal and the frontal 
lobe were observed during the NOX and the MOD stimulation, respectively, whereas a slight deactivation of the 
right temporal lobe was observed during the INNO stimulation. Further, 2 shows that there is no activation of the 
di�erent brain regions when analyzing the pre-stimulus activation for the three di�erent conditions, concluding 
that the participant was not anticipating any of the three stimuli prior to the stimulation.

Spatio-temporal biomarkers for noxious-evoked activity. We then extended the aforementioned 
analysis by seeking to identify a spatio-temporal template to distinguish between the three conditions and �nd the 
exact brain response time and spatial location. For the NOX stimulation, the highest activation was found at the 
central cortex in the post-stimulation time window from 450 to 750 ms when comparing it to the INNO stimu-
lation, and the EEG background activity [p-value < 0.0001, Kruskal-Wallis test was combined with the post-hoc 

Figure 2. EEG topographic maps for NOX, MOD and the INNO stimulation. (A–C) represent topographic 
scalp map of the EEG amplitude response for three classes of stimuli: INNO, MOD and NOX stimulation, 
respectively, using the average of all trials for each condition. All topographic maps were plotted for the �rst 
second post-stimulation time window (average of across each condition’s trials). �e get_peak algorithm in the 
MNE so�ware22 was used to compute and detect the amplitude of the maximum EEG response (local maxima) 
for the noxious stimulation as well as the location (EEG channel) and latency of the detected peak amplitude. 
Time courses of NOX stimulation identi�ed and found using the get_peak algorithm were used therea�er for 
analysis and benchmarking with the other two conditions. Early activation of the parietal lobe was found for all 
conditions, followed by strong activation of the central cortex during the NOX stimulation, strong continuous 
activation of the parietal region during the MOD stimulus and almost no activity during the INNO stimulus. 
For all three conditions, no activation of the di�erent brain regions was found when analyzing the half-second 
pre-stimulus phase, indicating that the subject was not anticipating the applied stimulus.
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(using Tukey HSD test) for multiple group comparison. Number of trials = 60]. Additionally and as shown in 
Fig. 3, the highest response in the amputee’s brain activity during the noxious stimulation was localized at the 
vertex electrode in the middle of the scalp (Cz) [p-value < 0.001, when comparing to the other two conditions. 
Kruskal-Wallis test was combined with the post-hoc (using Tukey HSD test) for multiple group comparison. 
Number of trials = 60] (relatively high activation was also detected in C4 and C6 electrodes). In contrast with the 
NOX stimulation which shows high activation of the central cortex, the MOD stimulation was found to be high 
at P2, P4, and P6 electrodes for the whole second of analysis as depicted in Fig. 3 [p-value < 0.05, Kruskal-Wallis 
test was combined with the post-hoc (using Tukey HSD test) for multiple group comparison. Number of trials = 
60]. Although an activation of the parietal lobe was also found during the INNO stimulation, it should be noted 
that no special spatio-temporal biomarkers were observed. Based on our �ndings, we postulate that the intense 
stimulation was perceivable by the subject, which led to high and continuous activation of the parietal lobe in the 
brain17 but the level of discomfort was not high to activate the central and pre-motor cortex, which is responsible 
for motor movements. Figure 3 illustrates activation of the parietal and centro-parietal cortex for the di�erent 

Figure 3. EEG activity for the parietal and central cortex electrodes. (A–C) represent EEG activity in Cz, 
P2, P4 and P6 during the pre-stimulus phase during the INNO, MOD, and NOX stimulation, respectively. 
(D–F) represent EEG activity in four di�erent electrodes; Cz (middle cortex) and P2, P4 and P6 electrodes in 
the parietal lobe during the INNO, MOD, and NOX stimulation, respectively. When comparing (D) to (E), a 
parietal enhancement (red color) and a central depression (blue color) are observable. When comparing (D–F), 
a central enhancement is observable (red color). (G) 10–20 EEG recording system where Cz, P2, P4, and P6 
electrode’s positions in the 10–20 system are highlighted in blue.
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conditions. Similarly and as was shown in Fig. 2, no pre-stimulus activation was detected in the parietal lobe (P2, 
P4, and P6 electrodes) nor in the central cortex (Cz) for the three di�erent stimulation conditions.

Successful classification of the three different stimulation conditions. We further investigated EEG 
based spatio-temporal biomarkers for the classi�cation of the three di�erent stimulation conditions. First, we stud-
ied how the classi�cation accuracy changes in each 100 ms post-stimulation time. As shown in Fig. 4(A), our 
�ndings are in accordance with our aforementioned analysis results, and higher mean balanced accuracy (bACC) 
was found in the time window between 450 and 750 ms, with the highest bACC found between 650 and 750 ms 
post-stimulation [p-value < 0.005, Kruskal-Wallis test was combined with the post-hoc (using Tukey HSD test) 
for multiple group comparison. Number of trials = 60]. We wish to emphasize that a mean accuracy of more than 
90% was also observed in the time-window between 150–250 ms, which could be also further investigated and used 
as a time marker to design a nociceptive pain reaction system, where a minimum delay is usually required23. As 
the highest validation accuracy (validation bACC) was found in the time-window 650–750 ms, we used that time 
window during the test phase to classify the three di�erent conditions and for further analysis. A mean bACC of 
95% was obtained in the validation phase and more than 94% was achieved in the test phase, whereas the chance 
level for this task is 33.33%. For that, data were split into 80% and 20% where strati�ed 10-fold cross-validation 
was performed on 80% of the data (validation phase) and the saved model was used to predict correct labels on 
the remaining 20% of the trials in the test phase. A principal component analysis (PCA) was performed on the 
recorded data, which resulted in a clear separation between the three classes as shown in Fig. 4(B). Figure 4(C) pre-
sents the obtained results in the test phase. �e confusion matrix shows that both INNO and NOX stimulation were 
almost correctly classi�ed, whereas the MOD stimulation was sometimes either confused with the INNO or the 
NOX stimulation. Last, it is important to highlight that when we kept all the features (without performing dimen-
sionality reduction using PCA), we observed that our feature selection algorithm selected Cz, C4, C6, FT8 and 

Figure 4. Classi�cation results of the three stimulation conditions. (A) Validation accuracy in di�erent 
time-windows between 50 and 1000 ms a�er stimulation represented in a boxplot, and showing that the 
highest validation accuracy was obtained in the time-window 650–750 ms. �e green triangle represents the 
mean accuracy value for each time window whereas the black line represents the median value for the same 
time window. (B) 2D feature space a�er performing PCA, highlighting a clear separation between the three 
conditions. PC1 and PC2 represent the �rst two components a�er performing PCA. (C) As the highest accuracy 
was obtained between 650–750 ms (shown in A), the confusion matrix was computed in that time-window 
when classifying the three stimulation conditions in the test phase.
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CP6 as the best electrodes/features when distinguishing between the three classes. Selected electrodes are shown in 
Fig. 5 and are well aligned with our aforementioned analysis, where we showed that central and the centro-parietal 
cortex electrodes exhibited di�erent activities depending on the stimulation condition, and hence of the utmost 
importance when di�erentiating between the di�erent types of stimulation. It is worth noting that the computed 
features are simply the maximum amplitude value of each electrode, which led to a feature matrix of 64 dimensions.

Noxious-related activation within the medial wall of the cerebral cortex. To extend our �ndings, 
we sought to study brain activity at the source level in response to NOX, MOD, and INNO stimulations, and gain 
more insights into how the pain reaction mechanism is achieved in the brain and what are the di�erent brain 
regions involved in this pain reaction circuitry. We identify activated brain sources, en route to developing a com-
plete real-time pain sensation detection system. We focus our analysis mainly on the NOX stimulation, which 
triggers the reaction mechanism in the brain. Here, we investigate if scalp EEG can detect and localize signals orig-
inating from di�erent brain areas during the three di�erent conditions. Overall, our analysis con�rms the evidence 
that scalp EEG could be used to detect and correctly localize the source of the recorded signals24. For that, we recon-
structed EEG source dynamics using distributed source modeling25,26 based on realistic head models27 derived from 
individual MRI scans24. As illustrated in Fig. 6, we found using the reconstructed EEG sources that NOX sensation 
elicits activation of the centro-parietal lobe, activation of the anterior cingulate cortex (ACC), the somatosensory 
motor cortex, and the posterior cingulate cortex (PCC). Overall and as shown in Fig. 6, the activation of the ACC 
presents direct evidence that it plays a role in activating the attention circuitry in the brain as well as an important 
role in external sensory stimuli perception28,29. Moreover, our study reveals that the NOX stimulation activates the 
PCC, which seems to be in accordance with a similar study using another sensory feedback modality11. As shown 
in Figure 1 in the Supplementary Materials, the source localisation results for the MOD and INNO conditions show 
also activation of the parietal lobe at around 54 ms, which is aligned with topographic maps illustrated in Fig. 2.

Discussion
Here, a spatio-temporal template of brain activity during three di�erent phantom limb stimulation conditions 
(INNO, MOD and NOX) has been identi�ed and characterized in an amputee based on EEG signals. Unlike 
fMRI or intracranial signals, EEG allows continuous and real-time recording with a good compromise between 
level of invasiveness and temporal resolution31, which could be therefore used when developing real-time systems 
based on neural response to sensory stimulation. �e �ndings in this study con�rm and extend previous �ndings 
in non-amputee related studies on the high activation of the somatosensory and motor cortex during the NOX 
stimulation. Speci�cally, the highest activation was detected in Cz electrode site and its neighboring electrodes 
C4, C6 and CP6. Additionally, we also show early activation of the centro-parietal lobe for all the three conditions 
with the highest activity observed when perceiving and processing the MOD stimulation. Further, we identi�ed 
a spatial template of noxious-evoked activity and we investigated di�erent activated regions at the source level 

Figure 5. Validation results of the classi�cation of the three stimulation conditions in each time-window using 
�ve di�erent classi�ers (KNN:K-Nearest Neighbors, QLDA:Quadratic Discriminant Analysis, NB:Naïve Bayes, 
SVM:Support Vector Machine, LDA:Linear Discriminant Analysis) as well as the selected electrodes using 
the feature sequential algorithm. (A) Validation accuracy in di�erent time-windows between 50 and 1000 ms 
a�er stimulation using �ve di�erent classi�ers and represented with a polar bar plot. �e polar bar plot shows 
the accuracy range (mean standard deviation) achieved by the �ve models for each time-window. �e highest 
accuracy was obtained in the time-window [650–750] and is highlighted in the �gure in red. (B) �e 10/20 
system used for EEG data recording. A feature selection algorithm selected �ve di�erent features (Cz, C4, C6, 
CP6, and FT8 electrodes) when classifying the three di�erent conditions. �eir positions in the brain, according 
to the 10/20 system, are highlighted in (B).
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using EEG signals. �is has overall con�rmed the important role of the ACC to trigger the attention mechanism 
in the brain11,32, as well as the role of PCC for noxious stimulation processing11. Our study is extending upon 
Osborn et al. study7, where a pain re�ex mechanism was implemented at the level of the prosthesis. Our study 
suggests that such a withdrawal/pain reaction system could be implemented by harnessing the neural response to 
painful stimuli. �e withdrawal reaction could be activated when the prosthesis touches sharp objects, and hence 
protect it from being damaged. Along the same lines, this can help better monitor the user’s perception of what is 
happening to create more natural prostheses and provide the amputee more intuitive control over his prosthesis 
as well as increase the sense of embodiment and ownership.

Noxious-evoked activity spatio-temporal template interpretation. Noxious-evoked activation gen-
erated high activity around Cz electrode between 450 ms–750 ms with the highest activity detected at Cz. We also 
investigate the relation between brain responses and three types of sensations. Based on that, we could distinguish 
between the three di�erent conditions with more than 94% accuracy using an identi�ed spatio-temporal template 
based on a subset of electrodes and the temporal markers. Similarly, we studied the temporal latency for each con-
dition as well as the spatial distribution of the activity across other electrode sites. Even though exact mechanisms 
responsible for the delay remain to be investigated, we postulate that the early activation of the parietal lobe during 
all conditions makes strong evidence on its role in early processing of relevant somatosensory stimuli and its heavy 
connection with the ACC in painful and intense stimuli processing forming a complete circuitry for somatosensory 
stimuli detection and perception. We also hypothesize that only the NOX stimulation triggers the pain reaction 
mechanism in the brain, re�ecting one’s intention to escape the potential source of pain, which relies on the motor 
cortex. However, the processing of the other two conditions remain at the parietal lobe level and did not activate 
any motor reaction. �e important role of the ACC, PCC, and the pre-motor cortex in noxious sensation percep-
tion in amputees was also investigated during the noxious sensation. �erea�er, we observe activation of the motor 
cortex, the ACC, and the PCC, which is thought to be along the descending pathway to the spinal cord. Overall, 
our source localization results present new evidence on the similarity of the re�ex system in amputees and healthy 
subjects. Further, our study reveals a high correlation between the stimulation condition and the activation mag-
nitude of the ACC, which is aligned with previous studies for other purposes. Interestingly, all conditions activated 
the anterior portion of the ACC, which is known to be engaged in di�erent attention networks in the brain as well 
as sensory stimuli processing and were reported in di�erent clinical pain neuroimaging studies. Further, high acti-
vation of the PCC was observed during the NOX stimulation. Overall, it has previously been shown that the PCC is 
part of motor responses with a wide interaction with the parietal lobe. In fact, PCC is adjacent to the supplementary 
motor cortex (SMA), which could explain why SMA activation was only shown during the noxious stimulation.

Towards a real-time reflex system in prostheses. Beyond the scope of this work, the ultimate goal of 
this research is to design and develop a system that can detect in real-time pain reaction in the amputee’s brain 
and use that detection to trigger a withdraw reaction in the prosthesis, not only to protect it from being damaged 
but also to increase the amputee’s sense of ownership and mimic the natural closed-loop control of upper-limb 
in healthy subjects. �e lack of such a closed-loop control system is so far one of the main causes of prosthesis 
rejection and abandonment33. Aside from analyzing and understanding the underlying mechanisms of di�erent 
stimuli processing in the brain during sensory feedback in prostheses, we successfully classi�ed the three di�er-
ent conditions with more than 94% accuracy based on the aforementioned �ndings. Despite the good obtained 
accuracy, one of the limitations of this study is that all analyses were obtained from one amputee. We overcome 
this limitation by showing that most of these �ndings have been validated before in other studies with di�er-
ent purposes and goals. Additionally, investigating brain reaction to external sensory stimuli and presenting a 
spatio-temporal brain template to study NOX, MOD and INNO stimulation e�ects using EEG may slightly di�er 
depending on the circumstances and parameters, such as genetic and environmental di�erences, age and gender, 

Figure 6. EEG analysis at the source level for the noxious evoked activity in the �rst 200 ms. �e dynamic 
statistical parametric maps (dSPM)30 was used to compute the reconstructed sources. �e used scale represents 
the EEG amplitude activity in uV. (A) High EEG activity in the centro-parietal lobe a�er 54 ms of stimulation. 
(B) High EEG activity in the central cortex a�er 92 ms. (C) Activation of the PCC a�er 120 ms. (D) Activation 
of the ACC and the parietal lobe a�er 164 ms.
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as well as time since amputation, which present evidences that can be only generalized to some extent across 
multiple amputees.

Methods
Patient recruitment and sensory stimulation. An amputee participant (29 years old) with a bilateral 
amputation for more than �ve-year prior to the current experiments, due to tissue necrosis from septicemia, 
was recruited at Johns Hopkins University in Baltimore to perform a series of an embodied prosthesis control 
as well as sensory feedback experiments. �e participant has a transhumeral amputation of the le� arm and a 
transradial amputation of the right arm. All sensory feedback and prosthesis experiments were performed on the 
participant’s le� arm. EEG data were collected in one session over a period of two hours. For the sensory stimu-
lation, we performed sensory mapping of the amputee’s phantom hand through transcutaneous electrical nerve 
stimulation (TENS) using a 1-mm beryllium copper (BeCu) probe connected to an isolated current stimulator 
(DS3, Digitimer Ltd., Hertfordshire, UK). An amplitude of 0.8 mA and frequency of 2 to 4Hz were used while 
mapping the phantom hand. �e amputee identi�ed areas of phantom activation during sensory mapping and the 
stimulation sites were noted using anatomical and ink markers. For the stimulation experiment, we used 5-mm 
disposable Ag-Ag/Cl electrodes on the residual limb sites that mapped to the thumb/pointer, pinky/ulnar, and 
wrist of the phantom hand34. �e stimulation sites were the same as those used in7. It should be noted that sensory 
mapping was only performed on the le� (transhumeral) residual limb because the amputee participant only wears 
a prosthesis on his le� (transhumeral) side and not his right (transradial) side.

Research governance. �is study was carried out in accordance with the Declaration of Helsinki. All exper-
iments were approved by the Johns Hopkins Medicine Institutional Review Boards. �e participant was asked to 
sign a written informed consent and he agreed to take part in all our experiments. Additionally, the participant 
consented, by signing a written informed document, to have images and recordings taken during the experiments 
used for online open-access publication and presentations.

EEG data recording and experiment. Brain activity correlates of transcutaneous electrical nerve stimula-
tions were investigated by recording 64-channel EEG data from the amputee participant. Di�erent locations on 
the participant’s le� residual limb were identi�ed so that, when stimulated, they activate di�erent regions of the 
participant’s phantom hand. In this EEG experiment, the subject was seated comfortably and was looking at a 
black cross on a white wall. EEG recordings during various stimulations of the subject’s peripheral nerve sites 
corresponding to the thumb/pointer �nger, pinky/ulnar side of the hand, and the wrist of his phantom hand. We 
stimulated the subject’s residual limb in regions that activated his phantom hand using transcutaneous electrical 
nerve stimulation (TENS). �e stimulation included three di�erent conditions for the thumb/pointer and two 
conditions for the other sites. All values of stimulation were based on previous mapping and psychophysics with 
this subject7. Condition 1 (INNO stimulation): Pulse width (PW) = 1 ms, freq = 45 Hz - perceived as a light, 
almost pleasant touch sensation. Condition 2 (MOD stimulation): PW = 5 ms, freq = 4 Hz - perceived as a 
slightly more noticeable/intense touch but not uncomfortable. Condition 3 (NOX stimulation): PW = 20 ms, freq 
= 20 Hz - perceived as a slightly painful and uncomfortable touch sensation. All values of stimulation were based 
on previous mapping and psychophysics with this subject7. All three conditions (INNO, MOD, NOX) were 
applied to the thumb/pointer stimulation site and the INNO and MOD conditions were applied to the pinky/ulnar 
and wrist stimulation sites. Blocks of each stimulation condition were randomly presented as a �ve consecutive 
stimulation pulse trains lasting for 2 s with a delay of 4 s ± 25% jitter between each stimulation pulse train. 
Stimulation condition blocks were presented 4 times, yielding a total of 60 trials for the three conditions. A break 
of 2 min was given between stimulation blocks, and a break of 10 min was given between the di�erent stimulation 
sites. Condition 3 (NOX) was only presented to the thumb/pointer stimulation site, whereas Conditions 1 and 2 
(INNO and MOD) were presented to all stimulation locations (thumb/pointer, pinky/ulnar, and wrist). Condition 
3 was only presented to the thumb/pointer location to reduce the total time the subject experience noxious sensa-
tions. EEG data were collected using a 64 channel EEG device (Neuroscan system) with a 500 Hz sampling rate. 
�e montage was in accordance with the 5% 10/20 system. Electrode impedance was kept below 10 kOhm in at 
least 95% of derivations throughout the experiment. �e amplitude of the transcutaneous electrical nerve stimu-
lation was 1.6 mA for all sites of stimulation and the subject rated each condition’s discomfort level using a comfort 
scale. To ensure that the subject is not substituting/anticipating the stimuli by sight, the EEG data was recorded 
without the subject wearing the prosthesis. �e pulse width and the frequency of the TENS stimulation were 
selected based on extensive psychological experiments to quantify the perception of TENS as was reported in7,34.

EEG signal processing and classification. EEG data were recorded at 500 Hz. �e reference electrode 
was chosen on the vertex and the ground electrode was located on the forehead. Data were processed with special 
designed Jupyter notebooks in Python using both gumpy35 and MNE22,36 toolboxes. For data analysis, 60 trials in 
total for the three stimulation conditions were used. EEG signals were band-pass-�ltered between 0.5 and 70 Hz 
using a fourth-order Butterworth �lter and notch �ltered therea�er at 60 Hz12,37. All signals were extracted from the 
recordings in 1000 ms epochs, and to 100 ms time-window for further analysis. Epochs were baseline-corrected to 
the pre-stimulus mean38. Muscle artifacts were rejected by the Automatic Artifact Rejection (AAR)39 as well as inde-
pendent component analysis (ICA) were used to remove eye movement artifacts40. Additionally, epochs containing 
high-amplitude artifacts or high-frequency muscle noise (visually inspected) were rejected from the analysis using a 
threshold-based method41. EEG data collected over several trials of the same experiment were averaged together. All 
EEG scalp topographies were plotted using the MNE toolbox, by matching channel location with its value given the 
de�ned latency. Topographies are color encoded, where the green or yellow present null values, blue color presents 
negative values, and red encodes positive values; with the color intensity correlates with the channel value. Chosen 

https://doi.org/10.1038/s41598-020-62525-7


9SCIENTIFIC REPORTS | (2020) 10:5606 | https://doi.org/10.1038/s41598-020-62525-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

time latencies in the topographic maps were chosen based on an algorithm22 that computes and �nds the highest 
peaks at each time point from all electrodes. For feature extraction and classifying the three conditions from EEG, 
we implemented and tested a wide range of classical machine learning approaches which are based on hand-cra�ed 
features. Five di�erent classi�ers from the gumpy.classi�cation module35 have been used and evaluated: K-Nearest 
Neighbor (KNN), Support vector machine (SVM), Naive Bayes (NB), Linear Discrimination Analysis (LDA) and 
Quadratic Linear Discrimination Analysis (QLDA). Two di�erent feature extraction methods were used, namely the 
maximum amplitude value computed from each channel for a �xed 100 ms time-window, yielding a total number of 
64 features (number of electrodes) as well as common spatial patterns (CSP)42. �e CSP method yielded to slightly 
lower results (a mean accuracy of 85%) than the maximum amplitude value and was therefore discarded in our 
further analysis. Two di�erent post processing methods were investigated and tested. First, a principal component 
analysis (PCA) with only two components was used for dimensionality reduction and the two components were fed 
therea�er to the di�erent classi�ers resulting in the presented 2D feature space (Fig. 4). Second, we further investi-
gated keeping all the extracted 64 features and we used a feature selection algorithm43 to select the most discrimi-
nating subset of features (channels) as was depicted in Fig. 5. Data were divided into 80% for training and 20% for 
testing. As the total number of 60 trials was small when splitting the data into validation and test sets (solely four trials 
remained for each condition during the test phase), a data augmentation was performed37. �is yielded two separate 
trials from each one of the initial 60 trials (by splitting a 2-sec trial into 2 segments of 1-sec length each), thus form-
ing a total number of 120 trials. It should be mentioned that the 120 trials (a�er data augmentation) were only used 
when performing the PCA, splitting the data, and computing the test accuracy. Overall, a 10-fold cross validation 
was performed on training data to validate the model (validation accuracy) and the remaining 20% were using for 
the test phase. It should be noted for all analyses, balanced accuracy (bACC) was chosen as an evaluation metric for 
the trained models. bACC is calculated as the average of the proportion corrects of each class individually, where the 
same number of examples in each class was used. Overall, we wish to mention that the �rst feature extraction method 
(max amplitude value) combined with PCA using SVM clearly outperformed the other investigated methods, yield-
ing a validation accuracy of more than 95% and a test accuracy of more than 94%. It is worth noting that a grid search 
was performed to select the best hyper parameters of the SVM classi�er for a given 10-fold cross validation.

GFP computation. �e Global Field Power (GFP) is the standard deviation of the potentials at all EEG chan-
nels of an average given reference map44. �e GFP formula is shown below in equation (1): 

µ

=
∑ µ −=

GFP
N

( )

(1)

i i0
N 2

 where µ
i
 is the voltage of the map µ for a given electrode i, µ is the mean voltage of all EEG electrodes of the map 

u and N is the number of electrodes of the map µ. High GFP wis explained by peak EEG activities as well as steep 
gradients. Overall, as illustrated in Fig. 7, NOX stimulation shows higher global �eld power (GFP) compared to 

Figure 7. EEG activity for all 64 electrodes combined with the global �eld power (GPF) shown for the three 
di�erent stimulation conditions. NOX stimulation shows higher GFP than the other two conditions and high 
activity in the somatosensory electrodes (CZ, C4, and C6). MOD shows higher GFP than the INNO and higher 
activity in the parietal lobe electrodes (P2, P4, and P6). Low GFP is shown during the INNO stimulation. �e 
electrodes are color-coded as shown in the 10/20 system in the �gure (up-le�).
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the MOD and the INNO stimulation. �e GFP shows here the amount of activity at each time point in the �eld 
considering the data from all the 64 recording electrodes simultaneously45.

Source localization. MNE toolbox22 combined with gumpy35 Python toolbox were used for EEG processing 
and for source localization. First, cortical surface reconstruction using FreeSurfer46. Second, the forward solution 
and the forward model were computed using the boundary-element model (BEM)47. �erea�er, the regularized 
noise-covariance matrix, which gives information about potential patterns describing uninteresting noise source, 
was computed and estimated. A�erward, we computed the singular value decomposition (SVD) of the matrix 
composed of both estimated noise-covariance and the source covariance matrix. Finally, dynamic statistical par-
ametric maps (dSPM)30 was computed and used for source localization and reconstruction. For dSPM, an ana-
tomical linear estimation approach is applied. �is assumes the sources are distributed in the cerebral cortex48. A 
linear collocation single-layer boundary-element method (BEM)49 is used to compute the forward solution which 
models the generated signal pattern at each location of the cortical surface. A noise-normalized minimum norm 
estimate is estimated at each cortical location resulting in an F-distributed estimation of the cortical current. 
Overall, dSPM identi�es the locations of statistically increased current-dipolar strength relative to the noise level. 
�e sLORETA method for source localization was also implemented for benchmarking purposes and is available 
in the Supplementary Materials.

Data analysis and statistics. All relevant information about the obtained results is presented alongside 
their corresponding �gures. For all statistical analyses, we �rst checked the normality as well as the independ-
ence of the data before applying the adequate statistical test. �e normality of the data (the three conditions with 
the background activity) was checked using one-sample Kolmogorov-Smirnov test, which is a strict normality 
test, and as was suggested in the study by Strauss et al.50. �erea�er, the independence was checked using the 
Mann-Whitney U Test was used (used when data is not normally distributed) and we found that the conditions are 
statistically independent (p-value < 0.0001). As the data was not normally distributed, we applied a Kruskal-Wallis 
test instead of ANOVA50. �e Kruskal-Wallis test was combined with the post-hoc test for multiple group compar-
ison. For all the obtained results, we considered p-value < 0.05 statistically signi�cant to reject the null hypothesis. 
�e so�ware for the statistical analysis was implemented in python using the scipy and stats libraries.

Accession codes. All so�ware codes will be made publicly available at https://github.com/gumpy-bci/gumpy.
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