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Decoding of top-down cognitive 
processing for SSVEP-controlled 
BMI
Byoung-Kyong Min1, Sven Dähne2, Min-Hee Ahn1, Yung-Kyun Noh3 & Klaus-Robert Müller1,2

We present a fast and accurate non-invasive brain-machine interface (BMI) based on demodulating 

steady-state visual evoked potentials (SSVEPs) in electroencephalography (EEG). Our study reports 

an SSVEP-BMI that, for the first time, decodes primarily based on top-down and not bottom-up visual 

information processing. The experimental setup presents a grid-shaped flickering line array that the 
participants observe while intentionally attending to a subset of flickering lines representing the shape 
of a letter. While the flickering pixels stimulate the participant’s visual cortex uniformly with equal 
probability, the participant’s intention groups the strokes and thus perceives a ‘letter Gestalt’. We 
observed decoding accuracy of 35.81% (up to 65.83%) with a regularized linear discriminant analysis; on 
average 2.05-fold, and up to 3.77-fold greater than chance levels in multi-class classification. Compared 
to the EEG signals, an electrooculogram (EOG) did not significantly contribute to decoding accuracies. 
Further analysis reveals that the top-down SSVEP paradigm shows the most focalised activation 

pattern around occipital visual areas; Granger causality analysis consistently revealed prefrontal top-
down control over early visual processing. Taken together, the present paradigm provides the first 
neurophysiological evidence for the top-down SSVEP BMI paradigm, which potentially enables multi-

class intentional control of EEG-BMIs without using gaze-shifting.

BMIs allow a systematic decoding of brain states for communication, control, and monitoring1–4. Among sev-
eral neuroimaging techniques, EEG has been shown to be a practical and versatile tool for operating general 
BMIs because of its excellent temporal resolution (approximately 1 ms), non-invasiveness, and portability3,5,6. 
EEG-based BMI studies7 have established a number of frequently used robust paradigms, including event-related 
P3008,9, slow cortical potential10, mu rhythm11,12, and SSVEPs13. Among these paradigms, SSVEP-BMIs provide 
very accurate high temporal and spectral resolution information (usually less than 0.1 Hz)14 at high information 
transfer rates (ITRs)15; depending on the number of classes, even though ITR is high, accuracy can still be too 
low for e�ective communication16. An SSVEP is a physically driven electrical oscillatory response in the brain, 
induced by the repetitive presentation of a visual stimulus14; occipital SSVEP can be detected at the same �icker 
frequency (and harmonics) as the presented �ickering stimulus, a paradigm that has many applications in BMI 
and neurotechnology17–19. �e basic concept for an SSVEP-mediated BMI system dates back to the late 1970s20, 
and the application of SSVEPs to BMIs was introduced almost 20 years later21. �e SSVEP-BMI has been further 
generalized to encode user commands in �ickering stimuli that induce SSVEPs at di�erent frequencies. �e user 
chooses one of the commands by focusing attention on one of the oscillating stimuli, and by analyzing the sub-
sequent SSVEPs, the BMI system tries to decode which stimulus the user chose15,22. As SSVEP signals are trig-
gered by external stimuli, which are more robust and easier to control than internally generated stimuli, SSVEPs 
can be potent and stable BMI control signals. Moreover, SSVEP-BMI systems can be used by more than 90% of 
users without much training22,23. Nevertheless, SSVEP-based BMIs still have several limitations to overcome. 
For instance, the �icker stimulation can produce visual fatigue or discomfort24. In addition, most SSVEP-based 
BMIs are not free from gaze-shi� issues25–28. �erefore, an SSVEP-based BMI is usually regarded as a dependent 
BMI, because it requires some neuromuscular control of the eyes and/or head29. In addition, there is a limit to the 
number of classes that are reliably decodable using conventional EEG-based BMIs30,31. �erefore, a breakthrough 
allowing the decoding of multi-class intention with su�cient accuracy would be highly welcomed.
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In the present study, we advance the classical (occipital or bottom-up) SSVEP paradigm15,22,32–36, allowing 
a greater variety of human intentional top-down processes to be identi�ed in a signi�cantly more subtle man-
ner for intentional BMI control. For this purpose, we introduce a �ickering grid-shaped line array (Fig. 1 and 
Supplementary video clip 1), from which the shape of the symbol intended to be communicated (e.g., di�erent 
letters, numbers, or symbols) can be perceived by the study participant as a “symbol Gestalt” using selective visu-
ospatial attention. Gestalt means “the shape of the whole”, and the underlying assumption of the Gestalt school of 
thought is that psychological phenomena are better understood when viewed as organized wholes, rather than 
when broken down into their component parts37. Before the rise of post-behaviorist cognitive psychology, the 
Gestalt psychologists (who actively emerged from Germany in the 1920s to 1940s) resisted behaviorism, with 
this di�ering approach to understanding behavior. A user places his/her attention on the randomly �ickering 
sets of pixels and his/her brain constructs the desired percept by top-down processing, i.e., the speci�c shape is 
cognitively formed from combinations of �ickering line con�gurations (for an overview, see Fig. 1b). Although 
most SSVEP-based BMI studies have so far employed a single stimulation frequency to encode each selection, 
in the present study, we adopt a multiple-frequency stimulation method. In earlier studies, dual-frequency38, 
three- or four-frequency19,39, and more-than-four-frequency27,28,36 stimulations have been proposed to enhance 
SSVEP-based BMI information transfer, but these methods are still restricted in their ability to express a variety 
of symbols and are accompanied by unavoidable gaze-shi�. In principle, symbols or letters can be encoded by a 
combination of selected line segments (individually �ickering at their own frequencies), which are components of 
the SSVEP-inducing grid-shaped line array. In order to demonstrate the proposed principle for an example with 
six stimulus categories, we suggest a machine learning decoding framework that can resolve multiple top-down 
modulated responses to external stimulation. Using a cross-validation method40, new, previously unseen EEG 
trials in the prediction phase were classi�ed based on extracted (hyper-) parameters from labelled training EEG 
trials in the calibration phase (see Fig. 2 for the work�ow). We then compared the decoding accuracies, activation 
patterns, and directed functional connectivities of the newly proposed top-down SSVEP condition with those 
of a classical SSVEP condition (that we refer to as bottom-up; see Supplementary video clip 3). To investigate 
an intermediate e�ect between these top-down and bottom-up conditions, we included an intermediate exper-
imental condition, in which the luminance of task-irrelevant �ickering lines is reduced by 1/10 of the original  
(see Supplementary video clip 2). Although changes in the luminance of task-irrelevant �ickering lines still 
require knowledge of the target stimulus (i.e., task-relevant �ickering lines), we anticipated gradual (or system-
atic) changes in both decoding accuracies and neurophysiological EEG measures from bottom-up to intermediate 
and from intermediate to top-down conditions. �erefore, although the intermediate condition is irrelevant for 
BMI-mediated free communication, we introduce it in the present study.

Results
Decoding accuracy. Twenty healthy volunteers participated in this study, which consisted of the three experi-
mental conditions (i.e., top-down, intermediate, and bottom-up SSVEP conditions). Each experimental condition 
had six classes of stimuli (see Table 1), and each class was composed of 40 trials. Consequently, each experi-
mental condition had 240 trials. Although the chance level is theoretically 21.19% based on these parameters41,  
we designate the empirical chance level for the present study as the six-class choice accuracy computed by 
randomly shu�ing all the obtained data, which is 17.44% on average. We observed signi�cant di�erences in 
decoding accuracies across the classi�cation models for all three experimental conditions: top-down SSVEP 
(F(3,57) =  49.684, p <  0.0001), intermediate SSVEP (F(3,57) =  81.938, p <  0.0001), and bottom-up SSVEP 
(F(3,57) =  138.197, p <  0.0001). Post hoc comparisons revealed that our novel top-down SSVEP paradigm for 
multi-class decoding of EEG signals by regularized linear discriminant analysis (rLDA) with shrinkage8,40,42 

Figure 1. A schematic design of an SSVEP-inducing grid-shaped line array. (a) Grid-shaped line array 
consisting of three rows (R1, R2, and R3) and three columns (C1, C2, and C3) of individually �ickering lines. 
(b) Example of an attended �ickering line composite (in red) when a participant pays particular attention to the 
Korean letter ‘⊤’ while looking at the �ickering grid-shaped line array.



www.nature.com/scientificreports/

3Scientific RepoRts | 6:36267 | DOI: 10.1038/srep36267

performed well; i.e., classi�cation was, on average, 2.05-fold (35.81%) and as high as 3.77-fold (65.83%) greater 
than chance (i.e., 17.44%; t(19) =  7.283, p <  0.0001, false discovery rate [FDR] corrected). �e decoding accura-
cies from each classi�cation model (i.e., rLDA of EEG signals, randomly-shu�ed rLDA of EEG signals, rLDA of 
EOG signals, and canonical correlation analysis (CCA)43 of EEG signals) were statistically compared using two-
tailed paired t-tests, and multiple comparisons were corrected using the FDR (detailed in the Analysis method 
section). When the EEG signals from just three occipital electrodes were computed, the decoding accuracy 
was signi�cantly enhanced (42.52%; t(19) =  − 2.685, p <  0.05). In comparison, CCA of the EEG signals yielded 
decoding accuracies that were not signi�cantly di�erent from chance (19.23%; t(19) =  − 1.403, n.s., FDR cor-
rected). �erefore, it is noteworthy that LDA provided signi�cantly improved decoding accuracies in the top-
down condition compared to CCA (t(19) =  7.955, p <  0.0001, FDR corrected). When using LDA to analyze EOG 
signals, decoding accuracies were not signi�cantly di�erent from chance (t(19) =  0.742, n.s., FDR corrected). 
�erefore, EOG signals did not signi�cantly contribute to decoding accuracies in the top-down SSVEP condition. 
In accordance with this observation, decoding accuracies by LDA of EOG signals (16.69%) were signi�cantly 
lower than those by LDA of EEG signals (35.81%) in the top-down SSVEP condition (t(19) =  8.445, p <  0.0001, 
FDR corrected).

As shown in Fig. 3a, systematic enhancement of classification accuracies by LDA was observed from 
top-down (35.81%) to intermediate (56.73%) and �nally to bottom-up condition (75.44%; F(2,57) =  38.885, 
p <  0.001), which were all signi�cantly greater than chance. �e decoding accuracies of the EEG signals from 
only the three occipital electrodes were signi�cantly increased in the intermediate condition (60.02%; t(19) =  − 
2.094, p <  0.05) but not in the bottom-up condition (73.79%; t(19) =  0.855, n.s.). �e decoding accuracies using 
EOG signals only were not signi�cantly di�erent from chance in either the intermediate (t(19) =  − 2.035, n.s., 
FDR corrected) or bottom-up conditions (t(19) =  − 5.685, n.s., FDR corrected) in which the same grid-shaped 
stimulus-con�guration as in the top-down condition was used. In accordance with the top-down condition 
results, EEG signals yielded signi�cantly higher decoding accuracies than EOG signals in both intermediate 
(t(19) =  9.181, p <  0.0001, FDR corrected) and bottom-up conditions (t(19) =  10.967, p <  0.0001, FDR corrected). 
�e decoding accuracies using CCA were signi�cantly higher than chance in both the intermediate (t(19) =   
− 12.2817, p <  0.0001, FDR corrected) and bottom-up conditions (t(19) =  − 12.584, p <  0.0001, FDR corrected). 
Moreover, the decoding accuracies using CCA gradually increased from the top-down (19.23%) to the interme-
diate (35.04%) and further to the bottom-up condition (53.79%; F(2,57) =  68.463, p <  0.001). However, similarly 

Figure 2. Schema for the work�ow of a top-down SSVEP paradigm for multi-class decoding BMI 
technology. (a) EEG recording, (b) Calibration by supervised machine learning from training EEG trials, 
and (c) Decoding process on test EEG trials to correctly predict participant perception. When a participant 
conceives the letter ‘⊤’, the corresponding �ickering line composite on the grid-shaped array is subsequently 
attended and a classi�cation algorithm using feature extraction (i.e., rLDA), calibrated through supervised 
machine learning, enables the successful decoding of the originally conceived letter ‘⊤’. FFT stands for ‘fast 
Fourier transform’ and rLDA represents ‘regularized linear discriminant analysis’.

Index Stimulus Horizontal line frequency Vertical line frequency

1 ┐ 5 Hz (R1 in Fig. 1a) 7.5 Hz (C3 in Fig. 1a)

2 └ 7 Hz (R3 in Fig. 1a) 5.5 Hz (C1 in Fig. 1a)

3 ⊥ 7 Hz (R3 in Fig. 1a) 6.5 Hz (C2 in Fig. 1a)

4 ⊤ 5 Hz (R1 in Fig. 1a) 6.5 Hz (C2 in Fig. 1a)

5 ⊢ 6 Hz (R2 in Fig. 1a) 5.5 Hz (C1 in Fig. 1a)

6 ⊣ 6 Hz (R2 in Fig. 1a) 7.5 Hz (C3 in Fig. 1a)

Table 1.  Letter-shaped stimuli and the �ickering frequencies of their corresponding line composites.
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to the top-down condition, LDA yielded signi�cantly higher decoding accuracies than CCA in both the inter-
mediate (t(19) =  6.453, p <  0.0001, FDR corrected) and bottom-up conditions (t(19) =  8.360, p <  0.0001, FDR 
corrected).

Activation pattern and Granger-causal connectivity. Based on the activation patterns of neural 
sources that were obtained from analyzing the BMI classi�er, the top-down SSVEP condition resulted in a dis-
tinctive topographical distribution of activation, which showed a higher degree of focus around the occipital 
electrodes. Conversely, the bottom-up SSVEP condition showed a more dispersed BMI feature activity (Fig. 3b). 
�e intermediate SSVEP condition showed a moderately focalised BMI-feature scalp distribution in between 
that of the other two conditions. In addition, the maximum amplitudes of these activation-pattern maps sys-
tematically decreased from the bottom-up (averaged maximum, 0.281) to the intermediate (averaged maxi-
mum, 0.187), and �nally to the top-down condition (averaged maximum 0.093; F(2,57) =  49.117, p <  0.001, see 
Fig. 3b). Furthermore, it is noteworthy that only the top-down SSVEP condition showed anterior prefrontal (i.e., 
Brodmann’s area (BA) 10) regularization over the occipital visual association region BA 18 (see the direction of 
arrows in Fig. 3c) when Granger causality analysis44 was conducted. �e intermediate and bottom-up conditions 
demonstrated the opposite directional information �ow: from the occipital to the frontal region. In addition, 
there was strong crosstalk between the le� and right anterior prefrontal areas (BA 10L and BA 10R), particularly 

Figure 3. Decoding accuracies, topographical activation patterns, and Granger causality. (a) Comparison 
of decoding accuracies across EEG rLDA (red bars), randomly shu�ed EEG rLDA (blue bars), EOG rLDA 
(green bars), and EEG CCA (purple bars). �e accuracy of random selection (i.e., 17.44%) is computed by the 
randomly shu�ed rLDA method (blue bars), and error bars indicate ± 1 standard error of the mean across 
participants. *p <  0.0001, two-tailed paired t-tests were conducted across these comparisons, and multiple 
comparisons were corrected using the false discovery rate (FDR). (b) Topographical activation patterns of 
neural bases for BMI features are computed for the top-down, intermediate, and bottom-up SSVEP paradigms. 
�e degree of di�erences in normalized classi�er weights is depicted in a coloured scale; large weights are 
strongly related to the task condition. Note the gradual decrease in the amplitude of activation patterns from 
the top-down to bottom-up SSVEP paradigms. Black dots represent the electrode positions. (c) Directional 
information �ows between BA 10 (anterior prefrontal cortex) and BA 18 (occipital visual association cortex) 
by Granger causality analysis. Using the estimated time courses of the two ROIs, the directed transfer function 
(DTF) analysis identi�ed directional information �ow across cortical sources. Note the directions of the arrows 
that indicate the direction of information �ow. �e coloured scale and the line thickness represent the degree 
of directed functional connectivity (ranging from 0 to 1). Only statistically signi�cant directed functional 
connectivity patterns are illustrated. �e view of the topography is from the vertex, with the nasion at the top of 
the image.
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in the top-down SSVEP condition. All of these directed functional connectivity measures were reliably con�rmed 
by additional observations using time-reversed data45,46 (see the Supplementary information). However, neither 
the intermediate nor the bottom-up SSVEP conditions showed true directed functional connectivity because 
their time-reversal results in Granger causality were not signi�cantly di�erent from those of the original data, 
which is indicative of spurious causal relations, such as a volume conduction e�ect45,46.

Discussion
�is study proposes a novel approach to decode a user’s multi-class intention in the context of SSVEP-BMI. 
It is noteworthy that EOG signals could not explain the observed e�ects. Although the decoding accuracy of 
the grid-shaped top-down SSVEP paradigm can still be improved as compared with other SSVEP-based BMIs 
(Table 2), it has shown promising �rst results toward future BMI technology able to recognize complex multi-class 
intention without gaze-shi�ing (i.e., covertly). �e proposed grid-shaped SSVEP-based BMI technique is sub-
stantially di�erent from classical SSVEP-BMI paradigms in the following aspects.

First, when inspecting the neural activation patterns obtained from analyzing the BMI classi�er47, the discri-
minant neural correlates of the top-down SSVEP paradigm are more localized around the occipital area (Fig. 3b), 
suggesting more focused visuospatial attention processing. Previous studies consistently reported that antici-
patory biasing of visuospatial attention by task-strategy focalizes brain activity on the occipital area48,49, which 
may re�ect preparatory top-down processing in early information processing stages in occipital visual areas50,51. 
Since participants had to allocate more selective visuospatial attention (i.e., increased top-down control) to the 
speci�c �ickering lines corresponding to the conceived letter and simultaneously inhibit information processing 
for the task-irrelevant �ickering lines, the activated occipital visual area is more focalized during the top-down 
condition.

Second, strong communication between the le� and right anterior prefrontal areas (i.e., BA 10L/R) is only 
observed during the top-down SSVEP condition, in which robust prefrontal cortical (PFC)-dependent top-down 
control over the occipital visual association area BA 18 is detected by Granger causality analysis (Fig. 3c). It 
is likely that prefrontal top-down processing in�uences low-level early visual processing stages. BA 10 is the 
anterior prefrontal area, which is involved in the cognitive processing of attention52, semantic monitoring53, 
working memory54, rule learning55, decision-making56, inhibitory control57, and the compromised functioning 
of top-down regulation58. On the other hand, BA 18 is a�liated with the extrastriate visual cortex, where the 
visual information from the primary visual cortex (speci�cally visuospatial selective attention59) is further pro-
cessed. Since attention enhances extrastriate neuronal responses to a stimulus at one spatial location in the visual 
�eld60, prefrontal top-down in�uence when placing one’s attention selectively on a corresponding line combina-
tion among six �ickering lines might downregulate BA 18 activity. In contrast, the intermediate and bottom-up 
SSVEP conditions show the opposite direction of information �ow: from the occipital to the frontal cortex. �ese 
observations re�ect the di�erence between the top-down SSVEP condition and the passively induced bottom-up 
processing of the typical occipital SSVEP paradigm that is physically driven by externally �ickering visual stim-
uli. However, this is not the case in the top-down SSVEP condition, because the stimulus-driven (bottom-up) 
properties of the early visual cortices are common across the six class-stimuli. Instead, higher-order cognitive 
processing stages such as those in prefrontal regions might be involved as a control centre for selectively attending 
to a speci�c line composite structure across this similar stimulus, based on the intentionally conceived letter. It 
has been consistently reported that stimulus-driven attention processes are neuroanatomically dissociable from 
the intentionally driven top-down processes of visuospatial selective attention61. �erefore, our �ndings provide 

Study Stimuli Task
Number of 
Electrodes

Number of 
Commands Accuracy ITR Gaze-shi�

�e present study Line-grid
Visual attention 

(N =  20)
3 6* 42.5% (20.0–63.3%) 3.2 (0.1–9.4) No

Kwak et al.17 LED
Exoskeleton 

control (N =  11)
8 5 91.3% (81.4–98.6%) 32.9 (19.6–51.0) Yes

Chen et al.91 Characters
Visual attention 

(N =  12)
9 40 91.0% (77.0–99.5%) 267.0 (199.8–315.0) Yes

Chen et al.26 Characters
Visual attention 

(N =  10)
9 45 88.7% (73.3–98.9%) 61.0 (45.0–75.0) Yes

Nakanishi et al.92 Rectangles
Visual attention 

(N =  13)
16 32 91.4% (84.4–98.4%) 166.9 (126.3–192.3) Yes

Chen et al.93 Rectangles
Visual attention 

(N =  10)
64 8 93.8% (87.5–100%) 33.8 (28.1–40.0) Yes

Bin et al.36 Rectangles
Visual attention 

(N =  12)
9 6 95.3% (83.3–100%) 58 (40–67) Yes

Müller-Putz et al.19 LED
Prosthesis 

control (N =  4)
4 4 72.5% (44.0–88.0%) 19.7 (4.1–34.2) Yes

Martinez et al.94 Checkerboard
Navigating game 

(N =  5)
6 4 96.5% (82.3–100%) 29.6 (17.0–38.7) Yes

Table 2.  Comparison of characteristics of recent SSVEP-based BMI systems. *More expandable, 
Information transfer rate (ITR) in bit/min, N: number of participants, LED: light-emitting diode, Gaze-shi�: 
whether the visual angle of the stimulus range can eventually induce macroscopic gaze-shi�.
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neurophysiological evidence that the present paradigm requires top-down control (e.g., selective attention pro-
cessing) when users intend to conceive of letters for task performance. �e interaction between PFC-dependent 
top-down control and occipital bottom-up processing might be anatomically accomplished through the 
fronto-occipital fasciculi, providing reciprocal connections between the PFC and the occipital cortices62. �is 
notion is in line with reports that slow oscillatory activity is associated with long-distance neural network func-
tion63, since we observed such directed fronto-occipital functional connectivity in the theta band. �e extensive 
and reciprocal connections between the PFC and all other brain regions provide a neuroanatomical substrate for 
the role of the PFC in controlling diverse cognitive processes64.

In addition, it is noteworthy that CCA, which is commonly used for decoding SSVEP signals26,36, showed 
lower performance for the proposed top-down SSVEP condition compared to rLDA (Fig. 3a; the intermedi-
ate SSVEP condition consistently shows moderate CCA decoding accuracy between top-down and bottom-up 
SSVEP conditions). �e CCA approach has an advantage for classi�cation when the SSVEPs are physically driven 
by the repetitive presentation of a visual stimulus at a given �ickering frequency. As shown in Fig. 3a, the decod-
ing accuracies using CCA gradually increased from the top-down to bottom-up conditions. �ese di�erent char-
acteristics of the typical SSVEP-BMI classi�cation technique also provide additional evidence that the proposed 
top-down SSVEP paradigm is quite distinct from the classical bottom-up SSVEP paradigm. �e extracted fea-
tures of the top-down SSVEP paradigm seem to be highly associated with higher-order top-down attributes as 
opposed to the bottom-up properties of classical SSVEP stimuli.

Taken together, the proposed grid-shaped top-down SSVEP paradigm provides potential to expand 
the gaze-shift-free intention recognition BMI repertoire. This technique has further advantages. First, the 
SSVEP-based BMI conveys very precise information14 and has a high ITR, requiring the fewest number of record-
ing electrodes possible15,65, which enables this technology to be easily wearable. Indeed, since only three occipital 
electrodes can e�ciently represent discriminative features in the top-down SSVEP BMI paradigm, this system 
may feasibly be used as a wearable BCI device. In addition, users do not need to explicitly move their eyes; as 
shown above, communication is more successfully achieved by decoding EEG than EOG. �erefore, the extracted 
physiological signature of this technique re�ects genuine brain activity, not eye movement. Some of the recently 
proposed SSVEP-mediated BMIs inevitably require eye movements for attributing focal attention to a �ickering 
symbol25–28. �is may alternatively be detectable by an eye tracker; however, the present technique avoids the 
necessity of macroscopic eye movements by using a small-sized grid-shaped line array corresponding approxi-
mately to the foveal visual angle.

�erefore, the proposed top-down SSVEP paradigm may become a potent future technology for intentional 
control of a multi-class BMI. However, this paradigm needs further improvement in subsequent studies. �e 
limitations of this study are as follows. First, the decoding accuracy and ITR of the grid-shaped top-down SSVEP 
paradigm have room for improvement. For example, by using a shorter epoch size and selecting optimal elec-
trodes for feature-discrimination, the ITR and accuracy, respectively, could be further enhanced. Second, as 
users must look at �ickering stimuli in order to generate such SSVEPs, they inevitably experience eye-fatigue24. 
However, this can be overcome using high-frequency SSVEP technology29,66. �e high-frequency �ickering pro-
duces much less visual fatigue than that at lower frequencies67,68, making the SSVEP-based BCI a more comfort-
able and stable system67. However, it still remains to be further studied for practical BMI application. �ird, since 
the grid-shaped SSVEP technique is currently implemented using the Korean letter system, a study in which it is 
transferred to other languages is required for its versatile usage. Fourth, the number of letters that can be formed 
through grid-shaped stimulation is currently limited. Further re�nement, by adding more rows and columns to 
the grid-shaped line array (which enables decoding of a larger set of letter-like shapes), would, in principle, allow 
the technology to be used for a variety of accurate mind-reading applications ranging from communication and 
neuro-rehabilitation to general consumer electronics. Unlike most previous studies in SSVEP-based BMIs, which 
generally use fewer than four �ickering frequencies that may even be located in di�erent parts in the visual �eld15 
and thus require ocular movements, the present top-down SSVEP uses a highly compact stimulus presentation 
size. �erefore, our novel paradigm provides multi-class intention decoding, which could in principle decode 
a combinatorial number of letter-like con�gurations – a technique that may ultimately become useful for both 
patients and healthy user groups. In particular, our gaze-independent SSVEP-BMI paradigm will bene�t for para-
lyzed end-users su�ering from amyotrophic lateral sclerosis (ALS) or complete locked-in syndrome.

As compared with our �ndings of decoding covert attentional shi� to subsets of external stimuli, there are 
other recent studies decoding visuospatial attention directly from the intrinsically driven brain activity patterns 
evoked by attention69–73. As our study demonstrates the possibility of seamlessly decoding human top-down pro-
cesses, if a further re�ned grid-shaped line array is developed and combined with a more elaborated classi�cation 
method, a recent study74 provides advances in extending previous studies of decoding visuospatial attention69–73, 
which were limited to decoding up to four discrete locations/classes. �e authors found a neuronal signature of 
direct two-dimensional access to the spatial location of covert attention in macaque prefrontal cortex74. Together, 
these e�orts in both externally triggered and internally driven manners may cooperatively open new perspectives 
to decoding technology in a multi-class and continuous mental representation space.

Methods
Participants. Twenty healthy subjects (10 female; mean age 25.7 y) participated in this study, which was 
conducted in accordance with the ethical guidelines established by the Institutional Review Board of Korea 
University and the Declaration of Helsinki (World Medical Association, 2013). All experimental protocols were 
approved by the Institutional Review Board of Korea University (No. KU-IRB-13–43-A-2). Participants provided 
informed consent prior to the start of the experiment. All had normal or corrected-to-normal vision.
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SSVEP-inducing grid-shaped line array. In order to present a mentally generated letter within the par-
ticipant’s restricted visual angle to evoke the corresponding SSVEP, a 6 cm ×  6 cm grid-shaped line array was 
designed (see Fig. 1 and Supplementary video clip 1). In this array, three rows (R1, R2, and R3 in Fig. 1a) and 
three columns (C1, C2, and C3 in Fig. 1a) of lines with mean luminance of 136.26 cd/m2 were lit on a black 
monitor (Full HD LED 27-in., S27B550, Samsung, Seoul, Korea). Each line had a width of 6 mm and the distance 
between two adjacent rows or columns was 1 cm. �is grid-shaped line array was within the visual angle of 6.4° 
at a distance of 65 cm75, falling on the retinal region centred at the fovea (the most sensitive portion of the retina) 
without macroscopic eye-movement. In order to generate individual SSVEPs based on each �ickering line, each 
row and column had an individual �ickering frequency ranging from 5 to 7.5 Hz (see Table 1 and Fig. 1a), which 
have been shown to be e�ective frequencies for inducing SSVEPs in humans76,77. �e frequencies were assigned 
randomly to each line in the overall array. A sampled sinusoidal stimulation method26 was used to implement 
visual stimulus presentation on the LED screen for eliciting SSVEP responses.

�e underlying idea of decoding a participant’s top-down modulated responses to external stimulation by 
means of SSVEPs induced by this grid-shaped line array was as follows. When a participant paid attention to 
a subset of �ickering lines representing the shape of a letter or symbol, the corresponding frequencies of those 
lines were expected to be detected as the dominant SSVEP features. �e frequencies driving the SSVEP signals 
could be analyzed using a pattern recognition algorithm (detailed in the Analysis method section) and decoded to 
identify the symbol shape intended by the participant. �e experiment consisted of three conditions: top-down, 
intermediate, and bottom-up SSVEP. In order to make all the conditions’ results comparable, the grid-shaped line 
array structure discussed above was used in all three conditions. In order to rule out luminance e�ects across the 
top-down and bottom-up conditions, overall stimulus luminance was maintained as closely as possible. However, 
in the bottom-up condition, all lines belonging to the same object had the same �ickering frequency (5, 5.5, 6, 
6.5, 7, or 7.5 Hz; see Supplementary video clip 3). In an intermediate SSVEP condition between the top-down and 
bottom-up conditions, the luminance of task-irrelevant �ickering lines was reduced by 1/10 of the original (see 
Supplementary video clip 2). �us, the task-relevant lines were much brighter, in order to facilitate the partici-
pant’s recognition of the appropriate symbol. Each condition comprised 4 blocks with a short break in between; 
each block included 60 trials. In each block, each of 6 Korean letters (phonemes) was presented 10 times in a 
random order. �e inter-trial intervals ranged from 1000 ms to 1500 ms, centred at 1250 ms. A�er a 1 s auditory 
cue pronouncing the Korean letter to which a participant was required to attend, and a subsequent 500 ms bu�er 
period, the grid-shaped line array was presented for 5 s. During these 5 s, the participant was expected to focus 
his/her attention on the instructed combination among all 6 �ickering lines. In the bottom-up SSVEP condition, 
an auditory cue (an analogue instruction sound) was presented in a random order to control for possible linguis-
tic region activation induced by the spoken instruction itself. In other words, a randomly selected auditory cue 
from the six Korean letters was presented during the bottom-up SSVEP condition, in which all six line segments 
in the grid-shaped line array �ickered at the same frequency as a single object. Using the same stimulus object 
(i.e., the grid-shaped line array), we accomplish a classical SSVEP paradigm (i.e., a single �ickering object is pre-
sented to evoke SSVEPs)22,32. �rough this bottom-up experimental design, we tried to minimize any confound-
ing e�ects possibly introduced by di�ering stimulus size and shape, and thus to make its results comparable with 
the observations from both the top-down and intermediate conditions.

EEG acquisition. �e EEG was measured using a BrainAmp DC ampli�er (Brain Products, Germany) with 
32 Ag/AgCl electrodes in an actiCAP (Brain Products, Germany) in accordance with the international 10–10 
system. An electrode was placed on the tip of the nose as reference, and a ground electrode was placed at elec-
trode AFz. Eye movement activity was monitored with an EOG electrode placed sub-orbitally to the le� eye, 
and vertical and horizontal electro-ocular activity was computed using two pairs of electrodes placed vertically 
and horizontally with respect to both eyes (i.e., Fp1 and EOG for the vertical EOG, F7 and F8 for the horizontal 
EOG). �e EOG was used to track gaze-shi�s. Electrode impedances were maintained below 5 kΩ prior to data 
acquisition. �e EEG was recorded at 500 Hz.

Analysis methods. A supervised machine learning method78 was trained during a calibration phase using 
labelled training EEG trials. �e task of the multi-class classi�er is to extract a task-relevant signal from the 
EEG, which is used to assign the recorded samples to a given stimulus category7. In the present study, rLDA 
with shrinkage8,40 was applied to channel-wise computed power spectral densities. �e power spectral densi-
ties of all channels were obtained by fast Fourier transform (FFT) using the Berlin Brain-Computer Interface 
(BBCI) toolbox79. Classical LDA is optimal in the sense that it minimizes the risk of misclassi�cation for new 
samples drawn from known Gaussian distributions80. Particularly, rLDA is a powerful and robust machine learn-
ing technique that yields excellent results for single-trial event-related potential classi�cation, which are superior 
to classical LDA when the ratio of features to trials is low8,40,42. �e power spectral densities ranging from 5 Hz 
to 13.5 Hz (in 0.5 Hz increments) of the 5 s EEG signals were used for feature extraction. �is frequency range 
includes the stimulus �ickering frequencies along with the sum of letter-corresponding combination frequen-
cies. A�er �xing the parameters of the rLDA on the training data, the resulting calibrated classi�er was used for 
out-of-sample prediction, i.e., novel unseen EEG trials could be decoded (Fig. 2). We performed 4-fold chron-
ological cross-validation40 to obtain out-of-sample classi�cation performance; we thus designated 180 trials for 
training and the remaining 60 trials for testing, out of all 40 trials per stimulus per participant (i.e., 240 trials 
including all stimuli per participant). First, all trials were chronologically split into 180 and 60 trials. During the 
cross-validation process, model (hyper-) parameters were chosen using the 180 trials and then the remaining 60 
trials were tested using the trained model. �is procedure was iterated 4 times to provide di�erent combinations 
of training and test data sets and the resulting decoding accuracies were averaged. �is decoding procedure was 
performed separately for each participant. �e decoding accuracy was computed based on the signals of all 30 
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electrodes. In order to compare this result with the accuracy of the EEG signals from the three occipital electrodes 
(i.e., Oz, O1, and O2), the decoding accuracy of these three channels was also computed. �e decoded signals 
were evaluated in terms of whether the information encoded in the set of attended �ickering lines could be suc-
cessfully reconstructed, i.e., whether the Korean letter that the participant was requested to conceive was correctly 
decoded. For the six-class classi�cation, the rates of successful classi�cation of the test data were compared across 
models for evaluating the decoding performance. In addition, rLDA-based classi�cation was also performed 
using the EOG signals only, in order to compare EOG decoding accuracy with that based on EEG signals. We also 
conducted CCA36,81 on the same dataset to compare with the classi�cation e�ciency of rLDA. CCA is a multivari-
able statistical method to measure the linear correlation relationship between two sets of variables. Since CCA has 
been most frequently and successfully used in typical bottom-up SSVEP-based BMIs26,36, the results of this analy-
sis would provide a solid comparison between classical bottom-up and the proposed top-down SSVEP paradigms 
in this work. In order to statistically examine whether the decoding accuracies were signi�cantly di�erent across 
the following models, the accuracies were analyzed with a repeated-measures analysis of variance (ANOVA) with 
one within-subjects factor: labeled ‘classi�cation model’ (rLDA of EEG, randomly-shu�ed rLDA of EEG, rLDA 
of EOG, and CCA of EEG). When necessary, the Greenhouse–Geisser correction was used. If statistical signi�-
cance was observed, two-tailed paired t-tests were performed as post hoc pairwise comparisons: (1) rLDA of EEG 
vs. randomly-shu�ed rLDA of EEG, (2) rLDA of EEG vs. rLDA of EOG, (3) rLDA of EEG vs. CCA of EEG, (4) 
rLDA of EOG vs. randomly-shu�ed rLDA of EEG, (5) CCA of EEG vs. randomly-shu�ed rLDA of EEG, and (6) 
rLDA of EOG vs. CCA of EEG. �e randomly shu�ed rLDA decoding accuracies were computed on the same 
training data but with randomly shu�ed labels; thus its decoding accuracy represented the chance performance 
of the six-class classi�cation. In addition, a one-way ANOVA was applied for testing any e�ects across the three 
experimental conditions. A FDR of q <  0.282 was used to correct for multiple comparisons, since q-values between 
0.1 and 0.2 a�er FDR correction are known to be acceptable for this purpose83. All analyses were performed using 
MATLAB (ver. R2015b, MathWorks, USA) or SPSS Statistics (ver. 22, IBM, USA).

In order to gain better understanding of the classi�er with respect to the neurophysiological basis of the 
extracted task-relevant signal, an ‘activation pattern’ approach47 was adopted in the present study (see Fig. 3b). 
�e learned parameters of linear classi�ers such as rLDA and CCA (i.e., their weight vectors) cannot be inter-
preted with respect to the origin of the signal of interest because the parameters of the models are a function of the 
task-relevant signal and the task-uninformative signals (i.e., noise signals)8,40,47. �erefore, in order to visualize 
how the extracted signal is encoded in the features that are used by the classi�er, a so-called ‘activation pattern’ 
has to be computed47,84. Assuming that the task-relevant and task-uninformative signals are uncorrelated, the 
activation pattern is given by the covariance between the classi�er output and the time-course of individual 
features47. In order to make the activation patterns comparable across conditions, we computed their correla-
tion instead of their covariance. We estimated an activation pattern involving all scalp electrodes by computing 
the correlation between the continuous trial-wise classi�er output and the time-course of spectral features (i.e., 
trial-wise spectral power in the chosen frequency bins) from all channels. In order to arrive at a single activation 
pattern for each condition that could be visualized as a scalp map, the activation patterns were averaged across 
frequency bins and participants (see Fig. 3b).

�e spatiotemporal distribution of brain activity and network behaviour provide signi�cant psychophysio-
logical information. Given that it is important to image functional connectivity to understand brain function85,86, 
Granger causality44 analysis was also conducted in this study. In particular, the directed transfer function (DTF) 
has been developed to describe causality among an arbitrary number of signals87. Granger causality analysis has 
shown potential for non-invasively delineating brain network connectivity88. Using the eConnectome so�ware86, 
functional connectivity was mapped for each experimental condition. Granger causality was investigated in the 
frequency band from 5 Hz to 8 Hz, which includes the range of the stimulus-�ickering frequency. �e eConnec-
tome so�ware enables cortical source imaging and subsequent connectivity analysis of cortical source activity. To 
estimate the source-level cortical activity, a source-localization so�ware, LORETA, or low-resolution electromag-
netic tomography, (version 20151222, �e KEY Institute for Brain-Mind Research, Switzerland) was employed 
herein89. LORETA is one method that estimates the electric neural generators and computes images of neural 
activity from EEG data. eLORETA is tested under computer-controlled conditions, using a realistic head model, 
with 7002 cortical voxels90. We calculated eLORETA images during task performance in the time frame from 0 
to 5 s. Based on the most pronounced cortical activity estimated by the LORETA so�ware, two regions of interest 
(ROIs) were bilaterally selected (i.e., BA 10 and 18) to map directional connectivity. Source waveforms at the 
two ROIs were estimated and the DTF analysis showed directional information �ow across sources (see Fig. 3c). 
Statistical assessment of the connectivity was performed using the surrogate approach (1000 surrogates, p <  0.05). 
In order to avoid spurious causal relations, we conducted the same Granger causality analysis using time-reversed 
data45,46. �at is, the reversed temporal order of all data points in the same EEG dataset was used to double-check 
the robustness of the inferred Granger-causal connectivity measures.
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