
Decoding One Out of Many

Nicolas Sendrier

INRIA Paris-Rocquencourt, équipe-projet SECRET

Code-based Cryptography Workshop

11-12 May 2011, Eindhoven, The Netherlands

Computational Syndrome Decoding

Problem: Syndrome Decoding
Instance: H ∈ {0,1}r×n, s ∈ {0,1}r and w > 0

Question: is there a word e of Hamming weight w such that HeT = s ?

Problem: Computational Syndrome Decoding (CSD)

Given H ∈ {0,1}r×n, s ∈ {0,1}r and w > 0

Find a word e of Hamming weight w such that HeT = s

NP-hard, conjectured hard in the average case

We will denote CSD(H, s, w) this problem as well as the set of its

solutions

Typically n = 2048, r = 352 and w = 32

1/31

Computational Syndrome Decoding – Multiple instances

Problem: Syndrome Decoding One Out of Many
Instance: H ∈ {0,1}r×n, S ⊂ {0,1}r and w > 0

Question: is there a word e of Hamming weight w such that HeT ∈ S ?

Problem: Computational Syndrome Decoding One Out of Many
Given H ∈ {0,1}r×n, S ⊂ {0,1}r and w > 0

Find a word e of Hamming weight w such that HeT ∈ S

For convenience, we will also denote CSD(H,S, w) this problem and

the set of its solutions

2/31

Message Security of Code-Based Public-Key Cryptosystems

The public key is a parity check matrix H0 ∈ {0,1}r×n (or a generator

matrix) of some binary (n, k) error correcting code (r = n− k)

Solving CSD(H0, y, w) for a cryptogram y and some prescribed value

of w breaks the system

• In McEliece system the cryptogram is a noisy codeword x; we have

y = H0xT and w = t = r/blog2 nc is the error correcting capability

of the (secret) Goppa code

• In Niederreiter system the cryptogram is the syndrome y and w = t

as above

• In CFS signature y is the hash of the message and either w = t

and we decode one out of t! instances, or w = t + δ = dGV (the

Gilbert-Varshamov distance)

3/31

Best Decoding Algorithms

Fixed binary (n, k) code, solve CSD for growing w

codimension r = n− k, Gilbert-Varshamov distance
(

n
dGV

)
> 2r

ISD: Information Set Decoding

GBA: Generalized Birthday Algorithm

ISD GBA





ISD

Linearization

0 dGV r/4
- w

In the present study we will consider w ≤ dGV and the impact of

multiple instances on the complexity of GBA and ISD

4/31

Problem Statement

The size of the problem (i.e. r and n) is fixed

Three facts:

• Decoding one out of N is easier when N grows

• One cannot gain more than a factor N

• It is useless to let N grow indefinitely

Two questions:

• How easier is it to solve CSD(H,S, w) rather than CSD(H, s, w)

when |S| = N grows ?

• What is the largest useful value of N ?

5/31

Generalized Birthday Algorithm

for Decoding

Generalized Birthday Algorithm for Decoding – Bibliography

• Order 2 GBA

Camion and Patarin, EUROCRYPT’91

• GBA

Wagner, CRYPTO 2005

• GBA for decoding

Coron and Joux, 2004 (IACR eprint), attack against FSB

• GBA for decoding one out of many

Bleichenbacher, 200? (unpublished), attack against CFS

6/31

Generalized Birthday Algorithm for Decoding – Order 2

H = s =

CSD(H, s, w)

find w columns of H

adding to s

Order 2

Build 4 subsets of {0,1}r, i ∈ {1,2,3,4} (` is optimized later)

Wi ⊂ si + {HeT | wt(e) = wi}
with s =

∑
i si, wi ≈ w/4, w =

∑
i wi and |Wi| = 2`

Next build W1,2 and W3,4 as

Wi,j = {x + y | x ∈ Wi and y ∈ Wj match on their first ` bits}

Any element of W1,2 ∩W3,4 provides a solution to CSD(H, s, w)

7/31

Generalized Birthday Algorithm for Decoding – Complexity

H = s =

CSD(H, s, w)

find w columns of H

adding to s

Order 2

If 4

√(
n
w

)
≥ 2r/3 then one may choose ` = r/3 and W1,2∩W3,4 6= ∅ with

probability > 1/2 → complexity O(r2r/3)

Else |Wi| = 2` = 4

√(
n
w

)
and W1,2 ∩W3,4 6= ∅ with probability ≈ 2r−3`

→ complexity O
(
r2r−2`

)
= O


 r2r√

(n
w)




When w = dGV then
(

n
w

)
≈ 2r and the complexity is O(r2r/2)

8/31

Generalized Birthday Algorithm for Decoding – General Case

H = s =

CSD(H, s, w)

find w columns of H

adding to s

Order a

The best value for ` is

` = min
(

r

a + 1
, log2

2a
√(

n
w

))

→ complexity O(r2r−a`)

When 2a
√(

n
w

)
≥ 2

r
a+1 the complexity is O

(
r2

r
a+1

)
else it is O

(
r2r

(n
w)

a
2a

)

Only interesting for very large values of w

9/31

GBA for Decoding

One Out of Many

Order 2 GBA with Multiple Instances

H = s =

CSD(H,S, w)

find w columns of H

adding to s ∈ S, N = |S|

Order 2

Build 3 subsets of {0,1}r, i ∈ {1,2,3}
Wi ⊂ si + {HeT | wt(e) = wi}

with s1 + s2 + s3 = 0, w1 + w2 + w3 ≤ w and a fourth set

W4 ⊂ S + {HeT | wt(e) = w4}
where w4 = w −w1 −w2 −w3 (possibly w4 = 0) and all |Wi| = 2` ≥ N

Next build W1,2 and W3,4 as

Wi,j = {x + y | x ∈ Wi and y ∈ Wj match on their first ` bits}

Any element of W1,2 ∩W3,4 provides a solution to CSD(H,S, w)

10/31

Order 2 GBA with Multiple Instances – Complexity

H = s =

CSD(H,S, w)

find w columns of H

adding to s ∈ S, N = |S|

Order 2

If 4

√
N

(
n
w

)
≥ 2r/3 then we may choose ` = r/3 and W1,2 ∩ W3,4 6= ∅

with probability > 1/2 → complexity O(r2r/3)

Else |Wi| = 2` = 4

√(
n
w

)
and W1,2 ∩W3,4 6= ∅ with probability ≈ 2r−3`

→ complexity O
(
r2r−2`

)
= O


 r2r√

N(n
w)




There is a gain of a factor
√

N as long as N ≤ 24r/3/
(

n
w

)

When w = dGV then
(

n
w

)
≈ 2r and N = 2r/3 ⇒ complexity O(r2r/3)

11/31

Bleichenbacher’s Attack

For CFS (original counter version) one can build as many syndromes

as needed by hashing many variants of a favorable message

We need to decode w = t errors in a code of length n = 2m and

codimension r = tm

For those value,
(
n
t

)
≈ 2r/t! and the largest value for N is 3

√(
n
t

)

(common size of the 4 lists) the complexity of CSD becomes

O
(
r2r/3(t!)2/3

)

with t = 9 and m = 16 we get ≈ 267.5 with 242 instances which can

be improved a bit (around 263.3) because we can use slightly larger

lists (
√(

n
2w/3

)
instead of 3

√(
n
w

)
)

Finally there is a small multiplicative constant (2 to 6) which seems

difficult to avoid

12/31

Bleichenbacher’s Attack

For CFS counterless version, the attacker needs to perform a com-

plete decoding. As many variants as needed of a favorable message

are hashed to produce the syndromes

We need to decode w = dGV > t errors in a code of length n = 2m

and codimension r = tm

For those value,
(

n
w

)
≥ 2r and the good choice for N and the list size

is 2r/3 the complexity of CSD becomes

O
(
r2r/3

)

with w = 11 and m = 16 we get ≈ 253.6 with 248 instances

However because w is not a multiple of 3, some ajustement are re-

quired and the cost is 254.9 with 245.4 instances

13/31

GBA with Multiple Instances – General Case

H = s =

CSD(H,S, w)

find w columns of H

adding to s ∈ S

Order a

The best value for ` is

` = min
(

r

a + 1
, log2

2a
√

N
(

n
w

))

→ complexity O(r2r−a`)

When 2a
√

N
(

n
w

)
≥ 2

r
a+1 the complexity is O

(
r2

r
a+1

)

Else the complexity is O

(
r2r

(N(n
w))

a
2a

)
and we only gain a factor N

a
2a

14/31

Information Set Decoding

Information Set Decoding – Bibliography

• ISD

Folklore, ≤ 1978

• Collision decoding

Stern, 1989

Canteaut and Chabaud, IEEE-IT 1998 (1995)

Bernstein, Lange, and Peters, PQCrypto 2008

• One out of many

Johansson and Jönsson, IEEE-IT 2002

15/31

Information Set Decoding – First Step

Problem: Solve CSD(H0, y, w)

The algorithm involves two parameters p and ` which will be chosen
to minimize the cost

Step 1: Column permutation and Gaussian elimination

• Pick a random permutation matrix P

• Compute

-¾

@
@

@

-¾

6

?

H = UH0P =

r − `

1

1

0

k + `

H ′ `

H ′′

with U ∈ {0,1}r×r non singular and s = Uy

e ∈ CSD(H, s, w) ⇔ ePT ∈ CSD(H0, y, w)

16/31

Information Set Decoding – Second Step

Problem:

Solve CSD(H, s, w)

-¾

@
@@

-¾

6

?

H = s =

r − `

1

1

0

k + `

H ′ ` s′

H ′′ s′′

Step 2: Find (all) solutions of CSD(H ′, s′, p)

Build two subsets of {0,1}`:




W1 ⊂ {H ′eT | wt(e) = bp/2c}
W2 ⊂ {H ′eT | wt(e) = dp/2e}

Any element of W1∩(s′+W2) corresponds to a pair (e1, e2) ∈ W1×W2

such that e1 + e2 ∈ CSD(H ′, s′, p)

Birthday attack with a search space of size
(
k+`

p

)
, we expect that it

is optimal for L = |W1| = |W2| =
√(

k+`
p

)

17/31

Information Set Decoding – Third Step

Problem:

Solve CSD(H, s, w)

-¾

@
@@

-¾

6

?

H = s =

r − `

1

1

0

k + `

H ′ ` s′

H ′′ s′′

e = e′′ e′

weight w − p p

Step 3: For all e′ ∈ CSD(H ′, s′, p) found in Step 2.

Let e′′ = s′′ + H ′′e′T ∈ {0,1}r−` and e = (e′′, e′)

If wt(e′′) = w − p then e = (e′′, e′) ∈ CSD(H, s, w) (→ success)

18/31

Information Set Decoding – Algorithm

weight: w − p p

-¾

@
@@

-¾

6

?

H = s =

r − `

1

1

0

k + `

H ′ ` s′

H ′′ s′′

Subset size in Step 2.

L =
√(

k+`
p

)

(could be less)

Iteration success probability

P =
L2

(
r−`
w−p

)
(

n
w

)

Repeat:

1. Permutation + elimination

Cost polynomial in n

2. Solve CSD(H ′, s′, p)
Birthday attack

Total cost is ≥ 2`L for ≈ L2/2`

solutions

3. For each e′ found in step 2,

test the weight of H ′′e′T + s′′
One test costs

Kw−p ≥ 2(1 + w − p)

(≈ 2p(1 + w − p) in practice)

Total cost is ≈ Kw−pL
2/2`

All costs in binary operations

19/31

ISD – Lower Bound on the Binary Work Factor

We neglect the cost of step 1

WFISD ≥ min
p,`

1

Pp(`)

(
2`Lp(`) +

Lp(`)2Kw−p

2`

)

nb iter. step 2 step 3

where




Pp(`) is the success probability of one iteration

Lp(`) is the optimal subset size in step 2

In practice we have Pp(`) =

(
k+`

p

)(
r−`
w−p

)
(

n
w

) and Lp(`) =
√(

k+`
p

)
, but the

general formula is

Pp(`) = 1− (1− ε)(
k+`

p) and Lp(`) =

√
Pp(`)

ε
where ε =

(
r−`
w−p

)

min
((

n
w

)
,2r

).

20/31

ISD – Lower Bound on the Binary Work Factor

Assuming Lp(`)/Pp(`) varies slowly with `, for a given p the optimal

value of the parameter ` is

`p ≈ log2

(
ln(2)Kw−pLp(`p)

2

)

Taking into account the variation of Lp(`)/Pp(`) leads to a marginaly

smaller value of `p with no easy closed expression

For convenience, we will use below the notations `, L and P (instead

of `p, Lp(`p) and Pp(`p)) to denote the optimal values

Claim. Provided there are solutions to CSD(H0, y, w), the cost for

finding one with ISD is not smaller than

WFISD ≥ min
p

2`L

P

21/31

ISD

One Out of Many

Information Set Decoding One Out of Many – First Step

Problem: Solve CSD(H0,Y, w)

The algorithm involves two parameters p and ` which will be chosen
to minimize the cost

Step 1: Column permutation and Gaussian elimination

• Pick a random permutation matrix P

• Compute

-¾

@
@

@

-¾

6

?

H = UH0P =

r − `

1

1

0

k + `

H ′ `

H ′′

with U ∈ {0,1}r×r non singular and S = {Uy | y ∈ Y}

e ∈ CSD(H,S, w) ⇔ ePT ∈ CSD(H0,Y, w)

22/31

Information Set Decoding One Out of Many – Second Step

Problem:

Solve CSD(H,S, w)

S ′ the set of all s′

-¾

@
@@

-¾

6

?

H = s =

r − `

1

1

0

k + `

H ′ ` s′

H ′′ s′′

Step 2: Find (all) solutions of CSD(H ′,S ′, p)

Build two subsets of {0,1}`:




W1 ⊂ {H ′eT | wt(e) = a}
W2 ⊂ {H ′eT | wt(e) = b} (a + b = p)

Any element of W1∩(S ′+W2) corresponds to a pair (e1, e2) ∈ W1×W2
such that e1 + e2 ∈ CSD(H ′,S ′, p)
In fact the solutions are triples (e1, e2, s = (s′′, s′)) ∈ W1 ×W2 × S

Birthday attack with a search space of size N
(
k+`

p

)
, we expect that

it is optimal for L = |W1| = N |W2| =
√

N
(
k+`

p

)
(⇒ N ≤ L ≤

(
k+`

p

)
)

23/31

Information Set Decoding One Out of Many – Third Step

Problem:

Solve CSD(H,S, w)

-¾

@
@@

-¾

6

?

H = s =

r − `

1

1

0

k + `

H ′ ` s′

H ′′ s′′

e = e′′ e′

weight w − p p

Step 3: For all e′ found in Step 2.

(e′ is associated to some s = (s′′, s′) ∈ S)

Let e′′ = s′′ + H ′′e′T ∈ {0,1}r−` and e = (e′′, e′)

If wt(e′′) = w − p then e = (e′′, e′) ∈ CSD(H, s, w) ⊂ CSD(H,S, w)

(→ success)

24/31

Information Set Decoding One Out of Many – Algorithm

weight: w − p p

-¾

@
@@

-¾

6

?

H = s =

r − `

1

1

0

k + `

H ′ ` s′

H ′′ s′′

Subset size in Step 2.

L =
√

N
(
k+`

p

)

(could be less)

Iteration success probability

P =
L2

(
r−`
w−p

)
(

n
w

) if P ¿ 1

Repeat:

1. Permutation + elimination

Cost polynomial in n + ?

2. Solve CSD(H ′,S ′, p)
Birthday attack

Total cost is ≥ 2`L for ≈ L2/2`

solutions

3. For each e′ found in step 2,

test the weight of H ′′e′T + s′′
One test costs

Kw−p ≥ 2(1 + w − p)

(≈ 2p(1 + w − p) in practice)

Total cost is ≈ Kw−pL
2/2`

All costs in binary operations

25/31

ISDOOM – Lower Bound on the Binary Work Factor

We neglect the cost of step 1

WF(N)
ISD ≥ min

p,`

1

P(N)
p (`)


2`L

(N)
p (`) +

L
(N)
p (`)2Kw−p

2`




nb iter. step 2 step 3

where




P(N)

p (`) is the success probability of one iteration

L
(N)
p (`) is the optimal subset size in step 2

In practice we have P(N)
p (`) =

N
(
k+`

p

)(
r−`
w−p

)
(

n
w

) and L
(N)
p (`) =

√
N

(
k+`

p

)
,

but the general formula is

P(N)
p (`) = 1−(1−ε)

N(k+`
p) and L

(N)
p (`) =

√√√√P(N)
p (`)

ε
where ε =

(
r−`
w−p

)

min
((

n
w

)
,2r

).

26/31

ISDOOM – Lower Bound on the Binary Work Factor

For a given p the optimal value of the parameter ` is

`
(N)
p ≈ log2


ln(2)Kw−pL

(N)
p (`(N)

p)

2




For convenience, we will use below the notations `′, L′ and P ′ instead

of `
(N)
p , L

(N)
p (`(N)

p) and P(N)
p (`(N)

p) to denote the optimal values

Claim. Provided there are solutions to CSD(H0, y, w) for all y ∈ Y,

the cost for finding one solution of CSD(H0,Y, w) with ISD is not

smaller than

WF(N)
ISD ≥ min

p

2`′L′

P ′

For fixed p and ` we have L′ ≈ √
NL and P ′ ≈ √

NP so we expect a

gain of a factor ≈ √
N

27/31

ISDOOM – Complexity gain

More precisely, as long as N is not too large

`′ ≈ ` + x ≈ ` + log2
√

N

L′ ≈ √
N

√(
k+`+x

p

)
≈ √

NL exp
(

c1
2 x

)

P ′ ≈ N

(
k+`+x

p

)(
r−`−x
w−p

)
(

n
w

) ≈ NP exp (c1x− c2x)

where c1 ≈
p

k + `− p−1
2

and c2 ≈
w − p

r − `− w−p−1
2

(both ¿ 1)

2`′L′

P ′ ≈ 2`L

P

(
1 +

log2
√

N

`

)
1√

N1−c

where c ≈ (c2 − c1/2)/ ln 2 is a small (usually positive) constant

28/31

About tightness

I’ve been cheating you !

It is not possible to claim a computational gain from lower bounds !!!

We need tight bounds to do that and so we must make sure it

was legitimate to neglect the cost of the first step

Computing the set S = {Uy | y ∈ Y} will cost something like

2r(Kw−p + `)N

log2 N

possibly less because there are ways to reduce the impact of Step 1.

[Bernstein, Lange, Peters, PQCrypto 2008]

This has to be compared with 2`L, the cost of an iteration

Consequence: if
r(Kw−p + `)N

log2 N
≥ `L the gain is smaller than expected

29/31

Some Numbers

McEliece or Niederreiter

n = 211, w = 32, r = 352

single multiple

p ` WF ` N WF′

4 22 85.9 40 238 74.2

6 30 85.9 55 252 66.2

8 37 86.3 61 249 66.1

10 45 87.0 65 241 69.9

CFS - counterless version

n = 216, w = 11, r = 144

single multiple

p ` WF ` N WF′

4 31 85.2 56 257 63.0

6 44 81.1 60 238 66.6

8 56 77.8 64 220 70.9

10 68 76.2 69 25 76.0

30/31

Conclusion – Further work

DOOM is a threat to code-based crypto

Its impact can be cancelled

• Against the signature scheme

Repared by Finiasz (SAC 2010) → decode several (3 or 4) related

syndromes

• Against McEliece (or Niederreiter)

If you are going to encrypt many messages you may chain them

• Security of FSB: what about w > dGV or regular words?

• Are there other ways to use multiple instances?

31/31

Thank you

