Decoding One Out of Many

Nicolas Sendrier

INRIA Paris-Rocquencourt, équipe-projet SECRET

Code-based Cryptography Workshop
11-12 May 2011, Eindhoven, The Netherlands

Computational Syndrome Decoding

Problem: Syndrome Decoding
Instance: $H \in\{0,1\}^{r \times n}, s \in\{0,1\}^{r}$ and $w>0$
Question: is there a word e of Hamming weight w such that $H e^{T}=s$?
Problem: Computational Syndrome Decoding (CSD)
Given $H \in\{0,1\}^{r \times n}, s \in\{0,1\}^{r}$ and $w>0$
Find a word e of Hamming weight w such that $H e^{T}=s$

NP-hard, conjectured hard in the average case

We will denote $\operatorname{CSD}(H, s, w)$ this problem as well as the set of its solutions

Typically $n=2048, r=352$ and $w=32$

Problem: Syndrome Decoding One Out of Many
Instance: $H \in\{0,1\}^{r \times n}, \mathcal{S} \subset\{0,1\}^{r}$ and $w>0$
Question: is there a word e of Hamming weight w such that $H e^{T} \in \mathcal{S}$?
Problem: Computational Syndrome Decoding One Out of Many
Given $H \in\{0,1\}^{r \times n}, \mathcal{S} \subset\{0,1\}^{r}$ and $w>0$
Find a word e of Hamming weight w such that $H e^{T} \in \mathcal{S}$

For convenience, we will also denote $\operatorname{CSD}(H, \mathcal{S}, w)$ this problem and the set of its solutions

Message Security of Code-Based Public-Key Cryptosystems

The public key is a parity check matrix $H_{0} \in\{0,1\}^{r \times n}$ (or a generator matrix) of some binary (n, k) error correcting code ($r=n-k$)

Solving $\operatorname{CSD}\left(H_{0}, y, w\right)$ for a cryptogram y and some prescribed value of w breaks the system

- In McEliece system the cryptogram is a noisy codeword x; we have $y=H_{0} x^{T}$ and $w=t=r /\left\lfloor\log _{2} n\right\rfloor$ is the error correcting capability of the (secret) Goppa code
- In Niederreiter system the cryptogram is the syndrome y and $w=t$ as above
- In CFS signature y is the hash of the message and either $w=t$ and we decode one out of t ! instances, or $w=t+\delta=d_{\mathrm{GV}}$ (the Gilbert-Varshamov distance)

Best Decoding Algorithms

Fixed binary (n, k) code, solve CSD for growing w codimension $r=n-k$, Gilbert-Varshamov distance $\binom{n}{d_{G V}}>2^{r}$

ISD: Information Set Decoding
GBA: Generalized Birthday Algorithm

In the present study we will consider $w \leq d_{G V}$ and the impact of multiple instances on the complexity of GBA and ISD

Problem Statement

The size of the problem (i.e. r and n) is fixed

Three facts:

- Decoding one out of N is easier when N grows
- One cannot gain more than a factor N
- It is useless to let N grow indefinitely

Two questions:

- How easier is it to solve $\operatorname{CSD}(H, \mathcal{S}, w)$ rather than $\operatorname{CSD}(H, s, w)$ when $|\mathcal{S}|=N$ grows ?
- What is the largest useful value of N ?

Generalized Birthday Algorithm for Decoding

Generalized Birthday Algorithm for Decoding - Bibliography

- Order 2 GBA

Camion and Patarin, EUROCRYPT'91

- GBA

Wagner, CRYPTO 2005

- GBA for decoding

Coron and Joux, 2004 (IACR eprint), attack against FSB

- GBA for decoding one out of many

Bleichenbacher, 200? (unpublished), attack against CFS

Generalized Birthday Algorithm for Decoding - Order 2

$\operatorname{CSD}(H, s, w)$
find w columns of H adding to s

Order 2

Build 4 subsets of $\{0,1\}^{r}, i \in\{1,2,3,4\}$ (ℓ is optimized later)

$$
W_{i} \subset s_{i}+\left\{H e^{T} \mid \mathrm{wt}(e)=w_{i}\right\}
$$

with $s=\sum_{i} s_{i}, w_{i} \approx w / 4, w=\sum_{i} w_{i}$ and $\left|W_{i}\right|=2^{\ell}$
Next build $W_{1,2}$ and $W_{3,4}$ as

$$
W_{i, j}=\left\{x+y \mid x \in W_{i} \text { and } y \in W_{j} \text { match on their first } \ell \text { bits }\right\}
$$

Any element of $W_{1,2} \cap W_{3,4}$ provides a solution to $\operatorname{CSD}(H, s, w)$

Generalized Birthday Algorithm for Decoding - Complexity

$\operatorname{CSD}(H, s, w)$
find w columns of H adding to s

Order 2

If $\sqrt[4]{\binom{n}{w}} \geq 2^{r / 3}$ then one may choose $\ell=r / 3$ and $W_{1,2} \cap W_{3,4} \neq \emptyset$ with probability $>1 / 2 \rightarrow$ complexity $O\left(r 2^{r / 3}\right)$

Else $\left|W_{i}\right|=2^{\ell}=\sqrt[4]{\binom{n}{w}}$ and $W_{1,2} \cap W_{3,4} \neq \emptyset$ with probability $\approx 2^{r-3 \ell}$
\rightarrow complexity $O\left(r 2^{r-2 \ell}\right)=O\left(\frac{r 2^{r}}{\sqrt{\binom{n}{w}}}\right)$

When $w=d_{G V}$ then $\binom{n}{w} \approx 2^{r}$ and the complexity is $O\left(r 2^{r / 2}\right)$

Generalized Birthday Algorithm for Decoding - General Case

$\operatorname{CSD}(H, s, w)$
find w columns of H adding to s

Order a
The best value for ℓ is

$$
\ell=\min \left(\frac{r}{a+1}, \log _{2} \sqrt[2 a]{\binom{n}{w}}\right)
$$

\rightarrow complexity $O\left(r 2^{r-a \ell}\right)$
When $\sqrt[2^{a}]{\binom{n}{w}} \geq 2^{\frac{r}{a+1}}$ the complexity is $O\left(r 2^{\frac{r}{a+1}}\right)$ else it is $O\left(\frac{r 2^{r}}{\binom{n}{w}^{\frac{a}{2^{a}}}}\right)$
Only interesting for very large values of w

GBA for Decoding
 One Out of Many

Order 2 GBA with Multiple Instances

$$
\operatorname{CSD}(H, \mathcal{S}, w)
$$

find w columns of H adding to $s \in \mathcal{S}, N=|\mathcal{S}|$

Order 2

Build 3 subsets of $\{0,1\}^{r}, i \in\{1,2,3\}$

$$
W_{i} \subset s_{i}+\left\{H e^{T} \mid \mathrm{wt}(e)=w_{i}\right\}
$$

with $s_{1}+s_{2}+s_{3}=0, w_{1}+w_{2}+w_{3} \leq w$ and a fourth set

$$
W_{4} \subset \mathcal{S}+\left\{H e^{T} \mid w t(e)=w_{4}\right\}
$$

where $w_{4}=w-w_{1}-w_{2}-w_{3}$ (possibly $w_{4}=0$) and all $\left|W_{i}\right|=2^{\ell} \geq N$
Next build $W_{1,2}$ and $W_{3,4}$ as

$$
W_{i, j}=\left\{x+y \mid x \in W_{i} \text { and } y \in W_{j} \text { match on their first } \ell \text { bits }\right\}
$$

Any element of $W_{1,2} \cap W_{3,4}$ provides a solution to $\operatorname{CSD}(H, \mathcal{S}, w)$

Order 2 GBA with Multiple Instances - Complexity

$\operatorname{CSD}(H, \mathcal{S}, w)$

find w columns of H adding to $s \in \mathcal{S}, N=|\mathcal{S}|$

Order 2

If $\sqrt[4]{N\binom{n}{w}} \geq 2^{r / 3}$ then we may choose $\ell=r / 3$ and $W_{1,2} \cap W_{3,4} \neq \emptyset$ with probability $>1 / 2 \rightarrow$ complexity $O\left(r 2^{r / 3}\right)$

Else $\left|W_{i}\right|=2^{\ell}=\sqrt[4]{\binom{n}{w}}$ and $W_{1,2} \cap W_{3,4} \neq \emptyset$ with probability $\approx 2^{r-3 \ell}$
\rightarrow complexity $O\left(r 2^{r-2 \ell}\right)=O\left(\frac{r 2^{r}}{\sqrt{N\binom{n}{w}}}\right)$
There is a gain of a factor \sqrt{N} as long as $N \leq 2^{4 r / 3} /\binom{n}{w}$
When $w=d_{G V}$ then $\binom{n}{w} \approx 2^{r}$ and $N=2^{r / 3} \Rightarrow$ complexity $O\left(r 2^{r / 3}\right)$

Bleichenbacher's Attack

For CFS (original counter version) one can build as many syndromes as needed by hashing many variants of a favorable message

We need to decode $w=t$ errors in a code of length $n=2^{m}$ and codimension $r=t m$

For those value, $\binom{n}{t} \approx 2^{r} / t$! and the largest value for N is $\sqrt[3]{\binom{n}{t}}$ (common size of the 4 lists) the complexity of CSD becomes

$$
O\left(r 2^{r / 3}(t!)^{2 / 3}\right)
$$

with $t=9$ and $m=16$ we get $\approx 2^{67.5}$ with 2^{42} instances which can be improved a bit (around $2^{63.3}$) because we can use slightly larger lists $\left(\sqrt{\binom{n}{2 w / 3}}\right.$ instead of $\left.\sqrt[3]{\binom{n}{w}}\right)$

Finally there is a small multiplicative constant (2 to 6) which seems difficult to avoid

Bleichenbacher's Attack

For CFS counterless version, the attacker needs to perform a complete decoding. As many variants as needed of a favorable message are hashed to produce the syndromes

We need to decode $w=d_{G V}>t$ errors in a code of length $n=2^{m}$ and codimension $r=t m$

For those value, $\binom{n}{w} \geq 2^{r}$ and the good choice for N and the list size is $2^{r / 3}$ the complexity of CSD becomes

$$
O\left(r 2^{r / 3}\right)
$$

with $w=11$ and $m=16$ we get $\approx 2^{53.6}$ with 2^{48} instances
However because w is not a multiple of 3, some ajustement are required and the cost is $2^{54.9}$ with $2^{45.4}$ instances

GBA with Multiple Instances - General Case

$\operatorname{CSD}(H, \mathcal{S}, w)$
 find w columns of H adding to $s \in \mathcal{S}$

Order a

The best value for ℓ is

$$
\ell=\min \left(\frac{r}{a+1}, \log _{2} \sqrt[2 a]{N\binom{n}{w}}\right)
$$

\rightarrow complexity $O\left(r 2^{r-a \ell}\right)$
When $\sqrt[2 a]{N\binom{n}{w}} \geq 2^{\frac{r}{a+1}}$ the complexity is $O\left(r 2^{\frac{r}{a+1}}\right)$
Else the complexity is $O\left(\frac{r 2^{r}}{\left(N\binom{n}{w}\right)^{\frac{a}{2^{a}}}}\right)$ and we only gain a factor $N^{\frac{a}{2^{a}}}$

Information Set Decoding

Information Set Decoding - Bibliography

- ISD

Folklore, ≤ 1978

- Collision decoding

$$
\text { Stern, } 1989
$$

Canteaut and Chabaud, IEEE-IT 1998 (1995)
Bernstein, Lange, and Peters, PQCrypto 2008

- One out of many

Johansson and Jönsson, IEEE-IT 2002

Information Set Decoding - First Step

$$
\text { Problem: Solve } \operatorname{CSD}\left(H_{0}, y, w\right)
$$

The algorithm involves two parameters p and ℓ which will be chosen to minimize the cost

Step 1: Column permutation and Gaussian elimination

- Pick a random permutation matrix P
- Compute $\left.H=U H_{0} P=$\begin{tabular}{|l|l|}

\hline \multicolumn{1}{l}{| $r-\ell$ |
| :--- |} \& $k+\ell$

\hline \&

\hline \&

\hline \&

\hline
\end{tabular} \right\rvert\,

with $U \in\{0,1\}^{r \times r}$ non singular and $s=U y$

$$
e \in \operatorname{CSD}(H, s, w) \Leftrightarrow e P^{T} \in \operatorname{CSD}\left(H_{0}, y, w\right)
$$

Information Set Decoding - Second Step

Problem:
 Solve $\operatorname{CSD}(H, s, w)$

Step 2: Find (all) solutions of $\operatorname{CSD}\left(H^{\prime}, s^{\prime}, p\right)$
Build two subsets of $\{0,1\}^{\ell}:\left\{\begin{array}{l}W_{1} \subset\left\{H^{\prime} e^{T} \mid \operatorname{wt}(e)=\lfloor p / 2\rfloor\right\} \\ W_{2} \subset\left\{H^{\prime} e^{T} \mid \operatorname{wt}(e)=\lceil p / 2\rceil\right\}\end{array}\right.$
Any element of $W_{1} \cap\left(s^{\prime}+W_{2}\right)$ corresponds to a pair $\left(e_{1}, e_{2}\right) \in W_{1} \times W_{2}$ such that $e_{1}+e_{2} \in \operatorname{CSD}\left(H^{\prime}, s^{\prime}, p\right)$

Birthday attack with a search space of size $\binom{k+\ell}{p}$, we expect that it is optimal for $L=\left|W_{1}\right|=\left|W_{2}\right|=\sqrt{\binom{k+\ell}{p}}$

Information Set Decoding - Third Step

Problem:
Solve $\operatorname{CSD}(H, s, w)$

Step 3: For all $e^{\prime} \in \operatorname{CSD}\left(H^{\prime}, s^{\prime}, p\right)$ found in Step 2.
Let $e^{\prime \prime}=s^{\prime \prime}+H^{\prime \prime} e^{T} \in\{0,1\}^{r-\ell}$ and $e=\left(e^{\prime \prime}, e^{\prime}\right)$
If $\mathrm{wt}\left(e^{\prime \prime}\right)=w-p$ then $e=\left(e^{\prime \prime}, e^{\prime}\right) \in \operatorname{CSD}(H, s, w)(\rightarrow$ SUCCESS $)$

Information Set Decoding - Algorithm

Subset size in Step 2.

$$
L=\sqrt{\binom{k+\ell}{p}}
$$

(could be less)

Iteration success probability

$$
\mathcal{P}=\frac{L^{2}\binom{r-\ell}{w-p}}{\binom{n}{w}}
$$

Repeat:

1. Permutation + elimination Cost polynomial in n
2. Solve $\operatorname{CSD}\left(H^{\prime}, s^{\prime}, p\right)$

Birthday attack

Total cost is $\geq 2 \ell L$ for $\approx L^{2} / 2^{\ell}$ solutions
3. For each e^{\prime} found in step 2, test the weight of $H^{\prime \prime} e^{T}+s^{\prime \prime}$ One test costs $K_{w-p} \geq 2(1+w-p)$ ($\approx 2 p(1+w-p)$ in practice) Total cost is $\approx K_{w-p} L^{2} / 2^{\ell}$

All costs in binary operations

ISD - Lower Bound on the Binary Work Factor

We neglect the cost of step 1

$$
\mathrm{WF}_{\text {ISD }} \geq \min _{p, \ell} \frac{1}{\mathcal{P}_{p}(\ell)}\left(2 \ell L_{p}(\ell)+\frac{L_{p}(\ell)^{2} K_{w-p}}{2^{\ell}}\right)
$$

where $\left\{\begin{array}{l}\mathcal{P}_{p}(\ell) \text { is the success probability of one iteration } \\ L_{p}(\ell) \text { is the optimal subset size in step } 2\end{array}\right.$
In practice we have $\mathcal{P}_{p}(\ell)=\frac{\binom{k+\ell}{p}\binom{r-\ell}{w-p}}{\binom{n}{w}}$ and $L_{p}(\ell)=\sqrt{\binom{k+\ell}{p}}$, but the general formula is

$$
\mathcal{P}_{p}(\ell)=1-(1-\varepsilon)^{\binom{k+\ell}{p}} \text { and } L_{p}(\ell)=\sqrt{\frac{\mathcal{P}_{p}(\ell)}{\varepsilon}} \text { where } \varepsilon=\frac{\binom{r-\ell}{w-p}}{\min \left(\binom{n}{w}, 2^{r}\right)}
$$

ISD - Lower Bound on the Binary Work Factor

Assuming $L_{p}(\ell) / \mathcal{P}_{p}(\ell)$ varies slowly with ℓ, for a given p the optimal value of the parameter ℓ is

$$
\ell_{p} \approx \log _{2}\left(\frac{\ln (2) K_{w-p} L_{p}\left(\ell_{p}\right)}{2}\right)
$$

Taking into account the variation of $L_{p}(\ell) / \mathcal{P}_{p}(\ell)$ leads to a marginaly smaller value of ℓ_{p} with no easy closed expression

For convenience, we will use below the notations ℓ, L and \mathcal{P} (instead of $\ell_{p}, L_{p}\left(\ell_{p}\right)$ and $\left.\mathcal{P}_{p}\left(\ell_{p}\right)\right)$ to denote the optimal values

Claim. Provided there are solutions to $\operatorname{CSD}\left(H_{0}, y, w\right)$, the cost for finding one with ISD is not smaller than

$$
W F_{I S D} \geq \min _{p} \frac{2 \ell L}{\mathcal{P}}
$$

ISD
 One Out of Many

Information Set Decoding One Out of Many - First Step

Problem: Solve $\operatorname{CSD}\left(H_{0}, \mathcal{V}, w\right)$

The algorithm involves two parameters p and ℓ which will be chosen to minimize the cost

Step 1: Column permutation and Gaussian elimination

- Pick a random permutation matrix P

$$
e \in \operatorname{CSD}(H, \mathcal{S}, w) \Leftrightarrow e P^{T} \in \operatorname{CSD}\left(H_{0}, \mathcal{V}, w\right)
$$

Information Set Decoding One Out of Many - Second Step

Step 2: Find (all) solutions of $\operatorname{CSD}\left(H^{\prime}, \mathcal{S}^{\prime}, p\right)$
Build two subsets of $\{0,1\}^{\ell}:\left\{\begin{array}{l}W_{1} \subset\left\{H^{\prime} e^{T} \mid \mathrm{wt}(e)=a\right\} \\ W_{2} \subset\left\{H^{\prime} e^{T} \mid \mathrm{wt}(e)=b\right\}\end{array} \quad(a+b=p)\right.$
Any element of $W_{1} \cap\left(\mathcal{S}^{\prime}+W_{2}\right)$ corresponds to a pair $\left(e_{1}, e_{2}\right) \in W_{1} \times W_{2}$ such that $e_{1}+e_{2} \in \operatorname{CSD}\left(H^{\prime}, \mathcal{S}^{\prime}, p\right)$
In fact the solutions are triples $\left(e_{1}, e_{2}, s=\left(s^{\prime \prime}, s^{\prime}\right)\right) \in W_{1} \times W_{2} \times \mathcal{S}$

Birthday attack with a search space of size $N\binom{k+\ell}{p}$, we expect that it is optimal for $L=\left|W_{1}\right|=N\left|W_{2}\right|=\sqrt{N\binom{k+\ell}{p}}\left(\Rightarrow N \leq L \leq\binom{ k+\ell}{p}\right)$

Information Set Decoding One Out of Many - Third Step

Problem:

Solve $\operatorname{CSD}(H, \mathcal{S}, w)$

Step 3: For all e^{\prime} found in Step 2.
(e^{\prime} is associated to some $s=\left(s^{\prime \prime}, s^{\prime}\right) \in \mathcal{S}$)
Let $e^{\prime \prime}=s^{\prime \prime}+H^{\prime \prime} e^{T} \in\{0,1\}^{r-\ell}$ and $e=\left(e^{\prime \prime}, e^{\prime}\right)$
If $\mathrm{wt}\left(e^{\prime \prime}\right)=w-p$ then $e=\left(e^{\prime \prime}, e^{\prime}\right) \in \operatorname{CSD}(H, s, w) \subset \operatorname{CSD}(H, \mathcal{S}, w)$ (\rightarrow SUCCESS)

Information Set Decoding One Out of Many - Algorithm

Subset size in Step 2.

$$
L=\sqrt{N\binom{k+\ell}{p}}
$$

(could be less)

Iteration success probability

$$
\mathcal{P}=\frac{L^{2}\binom{r-\ell}{w-p}}{\binom{n}{w}} \quad \text { if } \mathcal{P} \ll 1
$$

Repeat:

1. Permutation + elimination Cost polynomial in $n+$?
2. Solve $\operatorname{CSD}\left(H^{\prime}, \mathcal{S}^{\prime}, p\right)$

Birthday attack

Total cost is $\geq 2 \ell L$ for $\approx L^{2} / 2^{\ell}$ solutions
3. For each e^{\prime} found in step 2, test the weight of $H^{\prime \prime} e^{T}+s^{\prime \prime}$ One test costs $K_{w-p} \geq 2(1+w-p)$ ($\approx 2 p(1+w-p)$ in practice) Total cost is $\approx K_{w-p} L^{2} / 2^{\ell}$

All costs in binary operations

ISDOOM - Lower Bound on the Binary Work Factor

We neglect the cost of step 1

$$
\begin{gathered}
\mathrm{WF}_{\mathrm{ISD}}^{(N)} \geq \min _{p, \ell} \frac{1}{\mathcal{P}_{p}^{(N)}(\ell)}\left(2 \ell L_{p}^{(N)}(\ell)+\frac{L_{p}^{(N)}(\ell)^{2} K_{w-p}}{2^{\ell}}\right) \\
\text { nb iter. } \operatorname{step~2}
\end{gathered}
$$

where $\left\{\begin{array}{l}\mathcal{P}_{p}^{(N)}(\ell) \text { is the success probability of one iteration } \\ L_{p}^{(N)}(\ell) \text { is the optimal subset size in step } 2\end{array}\right.$
In practice we have $\mathcal{P}_{p}^{(N)}(\ell)=\frac{N\binom{k+\ell}{p}\binom{r-\ell}{w-p}}{\binom{n}{w}}$ and $L_{p}^{(N)}(\ell)=\sqrt{N\binom{k+\ell}{p}}$, but the general formula is

$$
\mathcal{P}_{p}^{(N)}(\ell)=1-(1-\varepsilon)^{N\binom{k+\ell}{p}} \text { and } L_{p}^{(N)}(\ell)=\sqrt{\frac{\mathcal{P}_{p}^{(N)}(\ell)}{\varepsilon}} \text { where } \varepsilon=\frac{\binom{r-\ell}{w-p}}{\min \left(\binom{n}{w}, 2^{r}\right)}
$$

ISDOOM - Lower Bound on the Binary Work Factor

For a given p the optimal value of the parameter ℓ is

$$
\ell_{p}^{(N)} \approx \log _{2}\left(\frac{\ln (2) K_{w-p} L_{p}^{(N)}\left(\ell_{p}^{(N)}\right)}{2}\right)
$$

For convenience, we will use below the notations $\ell^{\prime}, L^{\prime}$ and \mathcal{P}^{\prime} instead of $\ell_{p}^{(N)}, L_{p}^{(N)}\left(\ell_{p}^{(N)}\right)$ and $\mathcal{P}_{p}^{(N)}\left(\ell_{p}^{(N)}\right)$ to denote the optimal values

Claim. Provided there are solutions to $\operatorname{CSD}\left(H_{0}, y, w\right)$ for all $y \in \mathcal{Y}$, the cost for finding one solution of $\operatorname{CSD}\left(H_{0}, \mathcal{Y}, w\right)$ with ISD is not smaller than

$$
\mathrm{WF}_{\mathrm{ISD}}^{(N)} \geq \min _{p} \frac{2 \ell^{\prime} L^{\prime}}{\mathcal{P}^{\prime}}
$$

For fixed p and ℓ we have $L^{\prime} \approx \sqrt{N} L$ and $\mathcal{P}^{\prime} \approx \sqrt{N} \mathcal{P}$ so we expect a gain of a factor $\approx \sqrt{N}$

ISDOOM - Complexity gain

More precisely, as long as N is not too large

$$
\begin{aligned}
\ell^{\prime} & \approx \ell+x
\end{aligned} \begin{aligned}
& L^{\prime} \approx \sqrt{N} \sqrt{\binom{k+\ell+x}{p}} \\
& \mathcal{P}^{\prime} \approx N \frac{\binom{k+\ell+x}{p}\binom{r-\ell-x}{w-p}}{\binom{n}{w}}
\end{aligned}
$$

where $c_{1} \approx \frac{p}{k+\ell-\frac{p-1}{2}}$ and $c_{2} \approx \frac{w-p}{r-\ell-\frac{w-p-1}{2}}($ both $\ll 1)$

$$
\frac{2 \ell^{\prime} L^{\prime}}{\mathcal{P}^{\prime}} \approx \frac{2 \ell L}{\mathcal{P}}\left(1+\frac{\log _{2} \sqrt{N}}{\ell}\right) \frac{1}{\sqrt{N^{1-c}}}
$$

where $c \approx\left(c_{2}-c_{1} / 2\right) / \ln 2$ is a small (usually positive) constant

About tightness

I've been cheating you!

It is not possible to claim a computational gain from lower bounds !!!
We need tight bounds to do that and so we must make sure it was legitimate to neglect the cost of the first step

Computing the set $\mathcal{S}=\{U y \mid y \in \mathcal{Y}\}$ will cost something like

$$
\frac{2 r\left(K_{w-p}+\ell\right) N}{\log _{2} N}
$$

possibly less because there are ways to reduce the impact of Step 1. [Bernstein, Lange, Peters, PQCrypto 2008]

This has to be compared with $2 \ell L$, the cost of an iteration
Consequence: if $\frac{r\left(K_{w-p}+\ell\right) N}{\log _{2} N} \geq \ell L$ the gain is smaller than expected

Some Numbers

McEliece or Niederreiter					
$n=2^{11}, w=32, r=352$					
p	single	multiple			
	ℓ	WF	ℓ	N	WF^{\prime}
4	22	85.9	40	2^{38}	74.2
6	30	85.9	55	2^{52}	66.2
8	37	86.3	61	2^{49}	66.1
10	45	87.0	65	2^{41}	69.9

CFS - counterless version					
$n=2^{16}, w=11, r=144$					
p	single	multiple			
	ℓ	WF	ℓ	N	WF^{\prime}
4	31	85.2	56	2^{57}	63.0
6	44	81.1	60	2^{38}	66.6
8	56	77.8	64	2^{20}	70.9
10	68	76.2	69	2^{5}	76.0

Conclusion - Further work

DOOM is a threat to code-based crypto
Its impact can be cancelled

- Against the signature scheme

Repared by Finiasz (SAC 2010) \rightarrow decode several (3 or 4) related syndromes

- Against McEliece (or Niederreiter)

If you are going to encrypt many messages you may chain them

- Security of FSB: what about $w>d_{G V}$ or regular words?
- Are there other ways to use multiple instances?

Thank you

