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Decoding quantum errors with subspace
expansions
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With rapid developments in quantum hardware comes a push towards the first practical

applications. While fully fault-tolerant quantum computers are not yet realized, there may

exist intermediate forms of error correction that enable practical applications. In this work, we

consider the idea of post-processing error decoders using existing quantum codes, which

mitigate errors on logical qubits using post-processing without explicit syndrome measure-

ments or additional qubits beyond the encoding overhead. This greatly simplifies the

experimental exploration of quantum codes on real, near-term devices, removing the need for

locality of syndromes or fast feed-forward. We develop the theory of the method and

demonstrate it on an example with the perfect [[5, 1, 3]] code, which exhibits a pseudo-

threshold of p ≈ 0.50 under a single qubit depolarizing channel applied to all qubits. We also

provide a demonstration of improved performance on an unencoded hydrogen molecule.
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Rapid developments in both the theory and hardware for
quantum computation push us closer than ever to the
dream of practically useful quantum computing. However,

while a key development in the road map of quantum computing
was the concept of quantum error correction, the hardware
requirements to implement fully fault-tolerant schemes for non-
trivial algorithms may still be some years away. A natural ques-
tion that arises from this realization is whether it will be possible
to perform meaningful computations on non-fault tolerant or
noisy intermediate scale quantum computers (NISQ)1. Experi-
mental and theoretical proposals have explored the potential for
performing a well-defined computational task faster than a clas-
sical computer on as few as 50 qubits, a task often referred to as
“quantum supremacy”2–4. It remains an open question, however,
if these results can be extended to applications of interest outside
the domain of pure computation.

Many early proposals for practical applications have advocated
the use of variational algorithms5–18, which are known to
experience a natural form of robustness against certain types of
noise. In conjunction with this, much progress has been made in
reducing the gate overhead required for practical applications,
especially in the domain of quantum chemistry19–22. However, the
impact of incoherent noise remains daunting for the accuracy
thresholds specified5,7,23. Moreover, while there has been some
success in implementing early quantum error correcting code
experiments in various architectures24,25, a full implementation
remains daunting. As a result, in order to reach practical appli-
cations, it may be necessary to implement some form of partial
error correction for NISQ computations. The exact form of this
error correction could take to achieve success is yet unknown;
however, it has been suggested that one of the best applications for
early quantum computers is using them to study and optimize
error correcting codes in real conditions26. Yet despite great the-
oretical progress, most quantum codes are difficult to study
experimentally on NISQ devices due to the need for complicated
syndrome measurements, fast feedback, and decoding capabilities.

An alternative approach that strays from traditional ideas of
error correction and targets NISQ devices is “error mitigation”.
This term largely refers to techniques that reduce the influence of
noise on a result using only batch measurements and offline
classical processing as opposed to active measurement and fast
feedback type corrections. While they are not believed to lead to
scalable, fault-tolerant computation, it is hoped that sufficient
mitigation may open the possibility of practical applications or
inspire more near-term error correction ideas. A number of these
techniques have been developed both within an application spe-
cific and general context27–30. If one specializes to the quantum
structure of fermionic problems, notably the N-representability
conditions, enforcing these as constraints alone can reduce the
impact of noise in simulations31. More generally within quantum
simulation32, an error mitigation technique known as the quan-
tum subspace expansion (QSE)27 was predicted and experimen-
tally confirmed to both approximate excited states and reduce
errors through additional measurements and the solution of a
small offline eigenvalue problem14. Since then there have been
variations leveraging QSE that use both additional techniques
from quantum chemistry for excited states33 and imaginary time
evolution34.

In this work, we show that it is possible both to use existing
quantum error correcting codes to mitigate errors on NISQ
devices and to study the performance of these codes under
experimental conditions using classical post-processing and
additional measurements. We briefly review the theory of stabi-
lizer codes35 and post-processing in this framework, which we
then generalize using quantum subspace expansions. Although a
connection to symmetries was explored in the original work27

and this connection was extended in subsequent work36,37 that
has also been verified by experimental implementation38, these
papers have focused on application specific contexts. Here we
generalize this to any circuit performed within a quantum code,
and show how subspace expansions may be used to then correct
some logical errors within the code space, as well as be applied to
approximate symmetries of unencoded Hamiltonians. We pro-
vide a concrete example using the perfect [[5, 1, 3]] code to
demonstrate post-processed quantum state recovery. When
applied at the highest level, this recovery exhibits a p ≈ 0.50
pseudo-threshold for an uncorrelated depolarizing channel
applied to all qubits. An example of an unencoded hydrogen
molecule is also demonstrated across the entire range of depo-
larizing errors. We close with an outlook and potential applica-
tions of this methodology.

Results
Correcting logical observables in post-processing. We begin by
briefly reviewing and establishing notation for the relevant topics
of quantum error correcting codes in the stabilizer formalism,
and using this formalism to develop a set of projection operators.
Consider a set of n physical qubits. Quantum error correcting
codes utilize entanglement to encode a set of k < n logical qubits,
with the hope of improving robustness to probable errors. A code
that requires at least a weight d Pauli operator to induce a logical
error is said to have distance d. These three numbers are often
used to define a quantum error correcting code, with the notation
[[n, k, d]].

The set of 2k logical operators formally written L ¼
fXi;Zigi¼1;¼ ;k perform the desired Pauli operation on states in
the code space, which is the ground state subspace of the code
Hamiltonian.

Hc ¼ �
X
Mi2M

Mi ð1Þ

where M is a set of check operators drawn from the stabilizer
group that can be used to deduce error syndromes. More
explicitly, S is the set of stabilizer generators and S is the full
stabilizer group implying S � M � S, such that the minimal set
is the stabilizer generators, but additional operators from the
stabilizer group may be added, as in techniques where one uses
redundancy in stabilizer operators to ameliorate the need for
multiple measurements passes, also called single shot error
correction39,40.

When not performing active error correction, one must rely on
projection operations. Namely, members of the stabilizer group,
Mi 2 S have eigenvalues ±1 and may each be used to construct a
projector Pi = (I + Mi) ∕ 2 that removes components of the state
outside the +1 eigenspace of the stabilizers or code space. One
may use this to construct a projector that is a linear combination
of projectors to remove desired errors outside the code space. We
note that this clearly cannot remove logical errors made within
the code space. This is related to the idea of error detection and
post selection which has made recent progress both in theory and
experiment41–49. Quantum error detection typically discards
results based on syndrome measurements without using correc-
tion, however we will avoid the need for direct syndrome
measurements, which can be cumbersome on geometrically local
qubit layouts and are challenging to do in a fault tolerant fashion
for complex codes. For a stabilizer group with generators Si, the
complete projector can be formed from

Q
Si2SðI þ SiÞ=2 ¼QiPi.

When taken over all the generators, the expression ∏iPi is the sum
of all elements of the stabilizer group with a constant coefficient

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14341-w

2 NATURE COMMUNICATIONS |          (2020) 11:636 | https://doi.org/10.1038/s41467-020-14341-w | www.nature.com/naturecommunications

www.nature.com/naturecommunications


which we fix to 1∕2m,

P ¼ P
y ¼

Ym
i

Pi ¼
1
2m
X
Mi2S

Mi ð2Þ

where m is the number of stabilizer generators used. For the case
of full projection, this will be the full stabilizer group which
contains 2m terms. While this is generally an exponential number
of terms, it will be shown that the number of terms is not an
explicit factor in the cost when a stochastic sampling scheme is
used to apply the corrections. Rather the correction cost will
depend on the volume of the state outside the code space. The
group structure allows projective correction of the density matrix

PρP
y
on a NISQ device to be relatively straightforward.

It is important to emphasize here the reason this expansion
of projectors is used here, as opposed to traditional measurement
of stabilizer generators, which are not exponential in number.
In particular, we are prescribing the use of transversal, destructive
measurement to avoid the need for measurement syndrome
qubits and associated fault-tolerant gadgets. As such, while
stabilizer generators commute, transversal measurement of their
components may not. For example, while X1X2 and Z1Z2
commute, measurement of Z1 and Z2 transversally to determine
Z1Z2 destroys the ability to recover X1X2. Our scheme allows
us to bypass this difficulty through stochastic operator sampling
and works with codes of arbitrary structure. This transvesal
measurement scheme that avoids the need for ancilla is also at
the core of the method’s relatively high pseudothreshold for a
given code.

Suppose that some logical Hermitian operator Γ is expressed as
a sum of Pauli operators Γi as Γ = ∑iγiΓi. Then the corrected value
for the expectation of Γ may be computed from

hΓi ¼ 1
c2m

X
jk

γj Tr ρΓjMk

h i
ð3Þ

c ¼ Tr PρP
yh i

¼ Tr Pρ
� � ð4Þ

where we began with the standard expression for expectation
values for an un-normalized quantum state, and used for reduction

the properties of, Hermitian projectors, P ¼ P
y ¼ P

y
P ¼ PP

y
, and

logical operators Γ commute with stabilizer group elementsMi, and

ifMy
i Mk is in the set of operators, we can rewrite it as a single sum

over these operators which will be repeated. In the case that we use
the operators built from the stabilizer generator projectors here,
this will always be the case. As this expansion may contain a large
number of terms, it is important to develop a scheme for sampling
from it that maximizes efficiency. We discuss a simple stochastic
scheme for sampling these corrections and the associated cost of
doing so in the methods section.

We emphasize a distinction between this measurement scheme
and traditional error correction/detection is that we do not need
to measure the stabilizers in earnest. As this is a post-processing
procedure, we are free to destroy the information in the state by
measuring qubit-wise across Pauli operators. To be explicit, if one
had the Pauli operator X1Z2Z3X4 as a stabilizer, a true stabilizer
measurement would require extracting only the ±1 measurement
using an ancilla. However in this scheme, we are free to use
repeated preparations of the state and construct any unbiased
estimator of 〈X1Z2Z3X4〉 we desire, including those which might
destroy the encoded state. This dramatically simplifies the use of
codes with non-local stabilizer measurements.

Relaxing projectors to subspace expansions. In the previous
section, we showed how explicit projectors from quantum error
correcting codes can be used to correct observables in post pro-
cessing. We generally define the expansion of the problem around
a reference quantum state into a small surrounding subspace as a
quantum subspace expansion. Expanding the code projectors to
the full group (as opposed to their stabilizer generators) is one
restricted form of this, but the construction is much more gen-
eral27. In this section, we show how these constructions can be
relaxed for greater flexibility and power with simple relations to
approximations of these projectors within a subspace. A sche-
matic comparison of the deterministic subspace expansion and
the stochastic variant we will use is shown in Fig. 1, which
overviews the input and output quantities for each case. The
conceptual overview for the goal of partitioning the space into
good code space regions, and bad non-code space regions to be
projected out is depicted in Fig. 2. We know that for an expansion
built from a product of projection based on the stabilizer gen-
erators, the coefficients may be chosen to be uniform. However
when one truncates terms from this series, this is no longer the

Stochastic subspace expansion Deterministic subspace expansion

Until converged...

Measure

Select randomly

Prepare

Sum results

Prepare

Measure

CHC = SCE

�ij = 〈MiM  i �MjM 〉

HijH = 〈MiM   Hi cH MjM 〉 Sij = 〈MiM   Mi jM 〉

PcPSolve

QPU

CPU
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CPU

a b
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{�j� , MkM }
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Fig. 1 Algorithmic schematics of the stochastic and deterministic subspace expansions. The goal is to use an expansion in a subspace around a prepared
quantum state, ρ, to improve the expected value of the logical observable 〈Γ〉, without requiring ancilla based syndrome measurements or feedfoward. An
observable in the logical space Γ is expressed as a sum of Pauli operators, Γk, while symmetries, Mk, either naturally dictated by a system or from the
stabilizer group S are selected. In the stochastic case (a), the state ρ is re-prepared many times, and these measurements are used to assemble the
corrected expectation value 〈Γ〉 by expanding the averaged result in the resulting subspace. In the deterministic case (b), we may expand the set of Mk to
include non-symmetries, and the corresponding averages over ρ are evaluated with many repetitions to form the representations of the operators in the
subspace around ρ. These matrices define an offline generalized eigenvalue problem whose solution, C, defines both an optimal projector in the basis of
operatorsMi, Pc and corrected expectation values 〈Γ〉 for desired observables. We note that a scheme for including recovery operations can be found in the
methods section.
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case and we must consider a more general expression

Pc ¼
XL
i

ciMi ð5Þ

where L is the number of terms in the linear ansatz and the check
operators, Mi, still come from the stabilizer group, however it no
longer needs to be true that P /QiðI þ SiÞ. We choose a linear
ansatz built from the stabilizer group to both facilitate the pos-
sible inclusion of symmetries as before, and to guarantee the
existence of an exact solution for this problem. One could select
more general operators than those in the stabilizer group, and
indeed this was the approach to locating excited states in a pre-
vious work. If we choose ci = 1∕2m and let the sum run over the
entire stabilizer group, we recover the expression from the pro-
jection technique. To find coefficients ci, we formulate this pro-
blem as minimizing the distance to the code space subject to a
normalization constraint. Using the Hamiltonian formulation of
the code space, this is equivalent to approximating the ground
state of the code space by

min
ci

Tr PcρP
y
cHc

h i
such that Tr PcρP

y
c

h i
¼ 1

Pc ¼
P
i
ciMi:

ð6Þ

This optimization is dependent both on the state ρ and choice
of Hc in general. From the linear ansatz and normalization
constraint, this problem is equivalent to minimization of a
quadratic form on the surface of a sphere with a non-orthogonal
metric. This general problem has a well-known solution in
mathematics50 and is commonly used within linear variational
methods in chemistry27 and physics derived from the Ritz
method51 or closely related Galerkin discretizations in applied

mathematics. The solution is given by the solution of the
generalized eigenvalue problem

HC ¼ SCE ð7Þ

Hij ¼ Tr My
i HcMjρ

h i
ð8Þ

Sij ¼ Tr My
i Mjρ

h i
ð9Þ

where H here forms a representation of the action of the code
Hamiltonian in this stabilizer projector basis, the matrix S is the
overlap or metric matrix defining the subspace geometry, C is the
matrix of eigenvectors, and E is the diagonal matrix of
eigenvalues. We note that for cases where the check operators
Mi are built from projectors from generators, the solutions
coincide with the previous formalism. When it is not the case that
one builds the check operators from the product of stabilizer
projectors, it provides an optimal solution that interpolates
between different numbers of projectors in the subspace given.
This type of expansion about a state is referred to as a quantum
subspace expansion (QSE). The ground state eigenvector of this
NM × NM eigenvalue problem, forms the optimal solution of the
above problem within this subspace. In general, the optimal
solution of this eigenvalue problem may not be a strict projector.
However, this is not necessarily undesirable. In some cases, a
lower energy state may be found for a specific problem
Hamiltonian that corresponds to a rotation in the logical space.

When the solution of this eigenvalue problem is obtained, it
may be used in a number of ways. In connection to the stochastic
technique prescribed above, the values ci may be used to obtain a
corrected estimate of any desired logical observable. Alternatively,
one may build a representation of an operator in the same basis
defined by the expansion operator, and use it to perform further
symmetry projections or improve the estimate of a logical
observable as in ref. 27.

As in typical quantum error correction, the degeneracy of the
ground state of the full code Hamiltonian prevents referencing a
single state within the code space. This makes removing logical
errors with the above procedure impossible. However, when
considered in conjunction with a problem Hamiltonian such as
that from a quantum physical system like an electronic system, it
becomes possible to correct logical errors as well if the goal is to
prepare an eigenstate of this Hamiltonian or minimize its energy.
As a simple example, if one has a single encoded spin with a
problem Hamiltonian �Zi and the state is incorrectly found in
1j i, by including as an expansion operator Xi, one can correct an
error in the logical space with this procedure, as it will detect the
lower energy state, 0j i, to be in the expanded subspace.

Corrections with unencoded systems
So far we have considered the case of decoding within an error
correcting code that redundantly encodes quantum information
via engineered symmetries. However, this strategy inevitably
involves some overhead due to the encoding in the execution of
gates, and in some near-term experiments, it will still be most
practical to work directly in the space of a physical problem
Hamiltonian Hp. Here we show how the machinery developed so
far can be applied to this case.

In this case, the physical problem Hamiltonian Hp may have
symmetries that are often known about the desired state ahead of
time. For example in the case of an interacting fermion system,
the total number of fermions, the total spin and Sz component,
and symmetries related to spatial degrees of freedom in a system
are often good candidates. The application of these symmetries
has been explored previously, symmetries27,36,38,52, and as these
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Fig. 2 Cartoon schematic of error correction vs error projection in a
stabilizer code.We sketch the quantum space as divided into the blue code
space, defined by +1 eigenvalues of stabilizers and the red non-code space
as defined by having −1 eigenvalues for some of the stabilizers. In
traditional error correction, the stabilizers are measured, the errors
decoded, and recovery operations are applied to return one to the code
space. In error projection, we use projectors based on stabilizers to remove
sections of non-code space using only simple Pauli measurements and
post-processing. We can also combine this technique with forms of
recovery, but the effective difference is depicted by the discarding of large
parts of errant Hilbert space.
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are expected to be exact symmetries, it is always safe to apply
them when the symmetry is known.

While these symmetries are exact and effective to apply, they
are often more expensive to implement than one might desire.
For example, the problem of number symmetry in a fermion
Hamiltonian can take eigenvalues that range from 0 to the
number of spin orbitals in the system. Thus to select just the
correct particle number, one may have to construct a projector
which removes all the components except the desired particle
number Np, or /

Q
n≠Np

ðn� N̂Þ where N̂ is the number operator
on all the fermionic modes of the system. This may result not
only in many terms, but a sum of terms that do not individually
represent symmetries of the system, which can complicate
sampling.

As a result, it is much simpler and effective to start with
symmetries that have only two distinct eigenvalues, also referred
to as Z2 symmetries of the problem Hamiltonian. An example of
this is the number symmetry operator, which in the Jordan-
Wigner representation takes the simple form ∏iZi. An extension
of this, is to use both the up-spin (α) and down-spin (β) number
parities, which generate the full number parity, and offer addi-
tional power in their projection. These are simply given by ∏i∈αZi
and ∏i∈βZi respectively. These simple parity symmetries have
been utilized before to reduce the number of qubits52, however
just as in subsystem error correcting codes, retaining these
redundancies can sometimes be beneficial for gate depth or effi-
ciency of representation. That work also contained a general
algorithm for searching for unknown Z2 symmetries in these
Hamiltonians that can be used here. One may also use this to
consider beneficial projectors that are derived from approximate
symmetries of the Hamiltonian or more generally operators that
do not commute with the Hamiltonian, but have known structure
with regards to the problem.

Example demonstrations
Here we both exhibit some of the performance of the presented
techniques and clarify their construction through the use of
simple examples. Both a general error correcting code and specific
problem Hamiltonian systems with symmetries are studied. We
note that in our numerical studies we use a single qubit depo-
larizing channel defined by

EpðρÞ ¼ 1� pð Þρþ p
3

XρX þ YρY þ ZρZð Þ ð10Þ
which corresponds to the convention that the totally mixed state
is achieved at p= 3∕4. Although a single qubit depolarizing
channel is not a perfect error model for any system, experimental
data suggests that correlated errors are much weaker in many
architectures than independent, single-qubit errors. In addition, it
is expected that in the gate model, use of randomized compiling is
advisable to decohere errors, which tends to map other error
channels closer to this model on average and allows one to treat
phenomena like measurement errors as bit-flip errors. Applica-
tion of these techniques and analysis to true devices is, of course,
the eventual goal in order to both understand their applicability
and optimize existing quantum codes.

To see how the general recovery process using stabilizer codes
can work in practice, let us consider the concrete example of the
perfect [[5, 1, 3]] code, which is a distance 3 code that encodes 1
logical qubit in 5 physical qubits. To evaluate the performance in
practice, we perform the following numerical experiment. A
logical state Ψ

�� � in the [[5, 1, 3]] code is prepared, then subjected
to an uncorrelated depolarizing channel on all qubits with
probability p. The logical state is selected at random within the
space to not exhibit any special properties with regards to errors.
In connection with the formalism above, we evaluate the

expectation value of the logical operator A ¼ Ψ
�� � Ψ
� ��. This

operator does not generally have a simple Pauli expansion as
other observables typically would, but gives a stringent test for the
performance of the method for all observables on the state of
interest. The subspace expansion is then performed with SðlÞ as
expansion operators, and the fidelity FL ¼ Ψ

�� � Ψ
� ��, of the

resulting state is evaluated with Ψ
�� �.

This code has logical operators and stabilizer generators

X ¼ XXXXX ð11Þ

Z ¼ ZZZZZ ð12Þ

S ¼ XZZXI; IXZZX;f
XIXZZ;ZXIXZg: ð13Þ

We denote the two states of the logical qubit as 0j i and 1j i, and
an arbitrary code space state that is a superposition of these two
states as Ψ

�� � or the pure state density matrix ρ.
We denote the hierarchy of check operators as the elements in

the sum generated by SðlÞ ¼Ql
i¼1ðI þ SiÞ, where the ordering of

stabilizer generators has been fixed. To see how this hierarchy
works in practice, consider an uncorrelated depolarizing channel
acting on all 5 physical qubits with probability p. In this situation,
we have up to 5 qubit errors, which we do not expect the code can
recover from without introduction of a problem Hamiltonian,
however they occur with probability p5, which can be quite small
for modest p.

The cross lines in Fig. 3 show the performance using fixed
projectors at those level, which exactly coincide with the QSE
relaxation. The starred lines show the result of removing 2 check
operators at random and re-performing the QSE expansion to
show the performance smoothly interpolates between those lim-
its. We plot the logical infidelity 1− FL where the physical line
denotes the trivial encoding into one qubit and compare the two
for a range of values of p. The infidelity is calculated with respect
to the correct logical state, which is a single state in the physical
Hilbert space. This is done as we are seeking to discard all non-
codeword states, but cannot do so when encoded yet uncorrected.
Hence for the encoded but uncorrected state, fully depolarizing
each qubit individually will lead to a fidelity of 1∕2n, where n is the
number of physical qubits. We define the pseudo-threshold to be
the value of p for which the logical infidelity in the encoded space
is lower than the physical infidelity for the unencoded system,
and we see that at both levels there is a pseudo-threshold in this
model. For S(4), the pseudo-threshold is numerically found to be
p= 0.50 for this code and symmetric depolarizing channel. We
see here that the pseudo-threshold generally depends on the
truncation level, however it converges to the pseudo-threshold of
the full code for the given operation and error model. If we are
sufficiently below the corresponding pseudo-threshold, in the
case where no recovery operations are used, we may obtain up to
a pd−1 suppression of the error rate. A topic of interest is to
investigate how this pseudothreshold may relate to the distance in
the more general case using our technique which avoids the need
for ancilla measurement qubits.

We now look at an example of an unencoded Hamiltonian,
which has become a canonical test case for quantum computing
in quantum chemistry. This is the second quantized hydrogen
molecule in a minimal, 4 qubit basis. In this case, the α and β
number parity operators are an efficient choice of projectors. In
the Jordan-Wigner representation, these are given by ∏i∈evenZi
and ∏i∈oddZi when an even-odd ordering of orbitals are used.

The effectiveness of the technique on this system is evaluated
numerically by preparing the exact ground state of the hydrogen
molecule and subjecting it to an independent depolarizing

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14341-w ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:636 | https://doi.org/10.1038/s41467-020-14341-w | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


channel on all 4 qubits. We choose as the generating operators
S = {Z0Z2, Z1Z3, X0X1X2X3} which up- and down-spin number
parity operators as well a non-local operator which need not be
an exact symmetry of the Hamiltonian. The ordering of l matches
that given here. The logical infidelity as a function of the depo-
larizing probability is plotted in Fig. 4. In contrast to the encoded
case, we see an improvement over the whole range of depolarizing
strengths. The stretched geometry of the molecule ensures that a
high degree of entanglement is required to achieve a low logical
fidelity, making this a sensitive test of performance. We see that
in some cases an improvement of up to 3x in the logical infidelity.
As the number of operators to measure here is quite modest and
the improvement is universal, it suggests this will present an
advantageous correction to include in almost all near-term
implementations.

Discussion
As has been conjectured before, one of the best uses of early
quantum devices may be to tune quantum error correcting codes
under actual device conditions26. The modeling of true noise
within the device is incredibly difficult as the system size grows,
and studying which codes excel under natural conditions and
how to optimize them may lead to progress towards fully fault
tolerant computation. Indeed, knowledge of biased noise sources
can vastly increase the threshold of a given code53. The tool we
have provided here gives a method to experimentally study the
encoding through post-processing while removing the compli-
cation of fault-tolerant syndrome measurement or fast feedback.
This allows one to explore a wider variety of codes experimentally
before worrying about these final details. We propose that one
can run simple gate sequences in the logical space with known

results, and use the post processing decoder here to study the
decay of errors as stabilizers are added. This limit will inform the
propagation of logical errors in the system and allow one to make
code optimizations before full fault tolerant protocols are
available.

We note that this type of decoder benefits greatly from the fact
that check measurements need not be geometrically local to be
implementable in a realistic setting. This allows one to explore
and utilize codes that are not geometrically local on the archi-
tecture in use, which may have nicer properties with respect to
distance and rate than geometrically local codes. Moreover, they
naturally allow implementation of recent fermionic based codes,
such as Majorana loop stabilizer codes54 or variations of Bravyi-
Kitaev superfast55 thought to be good candidates for near-term
simulations, without the need for complicated decoding circuits
or ancilla for syndrome measurements.

Moreover, as this method is a post-processing method, it is
entirely compatible with the extrapolation techniques introduced
for error mitigation28–30. In these techniques, one artificially
introduces additional noise to extrapolate to a lower noise limit.
To apply this technique to quantum subspace expansions, one
simply needs to perform the extrapolation on each of the desired
matrix elements, then proceed as normal.

In this work, we have introduced a method for mitigating
errors and studying error correcting codes using a post processing
technique based on quantum subspace expansions. We showed
that in implementations of this method, one can achieve a
pseudo-threshold of p ≈ 0.50 under a depolarizing channel acting
on single qubits in the [[5, 1, 3]] code and made connections to
the traditional theory of stabilizer codes. We believe this method
has the potential to play a role in the development and
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Fig. 4 Error suppression using natural molecular symmetries. Errors are
plotted as a function of depolarizing probability and included projectors for
an H2 molecule at a bond length of 1.50

�
A with a physical encoding. FL here

is the logical fidelity, which is the same as physical for this encoding. At this
bond length, the ground state wavefunction requires considerable
entanglement to be qualitatively correct. The stabilizer elements used to
perform the projection here are the α- and β- number parity as well as the
total X operator, which need not be an exact symmetry, given in the Jordan-
Wigner encoding as S= {Z0Z2, Z1Z3, X0X1X2X3}. The depolarizing channel
is applied individually to each qubit on the exact ground state. As there is
no error correction encoding overhead in this case, the expected
improvement over the uncorrected solution is always positive. Hence it is
always advantageous in these cases where simple symmetries are known
to include these measurements and corrections.
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Fig. 3 Pseudo-threshold crossover for recovery using the [[5, 1, 3]] code.
The model examines the impact of errors under an uncorrelated
depolarizing channel showing a p≈ 0.50 pseudo threshold for the full
correction procedure. We plot the logical infidelity 1−;FL where FL is the
logical fidelity of a selected state in the code space of the [[5, 1, 3]] code as
a function of the depolarizing probability for each qubit p. The label l
denotes the number of products from the stabilizer generators used in the
expansion operator set. The physical line depicts the same error if the
logical state is encoded in a single qubit in the standard way. The “bare''
line indicates the logical error rate with no recovery procedure applied. The
starred lines close to each level of the hierarchy show an approximation to
that level of projection using the QSE projection with 2 less check operators
to demonstrate the smooth performance of the subspace procedure.
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optimization of quantum codes under realistic noise conditions as
well as the ability to remove errors from early application
initiatives.

Methods
Stochastic sampling for corrections. As suggested in the exposition on the
correction formalism, it is key for efficiency to sample the terms for the correction
in a way that reflects the state rather than number of terms. We outline and analyze
a simple stochastic scheme for performing this sampling here.

Suppose that we want to measure the corrected expectation value of some
logical operator Γ, which can be decomposed into Pauli operators Γj as
Γ ¼ ~γ

P
jγjΓj , where ∑jγj= 1 and γj ≥ 0 from absorbing required signs into Γj.

Projecting this into the code space of some selected code as before, we have

μΓ ¼Tr ½PρPΓ�
¼ ~γ

2m
X
ij

γj Tr ½ρΓjMi� ð14Þ

¼ ~γ
X

χ2f0;1gm

X
j

γj
2m

Γχ;j ð15Þ

where χ= (χ1, χ2, …, χm) is a bit string that we use to conveniently enumerate the
stabilizer group operators and we define

Γχ;j ¼ Tr ½ρΓjSχ � ; Sχ ¼ S
χ1
1 S

χ2
2 � � � Sχmm ð16Þ

where we note that this also encompasses the measurement of the normalization
correction c as well for Γ= I. We will also assume here that as in the case of
stabilizer projectors and the Z2 construction of physical symmetries that each Mi is
a symmetry of the encoding, commuting with the desired Hamiltonian and
physical observables.

To sample the trace stochastically, we may use the coefficients of the terms as a
normalized probability distribution. One may choose the distribution to depend on
χ as in an importance sampling scheme below, however taking the uniform
distribution is perhaps the most straightforward and pχ;j ¼

γj
2m gives the mean

E μ̂Γ
� � ¼ ~γ

X
χ;j

pχ;jE Γχ;j

h i

¼ ~γ
X
χ;j

pχ;jðq1χ;j � q�1
χ;j Þ

¼ ~γ
X

χ;j;x2f�1;1g
x � pχ;j;x

ð17Þ

where we used μ̂Γ to emphasize that this is an expected value for our estimator of
μΓ, qxχ;j is the probability of getting a measurement result x ∈ {+1, −1} from
measuring the Pauli operator Γχ,j, and we have lumped this into the probability
distribution as pχ;j;x ¼ pχ;jq

x
χ;j. This has a simple construction for stochastic

evaluation, which is to enumerate all the possible terms in the decomposition, draw
Ns terms with the probabilities from this distribution which will yield either +1 or
−1 from the Pauli measurements, add them together and divide by Ns. The
variance in the estimate will be given by the variance of this estimator divided
by Ns.

From our construction, we see that we can view the estimator as a binomial
distribution with a probability for the two results x∈ {−1, +1} derived from
marginalizing over the joint distribution for projector terms χ and Pauli
decomposition terms j to find

px ¼
X
χ;j

pχ;j;x : ð18Þ
As a result, one may write down a particularly simple form of the variance for

the estimator given by

Var½μ̂Γ� ¼ ~γ2pþ1ð1� pþ1Þ: ð19Þ
To understand how the state influences the variance, we consider a simple

example case using the total depolarizing channel and a single Pauli operator Γ,
with γi ¼ ~γ ¼ 1. For the total depolarizing channel with probability w, we have

ρ ¼ ð1� wÞ Ψ�� � Ψ
� ��þ w

2n
1: ð20Þ

In the limit of w= 0 we have that all states are in the code space, and hence the
sum over χ trivially collapses, and we have that px= qx, which gives the same
statistics as the original measurement of Γ. Thus in such a case one has no
dependence on the number of stabilizer terms used in the expansion. Hence,
adding this procedure to a perfect state is expected to incur no additional cost on
average.

Considering the imperfect case w > 0, marginalizing over χ is equivalent to
applying the code space projector and hence geometrically analogous to
determining the volume of the state in the code space. This must correspond
equate to a portion of the average being 0, however as we are only capable of
measuring 1 and −1, it then must constitute an equal probability of being in +1

and −1 that is determined by the volume of non-code space the state occupies.
More explicitly X

χ

pχ;j;x ¼
1
2
ð1þ x Tr ½ρP�Þpj;x : ð21Þ

As a single Pauli is traceless, in our simple example we find for the case of the
totally mixed state that

pþ1 ¼
1
2
ð2� wÞqþ1 ð22Þ

Var½μ̂Γ� ¼
1
4
ð2� wÞwðqþ1Þ2 ð23Þ

to further simplify, suppose we were measuring the +1 eigenstate of Γ, so that
q+1= 1, then

Var½μ̂Γ� ¼
1
4
ð2� wÞw ð24Þ

then we see as expected, that for a perfect state (w= 0) the variance is minimal
and independent of the number of terms, and that the variance increases as the
state quality degrades.

The general picture of viewing the sum over χ as reflecting the volume of space
attached to the projector lets one easily reason about the generalization of this
scheme to sampling with recovery. In that case, we simply attach one more
probability which allows us to sample over the different selected errors Ei, with
probability pEi

and proceed as before. The key difference is that we see the
marginalization over χ is now better conditioned, as it is determined by the ratio of
the volume of recovered space to the volume of Hilbert space rather than the
volume of the code space to the volume of Hilbert space. As a result, the sample
variance for recovery may be lower than the sample variance for strict projection.
However as discussed, the ultimate quality of recovery is expected to be superior for
strict projection due to removing errors up to weight d− 1 instead of (d− 1)∕2.

One potential way to suppress the numbers of samples required is to use
variance reduction techniques such as importance sampling. This approach
requires a priori knowledge of the values of Γχ,j,x, and samples the high weight
terms preferentially while applying a correction to the measured values to remain
unbiased. One approach is to sample the bit string χ according to its Pauli-weight
Wχ, i.e, the number of qubits that the stabilizer operator acts non-trivially on. For
the single-qubit depolarizing channel with error probability p, one may sample the
bit string χ with probability proportional to ð1� pÞWχ . This is based on the
intuition that the quantum information stored in low-weight operators decays
more slowly under local noisy channels.

To be more explicit in the construction for the random sampling method
discussed here applied to the recovery procedure discussed in Section “Corrections
with recovery operations”. Suppose that the projector on the subspace
corresponding to the error operator Eα is

Pα ¼
Y
j

1
2
ð1þ ð�1Þsα;j SjÞ ; ð25Þ

where sα,j= 0, 1 and sα= (sα,1, sα,2, …, sα,m) are the syndromes of the α-th error.
The recovered state takes the form

RðρÞ ¼
X
α

RαPαρPαR
y
α ð26Þ

¼ P
X
α

RαρR
y
α

 !
P : ð27Þ

The expectation value for the recovered state reads

Tr ½RðρÞΓ� ¼
X
α;j

Tr ðRαρR
y
αPΓjPÞ ð28Þ

¼ 1
2m
X
α;χ;j

Tr ðRαρR
y
αΓjSχÞ ð29Þ

where Γα ¼ Ry
αΓRα is a logical operator. Hence if we absorb the sign into the logical

operator through a careful choice of recovery operator, we may generalize the
stochastic sampling scheme to taking the expectation value as

E½μ̂Γ� ¼ ~γ
X

χ;j;α;x2f�1;1g
x � pχ;j;α;x ð30Þ

where for uniform sampling we choose

pχ;j;α ¼ γibα
2m

ð31Þ

with ∑αbα= 1 and bα > 0 by choice of the recovery operators. In this case, the
stochastic sampling algorithm is given by choosing a Pauli operator defined by
Ry
αΓjSχRα with probability pχ,j,α, recording the series of +1, −1 results, and finding

their average as before. The calculation of the variance follows as in the previous
case. To reduce variance, the frequency of sampling α maybe chosen to be
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proportional to the error probability of Eα for the expected errors on the physical
system of interest.

Corrections with recovery operations
The power of error correction extends beyond the simple iden-
tification of errors and includes recovery operations that restore
some states to the original code space. The formalism here built
on projectors and post-processing would seem at first glance
unable to take advantage of such unitary projection operations;
however, we will show how one can use these recovery operations
to some advantage in sampling complexity over the unrecovered
projections.

Consider a set of Pauli errors on the system of physical qubits
{Ei} which is known to be correctable within the chosen code.
These errors will either commute or anti-commute with the
stabilizers of the code to produce a syndrome of the error that has
happened, which we denote sij for the j’th syndrome measurement
of the i’th error. We will assume the recovery operation for this
error within the code is known, and is denoted as Ri.

The formalism presented here avoids direct stabilizer mea-
surement by design to favor implementation on NISQ devices,
hence we need to specify how one uses recovery operations within
the projection formalism. Similar to a projector on the code space,
we may formulate a projector onto the error subspace that cor-
responds to error Ei acting on the code space. This is given by

PEi
¼
Y
j

1
2
ðI þ ð�1Þsij SjÞ ð32Þ

where sij 2 f0; 1g is the syndrome associated with the error Ei and
stabilizer generator Sj. Once one has projected into this space, we
can now use the recovery operation, Ri to map the state back into
the code space before using it. If we take the set of all correctable
errors, including no error as the identity, then we get an updated
correction formula for projection with recovery as

hΓi ¼ 1
c

X
i

Tr RiPEi
ρP

y
Ei
Ry
i Γ

h i
ð33Þ

c ¼
X
i

Tr PEi
ρ

h i
ð34Þ

where now we have assumed the ability to apply the recovery
operations Ri, however in many cases this again reduces to a
simple sum over Pauli operators that may be stochastically
sampled, where many of the same simplifications resulting from
commutation of logical operators with stabilizers are possible.

The consequences of including recovery on top of projection
are interesting. The immediate practical benefit in increasing the
size of Hilbert space over which one attains signal. This is
reflected in the estimation of the value c, and leads in practice to
lower errors with small, finite samples. However a tradeoff is
being made in including these values in that it may reduce the
overall projection quality. Consider for example a distance d code.
If one has a Pauli error with weight greater than (d− 1)∕2, a
recovery operation may become a logical error which is not then
removed by this procedure. In contrast, strict projection is cap-
able of removing errors of all the way up to weight d− 1, which is
a significant boost in maximum potential. However, as men-
tioned, the tradeoff of finite sampling complexity with potential
for correction must be carefully balanced in real implementations.

Data availability
Data used in the generation of figures is available upon request.

Code availability
Sample code for the deterministic subspace expansion available upon request.
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