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In order to recognize the identity of a face we need to distinguish
very similar images (specificity) while also generalizing identity
information across image transformations such as changes in orien-
tation (tolerance). Recent studies investigated the representation of
individual faces in the brain, but it remains unclear whether the
human brain regions that were found encode representations of
individual images (specificity) or face identity (specificity plus toler-
ance). In the present article, we use multivoxel pattern analysis in
the human ventral stream to investigate the representation of face
identity across rotations in depth, a kind of transformation in which
no point in the face image remains unchanged. The results reveal
representations of face identity that are tolerant to rotations in
depth in occipitotemporal cortex and in anterior temporal cortex,
even when the similarity between mirror symmetrical views cannot
be used to achieve tolerance. Converging evidence from different
analysis techniques shows that the right anterior temporal lobe
encodes a comparable amount of identity information to occipito-
temporal regions, but this information is encoded over a smaller
extent of cortex.
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Introduction

In our daily life, we constantly need to recognize objects in
order to act appropriately in the world. In some cases, it is
sufficient to recognize objects as instances of a particular type
(e.g., a hammer, a dog), but sometimes we need to recognize
specific individuals (e.g., the friend we set out to meet, our
home). The recognition of individuals poses significant com-
putational challenges, because it requires detection of very
subtle differences (specificity) while at the same time being
tolerant for large variations in sensory stimulation that natu-
rally occur in the world like rotations, translations and scal-
ings. The category of objects that we need to recognize at the
individual level most frequently is probably people and, in
order to recognize people, visual information about their
faces is particularly important. This article investigates the
specificity and tolerance of face representations in the ventral
visual stream.

Neuropsychological studies of face recognition (Meadows
1974; Damasio et al. 1996; Tranel et al. 1997) have reported
the existence of patients with selective difficulties in the rec-
ognition and/or naming of individuals following damage to
occipitotemporal cortex and to the anterior portions of the
temporal lobe (ATL). Single-cell recording studies in humans
(Quiroga et al. 2005) have found neurons responding to a
person’s identity with tolerance across image changes in the
hippocampus, which receives afferents from the ATL via the
entorhinal cortex (Lopes da Silva and Arnolds 1978).

Neuroimaging studies of face processing have reported stron-
ger responses to faces than to other categories of objects in
the fusiform face area (FFA, Sergent et al. 1992; Puce et al.
1995, 1996; Kanwisher et al. 1997), the occipital face area
(OFA; Kanwisher et al. 1997; Gauthier et al. 2000), and the
right ATL (Rajimehr et al. 2009). It remains an open question
whether these regions encode specific and tolerant represen-
tations of individual faces.

Two recent studies used multivoxel pattern analysis
(MVPA) to investigate the specificity of face representations.
In 1 study, Kriegeskorte et al. (2007) presented images of 2
faces in three-fourth orientation, and found that the right ATL
contains information that can distinguish between 2 face
images (specificity). However, the results of that experiment
do not allow conclusions regarding transformation-tolerant
representations because only 1 image for each identity was
used; therefore, there were no transformations for which toler-
ance could be tested. In another study, Nestor et al. (2011),
after averaging together the blood oxygen level–dependent
(BOLD responses corresponding to a same face with different
expressions, identified a set of ventral stream regions including
the right ATL and the fusiform gyrus bilaterally that contain
information about individual images of faces. For each identity,
multiple face images with different expressions were used.
However, this second study, too, allows only limited con-
clusions since changes in expression only affect some parts of
a face, and classification could rely on the parts of the faces
that remain unchanged. Furthermore, for each identity, the
responses to the same stimuli were used for training and
testing the classifiers; therefore, the results might reflect rep-
resentations of specific images, rather than the transformation-
tolerant representations needed for recognition of individuals.

These studies constitute an important first step in the inves-
tigation of face representations in the ventral stream.
However, they did not test the tolerance of face represen-
tations, which is crucial for our interaction with the world.
Another aspect of face recognition that has not been
thoroughly tested is the role of mirror symmetry for generaliz-
ation. It has been proposed that mirror symmetrical images
might play an important role for generalization across view-
point in object recognition (Vetter et al. 1994). The existence
of neurons selective for mirror symmetrical views of objects
has been reported in ventral temporal cortex (Logothetis et al.
1995; Freiwald and Tsao 2010). However, it remains an open
question whether generalization in ventral temporal cortex is
limited uniquely to mirror reflections, or whether ventral tem-
poral cortex instead encodes representations that generalize
across changes in orientation other than mirror reflections.

The tolerance of face representations has been investigated
in depth in monkeys. In a recent study, Freiwald and Tsao
(2010) used fMRI to localize regions in the monkey brain

© The Author 2013. Published by Oxford University Press. All rights reserved.
For Permissions, please e-mail: journals.permissions@oup.com

Cerebral Cortex August 2014;24:1988–1995
doi:10.1093/cercor/bht046
Advance Access publication March 5, 2013

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/24/8/1988/466598 by U

.S. D
epartm

ent of Justice user on 16 August 2022



showing stronger BOLD responses to faces than to other
objects, and then targeted these regions for electrophysiologi-
cal analysis. They record neural responses to faces of different
identities seen from different viewpoints, and report finding
cells that exhibit increasing tolerance to changes in viewpoint
in moving from posterior to anterior areas in the ventral
stream, with the highest tolerance achieved in a region de-
nominated anterior medial (AM). In the present study, using
fMRI and MVPA, we investigate where tolerance across view-
points is achieved in the human ventral stream. For the MVPA
analysis, we used 2 different approaches: a region of interest
(ROI) approach and a feature selection-based approach,
because each of the approaches has important advantages.
The ROI approach makes it easier to compare the results ob-
tained in our study with those obtained in previous studies.
However, it cannot tell us whether information is only present
within our ROIs, or whether it is also present outside the
ROIs. The feature selection-based approach gives us this
additional piece of information.

Materials and Methods

Participants
Ten participants (age range 18–50 years, mean 27.1 years) took part
in the experiment. The participants’ consent was obtained according
to the Declaration of Helsinki. The project was approved by the
Human Subjects Committees at the University of Trento and Harvard
University. Data from one participant were discarded from the analy-
sis because of poor performance during a behavioral training session
administered on the day before the scanning.

Stimuli
Images of 5 face identities at 5 different orientations were generated
rendering 3D models faces in DAZ-3D (Fig. 1A, Supplementary
Fig. 1). The use of 3D models ensured that information about rotation
angle, color, and texture could not be used to distinguish between the
faces. Stimuli were presented with Psychtoolbox (Brainard 1997; Pelli
1997) running on MATLAB, with the add-on ASF (Schwarzbach
2011), using an Epson EMP 9000 projector. Images were projected on

a frosted screen at the top of the bore, viewed through a mirror at-
tached to the head coil.

Experimental Design
Before entering the scanner, participants were briefly familiarized
with the 5 faces seen from 5 orientations. One face identity (constant
across participants) was designated as the “target,” and participants
were instructed to respond with the index finger of the right hand to
the target face and with the middle finger to the other “distractor”
faces (Supplementary Fig. 1). All analyses were performed on the dis-
tractor faces; therefore, classification of different distractor faces
cannot be attributed to the production of different motor responses.
Each trial consisted of the presentation of a face image (500 ms) fol-
lowed by a fixation cross (1500 ms). The experiment was composed
of 3 12-min runs, each composed of ∼320 trials. The order of presen-
tation of the stimuli was optimized for deconvolution with optseq2
(http://surfer.nmr.mgh.harvard.edu/optseq/). On the day before the
scanning, participants took part in a training session (∼30 min)
during which they were shown rotation videos of 2 of the distractor
faces and performed a 1-back identity discrimination task. We did not
observe significant training-dependent differences in generalization;
therefore, analyses for trained and untrained faces are collapsed to-
gether. To avoid any biases in classification, only classification
between faces with the same level of training was performed; there-
fore, differences in training cannot explain the observed classification
performance. A block-design functional localizer with faces, houses,
and scrambled images was administered at the beginning of the fMRI
session. None of the faces shown in the localizer were presented
during the other parts of the experiment.

Data Acquisition and Analysis

MRI Scanning Parameters
The data were collected on a Bruker BioSpin MedSpec 4T at the
Center for Mind/Brain Sciences (CIMeC) of the University of Trento
using a USA Instruments 8-channel phased-array head coil. Before col-
lecting functional data, a high-resolution (1 × 1 × 1 mm3) T1-weighted
MPRAGE sequence was performed (sagittal slice orientation, centric
phase encoding, image matrix = 256 × 224 [Read × Phase], field of
view = 256 × 224 mm [Read × Phase], 176 partitions with 1-mm thick-
ness, GRAPPA acquisition with acceleration factor = 2, duration = 5.36
min, repetition time = 2700, echo time = 4.18, TI = 1020 ms, 7° flip
angle).

Figure 1. (A) Four example stimuli used for classification, generated with 3D graphics software. All stimuli are shown in Supplementary Figure 1. (B) Specific classification
accuracy as a function of ROI size. (C) Tolerant classification accuracy as a function of ROI size. Tolerant classification was performed employing a cross-validation procedure in
which a pattern classifier was trained to discriminate 2 face identities with data from 4 of the 5 viewpoints, and tested on the discrimination between the 2 identities seen in
the fifth viewpoint, which was not used for training. *P< 0.05, **P<0.005, ***P< 0.0005.
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Functional data were collected using an echo-planar 2D imaging
sequence with phase oversampling (image matrix = 70 × 64, repetition
time = 2000 ms, echo time = 21 ms, flip angle = 76°, slice thickness = 2
mm, gap = 0.30 mm, with 3 × 3 mm in plane resolution). Over 3 runs,
1095 volumes of 43 slices were acquired in the axial plane aligned
along the long axis of the temporal lobe.

Data Analysis
Data were analyzed with SPM8 (http://www.fil.ion.ucl.ac.uk/spm/
software/spm8/) and MARSBAR (Brett et al. 2002) running on
MATLAB 2010a, and with custom MATLAB software using the
MATLAB bioinformatics toolbox.

Preprocessing. The first 4 volumes of each run were discarded and
all images were corrected for head movement. Slice-acquisition delays
were corrected using the middle slice as reference. Images were
normalized to the standard SPM8 EPI template and resampled to a
3-mm isotropic voxel size. The BOLD signal was high pass filtered at
128 s and prewhitened using an autoregressive model AR(1).

General linear model. Data were modelled with one regressor for
the target face and separate regressors for each combination of
identity and orientation for distractor faces. Subsequent repetitions
(within a run) of the distractor faces were modelled in groups of 3 to
balance quality of fit and accurate deconvolution. Regressors were
convolved with a standard hemodynamic response function. A
parametric modulator for reaction time and 6 motion regressors were
included in the model.

Regions of interest definition. ROIs for the OFA, FFA, and ATL
were defined with an independent functional localizer individuating
the peaks showing stronger activity for faces than for houses. After
determining the location of the peaks, spheres of 6, 9, and 12 mm
radius were generated centered in each of the peaks, to investigate
the effect of radius size and number of voxels considered on
classification accuracy. As a control, V1 ROIs were defined using the
MARSBAR AAL atlas. Three V1 ROIs were generated, matched in
number of voxels to the 6, 9, and 12 mm spherical ROIs. Given that
V1 is stripe-shaped, these ROIs were generated starting from the
foveal (posterior) portion of V1, and including more voxels
progressing peripherally (anteriorly) within the shape constraints
determined by the MARSBAR calcarine ROIs (Supplementary Fig. 2).
The ROIs for different regions do not overlap at any sphere size.
Hippocampus ROIs were defined using the Wake Forest University
PickAtlas.

Training and testing of the classifiers. In the first ROI analysis
(Fig. 1B), data were divided in 2 independent sets (both comprising
all orientations), one used for training and the other for testing. In all
other analyses with the exception of those without mirror
symmetrical views (Fig. 4), classifiers were trained to discriminate 2
face identities with all data from 4 of the 5 orientations shown, and
tested with the orientation not used for training. In the analyses
without mirror symmetrical views, one orientation and its mirror
symmetrical view were chosen for testing, and the other orientations
were used for training. Linear SVM were used for all classifications, as
implemented in the MATLAB functions “svmtrain” and “svmclassify.”
In all analyses, pairwise discriminations were performed; therefore,
chance is at 50%.

Ventral stream recursive feature elimination analysis. Two
anatomical ROIs, one for the left ventral stream and one for the right,
were generated using the Wake Forest University PickAtlas toolbox for
SPM (http://fmri.wfubmc.edu/software/PickAtlas). The ROIs extended
from the occipital lobe to the anterior temporal pole, and extended
medially to include the fusiform gyrus. A 2-stage feature selection was
applied (De Martino et al. 2008), with a first stage of mass-univariate
selection preserving 1000 voxels, followed by a recursive feature
elimination (RFE) analysis (Guyon et al. 2002), that eliminated an
additional 800 voxels. A pattern of fMRI activity consists of the BOLD

signal in a number of different voxels, and can be considered as a
vector V in a space with as many dimensions as the number of voxels,
where each dimension corresponds to one of the voxels. In each
voxel, different stimuli will elicit different amounts of BOLD signal:
the BOLD signal elicited in a voxel X (that corresponds to dimension
I) by a stimulus S is the value of the component of vector V along
dimension I. In RFE, a linear SVM is trained on a subset of the data,
and the training procedure leads to the individuation of a separating
hyperplane that leaves on one side of the space the data points
belonging to one class and on the other side of the space the data
points belonging to the other class. The way in which the separating
hyperplane is tilted in the space (and consequently which data points
lie on one side or the other of the hyperplane) depends on the
hyperplane’s normal vector (and vice versa). This vector has one
component along each dimension of the space. For each voxel, the
absolute value of the component of the hyperplane’s normal vector
along that voxel reflects how much the BOLD signal in that voxel
contributes to classification. Eliminating the BOLD signal in that voxel
from the patterns is equivalent to setting the component of the normal
vector along that voxel to zero. The greater the absolute value of the
component of the normal vector along that voxel, the greater the
change in the direction of the normal vector when that component is
set to zero. Therefore, eliminating from the patterns voxels along
which the component of the hyperplane’s normal vector is smaller
will produce a smaller change in the tilt of the hyperplane, and will be
less likely to change which data points lie on one side of the
hyperplane or the other. By contrast, eliminating voxels along which
the component of the hyperplane’s normal vector is large will produce
large changes in the tilt of the hyperplane, which can lead to large
changes in the hyperplane’s tilt. This in turn can lead to large drops in
classification accuracy, because the original tilt of the hyperplane was
selected to separate “at best” (see Boser et al. 1992) the 2 classes of
data points. On the basis of these considerations, RFE uses the
absolute value of the components of the separating hyperplane’s
normal vector along the different voxels to evaluate the importance of
the contribution of each voxel to classification. At each step, the voxel
with the smallest absolute value was eliminated from the patterns, and
the procedure (including retraining of the classifier to evaluate the
new separating hyperplane) was iterated until the desired number of
voxels was reached. The total number of voxels to be kept (400, 200 in
each hemisphere) was chosen to match previous work (e.g., Nestor
et al. 2011) in order to facilitate comparison. In order to ensure that
the test data played no role in the selection of the 200 voxels in each
hemisphere (to avoid biases in the analysis), feature selection was
repeated for each cross-validation iteration using exclusively the
training data.

Probability of detecting discriminative voxels. For each
participant and hemisphere, a map of the probability of each voxel to
be among the 200 most informative voxels selected by the feature
selection procedure was computed. The ventral stream ROIs were
subdivided into 14 bins each spanning 3 voxels along the posterior to
anterior dimension, covering a range of MNI coordinates between
y =−100 and y = 26. For each bin the sum of the probability values for
voxels in that bin was computed and normalized by the number of
voxels in the bin to control for differences in the size of the mask at
different levels along the posterior to anterior axis. The mean and the
standard error of the mean of the normalized probabilities for the 9
participants were then computed.

Clusters definition. Anterior and posterior clusters in the ventral
stream were defined on the basis of the plots of the probability of
finding discriminative voxels (Fig. 2B). The plots show 2 groups of
contiguous bins in each hemisphere showing above-chance
probability of finding informative voxels, between MNI coordinates
−73 and −46, and between MNI coordinates 8 and 17. For each group
of contiguous bins showing above-chance probability of finding
informative voxels, we created a ROI defined as the set of the most
informative voxels found with RFE in that group of bins. The
selection of the voxels to be included in the ROIs was based on data
in the training set, thus avoiding the risk of “double dipping.”
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Results

ROI Analysis
Spherical ROIs for the right OFA, FFA, and ATL were gener-
ated, centered in the peaks of activity for faces in an indepen-
dent functional localizer. The effect of sphere radius on
classification performance was investigated testing classifi-
cation with radii of 6, 9, and 12 mm. For each radius, a V1
ROI matched in number of voxels to the other ROIs was ana-
tomically defined using MARSBAR’s AAL (Tzourio-Mazoyer
et al. 2002). In a first analysis, a linear SVM was trained to
distinguish all views of one identity from all views of another
identity on part of the data, and then tested on the discrimi-
nation of the responses to the same stimuli on the remaining
data (Fig. 1B). As in the analysis performed by Nestor et al.
(2011), separate data were used for training and testing, but
the set of stimuli that elicited the patterns used for training
and the set of stimuli that elicited the patterns used for testing
are the same. Accuracy was significantly above chance for all
sphere sizes (6 mm: t(8) = 2.4346; P < 0.05; 9 mm: t(8) = 2.3196;
P < 0.05; 12 mm: t(8) = 5.5843, P < 0.005) in the right ATL,
only for spheres of 9 and 12 mm (6 mm: t(8) = 1.2429; P > 0.1;
9 mm: t(8) = 3.5365; P < 0.05; 12 mm: t(8) = 4.1; P < 0.005,
respectively) in FFA, and only for the 12 mm sphere
(t(8) = 5.4913; P < 0.005) in OFA. However, classification

performance was also significantly above chance in V1 for all
sphere sizes (6 mm: t(8) = 3.1508; P < 0.05; 9 mm: t(8) = 2.8642;
P < 0.05; 12 mm: t(8) = 2.4259; P < 0.05). As it is unlikely that
V1 stores orientation-tolerant representations of faces, these
results suggest that this type of test is not sufficiently stringent
to investigate the tolerance of face representations.

As a more stringent test, we trained a linear SVM to dis-
tinguish between 2 faces in 4 orientations, and tested whether
it could classify the faces in the remaining orientation
(Fig. 1C). This generalization analysis differs from the
previous analysis in that the set of stimuli that elicited the pat-
terns used for training is different from the set of stimuli that
elicited the patterns used for testing. For all sphere sizes,
orientation-invariant classification in the right ATL was highly
significant (6 mm: t(8) = 5.94; P < 0.0005; 9 mm: t(8) = 4.22;
P < 0.005; 12 mm: t(8) = 4.63; P < 0.005). In FFA and OFA,
classification accuracy was non-significant for spheres of radii
6 and 9 mm (FFA 6 mm: t(8) = 1.54; P > 0.05; FFA 9 mm:
t(8) = 1.96, P > 0.05; OFA 6 mm: t(8) = 1.47; P > 0.05; OFA 9
mm: t(8) = 2.00, P > 0.05), but became significant for spheres
of radius 12 mm (FFA: t(8) = 3.53; P < 0.01; OFA: t(8) = 4.00,
P < 0.005). Importantly, orientation-invariant classification in
V1 was at chance for all ROI sizes. As an additional control,
orientation-invariant classification was tested in a ROI contain-
ing all visually responsive V1 voxels. The ROI was generated

Figure 2. (A) SVM-based multivariate analysis reveals the presence of orientation-tolerant information about individual faces in the ventral stream in both hemispheres (left:
accuracy = 56.48%, t(8) = 4.62, P< 0.005; right: accuracy = 55.37%, t(8) = 4.56, P< 0.005). The distribution of orientation-tolerant information in the ventral stream is
illustrated with maps depicting the group-averaged frequency (f ) with which each voxel was selected as 1 of the 200 optimal voxels for classification (separately for the 2
hemispheres). Maps are thresholded at the frequency with which a voxel would be selected if the optimal voxels were chosen randomly with a uniform distribution: (number of
voxels selected)/(number of voxels in the mask). Error bars represent the standard error of the mean. **P< 0.005. (B) The ventral stream was divided into bins extending over a
span of 3 voxels along the posterior to anterior dimension. The plots show an index given by the average probability with which voxels in a bin were among the 200 optimal
voxels divided by the probability expected from a uniform distribution.
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selecting all voxels within the V1 ROI of MARSBAR’s AAL
(Tzourio-Mazoyer et al. 2002) which responded more to faces
than to baseline (P < 0.05 uncorrected). Orientation-invariant
classification in this ROI was non-significant (mean accuracy:
52.5%, t(8) = 1.49, P > 0.1). To complement the SVM analysis
testing for information about face identity, we studied the
effects of orientation averaging the responses to different indi-
vidual faces and calculating correlation matrices between the
patterns of response to faces seen in different orientations. In-
creasing dissimilarity in the patterns of response with an in-
crease in the rotation angle was found in V1, but not in more
anterior regions (Supplementary Fig. 3).

Intracranial recordings in humans have revealed neurons in
the hippocampus that respond to images of individual people
showing generalization across changes in the low-level prop-
erties of the images (Quiroga et al. 2005). To test the infor-
mation content about individual faces in the hippocampus,
we used anatomically defined ROIs from the Wake Forest Uni-
versity PickAtlas IBASPM 116 library, and we performed the
same stringent test applied to the other ROIs. Significant
orientation-tolerant information about individual faces was
detected in the hippocampus bilaterally (left hemisphere:
accuracy = 54.12%, t(8) = 2.86, P < 0.05; right hemisphere:
accuracy = 54.86%, t(8) = 3.24, P < 0.05), consistent with the
reports by Quiroga et al. (2005).

Orientation-Invariant Information in the Ventral
Stream
Using the more stringent generalization test, we further inves-
tigated orientation-tolerant representations of face identity in
the ventral stream. The 200 most informative voxels were in-
dividuated with RFE (Guyon et al. 2002; De Martino et al.
2008), separately for the left and right hemispheres. Using
activity in these voxels, linear SVMs achieved significant
orientation-tolerant classification of individual faces (left
ventral stream: accuracy = 56.48%, t(8) = 4.62, P < 0.005; right
ventral stream: accuracy = 55.37%, t(8) = 4.56, P < 0.005). A
map showing the probability of each voxel to be among the
most informative (Fig. 2A) reveals an occipitotemporal and an
anterior temporal cluster of informative voxels in each hemi-
sphere. To provide a more quantitative evaluation of the
greater concentration of informative voxels at specific
locations along the posterior to anterior axis, we subdivided
the ventral stream into a set of bins along the posterior to
anterior axis, and we analyzed the probability of finding infor-
mative voxels in each bin. This analysis shows a greater con-
centration of informative voxels at the approximate y
coordinates of OFA/FFA and the anterior temporal lobe
(Fig. 2B). An analogous pattern is obtained when regressing
out the temporal signal-to-noise ratio (TSNR) to account for
differences in the quality of the BOLD signal at different
levels in the ventral stream (see Supplementary Fig. 4).

To compare the classification performance obtained with
each cluster to the performance obtained with the totality of
the 200 voxels, we calculated an index (ratio index) given by
the ratio between the above-chance accuracy obtained in a
cluster (aC) and the above-chance accuracy obtained with
the total set of 200 voxels (a200): (aC – 50%)/(a200 – 50%)
(Fig. 3A). Significant classification was obtained in all clusters
except the left anterior cluster (ratio index values: left anterior:
0.22, t(8) = 1.48, P = 0.09; right anterior: 0.62, t(8) = 3.34,

P < 0.01; left posterior: 0.52, t(8) = 3.20, P < 0.01; right posterior:
0.5, t(8) = 2.10, P < 0.05, 1-tailed tests). Classification accuracy in
these clusters was slightly lower than in the spherical ROIs
(Fig. 1C). This is probably due to the smaller number of voxels
used for classification in this analysis, about 20 in anterior
regions and 80 in posterior regions, when compared with the
51 for 6-mm radius spheres and 381 for 12-mm radius spheres.

For each participant, we calculated the average number of
informative voxels in the posterior and anterior clusters. The
average number of voxels in anterior clusters is significantly
lower than the average number of voxels in posterior clusters
(left: t(8) = 7.45, P < 0.0001; right: t(8) = 9.69, P < 0.0001,
Fig. 3B). Given the comparable accuracy obtained with the
posterior clusters and the right anterior cluster, this indicates
that there is greater information per mm3 of cortex in the
right ATL than in the 2 occipitotemporal clusters.

Effects of Mirror Symmetry
In the previous analyses, 4 orientations of the faces were used
for training the classifier, and the remaining orientation was
used for testing. Whenever the orientation used for testing
was not the frontal orientation, the data used for training in-
cluded images that are the mirror reflection of the images
used for testing (e.g., if the testing orientation was −35°, the
training orientations included the +35° orientation). If

Figure 3. (A) The ratio of the above chance classification accuracy shown in
Figure 2 (ratio index) is shown for the 4 clusters considered individually. As the bars
denote a ratio of the above chance classification accuracy, chance level is not at 0.5
but at 0. All clusters showed above chance classification, which reached significance
in the right anterior cluster (P<0.01), in the left posterior cluster (P< 0.01), and in
the right posterior cluster (P<0.05), and trended to significance in the left anterior
cluster (P= 0.09). **P<0.01, *P< 0.05. (B) Number of voxels in the individual
clusters. Anterior clusters contain a smaller number of voxels than posterior clusters.
***P<0.0001. Error bars represent the standard error of the mean.

Figure 4. (A) Tolerant classification in the ventral stream of the 2 hemispheres when
excluding from the training set the views that are mirror symmetrical to the testing
views; (B) ratio index for the 4 clusters of informative voxels when excluding the
mirror symmetrical views from the training set. Error bars represent the standard
error of the mean.
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representations in a brain region were tolerant for mirror re-
flections, the tolerant classification observed might entirely
depend on the classifier exploiting the similarity between the
response to the testing image and the response to its mirror
reflection present in the training set. To test this possibility,
we repeated the analysis excluding from the training set the
orientations that are mirror reflections of the testing orien-
tations. Classification remained significantly above chance in
both hemispheres (left: 56.02%, t(8) = 3.5423, P < 0.05; right:
54.67%, t(8) = 2.6681, P < 0.05, see Fig. 4A). When considering
the individual clusters separately, classification accuracy is sig-
nificantly above chance in all clusters except the left anterior
cluster, as in the case of the analysis that included the mirror
symmetrical orientations. The ratio index ranges from 0.53 to
0.78 (left posterior: 0.78, t(8) = 2.41, P < 0.05; right posterior:
0.67, t(8) = 2.41, P < 0.05; left anterior: 0.53, t(8) = 1.65, n.s.;
right anterior: 0.67, t(8) = 2.05; P < 0.05; 1-tailed t-tests, see
Fig. 4B).

Discussion

Several fMRI studies investigated specificity and tolerance in
the representation of individual faces and other objects using
fMRI adaptation (fMR-A), with mixed results: some studies
found evidence for adaptation (Ewbank and Andrews 2008;
Mur et al. 2010) while others did not (Pourtois et al. 2005).
More importantly, a recent study (Mur et al. 2010) found
lower BOLD signal in early visual cortex in response to faces
for which a different view had been previously presented
than for novel faces. Given the current understanding of rep-
resentations in early visual cortex, these results suggest that
finding adaptation effects for different orientations of an
object in a brain region does not necessarily imply that that
region encodes orientation-tolerant representations of that
object.

In this study, we showed that using the patterns of BOLD
signal in the ventral stream it is possible to classify individual
faces, generalizing across rotations in depth. Highly informa-
tive voxels for this classification cluster in the anterior temporal
lobes and the ventral occipitotemporal cortex. Generalization
accuracy obtained with each region in isolation is comparable
(with the exception of the left ATL). However, fewer informa-
tive voxels were individuated in anterior regions. Within stan-
dard face-responsive ROIs, significant orientation-tolerant
classification was found in the right ATL, FFA, and OFA, while
orientation-tolerant classification in V1 was at chance. These
results show that occipitotemporal cortex and the ATL do not
just represent specific images of faces but the identity of a face
with tolerance for changes in orientation. This is consistent
with reports of deficits for face recognition following damage
to the occipitotemporal cortex (Meadows 1974; De Renzi et al.
1994) and to the ATL (Evans et al. 1995; Tranel et al. 1997).

An interesting aspect of the present results is that we found
orientation-tolerant representations of faces in both occipito-
temporal cortex and ATL. This finding raises the question of
what are the respective roles of these regions for invariant rec-
ognition of individual faces. Comparable classification accu-
racy does not imply that the right anterior cluster and the 2
posterior clusters store representations of the same type: pos-
terior regions might store representations that carry a greater
amount of information about perceptual details of the faces,
while the right ATL might represent the identity of the faces

abstracting away from perceptual details. The difference in
the number of informative voxels between anterior and pos-
terior regions suggests some tentative conclusions about their
respective roles in face recognition. If representations in the
human ATL abstract away from the perceptual details of faces
(in line with single-cell recording studies in monkeys that
show greater tolerance for rotations in anterior regions of the
temporal lobe, Freiwald and Tsao 2010) less information
would have to be represented, and it could be represented
over a smaller extent of cortex. Therefore, the present results
are consistent with the possibility that representations in
anterior regions abstract away from the perceptual details of
the images to a greater extent than representations in pos-
terior regions. In this respect, the finding of significant
orientation-tolerant classification as early as in the OFA is of
particular interest, especially in the context of recent results
suggesting that activity in the OFA represents face parts
without being modulated by their configuration (Liu et al.
2010). Taken together, these results suggest that some degree
of invariance across different orientations could be achieved
at the level of representations of face parts, without necess-
arily implying face/identity recognition.

Our findings are consistent with models of face recognition
proposing that faces are processed by a cortical network with
some regions encoding static aspects of faces such as identity
and other regions encoding changeable aspects of faces such
as viewpoint and expression (Haxby et al. 2000; Ishai 2008).
In particular, our results are in line with the view that static
aspects of faces are processed in ventral temporal cortex. Fur-
thermore, the processing of static aspects of faces itself seems
to be subserved by a network comprising cortical regions in
posterior and anterior portions of the ventral stream. In
addition to these neocortical areas, tolerant representations of
face identity were also found in the hippocampus, consistent
with electrophysiological studies in humans (Quiroga et al.
2005). Given the involvement of the hippocampus in episodic
memory (Vargha-Khadem et al. 1997), these representations
might play an important role in the association between a
person’s appearance and what we remember about previous
interactions with that person. This kind of associations could
enrich our knowledge of a person’s identity beyond its phys-
ical appearance.

It is important to note that despite showing some degree of
orientation tolerance, representations of faces in the occipito-
temporal cortex are not sufficient for normal face recognition.
Patients with ATL damage and intact occipitotemporal cortices
can show marked face recognition impairments (Warrington
and Shallice 1984; Tyrrell et al. 1990; Evans et al. 1995). Fur-
thermore, Avidan and Behrmann (2009) report normal rep-
etition suppression effects for faces in the FFA of a group of
subjects affected by congenital prosopagnosia, and Thomas
et al. (2009) found that the anatomical connectivity between
the FFA and the ATL (as measured with diffusion tensor
imaging) is reduced in congenital prosopagnosics, providing
additional evidence for the importance of the ATL for face
recognition.

Informative voxels were found with RFE also outside the
functionally defined ROIs. Orientation-tolerant information
about individual faces might be present in these voxels
because they contain neurons involved in the recognition of
nonface objects that share some similarities in shape with
faces or face parts. Alternatively, these voxels might contain
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small populations of neurons involved in face recognition that
are located outside the OFA, FFA, and ATL face-responsive
ROIs.

Single-cell physiology studies have reported neurons re-
sponding to mirror symmetrical views of objects (Logothetis
et al. 1995; Freiwald and Tsao 2010), and a recent study
(Dilks et al. 2011) reported adaptation effects for mirror sym-
metrical views of faces. Therefore, we tested whether the ob-
served tolerance in our study depends entirely on the
presence in the training set of responses to images that are
mirror reflections of the images in the testing set. We found
significantly above chance orientation-tolerant classification
even when the responses to mirror reflections of images in
the testing set were excluded from the training set. Therefore,
the observed tolerance cannot be explained by the similarity
between the responses to mirror symmetrical views. This
finding does not imply that there is no effect of mirror sym-
metry on the similarity between the patterns of responses in
the regions investigated, it only implies that the represen-
tations in these regions are also tolerant for image changes
other than mirror reflections.

There is a substantial body of evidence suggesting that the
ATL is involved in the representation of social knowledge
(Simmons et al. 2010; Zahn et al. 2007, see Olson et al. 2007
for a review), suggesting to some that this region is special-
ized for representing this type of knowledge (e.g., Simmons
et al. 2010). However, in this study, we found that the ATL
contains information that is sufficient for the classification of
individual faces. This despite the fact that faces were of the
same gender and ethnicity, and no names or biographical
facts were associated with the faces. This finding suggests that
the ATL is not exclusively involved in representing semantic
facts about people and groups. Representations of individual
faces near or spatially overlapping with representations of
social knowledge might provide the neural basis of our ability
to associate social knowledge with perceptual experience.

In a previous study (Anzellotti et al. 2011), we found that
distinct subregions within the ATL responded to animals and
tools, respectively. Taken together, these results show that
despite the fact that parts of the ATL are activated during the
processing of social knowledge, ATL as a whole is not exclu-
sively involved in the processing of social knowledge. This
does not exclude the possibility that some subregion of the
ATL might be specialized for processing social knowledge. To
address this question, it will be important to test multiple con-
trasts within the same participants, investigating whether and
to what extent the portions of the right ATL that are activated
by social knowledge also respond to other kinds of objects
(e.g., animals) or contain information that allows classification
of stimuli that do not have any associated social knowledge.

In future studies, it will be interesting to investigate the cor-
relation between behavioral performance of individual partici-
pants and classification performance in different brain
regions, and to study whether individual differences in the
patterns of brain activity in the ventral stream predict behav-
ioral differences. Furthermore, it would be possible to test
whether differences in the patterns of brain activity allow to
predict within-participant differences in the discrimination
performance between pairs of faces. Some participants might
find it easier to discriminate a face A from a face B than A
from C, and others might show the opposite behavioral
pattern. Investigating where in the brain we can find

differences in the classification between individual faces that
correlate with the individuals’ face recognition performance
would help to clarify the role played by different brain
regions for face recognition.

Another line of research that would be worth pursuing con-
sists in investigating how other kinds of image transform-
ations affect the neural representations of faces. For example,
it would be possible to study where in the brain there are rep-
resentations of face identity that generalize across changes in
illumination, and whether the same voxels that contribute to
illumination-tolerant classification also allow orientation-
tolerant classification.

In conclusion, the present study shows that occipitotem-
poral cortex and ATL do not just represent specific images of
faces but represent also identity information with tolerance
for image transformations. Furthermore, the tolerance ob-
served in these regions cannot be explained by the similarity
of the neural responses to mirror symmetrical views. Rep-
resentations in the right anterior temporal lobe are more
“compact” than representations in posterior regions, and
might abstract away from the perceptual details of the images.
Interestingly, orientation-invariant classification is obtained as
early as in the OFA, suggesting the presence of part-based
mechanisms for orientation-invariant recognition.
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Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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