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Abstract

Pathological conditions such as amyotrophic lateral sclerosis or damage to the brainstem can leave

patients severely paralyzed but fully aware, in a condition known as “locked-in syndrome.”

Communication in this state is often reduced to selecting individual letters or words by arduous

residual movements. More intuitive and rapid communication may be restored by directly interfacing

with language areas of the cerebral cortex. We used a grid of closely spaced, nonpenetrating micro-

electrodes to record local field potentials (LFPs) from the surface of face motor cortex and Wernicke’s

area. From these LFPs we were successful in classifying a small set of words on a trial-by-trial basis

at levels well above chance. We found that the pattern of electrodes with the highest accuracy changed

for each word, which supports the idea that closely spaced micro-electrodes are capable of capturing

neural signals from independent neural processing assemblies. These results further support using

cortical surface potentials (electrocorticography) in brain-computer interfaces. These results also

show that LFPs recorded from the cortical surface (micro-electrocorticography) of language areas

can be used to classify speech-related cortical rhythms and potentially restore communication to

locked-in patients.

1. Introduction

Amyotrophic lateral sclerosis (ALS) and other pathological conditions can damage the

brainstem, leaving patients aware but significantly paralyzed and unable to speak, in a condition

known as “locked-in syndrome” [1]. In some cases, patients can continue to communicate using

residual movements and selection tasks at a few words per minute [2]. Other patients are unable

to perform even limited movements [3,4]. In these situations, directly interfacing with language

centres of the cortex may provide more intuitive communication [5].

Penetrating micro-electrodes are widely used for brain-computer interfaces (BCIs) because of

their ability to record single-unit activity (SUA) as well as local field potentials (LFPs). These

electrodes have been used to perform rapid decoding of continuous motor movements from

neuronal activity in the primary motor area of human neocortex [6]. Because of the risks

associated with implantation in language centres, however, few studies have explored their use

in speech BCIs. One such study used a glass electrode filled with a neurotrophic growth factor

to encourage axonal growth into the electrode [7]. This unique design has been used in BCIs

to control a cursor on a computer screen for indirect communication [8], as well as to directly
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decode the formant frequencies of speech from neuronal activity in the left ventral premotor

cortex [9,10].

In contrast to these more recent penetrating micro-electrodes, the earliest studies of BCIs for

communication used noninvasive electroencephalographic (EEG) electrodes to target several

types of neural signals, including slow cortical potentials (SCP), sensorimotor rhythms (SMR),

and the P300 wave [11–17]. In a study comparing the efficacy of each of these neural signals

for EEG BCI, patients received 20 training sessions and then underwent an evaluation of their

accuracy. All patients trained to use SMR were able to achieve 70% accuracy or better while

about half of patients using the P300 wave and none of the patients using SCP were able to

achieve this same threshold [5]. With sufficient additional training, patients using SCPs were

able to achieve the same accuracy with better stability. More recently, a two-dimensional

movement trajectory decode using SMR was performed to control a cursor in a multi-target

selection task, with similar timing, accuracy, and precision as have been previously obtained

using depth electrodes [18].

Electrocorticography (ECoG) provides a third option, which balances invasiveness with signal

fidelity and has become more common in recent years because of its clinical ubiquity in

preparing patients for the surgical treatment of epilepsy. Neural activity recorded from ECoG

electrodes has been used in the discrimination of finger movements [19–22] and arm

movements [23–26], two-dimensional movement trajectories [27,28], and other motor tasks

[29,30]. Researchers investigating speech BCIs using ECoG electrodes have shown that

cortical surface potentials could be used to discriminate between motor and speech tasks [30]

and different phonemes [31]. In particular, event-related gamma synchronization [32], more

temporally and spatially discrete than desynchronization in lower oscillatory bands, may

provide spatiotemporal features well correlated to the production of speech [33–35].

ECoG-based BCIs exploit the proximity of the intracranial electrodes to the cortical surface to

provide higher signal-to-noise ratio and improved spatial resolution than their extracranial EEG

counterparts [36,37]. These properties have allowed more in-depth analysis of high gamma

modulations during motor tasks, a neural source that has become a foundational element of

modern BCI research. However, many authors have suggested that millimetre-scale electrodes

and centimetre-scale inter-electrode spacing are too coarse for neural prosthetic applications

[30,38,39]. The root of this limitation lies in the size and spacing of clinical ECoG electrodes

relative to the underlying cortical structure for information processing. One study of ECoG in

human motor-sensory and temporal regions found that correlated gamma modulation was

limited to areas covered by only a few (i.e., two) macro-electrodes [39]; similar findings have

been noted in at least one other independent study [30]. The local nature of these modulations

implies the presence of neuronal assemblies working synchronously to process related types

of information needed to generate complex outputs [40–42]. Multiple subpopulations of

neurons, possibly engaged in processing distinct stimuli, may contribute to the signal recorded

by a single millimetre-scale electrode. Consequently, the rhythmic activity of any one focal

area may be obscured in the activity of the several assemblies contributing to the voltage

recorded by a single electrode.

Evidence of the spatial discrepancy between macro-electrodes and microscale cortical

processing was both unavailable prior to the design of the clinical ECoG electrode and largely

irrelevant to the design of electrodes for localizing epileptic foci. However, this knowledge

could be used to develop surface electrodes specifically designed to support higher spatial-

resolution recording for BCI applications, balancing the need for locally accurate

representation of cortical activity with the simultaneous need for limited invasiveness. In this

study, we used a recording device consisting of nonpenetrating microwire terminated at regular,

millimetre-scale intervals to record cortical surface field potentials. The tight inter-electrode
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spacing of these micro-electrodes closely approximates the local scale of modulations

previously shown to correlate with motor activity [26,38,39,43–46]. This work extends

previous studies in which similar micro-electrode arrays have been shown to support high

temporal- and spatial-resolution recordings for BCI-like applications [26,43].

Most studies of speech BCIs using invasive recording techniques, regardless of the neural

signals used, have focused on the challenging task of decoding continuous, dynamic speech

from the neural representations of formant frequencies [9,10,31]. In contrast, we classified only

finite sets of words from cortical surface LFPs [47]. Although the potential breadth of decoded

language is therefore inherently limited, this approach has the potential to restore functional

and rapid communication with greatly reduced complexity.

We designed a set of experiments to investigate the trial-by-trial classification of individually

articulated words using LFPs recorded on micro-ECoG grids. We evaluated both the general

performance of the classifier, and, to give a sense of the scale of the underlying cortical

processing, the ability to distinguish words from the features of individual micro-electrodes.

We found that the recorded data supported accuracies well above the level of chance in

classifying up to 10 individual words. We also found variation in the classification accuracy

of individual micro-electrodes, suggesting local, distributed processing for the generation of

complex speech articulations.

2. Methods

2.1 Subject

One male patient who required extraoperative ECoG monitoring for medically refractory

epilepsy gave informed consent to participate in an institutional review board-approved study.

In addition to the clinical ECoG array, two nonpenetrating micro-electrode arrays (PMT

Neurosurgical, Chanhassen, MN), each consisting of 16 channels of 40-μm wire terminating

in a 4×4 grid with 1-millimeter spacing (figure 1a), were placed beneath the dura mater, closely

approximated to the cortical surface over face motor cortex (FMC) and Wernicke’s area (figure

1b). The in situ location of clinical and research electrodes on a rendered brain were calculated

according to the methods described in [48]. Clinical requirements determined placement of the

arrays and duration of the implantation.

2.2 Experimental paradigm

During the experiments, the patient rested sitting or reclining in a hospital bed. Researchers

verbally instructed the patient to articulate a word multiple times, with approximately one-

second intervals between repetitions. A visual cue indicated when the patient should begin

speaking, with a visual reference indicating progress through the repetitions. This process

occurred at least once during each session for each of ten words (Table 1), with extra trials

processed for the words “yes” and “no” to ensure adequate data for preliminary analysis of the

data. Sessions lasted approximately one hour and occurred on four consecutive days. For each

word, a subset of 30 adjacent trials (15 for training and 15 for decode) containing stereotypical

articulation was selected for further analysis. Trials were determined to be stereotyped judging

each one on inflection, pitch, and duration. For some words, e.g. “yes” and “hot”, the

pronunciation of words varied enough that more than half of the trials were discarded.

2.3 Data collection and analysis

Audio data from a microphone and 32 channels of neural data from two 16-channel micro-

electrode arrays were recorded by a Neuroport system (Blackrock Microsystems, Salt Lake

City, UT), with reference tied to the clinical reference lead, during these experiments. The data
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were amplified, bandpass filtered with cutoff frequencies at 0.3 Hz and 7500 Hz, and digitized

at 30,000 samples per second.

Spectrograms were generated using the open-source Chronux package software

(chronux.org) with 400-msec windows and 100-msec step size; tapering parameters were set

to a time-bandwidth product of 5 and 9 leading tapers. Spectrograms were smoothed using a

mean filter over four 0.9-Hz bands and six 100-msec time steps. Time-series data for the

spectrograms were selected from portions of the sessions in which patient–researcher verbal

interactions were interspersed between the verbal tasks.

The mean power between 70 and 200 Hz was calculated for data recorded over FMC and

Wernicke’s area. The raw data were bandpass filtered (70–200 Hz, Chebyshev Type-I bandpass

filter), and then the moving average of the instantaneous power was calculated for each channel.

The mean and standard error were calculated across these data separately for FMC and

Wernicke’s area.

2.4 Feature extraction

Recorded data from each micro-electrode were re-referenced by subtracting the common

average of electrodes in the same array. For each spoken word, 0.5 seconds of data aligned to

the articulation were extracted from all micro-electrodes and windowed by a Hann window.

The power spectra of these data were calculated by applying a fast Fourier transform (FFT),

then multiplying by the complex conjugate of the FFT. Data for frequencies above 500 Hz

were discarded, and the remaining power spectra were log-normalized across trials for each

micro-electrode. At the end of this process, each articulation was represented by 250 frequency-

domain features, i.e., the power in 2-Hz bands between 0.3 and 500 Hz, per micro-electrode.

2.5 Classification

Previous studies have used principal component analysis (PCA) [49] to separate frequency-

domain features in neural signals [20]. We extended the method of Miller et al. to perform

PCA on features from each micro-electrode and trial simultaneously (figure 2). Initially,

features collected from all micro-electrodes for a given articulation were concatenated to form

a row vector. Row vectors from multiple articulations were stacked vertically to form a two-

dimensional matrix of all available features from multiple micro-electrodes and trials. This

matrix could be customized by including only features from a subset of micro-electrodes or

trials. During the training phase, PCA was performed on a matrix consisting of features

collected from 15 “training” trials per word. A centre of mass, or centroid, was calculated for

each word as the mean Euclidean coordinates of all relevant trials’ feature-vectors projected

into the principal component space. During the decode phase, projected feature-vectors from

15 additional trials were classified according to their proximity to one of the centroids.

2.6 Evaluation

The classification process was performed using features from combinations of two through ten

words. In this case, the term combination refers to the selection of k unordered outcomes from

n possibilities, i.e., selecting k of the available n words where, for example, n=10 and k ranges

between two and ten. When k and n are equal, only one unordered outcome exists and the

standard descriptive statistics were not applicable. Otherwise, for each set of outcomes, the

mean, median, and standard deviation were computed for the accuracies of the classification

results. We also evaluated the performance of the PCA classifier using features from subsets

of one, five, 16, and 32 micro-electrodes. Where applicable, these subsets were selected from

within a single 16-channel micro-electrode array.
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In addition to evaluating the general accuracy of the PCA classifier, the ability of individual

micro-electrodes to discriminate individual words was also evaluated. Features were selected

from single micro-electrodes for all two-word combinations and processed by the classifier.

The accuracies of all classifications involving a given word were averaged to determine the

ability of each micro-electrode to discriminate individual words against other possible class

assignments.

Classification accuracy was measured against the level of chance for all evaluations. This level

was determined by assuming equal likelihood of assignment to any class included in the

training process (i.e., the uniform distribution applied to class assignment). For example, if

two words were being classified, the level of chance was 0.5 since both potential class

assignments were equally likely to be assigned to each trial. Classification accuracies

consistently above the level of chance would indicate the detection and exploitation of relevant

features from what could otherwise be completely stochastic physiological data.

3. Results

3.1 FMC is active during task, Wernicke’s area during conversation

Initial observations of neural signals recorded over FMC revealed frequency-domain structure

aligned to the individual words during the speech task. Conversely, Wernicke’s area was

predominantly active during conversation and while receiving verbal rewards after completing

an experiment and was less active during the repeated word experiments (figure 3,

supplementary figures 1–3). For these figures, we chose data corresponding to times during

the experiments in which patients were performing the verbal task as well as interacting with

researchers so as to examine differences between FMC and Wernicke’s area during these

different paradigms. Variability in the task-correlated power was present between sessions,

and may be due to several factors including medication, arousal, or attention, which could

result in the patient varying the strength of articulation; or device-related issues such as micro-

motion of the electrodes relative to the cortex due to seizure activity.

3.2 Classification better for FMC than Wernicke’s

Classification was performed both separately and jointly for surface LFP data recorded over

FMC and over Wernicke’s area. Data from micro-electrodes over FMC offered the best

classification performance with 85.0 ± 13.1% (mean ± s.d.) average accuracy over 45 two-

word combinations (median performance was 83.3%). Data recorded over Wernicke’s area

were less classifiable with 76.2 ± 15.0% average accuracy over the same 45 two-word

combinations (median 76.7%) (figure 4). Joint classification did not improve performance over

the level achieved by FMC electrodes alone (0.40 ± 0.43 percentage-point difference in the

accuracy of two- through ten-word combinations).

3.3 Performance from the best five micro-electrodes

Selecting the five electrodes over FMC with best overall accuracy improved average

classification accuracy compared with using all 16 electrodes. This improvement was

consistent in all combinations of words and ranged from 4.0 percentage points (89.6 ± 10.8%

accuracy, median 90.0, for two-word combinations) up to 20.0 percentage points (48% for the

ten-word combination), with 13.5 ± 5.2 percentage points difference on average (figure 4).

Classification accuracies were 16.1 ± 2.3 percentage points higher, on average, when using

features from the best five micro-electrodes over FMC simultaneously versus using features

from these same micro-electrodes independently. In contrast, selecting the five highest-

performing electrodes over Wernicke’s area did not substantially improve performance (1.3 ±

0.7 percentage-point increase on average). Using features from the best five electrodes over
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Wernicke’s area simultaneously resulted in classification accuracies 5.0 ± 0.3 percentage points

higher than using features from the same electrodes independently.

To further investigate the importance of time and frequency parameters to the classification

process, we performed two additional analyses. Classification accuracy was evaluated using

each of the features individually for the two-word classification case. This analysis revealed

that at 20 Hz, accuracy began to rise above chance, peaking at 110 Hz and remaining above

chance through 500 Hz. Classification accuracy was also evaluated using varying time

windows for the two-word classification case. Comparing windows of 0.1, 0.25, 0.5, and 0.75

seconds, we observed median accuracies of 74.0%, 81.2%, 89.6%, and 88.1% respectively

using the best five channels.

3.4 Word-by-word analysis

To illustrate general ability to discriminate word pairs, decodability matrices were constructed

for micro-electrodes over FMC (figure 5a) and over Wernicke’s area (figure 5b). In these

figures, the classification accuracy for a pair of words is indicated at the intersection of the two

words’ row and column indices. Data were obtained from classification using features from

the best five electrodes over each area. Over FMC, classification accuracy ranged from 53%

(“hello” vs. “more”) to 100% accuracy (“yes” vs. “no”, “hot” vs. “hungry”, and others). While

a few of these word pairs were not easily distinguished by the classifier, 40 of the 45 possible

pairs had 80% classification accuracy or better. Over Wernicke’s area, classification accuracy

ranged from 36.7% (“hot” vs. “goodbye”) to 100% (“yes” vs. “hot”, “no” vs. “hot”, and others),

and 15 of the 45 word pairs had 80% classification accuracy or better.

3.5 Topography and Scale

Neighbouring electrodes classified different words most accurately. For example, one

electrode over FMC classified the word “no” with 89.3% average accuracy (average of all two-

word classifications involving the word “no”), while a neighbouring electrode just 1 mm away

classified the word “less” with 87.8% average accuracy (figure 6a, middle two electrodes in

the top row). Of the 16 electrodes over FMC, 15 had a neighbouring electrode within 1.4 mm

(including diagonally situated neighbours) whose most accurately classified word, with at least

75% accuracy, was different. Fourteen of the 16 electrodes over Wernicke’s area met the same

criterion (figure 6b for reference).

Conversely, neighbouring electrodes classified the same word differently. For example, one

electrode over FMC classified the word “hot” with 84.4% average accuracy while a

neighbouring electrode 1 mm away classified the same word with only 56.7% average accuracy

(second column, top two electrodes). Eight out of 16 electrodes over FMC and five out of 16

electrodes over Wernicke’s area classified their most accurate word at least 15 percentage

points higher than a neighbouring electrode classified the same word.

4. Discussion

4.1 Surface LFPs support fast, accurate BCI

We have demonstrated that classification of articulated words from surface LFPs recorded on

micro-electrocorticography grids can be performed both rapidly, i.e., within 500 msec of the

start of articulation, and with accuracy well above the level of chance. No patient training

preceded the initial experimental session, so that classification was performed on features likely

representing intuitive language processes. These results demonstrate the potential of using

micro-electrodes designed to match the scale of cortical information processing in BCI

applications.
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4.2 Scale of information processing

Studies of ECoG signals have shown that gamma band modulation is correlated to motor

actuation and occurs in more localized fashion, both temporally and spatially, than is evident

in lower oscillatory bands [30,32,44,46,50,51]. A common electrophysiological explanation

for this behaviour is that gamma oscillations represent the synchronizing (or synchronous)

interactions of neuronal assemblies, perhaps cortical columns or macrocolumns, engaged in

the parallel processing of common stimuli [38,41,52–55]. The coincidence of gamma-band

event-related synchronization with motor tasks and the evidence for temporally discrete and

topographically consistent modulation suggest this neural source is important to BCI operation.

Recording these modulations at the appropriate scale requires grids of micro-electrodes

approximated to the underlying spatiotemporal processing scale.

Using micro-electrodes approximated to the scale of cortical processing, we found variation

of nearly 30% in the classification accuracies (for the same word) of individual electrodes

spaced 1 mm apart. Within a 9-mm2 space over FMC, almost every electrode had a neighbour

within 1.4 mm whose most accurately classified word was not the same. This result suggests

that in many cases electrodes recorded activity associated with features not as strongly

represented in the data recorded by other nearby micro-electrodes. Recoding LFPs at the spatial

scale of cortical processing assemblies appears to yield a broad set of relevant, discriminatory

features that could serve as the underpinnings of an intuitive and rapid BCI for communication.

While optimal parameters of spacing and electrode count are the subject of recent and ongoing

studies [56], our findings motivate continued investigation into using micro-ECoG for BCI

applications.

4.3 Differences in results from Wernicke’s area and FMC

While the placement of the micro-electrode arrays depended entirely on clinical requirements,

specific locations of the grids were chosen to evaluate the potential for deciphering activity

from two diverse components of cortical language processing. Classical models of cortical

language processing have interpreted aphasic evidence to suggest a conduction path from

Wernicke’s area to sensorimotor cortex [57,58], with more recent studies confirming the

correlation between superior temporal and inferior frontal regions of cortex [59].

The FMC is known to be involved in controlling the musculature of speech [60,61], and

gamma-band oscillations have been shown to modulate during speech tasks [33]. The

considerable range of muscles involved in speech [62] could mean that similar patterns of such

neural activity in FMC correspond to similar articulations. The parallel consequence of this

relationship, however, is that vocal dynamics such as pitch or inflection may be the result of

dissimilar cortical representation and therefore present a potential confound to the classification

process. Regardless, the ability of the PCA classifier to distinguish words particularly well

from data recorded over FMC may be due to the wide range of cortical representations needed

to control the musculature of speech. The varying accuracies of proximal micro-electrodes for

different words suggest that subunits within FMC may process unique features of articulation,

which allowed the classifier to differentiate cortical responses between words.

Wernicke’s area has been identified as an important element in high-level cortical language

processing [35,63–65]. Recent studies have shown that distinct subsystems of Wernicke’s

region activate separately during reception and processing of speech [35,66] and that

Wernicke’s area is involved in word and sentence repetition [67,68]. From the Wernicke’s area

recordings, we observed substantial broadband spectral power during conversation and while

receiving verbal feedback, but less broadband spectral power during word repetitions.

However, the Wernicke’s data recorded during word repetitions still supported classification

accuracies above the level of chance, albeit with less accuracy than was achieved from FMC.
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Given that the neural signals used in the classification analysis were recorded during the actual

vocalization of words, the usefulness of neural signals from Wernicke’s area in classification

may result from the patient comprehending his own voice [69,70].

There was less variation in classification accuracies achieved using individual micro-electrode

over Wernicke’s area compared with FMC. As described earlier, selecting the best five micro-

electrodes did not change accuracy significantly compared with using all 16 micro-electrodes,

and testing those five micro-electrodes individually also did not change accuracy. This finding

was opposite that of micro-electrodes over FMC, which presented a certain amount of variety

across the array. These contrasting observations suggest a more concrete mapping of the neural

signal onto patterns of speech articulation in the FMC and a more distributed and abstract

encoding of speech in Wernicke’s area.

We conclude that neural activity in FMC is a good candidate for interfacing to communication

prostheses. The relatively straightforward mapping of neural activity to motor output suggests

that other speech motor and pre-motor areas, such as Broca’s area, may also be good candidates

for communication BCIs. In the context of our experimental paradigm and classification we

found that Wernicke’s area did not perform as well as FMC in the classification task. However,

it is likely, given a more cognitive experimental paradigm and different classification schemes,

Wernicke’s area would perform as well as or better than FMC.

4.4 Limitations

4.4.1 Epilepsy may have re-arranged language centres—The patient involved in this

study suffered from medically refractory epilepsy for many years. While there are many

consequences of this condition, one particularly relevant potential outcome is the remapping

of language-relevant cortical areas. Insofar as we have been able to determine using evidence

from pre- and post-surgical x-rays and photographs, our anatomical labels are correct; however,

such re-mapping could affect conclusions about the functional differences in the activity

recorded from electrodes believed to rest over FMC and Wernicke’s area.

4.4.2 Learning and memory over multiple sessions—The nature of the experimental

paradigm was such that the patient repeated a few words many times over several consecutive

days. It is possible that cognitive language processes gave way to memory-based language

processes after many repetitions. While difficult to confirm or disprove, such a change in

cortical function could affect cortical representations of speech and could be responsible for

less accuracy in the classification of words. This line of reasoning may be especially true for

neural activity recorded over Wernicke’s area which is involved in more semantic processing.

The low cognitive effort required to perform the experimental task likely did not engage

Wernicke’s area. Verb generation, picture labelling, and other more cognitive tasks have been

shown to elicit cortical processing rhythms which may be useful in speech classification

contexts [34].

4.4.3 Rate limitations—Disregarding the limitations of the dictionary size temporarily, the

500 msec delay between cortical processing and classifier output may be too slow to support

conversational speech. Other work has demonstrated a fast 30 msec delay from action potential

firing from single units to first audible output [9] for a trajectory-based decode system—a

different problem than the decision-based algorithm presented in this study. Furthermore, the

nature of a real-time decode mandates rapid sensory feedback for online control, whereas such

rapid feedback is not as important for discrete word classification.

Using smaller time windows resulted in lower classification accuracies in this study, these

results could be significantly improved by replacing the straightforward nearest-centroid

clustering method with a more advanced decision algorithm. For example, hidden Markov
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models (HMM) or support vector machines (SVM) could be trained to discriminate

spatiotemporal patterns more efficiently than by simply maximizing variance using PCA.

Applying these methods to the data could both improve the accuracy of the classification and

decrease the delay from cortical processing to audible output, potentially offering speech rates

comparable to those required for conversation. These tools could allow online decode of speech

using frequency-domain features, similar to work demonstrated using action potential firing

rates [9].

4.5 Future work

The results of the current study were obtained without any significant patient training. With

some preparation, patients could adapt their neural processes to the performance of the

classifier and learn to stereotype word articulation. More sophisticated classification

algorithms could take advantage of stereotyped articulation to adapt to subtle differences in

the cortical representations of different words. More sophisticated feature selection could

improve performance as well.

The highest-performing classifications in these results were obtained from cases where

classification discriminated between just two words. Although more advanced methods could

likely improve accuracy when more words are present, a system performing binary

classification could employ straightforward algorithms and require minimal patient training.

For example, a method of hierarchical selection, e.g. [11], could provide simple patient control.

Investigation into increasing accuracy for larger dictionaries could also provide sufficiently

enhanced patient experience to justify the extra effort.

The invasiveness of the micro-electrode grids could be further reduced with epidural

placement, as has been shown for similar recording devices [56,71]. Furthermore, a wireless

implementation of the system might be practical given the relatively low bandwidth required

to capture cortical surface LFPs. A wireless system able to record high-resolution cortical

surface potentials could provide a reasonable balance of invasiveness and performance and

improve the quality of life for locked-in patients and others unable to communicate on their

own.

The tight inter-electrode spacing and small number of electrodes limited the spatial coverage

of the micro-electrode grid. An optimized grid design with more electrodes would likely cover

a larger number of relevant neural signals and allow better decoding accuracy. Optimal inter-

electrode spacing and coverage is an important area for future research that will have wide

implications in feature selection and classification algorithms.

5. Conclusion

In sum, we have demonstrated the capabilities of cortical surface LFPs recorded on micro-

ECoG grids in classifying spoken words. Having micro-ECoG grids designed to approximate

the columnar scale of cortical information processing is a key element in acquiring a rich set

of features upon which a communications BCI can operate. The classification of speech using

micro-ECoG appears to be a viable approach to restoring limited but useful communication to

those suffering from locked-in syndrome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

The micro-ECoG grid and surgical placement. a, A single 16-electrode 4×4 micro-ECoG grid

shown next to a U.S. quarter-dollar coin. b, Photograph of micro-ECoG surgical placement;

the green wire bundle leads to the array over Wernicke’s area; the orange wire bundle leads to

the array over face motor cortex. c, Electrode positions in situ; micro-ECoG grids in red and

clinical ECoG electrodes in yellow.
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Figure 2.

Using frequency-domain structure to decode simultaneously from multiple channels. a, 500-

msec windows temporally aligned to spoken words contain frequency-domain structure in a

spectrogram of neural data recorded by a single micro-electrode over face motor cortex. Axis

labels indicate that data from multiple micro-electrodes and trials will be used. b, Power spectra

were calculated for each trial and each micro-electrode. c, For each trial, power spectra from

all micro-electrodes were concatenated. Trials were stacked to form a large two-dimensional

matrix of micro-electrode and trial information. d, Performing principal component analysis

on this matrix generated a cluster for each word that allowed nearest-centroid classification.
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Figure 3.

Raw data, spectrogram, and mean power during conversation and task. a, Audio waveform of

conversation and verbal task in which the patient repeated the word “yes.” b, Normalized

spectrogram of neural data recorded from a single electrode over face motor cortex during the

same time period shown in (a). c, Normalized spectrogram of neural data recorded from a single

electrode over Wernicke’s area during the same time period shown in (a). d, Mean power and

standard error between 70 and 200 Hz for the 16 electrodes over FMC and the 16 electrodes

over Wernicke’s area.
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Figure 4.

Classification accuracy for combinations of two through ten words. The distribution of

classification accuracies from performing each combination of two through ten words is shown.

Results are shown using features from all 16 electrodes over FMC; features from all 16

electrodes over Wernicke’s area; and features from the best 5 electrodes over FMC.
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Figure 5.

Decodability matrices for FMC and Wernicke’s area. The classification accuracies of all word

pairs are shown for FMC (left) and Wernicke’s area (right) using features from the best five

electrodes over each area. In each square plot, the intersection of a row and column indicates

the classifier’s accuracy for that word pair. The diagonal is marked with black squares

indicating the irrelevant case of classifying a word against itself.
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Figure 6.

Topography of performance by individual electrode and word. a, The topography of

classification accuracy is shown for the micro-electrodes resting over FMC. b, The topography

of classification accuracy is shown for the micro-electrodes resting over Wernicke’s area.
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Table 1

Listing of words used and numbers of recorded and stereotyped trials.

Word Trials recorded Stereotyped repetitions

Yes 166 81

No 160 96

Hot 65 31

Cold 65 48

Hungry 67 48

Thirsty 65 53

Hello 69 34

Goodbye 65 35

More 65 49

Less 67 52
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