
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Journal Articles Computer Science and Engineering, Department
of

1987

Decoding Substitution Ciphers by Means of Word Matching with Decoding Substitution Ciphers by Means of Word Matching with

Application to OCR Application to OCR

George Nagy
Rensselaer Polytechnic Institute, nagy@ecse.rpi.edu

Sharad C. Seth
University of Nebraska-Lincoln, seth@cse.unl.edu

Kent Einspahr
University of Nebraska-Lincoln

Follow this and additional works at: https://digitalcommons.unl.edu/csearticles

 Part of the Computer Sciences Commons

Nagy, George; Seth, Sharad C.; and Einspahr, Kent, "Decoding Substitution Ciphers by Means of Word

Matching with Application to OCR" (1987). CSE Journal Articles. 26.

https://digitalcommons.unl.edu/csearticles/26

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csearticles
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csearticles/26?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-9, NO. 5, SEPTEMBER 1987

3) For the two nights (night 32 and 33) of apnea subject A.D.C,
the clinical results indicated that no change occurred between these
two nights. Fig. 1 also shows that these two nights are close to
each other.

V. CONCLUSIONS AND DISCUSSION

This study was performed to explore to what extend Markovian
modeling of sleep patterns, coupled with pattern recognition tech-
niques, can be used to describe normal and abnormal sleep pat-
terns, and to detect the sleep changes between different nights for
the same abnormal subject. The latter may be indicative of the de-
gree of improvement via a treatment procedure.
The comparison of the transition probability matrices was done

using a X2-clustering and a correspondence analysis approach. Most
of the normals fell into one cluster, whereas the abnormals were
more dispersed. Particularly, the correspondence analysis not only
indicated the distances between the normal and abnormal sleep pat-
terns, but also indicated that the TC parameter increases, whereas
the EIJ2 value decreases from the abnormals to the normals. Fur-
thermore, the correspondence analysis reveals the changes between
the different nights of the same abnormal patient. Hence, the cor-
respondence analysis gives more information about the matrix
comparison.

The changes between the transition probability matrices of the
different nights of the same abnormal patient could also be verified
by the sleep somnograms and by the clinical results. Since the sleep
data were recorded during a treatment procedure, these changes
may have indicated the degrees of the improvement of the patient
as a result of treatment. However, the exploratory nature of this
study should be emphasized. The experiments described here should
be interpreted as examples and it would be premature to draw clin-
ical conclusion from the results presented here.

ACKNOWLEDGMENT

The sleep data were provided by Dr. J. D. Frost, Jr., of the
Baylor College of Medicine and the Methodist Hospital in Hous-
ton.

REFERENCES

[1] T. R. Bowe and T. F. Anders, "The use of the Semi-Markov model
in the study of the development of sleep-wake states in infants," Psy-
chophysiology, vol. 16, pp. 41-48, 1979.

[2] I. V. Basawa and B. L. S. Prakara Rao, Statistical Inference for Sto-
chastic Processes. New York: Academic, 1980.

[3] B. Burtschy and C. Nora, "The problem of missing data, using the
properties of factor analysis and correspondence analysis," in Proc.
4th IJC Pattern Recognition, Kyoto, Japan, 1977, pp. 276-279.

[4] E. S. Gelsema, C. Queiros, and T. Timmers, "The formalism of cor-
respondence analysis as a means to describe object samples," in Proc.
6th IJC Pattern Recognition, Munich, 1982.

[5] M. J. Greenacre, Theory and Applications of Correspondence Anal-
ysis. New York: Academic, 1984.

Decoding Substitution Ciphers by Means of Word
Matching with Application to OCR

GEORGE NAGY, SHARAD SETH, AND KENT EINSPAHR

Abstract-A substitution cipher consists of a block of natural lan-

guage text where each letter of the alphabet has been replaced by a

Manuscript received September 30, 1985; revised January 1986. Rec-
ommended for acceptance by T. Pavlidis. This work was supported by the
National Science Foundation under Grant DCR-8421162.

G. Nagy is with the Department of Electrical, Computer, and Systems
Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180.

S. Seth and K. Einspahr are with the Department of Computer Science,
University of Nebraska, Lincoln, NE 68588.

IEEE Log Number 8715508.

distinct symbol. As a problem in cryptography, the substitution cipher
is of limited interest, but it has an important application in optical
character recognition. Recent advances render it quite feasible to scan
documents with a fairly complex layout and to classify (cluster) the
printed characters into distinct groups according to their shape. How-
ever, given the immense variety of type styles and forms in current
use, it is not possible to assign alphabetical identities to characters of
arbitrary size and typeface. This gap can be bridged by solving the
equivalent of a substitution cipher problem, thereby opening up the
possibility of automatic translation of a scanned document into a stan-
dard character code, such as ASCII. Earlier methods relying on letter
n-gram frequencies require a substantial amount of ciphertext for ac-
curate n-gram estimates. A dictionary-based approach solves the prob-
lem using relatively small ciphertext samples and a dictionary of fewer
than 500 words. Our heuristic backtrack algorithm typically visits only
a few hundred among the 26! possible nodes on sample texts ranging
from 100 to 600 words.

Index Terms-Cryptograms, dictionary based solution, heuristic
search, optical character recognition.

I. INTRODUCTION

A substitution cipher consists of a block of natural language text
(English) where each letter of the alphabet has been replaced by a
specific symbol. The symbol might be another letter, a number, or
an arbitrary ideograph, but the mapping from the letters to the sym-
bols must be one-to-one.

Solving or decrypting a cipher means determining the mapping.
We develop a family of algorithms to perform this task; by extend-
ing a tentative assignment of letters to symbols according to the
degree of match between the decrypted portion of the ciphertext
and a vocabulary of common words. Our goal is to decrypt a rel-
atively short segment of text, less than one typed page, using a

small dictionary of a few hundred words, with computing resources
equivalent to a few seconds of CPU-time on a microcomputer.

Our motivation for solving substitution ciphers came from op-
tical character recognition. As optical scanners have become less
and less expensive, it is now possible to envision personal com-

puter attachments that can read small batches of text, each in a

different format and in a different typeface [1]-[4]. Recent ad-
vances render it quite feasible to scan documents with a fairly com-
plex layout and to classify (cluster) the printed characters into dif-
ferent groups according to their shape [5], [6]. Given, however,
the immense number of typestyles in current use, it is not possible
to assign alphabetical identities to characters of arbitrary size and
typeface. Whereas the number of different shapes encountered in a

typical business or engineering document is only of the order of a

few hundred, there are tens of thousands of symbol shapes com-
monly used by the printing industry. With the increasing availa-
bility of economical high-resolution dot-matrix printers and pho-
tocomposers, this diversity is more likely to increase than decrease:
given convenient facilities, many of us will want to design-like
Knuth-our own typefaces. An altemative to conventional OCR
methods that determine alphabetic identities is to solve a substitu-
tion cipher where the plaintext consists of the scanned copy, and
the ciphertext consists of the arbitrary codes assigned to each letter
by the clustering program.

The feasibility of building such a character recognition system
has been demonstrated more than a decade ago [7]-[9]. At that
time, however, on-line dictionary look-up seemed impractical, so

we used methods based on letter frequencies. This required seg-
ments of texts consisting of several thousand words and a large,
dedicated computer. Since then, the application of relaxation meth-
ods has resulted in improved n-gram frequency algorithms [10],
[11]. In this correspondence we capitalize on advances in search
algorithms, string matching, and dictionary structures to solve sub-
stitution ciphers using dictionary look-up.

II. STATEMENT OF THE PROBLEM

In the idealized formulation of the problem the ciphertext and
plaintext alphabets are of the same size and are denoted, respec-

0162-8828/87/0900-0710$01.00 © 1987 IEEE

710

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-9, NO. 5, SEPTEMBER 1987

tively, by C and P. The (unique) solution is a one-to-one mapping
from C to P.

The elements of the ciphertext alphabet will be called symbols,
and those of the plaintext alphabet, letters. In both the plaintext
and the ciphertext there will be a definite reading order of words
but this is of no consequence in our formulation. Neither is the fact
that a particular word occurs more than once in the text. That is,
we consider the ciphertext as a finite set of distinct words (each of
which itself is a finite string of symbols). We also assume the avail-
ability of a plaintext dictionary which is another set of words com-
prised of letters. The idealized problem, thus formulated, is com-
pletely symmetric with regard to the roles of the dictionary and of
the ciphertext: the objective is simply to find a mapping between
the alphabets of two sets of unique words in such a way as to max-
imize the correspondence between the two sets.

The solution to the problem can be built up incrementally start-
ing with the null solution. At each step, one or more new elements
of the mapping from C to P are added from amongst the remaining
choices. The selection of mapped pair(s) is guided by both the given
ciphertext and dictionary, the aim being to minimize the expected
search time. Without guiding heuristics for selecting symbol-letter
pairs, the correct assignment requires an exhaustive search of the
solution space which will be impractical for all but the most trivial
problems.

Since search length will be used in evaluating competing heu-
ristics, it is important to introduce a measure of search length which
is unbiased and general-purpose in its applicability, e.g., the count
of comparisons made at the character level.

The ideal formulation of the problem considered in this paper
would have to be relaxed in several ways to cope with the com-
plexities of the problem encountered with "real-world" data. For
example, in practice, the symbol classification mechanism is not
likely to be perfect; two occurrences of the same symbol may be
classified as being different because of imperfections on the printed
surface, variations in ink-deposition, smears, etc. This would in-
validate the assumption of one-to-one mapping from symbols to
letters; instead, we must consider the more general situation of a
many-to-one mapping. Many-to-one mapping would also result
from the use of upper/lower case in the ciphertext while restricting
the dictionary to be single-case for computational efficiency, or
from the use of boldface and italics. A less likely situation is that
of two distinct symbols identically classified, again, due to a va-
riety of reasons (e.g., inadequacy of classification algorithm, un-
differentiated letter-pairs such as I-1 in some typefaces, erasure of
crucial distinctive features in the printing or scanning process).
Thus, in the most general case, we may not even have a functional
relationship from symbols to letters.

Lastly, the mapping from symbols to letters may not be com-
plete; there may be symbols in the ciphertext, such as punctuation,
which do not occur in a spelling dictionary. This could also happen
with dictionaries that are too short to include all the letters. Con-
versely, there may be some less frequently occurring letters, such
as "j", which do not occur at all in a short ciphertext.

III. SEARCH ALGORITHMS
We will use the following general form of a solution to the sub-

stitution cipher problem as the point of departure for further dis-
cussion.

algorithm TREE-SEARCH(input, output)
{TREE-SEARCH solves the substitution cipher by selecting a
group of ciphertext words to match to the dictionary and extend-
ing the assignment set on the basis of matched letter frequencies.
A cutoff strategy is used to detect a "bad" assigment early and
backtrack to the level at which such assignment was made. }

INITIALIZE;

EXTEND(PA, level, CIPH.count, DICT.count);
{The current partial assignment PA is extended. This is a re-
cursive procedure resulting in a depth-first search of the pos-
sible solutions to the substitution cipher. The last three param-

eters are used to implement cutoff. A detailed description of
EXTEND follows.}

if COMPLETE(PA) then [record PA; return]
{PA is assumed to be complete if all the ciphertext symbols
which also occur in the matched words in the dictionary are
assigned. Since a unique solution is expected, the return
may be replaced by a super return from all the levels of
recursion. }

else
RANKSYMBOLS(PA, x);

{Produces an ordered list x of vectors x' of unassigned
symbols. }

for each x' in x do

RANKLETTERS(PA, x', y);
{Produces an ordered list y of vectors y' of letters each
of the same length as x' }

for each y' in y do

ASSIGN(x', y', PA, PA');
{y' is assigned to x' thereby extending PA to PA'.
Also updates CIPH.count and DICT.count.}
if level < T3 then CUTOFF(T1, T2);
{CUTOFF checks if x' occurs at least TI times in
its selected subgroup and DICT.count/CIPH.count
is less than T2. If both are true, backtrack to an ear-
lier level occurs. }

if not cutoff then do
level -- level + 1;

EXTEND(PA', level, CIPH.count, DICT.count)

level *- level-1;
end (if);

end (for each y')
end (for each x');

end (EXTEND);
end (TREE-SEARCH).
EXTEND can be thought of as implementing a depth-first tree

search. Between successive nested calls to EXTEND, choices are
made, first of vector x' of symbols and then a vector y' of letters,
the two choices together defining a single level of the standard
search tree. RANKSYMBOLS and RANKLETTERS allow heuris-
tic reordering of the search [12]-[14].

A. Bestfirst Heuristic
The first heuristic to be discussed attempts to extend the current

partial assignment PA by considering only a subset S of ciphertext
words which have just one symbol unassigned (if no such words
exist then we consider those with two symbols unassigned, etc.).
The end result is a list of strings (vectors) x' of symbols each of
the same length (one or more) and each derived from a ciphertext
word. RANKSYMBOLS produces this list and reorders it in de-
creasing order of the frequency of each x' in S. The reordered list
is called x in the algorithm and its elements are selected in order
by the algorithm. For a particular choice x', each ciphertext word
in which only the elements of x' appear unassigned is considered
for all possible matches in the dictionary. Whenever a match occurs
there is a potential extension of the current partial assignment since
the matched dictionary provides a unique mapping for symbols in
x'. The extension can be conveniently denoted by a string y' of
letters of the same length as x' where each symbol in x' is mapped
to the corresponding element of y'. RANKLETTERS finds all pos-
sible strings y' associated with a particular choice ofx' and reorders
them as follows. Consider the mapping from x' to a particular
choice of y'. For each such choice, one or more of the ciphertext
words which had only the elements of x' as unassigned, become
completely assigned. RANKLETTERS records a count of the num-
ber of these found in the dictionary as a measure of goodness of
the particular choice of y' and reorders these choices according to
the decreasing value of this count. The reordered list is called y in
the algorithm.

711

712 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.PAMI-9, NO. 5, SEPTEMBER 1987

Backtracking to the previous level of the tree occurs whien no
assignment can be made at the current level (the x and y lists are
exhausted at the current node). However, our experience with some
simple examples points up the need for a more powerful backtrack-
ing mechanism. Thus a second heuristic mechanism, called cutoff,
is invoked to allow backtracking many levels up the search tree.

Because even correct words may be missing from our small dic-
tionary, the cutoff procedure must be statistical in nature. Further-
more, we not only wish to determine whether the entire assignment
vector is correct but, if it is not, which assignment is most likely
to be invalid. Consequently, we keep track both of the number of
completed ciphertext words in which each symbol appears and the
number of these words that appear in the dictionary. If the number
of text words in which a given symbol appears in sufficiently large,
and the number of these words which are found in the dictionary
is sufficiently low, then we backtrack to the point where the suspect
assignment was made.

The cutoff procedure does not require any additional dictionary
lookups because any completed ciphertext word must already have
been checked against the dictionary when its last symbol was as-
signed.

While the cutoff procedure works well on correcting misassign-
ments of high-probability letters, it results in unjustified backtrack-
ing later in the process when low-probability letters are assigned.
This is not surprising, since the low-probability letters tend to ap-
pear in fewer common words. Furthermore, late in the assignment
process cutoff saves less time, since even complete exploration of
the bottom part of the tree is computationally quite feasible. We
therefore added a third parameter, which disables the cutoff pro-
cedure once a certain number of assignments have been made. This
may be regarded as an approximation to an adaptive cutoff mech-
anism that takes into account the progress of the search.

Example: For this example we chose a ciphertext from the Da-
tamation magazine consisting of a total of 651 words and a dictio-
nary of the 442 most frequently used words of at most six letters.
The ciphertext is reduced to a word list in lower-case only before
its use by the algorithm. Ignoring capitalization allows one to con-
sider the simplified case of a one-to-one mapping between symbols
(ciphertext symbols) and letters (plaintext symbols). For all ex-
amples we will follow the convention that lower-case represents
unassigned symbols and upper-case represents the letters.

Fig. I shows an example of the Tree-search algorithm for one
level of recursion. At the time when we enter the level-3 node in
Fig.1 it is assumed that the Tree-search algorithm has already made
the (correct) assignments shown to the symbols "t", "a", and
"1". We will walk through the steps of the algorithm until the next
assignment is made.

The algorithm first selects the group of ciphertext words which
have the fewest number of unassigned symbols. In this case (as in
all cases we have examined to date) it was possible to choose words
with just one unknown. The unknown symbols are ranked accord-
ing to the counts of their occurrence in this group of words. Thus
the unknown "o" which occurs most frequently in the group (four
times) is selected first for assigning a letter.

Next, the subgroup of words in which the selected "o" appears
is matched against the dictionary. In this case "to" and "too" will
match correctly with "TO" and "TOO" but "lot" will match in-
correctly with "LET". However, the incorrect assignment"o" -+
"E" is deferred in favor of the correct assignment "o" "O"
based on the counts of "O" and "E" (respectively, 3 and 1) in
the matched dictionary words.

The cutoff heuristic in this example is based on the accumulated
counts (DICT.count and CIPH.count) shown at the bottom of Fig.
1. The values existing at the time of entry to the level-3 node are
updated after the recursion step traced above. The increments re-
flect the number of occurrences of the symbols and the letters in
the selected groups of ciphertext and dictionary words. These ac-
cumulated totals are used to determine whether the last assignment
has a high probability of being "bad." A "bad" assignment oc-
curs when DICT.count/CIPH.count is below a preset threshold. If
so, the algorithm cuts off to the level of recursion at which the 'bad'

Level 3 (current assignments):

Selected
cipherteHt words: (To, Too, Lot

With unknown: o

Of frequency : 4

Mcnatching
dictionary words: (TO, TO

Causing assignment: 0 -

t-
Leuel4 a 4
(current ass'ts): I

0e

Cutoff Counts

Levell3 Counts:

Prototype: t a
CIPHouountt 1 3 1
DICT.count: 3 1

Leuel-4 Counts:

Prototgpe: t a o
CIPH.count: 4 3 2 3
DICT.count: 3 3 2

Fig. 1. An example to illustrate the Bestfirst heuristic.

assignment was made. Actually, three thresholds are used to con-
trol the cutoff procedure. The first threshold, TI, determines how
many occurrences of a specific symbol need to occur before cutoff
is checked. The second threshold, T2, discussed above, causes a
cutoff only if the symbol occurrences exceed the first threshold.
The final threshold, T3, is the recursion level at which the check
for cutoff is terminated. For the example shown in Fig.1 the three
threshold values used were 3, 0.5, and 12. With these values, cut-
off will be checked for the assignment just traced since 1) "o"
occurs more than 3 times in the selected group of ciphertext words
and 2) the recursion level is below 12. However, cutoff will not
occur because the proportion DICT.count/CIPH.count for each
symbol is at least 0.5.

B. Coverset Heuristic
Unlike the Bestfirst heuristic, the Coverset heuristic tries to

match longer words first. Only ciphertext words which are not
completely defined by the current assignments are retained for fur-
ther consideration. Let this set be denoted by S. A word w in S is
said to cover a word v if every unassigned symbol in v is also in
w. RANKSYMBOLS orders the ciphertext words in S according to
the number of words covered by a word. Now suppose a word w
is chosen from S and matched against a dictionary word of the same
length. If the match is successful, it will result in assignment of
letters to all the unassigned symbols in both w and the words cov-
ered by w. The latter can be looked up in the dictionary and a count
kept of the number found. RANKLETTERS orders the potential
matches for w according to the value of this count.

Example: Fig. 2 shows one level of recursion for the Tree-search
algorithm using the coverset heuristic. Since the ciphertext word
"there" covers the greatest number (4) of words, it will be ranked
first by RANKSYMBOLS. The dictionary words that are possible
matches to "there" are "THERE" and "THESE". RANKLET-
TERS selects the matched word that maximizes the number of cov-
erset words which also found in the dictionary. If "there" is as-
signed to "THERE", four words can be matched whereas only
three coverset words are matched if "there" is assigned to
"THESE". Each unassigned symbol of the ciphertext word is as-

signed to the corresponding letter in the matched dictionary word
("h" to "H" and "r" to "R"), extending the current assignment.
The accumulated counts (DICT.count and CIPH.count) shown at
the bottom of Fig. 2 are derived in the same way as those in Fig.
1.

712

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-9, NO. 5, SEPTEMBER 1987

Level 5 (current assignments):

Selected , -
cipherteHt word: { ThErE,

Other coverset RrE, ThE,
words:

Coverset size: 4

a -4 A

e -+ E
n -4 N
o -4 0

t -4 T

Dictionary words
that match
coverset words:

Leuel 6
(current ass'ts):

Cutoff Counts

Level-5 Counts: Level-6 Counts:

Prototype: a e n o t Prototype: a e n o t h r

CIPH.count: 4 3 3 2 3 CIPH.count: 7 6 3 2 6 3 2
DICT.count: 3 3 2 1 3 DICT.count: 6 6 2 1 6 3 2

Fig. 2. An example to illustrate the Coverset heuristic.

IV. EXPERIMENTAL RESULTS

The algorithms described above were programmed in Pascal and
a series of experiments were run on VAX 11/780 and PDP 11/70
computers with the following objectives:

1) Determine the size of the dictionary necessary to decipher
relatively short segments of texts.

2) Investigate the improvement resulting from the cutoff heuris-
tic over the original greedy search algorithm, and compare several
versions of the cutoff heuristic.

3) Check the robustness of the algorithm by applying it to text
segments of diverse length and origin, and explore the range of
parameters that yield useful results.

4) Demonstrate the algorithm on a problem solved by the relax-
ation technique [10] and compare performance.

The characteristics of the sample texts used in the experiments
are shown in Table I. Since our dictionaries do not contain any
words longer than 6 letters, all longer ciphertext words are dis-
carded. Accordingly, Table I shows for each sample text the total
number of ciphertext words, the number of distinct ciphertext words
of six letters or less, and the number of these that are found in the
dictionary. We also show what symbols are missing entirely from
the text, and what symbols occur only in words that are not in the
dictionary. The last column shows the number of symbols that can

be correctly assigned.
In reporting results, we must consider the various possible out-

comes of applying the algorithm to a sample of text. There are four
possibilities:

1) The algorithm does not assign a letter identity to every pos-
sible symbol within the amount of CPU time available (about 200
seconds on the PDP 11/70, which corresponds to about 250 000
attempts to match a ciphertext word in the dictionary).

2) The algorithm is terminated before assigning letters to every

symbol. This happens when there are no ciphertext words left (with
one or more unassigned symbols) for which a match can be found
in the dictionary, and threshold T3 has been exceeded, disabling
backtracking.

3) The algorithm completes assigning letters to every symbol.
Some of the assignments may, of course, be incorrect; most often
these are infrequently occurring symbols such as j or q.

TABLE I
CHARACTERISTICS OF SAMPLE TEXT SEGMENTS

Word Distinct Dictionary Prototypes not in Number of
Codet Count Usable Matches Dict- Cipher- Prototypes

Words Count ionary text Assignable
SP 122 64 45 Xj pxj 22
LP 329 134 97 x z 24
DA 651 170 110 j q z 23
AD 95 43 34 j q x z 22
ED 397 163 105 q z 24
NW 333 132 79 q x z 23
GA 272 107 72 q j x z 22

tSP: Short Physics, LP: Long Physics, DA: Datamation, AD: Auto Ad., ED: Royko
Editorial, NW: Newsweek, GA: Gettysburg

4) The algorithm completes the search-usually abbreviated by
cutoff-without reaching a solution.

A. Dictionary
Dictionaries of sizes 100, 200, and 500 of the most frequently

used words were tried on the short physics text. In all experiments
the 100-word dictionary produced considerably poorer results in
terms of the total number of assignments made. The 200 and 500
word dictionary produced comparable results. The execution times
were slightly worse for the 500-word dictionary but this perfor-
mance degradation was due to the linear organization of diction-
aries implemented for its simplicity. We chose the larger size with
one modification: all words longer than 6 letters were deleted from
this dictionary for reasons of efficiency. The resulting 442-word
dictionary was used for all the experiments reported below. To en-
sure the inclusion of the single word in a short segment of text that
might contain a rare letter such as "z", an enormous increase in
dictionary size would be necessary.

B. Cutoff
The performance of the algorithm with and without cutoff is

shown in Table II. It is seen that cutoff is effective in obtaining a
solution in all cases where the search without cutoff times out.
However, when the search without cutoff converges rapidly, cutoff
may entail a time penalty.

C. Robustness
The three threshold parameters were varied for the Newsweek

text in the range
3 < T1 < 5; 0.20 < T2 < 0.50; 6 < T3 < 18.

Within this range, the final assignments were identical, with the
number of calls to EXTEND varying only from 24 to 38. Gener-
ally, lowering thresholds TI and T2 further, or increasing T3, re-
sults in inappropriate backtracking and often leads to an erroneous
assignment. On the other hand, changing these thresholds in the
opposite direction inactivates cutoff and increases the number of
iterations.

The performance of the Bestfirst heuristic with two sets of pa-
rameters is shown in Table III for all the samples. It is seen that
the number of iterations (calls to EXTEND) is not necessarily
smaller for short segments. On the other hand, the number of char-
acter matches for dictionary access (words sought, with or without
success, in the dictionary) tends to grow with the length of the
segment. The computing time required, in tum, is roughly propor-
tional to the number of accesses; it is clear that even if we cannot
lower the number of iterations, we can decrease the computer time
by improving the dictionary access method.

D. Comparison to Relaxation Algorithm
In order to provide a statistically valid comparison, we did not

experiment at all with the Gettysburg Address until the final test
run. After determining apparently the best cutoff parameter values
for the Bestfirst heuristic we finally attempted this run, which was
also used by Peleg and Rosenfeld [10]. The algorithm assigned
correctly 22 out of the 23 symbols that it could assign properly,
given our dictionary. After this run, we found that with most other
parameter settings the algorithm performed just as well.

713

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-9, NO. 5, SEPTEMBER 1987

TABLE II
PERFORMANCE WITH AND WITHOUT CUTOFF

(Bestfirst Heuristic)

Number of Calls to Extend

Text Cutoff (T= 4, T2=.5, T3=12)
To Worst To Highest No Cutoff
Proportion Level

SP 106 69 TO' (192)
LP 152 No Solution 25
DA 68 80 24
AD 67 67 TO (605)
ED 175 94 TO (66)
NW 24 24 24
GA 30 35 TO (113)

t Timed Out

TABLE III
EFFECT OF CUTOFF PARAMETERS ON PERFORMANCE

(Bestfirst Heuristic)

T1=3, T2=.5, T3=18 T1i4, T2=.5, T3=12
Text Calls to Dictionary Resultst Calls to Dictioanry Resultst

Extend Accesses Extend Accesses
SP 251 420,388 16/s/t,l,u,g,x 69 30,036 22/-/-
LP 125 92,570 24/-/x 152 108,402 241-/x
DA 90 102,351 23/-/- 68 62,020 23/-/qj
AD 72 31,323 22/-/- 67 28,764 19/b/m.k
ED 79 118,676 24/-/q 94 66,378 23/-/q,x
NW 33 48,411 23/-/q 24 15,483 23/-/q
GA. 27 24,411 22/-/q 35 23,789 22/-/q

Number assigned correctly/misassigned/unassigned

E. Dictionary/Ciphertext Inversion

As expected, the algorithm can also reach the correct solution
when the text file and the dictionary file are switched. In a test in
which the Datamation text and the 200-word dictionary were in-
terchanged with no check for cutoff, all 23 symbols that could be
assigned were assigned correctly with 24 calls to EXTEND.

F. Observations

The major problem with the cutoff heuristic is that with rela-
tively short texts there are not sufficient words to determine, for
each symbol, whether the assignment is correct. Furthermore, when
we have a choice of making an assignment among several symbols,
we first select the symbol without regard for the number of words
that would be matched in the dictionary by the various symbol can-

didates. This frequently results in selecting a symbol for which a

number of ambiguous assignments can be made (multiple dictio-
nary hits), even when there is another candidate available for which
an unambiguous assignment based on several words is available.

V. CONCLUSION

We have demonstrated a heuristic algorithm for assigning al-
phabetic identities to symbols in a textual context on the basis of a

small vocabulary of frequent English words. The storage and com-

puting requirements are relatively modest, and the processing could
be performed on a microcomputer-based postprocessor for optical
character recognition.

The algorithm assigns correct identities to all but a few infre-
quently occurring symbols on samples of text ranging from 100 to
600 words. Identities are assigned in sequence, and the algorithm
backtracks whenever either a satisfactory next assignment cannot
be made, or a large proportion of words with already assigned sym-
bols cannot be found in the dictionary. Typically no more than a

few hundred nodes are visited in a search tree which could, in the
worst case, comprise 26! nodes.

Since the most time-consuming part of the proposed method is
seeking partial matches for groups of words in the dictionary, the
dictionary search algorithm and the data structure used for the dic-
tionary have a profound effect on overall computational resource

requirements.
The most common method of searching for a match in an ordered

list, binary search, is not directly applicable when the search words
contain wild cards (i.e., unidentified symbols). An obvious short-
cut is to sort the dictionary according to word-length. Although
most common words are 2-5 characters long, this may, in fact, be
the best strategy for short dictionaries of 100 words or less, Other
possibilities are having several copies of the dictionary, each or-
dered without regard for the characters in specific positions (which
correspond to the symbols in the search word), and anagram-based
organization where the dictionary is sorted according to the con-
stituent letters of each word without regard to their internal order.
In view of the duality between the roles of the ciphertext and the
dictionary, the same considerations will apply to the ciphertext.

There is also a voluminous literature on string matching and par-
tial string matching [15], [16]. At first blush, we do not expect
much of this work to be applicable because the presence of clear
word demarcations in the dictionary and the ciphertext renders at-
tempted matches across word boundaries unnecessary. Other dic-
tionary organization techniques, such as root, prefix, and suffix ori-
ented methods [17], [18], character registers [19], abbreviations
[20], common substrings [21], weighted Levenshtein metric [22],
and hierarchies [23], may be more relevant. Currently, we are fo-
cusing our attention on hash coding, where the small overhead in
storage is insignificant with our short dictionary.
We are currently trying our methods on data more representative

of the output of a real OCR system, including multiple symbols for
each letter. A non-one-to-one mapping from symbols to letters pre-
sents a serious difficulty for n-gram techniques, but is not expected
to be a problem with dictionary look-up. We are attempting a mixed
strategy, combining the strengths of both methods. An alternative
is to use a large dictionary, such as those designed for spelling
correction, to assign the last few "rare" prototypes. Since only a
few accesses would be required at this point, the size of the dictio-
nary would not materially increase the running time. Excellent re-
sults using a large dictionary were presented in [24].

The major theoretical task facing us is to investigate the rela-
tionship between length of dictionary, length of ciphertext, and
probability of correct assignment. Clearly, the longer the dictio-
nary, the shorter is the length of ciphertext necessary to guarantee
a sufficient number of matching words to correctly identify all of
the symbols. Humans, who have virtually instantaneous access to
a very large vocabulary, can readily solve very short substitution
ciphers. The probabilistic formulation of the problem is difficult
because in English (and in other natural languages) the joint prob-
abilities of the letters constituting a word do not correspond to the
probability of that word occurring in a segment of text, and both
probability distributions affect the performance of the proposed
method.

ACKNOWLEDGMENT

The authors wish to thank D. Kreher for an earlier implemen-
tation of the algorithm and C. Grimes for experimentation with
dictionaries. The help by T. Meyer and S. Lloyd with the prepa-
ration of this manuscript is also gratefully acknowledged.

REFERENCES

[1] G. Nagy, "Optical character recognition-Theory and practice," in
Handbook of Statistics II, P. R. Krisnaiah, Ed. Amsterdam, The
Netherlands: North-Holland, 1982, pp. 621-649.

[2] , "Optical scanning digitizers," IEEE Spectrum, pp. 13-24, May
1983.

[3] G. Nagy and S. Seth, "Hierarchical image representation with appli-
cation to optically scanned documents," in Proc. ICPR-7, Montreal,
1984, pp. 347-349.

[4] T. Stanton, D. Burns, and S. Venit, "Page-to-disk technology: 9 state
of the art scanners," PC Mag., vol. 5, pp. 128-177, Sept. 30, 1986.

[5] K. Y. Wong, R. G. Casey, and F. M. Wahl, "Document analysis
system," IBMJ. Res. Develop., vol. 26, pp. 647-656, Nov. 1982.

[6] R. Casey, S. K. Chai, and K. Y. Wong, "Unsupervised construction
of decision networks for pattern classification," in Proc. ICPR-7,
Montreal, July 1984.

[7] R. Casey and G. Nagy, "Autonomous reading machine," IEEE
Trans. Comput., vol. C-7, May 1968.

714

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-9, NO. 5, SEPTEMBER 1987

[8] -, "Advances in pattern recognition," Sci. Amer., vol. 224, pp.
56-71, Apr. 1971.

[9] L. Bahl, "An algorithm for solving simple substitution crypto-
grams," in Proc. IEEE Int. Symp. Information Theory (abstract), Ith-
aca, NY, 1977.

[10] S. Peleg and A. Rosenfeld, "Breaking substitution ciphers using a
relaxation algorithm," Commun. ACM, vol. 22, pp. 598-605, Nov.
1979.

[11] D. G. N. Hunter and A. R. McKenzie, "Experiments with relaxation
algorithms breaking simple substitution ciphers," Comput. J., vol.
26, no. 1, pp. 68-71, 1983.

[12] N. J. Nilsson, Principles of Artificial Intelligence. Palo Alto, CA:
Tioga, 1980.

[13] E. Rich, Artificial Intelligence. New York: McGraw-Hill, 1983.
[14] P. H. Winston, Artificial Intelligence. Reading, MA: Addison-Wes-

ley, 1977.
[15] R. Rivest, "Partial match algorithms," Siam J. Comput., vol. 5, Mar.

1976.
[16] C. S. Roberts, "Partial match retrieval via the method of superim-

posed codes," Proc. IEEE, vol. 67, Dec. 1979.
[17] K. S. O'Mara, W. M. Jaworski, and S. Klasa, "On the development

of a recursive model of word structure in the English language," in
Applied Systems and Cybernetics V, G. E. Lasker, Ed. New York:
Pergamon, 1980.

[18] M. T. Chen and J. Seiferas, "Efficient and elegant subword tree con-
struction," Computer Research Review, Univ. Rochester, 1984.

[19] J. L. Peterson, "Computer programs for detecting and correcting
spelling errors," Commun. ACM, vol. 23, no. 12, pp. 676-687, Dec.
1980.

[20] C. R. Blair, "A program for correcting spelling errors," Inform.
Contr., vol. 3, pp. 60-67, Mar. 1960.

[21] C. N. Alberga, "String similarity and misspellings," Commun. ACM,
vol. 10, pp. 302-313, May 1967.

[22] T. Okuda, E. Tanaka, anid T. Kasai, "A mnethod for the correction of
garbled words based on the Levenshtein metric," IEEE Trans. Com-
put., vol. C-25, pp. 172-177, Feb. 1976.

[23] E. Tanaka, T. Kohashiguchi, and K. Shimamura, "High speed string
correction for OCR," in Proc. ICPR-8, Paris, 1986, pp. 340-343.

[24] R. G. Casey, "Text OCR by solving a cryptogram," in Proc. ICPR-
8, Paris, 1986, pp. 349-351.

A Method of Recognition of Arabic Cursive
Handwriting

HUSSEIN ALMUALLIM AND SHOICHIRO YAMAGUCHI

Abstract-In spite of the progress of machine recognition techniques
of Latin, Kana, and Chinese characters over the two past decades, the
machine recognition of Arabic characters has remained almost un-
touched. In this correspondence, a structural recognition method of
Arabic cursively handwritten words is proposed. In this method, words
are first segmented into strokes. Those strokes are then classified using
their geometrical and topological properties. Finally, the relative po-
sition of the classified strokes are examined, and the strokes are com-
bined in several steps into a string of characters that represents the
recognized word. Experimental results on texts handwritten by two
persons showed high recognition accuracy.

Index Terms-Arabic cursive handwriting, combination, pattern
recognition, segmentation, strokes, structural approach.

Manuscript received December 10, 1985; revised January 16, 1987.
Recommended for acceptance by T. Pavlidis.

H. Almuallim is with the Department of Information and Computer Sci-
ence, University of Petroleum and Minerals, Dhahran, Saudi Arabia.

S. Yamaguchi is with the Department of Electrical and Electronics En-
gineering, Tokyo Institute of Technology, Meguroku, Tokyo, Japan.

IEEE Log Number 8715509.

I. INTRODUCTION

There have been considerable research interest and develop-
ments in the area of character recognition in the past two decades
[1]-[3]. However, although Arabic characters are used in writing
many widespread languages (Arabic, Persian (Farsi), Urdu .),
only a few papers were published about the computer recognition
of Arabic characters [4], [5]. Such research is difficult because Ar-
abic characters are written (printed) cursively so it becomes nec-
essary to overcome the complicated problem of letter separation.
Unfortunately because of different characteristics, techniques de-
veloped for Latin or Chinese characters cannot easily be imple-
mented in the recognition of Arabic.
To our knowledge, only two studies have been done in this field.

One [4], by K. Badi et al., treated the isolated Arabic characters
mainly. The other [5], by A. Amin et al., dealt with the recognition
of Arabic (cursively written) words. In both of the works, the struc-
tural approach was reported to be efficient in the recognition of
Arabic.

However, no applications of these methods have been reported,
and the problem of Arabic recognition is still an open field.

In this correspondence, a recognition method of cursively writ-
ten Arabic words has been developed. In this method, an algorithm
for letter separation is proposed and geometrical and topological
properties are used for the discrimination of characters in the rec-
ognition process. Unlike IRAC II, III systems [5], Arabic words
were introduced to the system through a video camera. Although
the automation of focusing, light intensity etc., is out of the scope
of this correspondence, this method is more difficult than using a
graphic tablet, because the pen movement and directions are un-
known. However, this way is thought to be more natural because
it can also deal with already written texts.

The process consists of four phases. After the first phase of pre-
processing, a word is segmented into "strokes" in the second
phase. These strokes represent an approximation of the pen move-
ment during writing, which is thought to be very useful information
in the recognition of Arabic handwriting. In the third phase, strokes
are classified, and then combined in several steps into a string of
characters in the final phase. The four phases are explained in the
following sections. But before that a brief explanation about the
characteristics of Arabic handwriting is given.

II. CHARACTERISTICS OF ARABIC HANDWRITING

Unlike Latin characters, Arabic is always written (printed) cur-
sively from right to left. Generally, an Arabic word consists of one
or more connected portions, and every portion has one or more
characters. The discontinuities between portions are due to some
characters that are not connectable from the left side with the suc-
ceeding character. Those characters appear only at the tail of con-
nected portions, and the succeeding character forms the head of the
next portion.

Moreover, every character has more than one shape, depending
on its position within a connected portion of the word. In fact, this
makes the recognition of Arabic complicated. (See Figs. 1 and 2
for the Arabic alphabet and an example of an Arabic word.)

However, the following characteristics seem to be important in
the recognition of Arabic:

1) The cross, branch points inside characters, and the connec-
tion points between characters always fall near the writing line (to
be called the midline below). This line provides useful context in-
formation.

2) Domains covered horizontally by characters overlap in many
cases in handwritten texts (for example, see the characters ta, kaf,
seen in Fig. 2).

3) Many characters differ only by the presence and the number
of dots above or below the main part of the character shape. Some-

0162-8828/87/0900-0715$01.00 © 1987 IEEE

715

	Decoding Substitution Ciphers by Means of Word Matching with Application to OCR
	

	tmp.1267808905.pdf.Jiwiw

