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Abstract. Sensory information is represented in a spatio-temporal code in the antennal lobe, the first processing
stage of the olfactory system of insects. We propose a novel mechanism for decoding this information in the next
processing stage, the mushroom body. The Kenyon cells in the mushroom body of insects exhibit lateral excitatory
connections at their axons. We demonstrate that slow lateral excitation between Kenyon cells allows one to decode
sequences of activity in the antennal lobe. We are thus able to clarify the role of the existing connections as well
as to demonstrate a novel mechanism for decoding temporal information in neuronal systems. This mechanism
complements the variety of existing temporal decoding schemes. It seems that neuronal systems not only have a
rich variety of code types but also quite a diversity of algorithms for transforming different codes into each other.
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1. Introduction

In recent years a lot of experimental evidence for tem-
poral coding of information has been collected in ol-
factory (Laurent et al., 1998, 2001; Laurent, 1999), au-
ditory (Jeffres, 1948; Leibold et al., 2002; Lu et al.,
2001), visual (v. Rullen and Thorpe, 2001) and tactile
systems (Ahissar et al., 1997, 2000), as well as in the
hippocampus (Wallenstein et al., 1998; Fortin et al.,
2002).

The formation of spatio-temporal coding (some-
times also referred to as identity-temporal or ensemble-
temporal coding) in the hippocampus is related to be-
havioral tasks following a temporal sequence (Fortin

et al., 2002). In the example of the tactile system the
sensory information from whiskers is encoded in the
identity of active neurons for vertical localization but
in a temporal code induced by whisker swiping for hor-
izontal information (Ahissar et al., 1997, 2000). Exam-
ples of temporal encoding in the visual system are nu-
merous. We have, for example, temporal patterns found
in lateral geniculate nucleus (Reinagel and Reid, 2000),
temporal coding of contrast (Reich et al., 2001) and
general temporal codes in visual cortex (Reich et al.,
2001). Temporal information processing in the audi-
tory system is mainly used for sound location in a three
dimensional environment utilizing very precise spike
timings (Jeffres, 1948; Leibold et al., 2002) but there is
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also evidence for non-trivial processing of the temporal
structure of sound stimuli in general (Lu et al., 2001).

In the olfactory system temporally structured activity
is generated even if the stimulus has no temporal struc-
ture itself (Wehr and Laurent, 1999). It has been demon-
strated that such temporal coding plays a role in enhanc-
ing the discrimination of similar odors (Stopfer et al.,
1997; Laurent et al., 1998; Teyke and Gelperin, 1999).

Several methods to decode temporal information in
neuronal systems have been proposed. The oldest we
are aware of (Jeffres, 1948) uses delay lines and coin-
cidence detectors to explain the mechanisms of sound
location. In more recent work Buonomano et al. showed
that a random network of neurons with excitatory and
inhibitory synapses having realistic properties is able to
transform temporally differing input into spatially dif-
ferent activation patterns (Buonomano and Merzenich,
1995; Buonomano et al., 1997). Even more recently,
experimental observations of the encoding-decoding
process in tactile systems indicate that temporal infor-
mation in these systems is gated through the thalamus
(Ahissar et al., 1997, 2000) to yield a spatial rate code.

In this paper, we analyze the role of local excita-
tory connections for temporal decoding in the olfactory
system of insects using the locust as our main model
system.

The first information processing stage of the ol-
factory system of the locust, the antennal lobe (AL),
has been subject to a thorough theoretical analysis
(Rabinovich et al., 1998, 2001; Bazhenov et al., 2001a,
2001b; Laurent et al., 2001). In the AL the dynami-
cal interplay of excitatory and inhibitory connections
between projection neurons (PNs) and local interneu-
rons (LNs) produces sequences of activity that map
uniquely to the encountered odor (Stopfer et al., 2003).
Odor identity as well as its concentration are encoded
in these sequences of activity.

The present work focuses on the next stage of neu-
ral processing in which the information, encoded in
the complex dynamics of the AL, is projected onto a
larger screen, the mushroom body (MB). The Kenyon
cells (KC) in the MB seem to be coincidence detectors
for synchronized activity in the AL. It has been shown
that the resulting code in the MB is sparse (Perez-Orive
et al., 2002). In addition to the direct projection from the
AL to the MB there is also a global feed-forward inhibi-
tion mediated by lateral horn interneurons (LHIs) that
resets the activity of the KCs in the MB every 50 ms.
This reset mechanism cuts the spatio-temporal code of
the AL into snapshots of spatial activity patterns.

Our inquiry rests on a paradox. The KCs have lo-
cal excitatory axo-axonal connections to their nearest
neighbors but to date the function of these connections
is unclear especially because the global inhibition stops
the propagation of activity every 50 ms. Furthermore,
if the connections were strong and fast enough to affect
neighboring KCs within one 50 ms cycle of activity this
would lead to a non-sparse code which is not observed.

Our main hypothesis is that if the lateral excitation
between KCs is sufficiently slow it can be used to de-
code temporal information across activity cycles. We
show that lateral slow excitation can transform a given
sequence of activity in the AL into a spatial represen-
tation in the MB that is significantly different from
the representation of any permutation of that sequence.
This way the temporal information of the order of the
sequence of activity snapshots in the MB is conserved.
This might otherwise be lost during integration of MB
activity in downstream areas.

2. Biological Morphology

The olfactory circuits of the locust are known accu-
rately (Perez-Orive et al., 2002). About 90000 olfac-
tory receptor neurons in each antenna project through
glomeruli to the corresponding AL containing ≈830
projection neurons (PN) and ≈300 LN. The PNs of
each AL contact ≈600 of a total of ≈50000 KCs in the
ipsilateral MB through the calyx. In return each KC
receives input from ≈10–20 PNs. This pathway seems
to be the only olfactory input to the MB. There also
seems to be no direct feedback from the MB to the AL.

The KC of the MB are subject to a periodic global
inhibition due to the activity of LHIs which are excited
by input from the PNs of the AL. The activity of the
LHIs exhibits an approximate phase shift of ≈180◦

with respect to the average activity of the PNs or—
more or less equivalently—to the observed local field
potential in the calyx.

The KCs project to the MB-lobes through axons
which are densely packed in nerve fibers. It has been
known for some time that the axons have chemical con-
nections within these nerve fibers establishing a local
hexagonal lattice structure within the otherwise seem-
ingly unconnected KCs (Leitch and Laurent, 1996).
The type of connection has not yet been determined
unambiguously but they are suspected to be excitatory.
These connections are the essential ingredient for the
decoding mechanism suggested in this work.
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The output of the AL is the synchronous firing of
small groups of PNs. These groups of active PNs evolve
in a slow switching pattern. Typically in the order of
200 PNs respond in groups of ≈30 synchronously fir-
ing neurons to each odor (Wehr and Laurent, 1996;
Laurent et al., 1996). Recent experiments indicate even
larger group sizes in this activity. This type of dynam-
ical activity has been argued to result from neural cir-
cuitry built on the principle of winnerless competition
(Rabinovich et al., 2001).

3. Functional Principle

Our main hypothesis is that the KCs in the MB form
a device that transforms the dense spatio-temporal
code generated by the AL into a sparse spatial code.
The mechanism we suggest to perform this task
only requires a sufficient size of the MB and a lo-
cal structure of slow excitatory connections. No spe-
cific connectivity between the AL and the MB is
necessary.

The basic mechanism for the transformation of the
spatio-temporal code is illustrated in Fig. 1. The indi-
vidual KCs act as coincidence detectors for the syn-
chronous PN input with some given threshold. The
coincidence detection responds to the spatial part of
the spatio-temporal code. The threshold together with
the known connectivity statistics determines the av-
erage initial activity of the KCs in response to an
odor. If a given KC detects a coincidence of suffi-
ciently many PN inputs, it will fire an isolated spike.
This will excite the neighbors of this particular KC
through the local excitatory connections. In the tem-
porally next cycle of PN activity these neighbors will
be more receptive to input from the AL than in their
resting state, i.e., fewer coincident inputs than in the
previous cycle will suffice to trigger a spike in these
neurons. Depending on the input in the next cycle
of PN activity it is therefore likely to have a spike
in a KC in the neighborhood of the originally active
KC. This will in its turn activate its neighbors and so
on. By this mechanism small clusters of active neu-
rons are formed whose size and shape depend on the
identity and temporal order of the input. It obviously
is essential for the functionality that the local excita-
tory connections are effective longer than one activity
cycle of the PN input. Equally important is an ade-
quate connectivity statistics allowing the subsequent
coincidence detection in the activated neighborhood
KCs of active KCs.

4. Numerical Simulation

Because the statistical properties of the connectivity
between AL and MB play a crucial role in the sug-
gested function of the KCs the system was simu-
lated in a realistically sized network. We used a set of
158 × 316 ≈ 50,000 integrate and fire neurons to rep-
resent the KCs in the MB. These very simple neurons
are adequate for the KCs as they only need to produce
a single spike on an infrequent basis. They are con-
nected in a hexagonal lattice by excitatory Rall-type
synapses (see Appendix A). The input from the AL
stems from 830 Hodgkin-Huxley type model neurons
which are induced to spike synchronously in randomly
chosen groups of 30 neurons. The active PN neurons
spike every 50 ms and the group of active PN neurons
is switched every 250 ms. The PNs have a fixed prob-
ability p = 600/50000 to be connected to each KC
leading to about 600 connections for each PN.

The feed-forward periodic global inhibition of the
LHIs is implemented by one Hodgkin-Huxley type
neuron with slow calcium dynamics. It receives input
from all PNs and inhibits all neurons in the KC lattice.
The morphology of the computer model is depicted in
Fig. 2. Details of the neuron and synapse models used
are given in Appendix A.

Up to this point the simulation is just a crude image
of the real system without any specifics about its bio-
logical functionality. It is common understanding that
the KCs in the MB work as coincidence detectors. We
adopted this view and chose the time scale of the PN-
KC connections to be τsyn = 1 ms; namely, small. This
makes the KCs very sensitive to the relative timing of
incoming input from the PNs and lets them function
as coincidence detectors. The synaptic strength of the
PN-KC connections needs to be carefully adjusted to
account for the observed initial KC activity in an odor
response. It turns out that a constant synaptic strength
of these connections cannot account for the activity
level observed. We, therefore, introduced an additive
Gaussian jitter on the synaptic strengths, in particular
for a PN (i = 1, . . . , nPN) to KC ( j = 1, 2, . . . , nKC)
connection, we use

gi j =
{

ḡ + δgi j with probability p

0 with probability 1 − p
(1)

where ḡ is the (fixed) average value and δgi j are inde-
pendent identically distributed (iid) Gaussian random
variables with mean 0 and standard deviation σ . For a
detailed analysis see Appendix B.
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Figure 2. Morphology of the computer model. Excitatory synapses are shown as red lines, inhibitory connections as black lines. Thickness
and texture of the lines hint to the strength of the connections.

Figure 1. Illustration of the transformation of temporal into spatial
information. If a coincidence detection occurs the local excitatory
connections activate the neighbors of the active neuron (yellow neu-
rons in the second row). Coincidence detection of input is now more
probable in these activated neighborhoods than in other KCs. Which
of the neighbors might fire a spike however depends on the activ-
ity of the PNs in the next cycle. It might be a different neuron for
an active group B of PNs (left side) than for active group C (right
side). In this way local sequences of active KC form which depend
on the identity of active PNs (coincidence detection) as well as on
the temporal order of their activity (activated neighborhoods).

←

To implement the functional principle described
above the local excitatory connections need to be suffi-
ciently slow to still take effect in the next cycle of syn-
chronized PN activity. We therefore tried connections
with time scale τKC = 30 ms and 40 ms. The synaptic
strength then again needs to be adjusted carefully to
be strong enough to allow the temporal decoding de-
scribed above and to be not to strong to avoid excessive
KC activity in form of propagating waves. Appendix B
explains the heuristics leading to the values used in the
simulation.
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5. Results

To test the transformation principle we randomly chose
ensembles A, B, C of 30 PN each and activated these
ensembles in different temporal orders. The same en-
sembles A, B, and C were used in all simulations. If
the mechanism was implemented successfully the ac-
tivation of A → B → C should lead to a different
activation pattern in the KC lattice than B → A → C
or A → C → B.

In Fig. 3 the differences in the average activity of
all the KCs for input A → B → C compared to
input A → C → B is shown for local synapses

-2 2

PN

Figure 3. Differences in the average activity of individual PN and
KC for local synapses with time constant τsyn = 40 ms and synap-
tic strength ksyn = 2.5 µS (see the equations for synaptic current in
Appendix A). All PNs and KCs are represented as small dots. The
PNs are shown in a single column on the left side. The KCs are
arranged on a 2d hexagonal lattice reflecting their axo-axonal neigh-
borhood structure. The average activity of the cells is shown in a
greyscale ranging from no activity (white) to maximal activity (total
5 spikes, black). The PN which are much more active than the KC
and therefore darker. Superimposed on this image is the difference
in activity in a color code. Here the scale ranges from red (2 more
spikes in A → C → B than in A → B → C) to green (2 more
spikes in A → B → C than in A → C → B). Note that there is no
difference in the average activity of the PNs. The average activity in
the sequence A → B → C per KC and per ms is 0.13 ± 1.3 · 10−4.
The average activity of the active neurons is 1.2 ± 0.4 · 10−3 spikes
per ms corresponding to 1.2 spikes in the whole 1000 ms period.
The number of active KC is 544. The average activity is similar for
the other sequences. The boxes at the bottom and right side highlight
and magnify regions in the KC lattice that illustrate the results most
clearly.

with time constant τsyn = 40 ms and synaptic strength
ksyn = 2.5 µS (see the equations for synaptic current
in Appendix A). Clearly, the activity is specific to the
order of the presented sequence. Furthermore, the dif-
ference in activity occurs preferentially at small clus-
ters. The differences of activity between the other two
pairings are similar. With stronger local synapses the
overall activity and the difference in activity for differ-
ent input sequences grow. Figure 4 shows an example
for τsyn = 40 ms and ksyn = 2.7 µS.

For different activity sequences a, b, = 1, 2, 3, . . . ,
that is A → B → C , A → C → B, etc., we quantify
the differences in the average KC response using the
average response for each KC i = 1, 2, . . . , nKC over
the time T during which each sequence was presented
to the KC. This average response of each KC is s(a)

i =
n(a)

i
T where n(a)

i is the number of spikes KC i fired during

-7 7

PN

Figure 4. Differences in the average activity of individual PN and
KC for local synapses with τsyn = 40 ms and ksyn = 2.7 µS. The
arrangement is as in Fig. 3 but the color coding here ranges up to 7
more spikes for one sequence over the other. The greyscale is from 0
spikes to 10 spikes. Even though the time scale and strength of local
synapses is clearly below the propagating wave threshold ongoing
input from the PN leads to a driven propagation of wavefronts. The
specificity to the input is not lost as the shown large differences
between the activity for input A → B → C and A → C →
B indicate. The average activity per KC and per ms in this case
is 1.1 ± 5.3 · 10−4. The average activity of the active neurons is
1.8 ± 1.3 · 10−3 spikes per ms corresponding to 1.8 spikes in the
whole 1000 ms period. The number of active KC is 3084. The average
activity is similar for the other sequences. Note that the colored areas
consist of individual active neurons. Thus the size of the areas gives a
good impression of the total number of KCs involved in the response.
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T . The average intensity of response over all KCs to
the presentation of sequence a is given as

A2
a =

nKC∑
i=1

(
s(a)

i

)2
. (2)

The difference in the KC response to two sequences a
and b is indicated by

	2
ab =

nKC∑
i=1

(
s(a)

i − s(b)
i

)2
(3)

such that the relative difference per response intensity
is

δ2
ab = 	2

ab

A2
a + A2

b

. (4)

This ratio lies between 0 and 1. In Fig. 5 this ratio is
shown for some values of the strength and the time
scale of the local synapses in the KC lattice.

The total activity grows with increasing strength of
the local connections. At ksyn ≈ 2.1 µS (τ = 30 ms)
and ksyn ≈ 2.6 µS (τ = 40 ms) the critical value for the
onset of forced propagating waves is reached resulting
in an abrupt change in the slope of the activity curve.

Figure 5. Overview over the dependence of the difference in average activity on the synaptic strength of the local connections. Panel A shows
the total average activity. The three symbols correspond to the three tested input sequences. Panel B displays the total distance between the
activities corresponding to the three possible combinations of input sequences. Panel C shows the difference normalized by the activity of the
sequences versus the strength of local connections and panel D shows the same data versus the size of the maximal membrane potential of a
typical EPSP evoked by one of the local synapses. Note that the distances between the activity pattern generated by one of the input sequences
and that caused by another sequence are very similar for all the possible combinations. It is also remarkable that when displayed versus the
EPSP size the data for different time scales of the local synapses collapse onto the same curve. τsynj = 40 ms (filled symbols) and 30 ms (open
symbols).

Note the logarithmic scale on the y axis in the upper
panels in Fig. 5. The earlier onset of forced propagating
waves for faster synapse time scales is explained by the
fact that the maximum of the typical EPSP elicited by
the local synapses is greater for the faster time scales.
If plotted versus the maximum of the EPSP the curves
for different time scales more or less coincide, see e.g.
Fig. 5, lower right panel.

It is remarkable that the distances between the ac-
tivities for sequences that differ in the last two groups
and those who differ at the beginning are of the same
order of magnitude for most of the time even though
one would naively expect that the identity of the first
group matters most.

There is a local maximum of the relative difference
in activities for ksyn ≈ 2.75 µS (τ = 40 ms) suggesting
an optimal value for the strength of local connections in
the MB. Note, however, that this is already in the regime
of forced propagating waves which might conflict with
the concept of sparse coding.

6. Discussion

We have demonstrated that under biologically reason-
able assumptions the MB of the locust can function
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as a device to transform a dense spatio-temporal code
into a sparse spatial code. In particular it has been
shown that slow local excitatory connections allow
one to decode the temporal information in the input.
Underlying this transformation is a mechanism to de-
code spatio-temporal neural information that is based
on coincidence detection and slow excitation. It does
not need any specific connectivity between PNs and
KCs.

While using several known properties of the bio-
logical system as an input this modeling study also
provides clear predictions about the necessary prop-
erties of the local connections in the MB. An ex-
perimental test for the mechanism suggested in this
study is to measure the EPSPs generated by the lo-
cal axo-axonal connections among KCs. The EPSPs
should outlast the duration of a resetting cycle by the
global inhibition of the LHIs. Furthermore, we predict
a range for the strength (maximal conductivity) of these
connections.

Our interpretation of the sparse spatial code gener-
ated in the MB assumes integrators of the KC activity
in downstream neural circuitry. The formation of lo-
cal clusters suggests that it might be advantageous for
these integrators to receive input that is local with re-
spect to the axo-axonal KC lattice structure. There are
indications from staining experiments in cockroaches
which might suggest such a connectivity (Strausfeld
and Li, 1999; Strausfeld et al., 2000). It is, however,
an open question on what time scale such downstream
integrators might operate. The mechanism suggested
here points to a long integration window because oth-
erwise the decoded temporal part of the information
might be lost.

One might hope that the formation of small clus-
ters of activity in the KCs of the mushroom body
might be detectable in optical or tetrode recordings.
The clusters form with respect to the neighborhood
structure defined by the axo-axonal connections, how-
ever. This neighborhood structure does not correlate
well with the spatial arrangement of the KCs one can
see in experiments such that the clusters cannot be seen
directly.

There are several future directions for this re-
search. One important question is how learning can
be included into the current scheme. There are
clear indications that the MB is involved in learn-
ing and memory of olfactory information (Heisenberg,
2003; de Belle and Heisenberg, 1994; Hammer and
Menzel, 1998; Dubnau et al., 2001). Another project

is to move to more and more realistic input from
the AL including asynchronous input if no odor is
present, noise and eventually input from a realistic AL
model.

Appendix A: Model Components

All synapses in the system were represented by a model
first introduced by Rall (1967, 1989) and now is a stan-
dard model for synapses (Destexhe et al., 1998). The
synaptic current into a postsynaptic neuron with mem-
brane potential Vpost(t) is given as

ISynapse(t) = −ksyn g(t) (Vpost(t) − Vsyn), (5)

where g(t) satisfies

d f (t)

dt
= 1

τsyn
(
(Vpre(t) − Vth) − f (t))

(6)
dg(t)

dt
= 1

τsyn
( f (t) − g(t)),

Vth = −20 mV, and Vsyn = 0 mV for excitatory and
Vsyn = −92 mV for inhibitory synapses. Vpre(t) and
Vpost(t) are the pre- and post-synaptic membrane po-
tentials and τsyn and ksyn are the time scale and the
strength of the synapse respectively. 
(u) = 0, u ≤ 0
and 
(u) = 1, u > 0 is the usual Heaviside function.

The PNs of the AL were represented by Hodgkin-
Huxley type model neurons previously developed for
simulations of the AL itself. The equations of these
conductance based model neurons are

C
dV (t)

dt
= −(INa(t) + IK(t) + ICa(t) + IKCa(t)

+ Il(t)) + ISynapse(t), (7)

where V (t) is the membrane voltage, C = 1.0 µF is
the membrane capacitance, and the ion currents are
determined by

INa(t) = m(t)3h(t)gNa(V (t) − VNa)

IK(t) = n(t)4(V (t) − VK)
(8)

ICa(t) = k(t)3l(t)gCa
V (t)

1 − e2V (t)/kCa

IKCa(t) = gKCa(V (t) − VKCa)
ω(t)4

k4
KCa + ω(t)4

,
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and the leak current is

Il(t) = gl(V (t) − Vl). (9)

ISynapse is as given above. We used the following values
for the maximal conductances and reversal potentials:
gl = 0.1 µS, gNa = 50 µS, gK = 10 µS, gCa = 0.2 µS,
gKCa = 0.15 µS, Vl = −55 mV, VNa = 50 mV,
VK = −95 mV, VKCa = −95 mV, and the constants
are kKCa = 0.15 and kCa = 24.42 mV.

Each of the activation and inactivation functions
m(t), h(t), n(t), k(t), and l(t) satisfy first order kinetics
equations of the form

d X (t)

dt
= AX (V (t)) − BX (V (t))X (t), (10)

where for X (t) = m(t), h(t), and n(t)

AX (V ) = αX (V )

BX (V ) = αX (V ) + βX (V )

αm(V ) = 0.116
V + 42 mV

1 − exp(−(V + 42 mV)/4 mV)

βm(V ) = −0.093
V + 15 mV

1 − exp((V + 15 mV)/5 mV)

αh(V ) = 0.0426 exp(−(V + 38 mV)/18 mV)

βh(V ) = 1.33

1 + exp(−(V + 15 mV)/5 mV)

αn(V ) = 0.01
V + 30 mV

1 − exp(−(V + 30 mV)/5 mV)

βn(V ) = 0.166 exp(−(V + 35 mV)/40 mV).

(11)

For k(t) and l(t) we have

AX (V ) = αX (V )

βX (V )

BX (V ) = 1

βX (V )

αk(V ) = 1

1 + exp(−(V + 27.1 mV)/7.18 mV)

βk(V ) = 20 − 19.9

1 + exp((V − 40.1)/8 mV)

αl(V ) = 1

1 + exp((V + 27.0 mV)/3.5 mV)

βl(V ) = 30 + 100

1 + exp((V + 50.1 mV)/5 mV)
.

(12)

The Ca induced K current activation is governed by
ω(t) satisfying

dω(t)

dt
= 0.001

(
− ICa(t)

µA
− c2

0 ω(t) + 0.04 c2
0

)
,

(13)

and c0 = 1.8.
The PNs are induced to spike by input received from

artificial input neurons which fire rectangular spikes
according to the chosen input pattern and are connected
to the PNs by Rall type synapses with τsyn = 1.0 ms
and ksyn = 0.8 µS.

Using such an elaborated neuron model for the PN,
which are not the focus of interest in this study, might
seem like overkill but will allow to easily combine
earlier studies of the AL with the present one in fu-
ture work. Note that in investigations of the AL ap-
propriate neuron models are important for reproducing
the complex spatio-temporal dynamics (Laurent et al.,
2001; Rabinovich et al., 2001; Bazhenov et al., 2001a,
2001b).

The KC were represented by leaky integrate and fire
neurons (IF) described by

C
dV (t)

dt
= −Il(t) + ISynapse(t), (14)

where

Il(t) = gl(V (t) − Vl), (15)

ISynapse(t) is the synaptic input current given above,
gl = 0.3 µS and Vl = −60 mV. If V (t) grows larger
than a given threshold Vthresh = −35 mV it is instan-
taneously set to the firing voltage Vmax = 50 mV.
This voltage is fixed for the duration of the firing time
τf = 1.5 ms and then released to develop according
to (14). The observed refractoriness of real KC in the
MB of the locust was implemented by self-inhibition
of these IFs through synapses with τsyn = 45.0 ms and
ksyn = 8 µS. Using a highly simplified neuron model
for the KCs seems to be legitimate because of the simple
sparse activity observed in experiments (Perez-Orive
et al., 2002). It allowed us to simulate the system in its
full size because of computational simplicity.

The LHIs were represented by a single neuron with
slow calcium dynamics only, in particular

dV (t)

dt
= − 1

C
(Il(t) + ICa(t) + IKCa(t) − ISynapse(t)),

(16)
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where

Il(t) = gl(V (t) + 65 mV)

ICa(t) = gCa k(t)3 l(t)
V (t)

1 − exp(2V (t)/kCa)
(17)

IKCa(t) = gKCa
ω(t)4

ω(t)4 + 0.54
(V (t) + 70 mV),

and gl = 0.4 µS, gCa = 2.5 µS, gKCa = 2.0 µS, and
again kCa ≈ 24.42 mV. This neuron receives input from
all PN through excitatory synapses with τsyn = 3.0 ms
and ksyn = 0.023 µS and projects to all KC with in-
hibitory synapses with τsyn = 4.5 ms and ksyn = 1.0 µS.
We chose this type of neuron model because the ac-
tion of the LHI neurons results in a with period 50 ms
rather slow periodic inhibition onto the KCs. The slow
dynamics of our inhibitory neuron reflects this slower
time scale.

Appendix B: Connectivity Analysis

In order to build a realistic model, the parameters of
the model neurons and synapses have to be adjusted
to a meaningful regime. Calculating the probabilities
and expectation values for the number of connections
to active neurons as well as the size and form of typi-
cal EPSPs in the system allows us to adjust the firing
threshold of the model KC and the synaptic strengths
of the PN-KC connections to yield a realistic activity
in the KC lattice. As the numbers of PNs and KCs are
fairly large the law of large numbers is in our favor and
the calculation of expectation values provides a very
good estimates for the degree of coincidence and the
resulting activity in the KC network for a given input.

The EPSP of Rall type synapses onto IF neurons
given a square pulse input of duration t0 is

E(t)

=




[∫ t

0
dt ′ 1

C gl El e
1
C (gl t ′+gsynu(t ′)) + El e

2
C gsynτsyn

]

× e− 1
C (gl t+gsynu(t)) t ≤ t0

[∫ t

t0

dt ′ 1
C gl El e

1
C (gl t ′+gsynv(t ′))

+E(t0) e
1
C (gl t0+gsynv(t0))

]

× e− 1
C (gl t+gsynv(t)) t > t0

(18)

where

u(t) = t(1 + et/τsyn ) + 2τsyne−t/τsyn (19)

v(t) = −(r (t0)(τsyn + t − t0) + s(t0)τsyn)e(t−t0)/τsyn

(20)

r (t) = 1 − e−t/τsyn (21)

s(t) = 1 − (t/τsyn + 1)e−t/τsyn (22)

From this it is easy to obtain the maximal value of
the EPSP. Solving for this maximum being equal to
the threshold Vthresh = −35 mV of the IF neurons,
one obtains a threshold θ for the total synaptic input
strength necessary to fire the neuron. Inserting the pa-
rameter values C = 1 µF, gl = 0.3 µS, El = −60 mV,
τsyn = 1 ms, t0 = 2.5 ms one obtains θ ≈ 0.49 µS.

The random connectivity between AL and KC im-
plemented in the model allows us to calculate the
probability distribution for the total synaptic input
strengths at the KCs. Let C = (ci j ), i = 1, . . . , nPN,
j = 1, . . . , nKC denote the connectivity matrix be-
tween the PNs and the KCs and let CA = (cA

i j ) denote
the connectivity matrix of active PNs to all KCs. The
probability P(

∑
i cA

i j = x) for a given KC to have x
connections to the n A active PNs is given by the bi-
nomial distribution bn A,p where p is the probability of
each individual PN to be connected to a given KC. To
have more than θ connections the probability is the sum
pθ = ∑n A

�θ� bn A,p. The number Nθ of KCs which have
more than θ thus is distributed with a binomial distribu-
tion bnKC,pθ

. These considerations give the expectation
values for Nθ shown in Fig. 6A.

Assuming identical synaptic strength for all
synapses, the number of excited KCs given a certain
input activity n A jumps discontinuously as a function
of the firing threshold θ . This does not allow a mean-
ingful adjustment of θ to the experimentally observed
activity level in the KCs. If one assumes a small jitter in
the synaptic strength however, the picture changes dra-
matically. Let the synaptic strength of the synapses be
given by (1). The sum of synaptic strengths of incom-
ing PN input to any KC is then distributed according
to

p̂θ = P

( n A∑
i=1

ĉA
i j > θ

)

=
n A∑

k=0

bn A,p(k)
(
1 − �σ

√
k(θ − kg)

)
(23)
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Figure 6. Expectation value for the number of KC with more than x
inputs from active PNs (A) and a stronger total input than θ assuming
synaptic strengths of PN-KC synapses according to (1) with ḡ = 0.16
and σ = 0.02 (B).

where �σ
√

k denotes the integrated Gaussian distribu-
tion with mean 0 and standard deviation σ

√
k. And

the number N̂θ of KCs having stronger input than θ is
again a binomial distribution with nKC and p̂θ . The
expectation value for N̂θ is shown in Fig. 6B. The
smooth variation of the expectation value of N̂θ with
varying θ now allows us to adjust θ (or equivalently ḡ)
to a value consistent with the experimentally observed
activity levels in the MB.

Aiming for an initial activity of ≈100 spikes and
choosing the jitter of synaptic strengths to be σ =
0.02 µS we can calculate the appropriate mean synaptic
strength ḡ by inverting above equation for the expecta-
tion value of N̂θ with the θ = 0.49 obtained from the
above consideration of the EPSPs. This yields ḡ ≈ 0.16
which has been used consistently in all simulations in
this work.

The reasoning for the time constants and strength
of the local axo-axonal connections in the KC lattice
is along the following lines. The time scale needs to
be long enough and the connections need to be strong
enough for a significant contribution of local connec-
tions to the ongoing activity of the KC ensemble ac-
cording to the mechanism described in Section 3. On
the other hand they have to stay below the propagating
wave limit to avoid over-excitation of the system.

From the explicit solution for the EPSPs (18) one
can estimate the propagating wave threshold assum-
ing a maximum of two simultaneously active neigh-
bors. Choosing 40 ms and 30 ms as example time scales
this allows synaptic strengths up to 4.7 µS and 3.5 µS
respectively. These values do not take into account
the ongoing input from the AL however. Therefore,
driven propagating waves already occur for consider-
ably smaller values.
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