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ABSTRACT

Traditional epitranscriptomics relies on capturing

a single RNA modification by antibody or chemi-

cal treatment, combined with short-read sequenc-

ing to identify its transcriptomic location. This ap-

proach is labor-intensive and may introduce experi-

mental artifacts. Direct sequencing of native RNA us-

ing Oxford Nanopore Technologies (ONT) can allow

for directly detecting the RNA base modifications,

although these modifications might appear as se-

quencing errors. The percent Error of Specific Bases

(%ESB) was higher for native RNA than unmodified

RNA, which enabled the detection of ribonucleotide

modification sites. Based on the %ESB differences,

we developed a bioinformatic tool, epitranscriptional

landscape inferring from glitches of ONT signals

(ELIGOS), that is based on various types of syn-

thetic modified RNA and applied to rRNA and mRNA.

ELIGOS is able to accurately predict known classes

of RNA methylation sites (AUC > 0.93) in rRNAs from

Escherichia coli, yeast, and human cells, using ei-

ther unmodified in vitro transcription RNA or a back-

ground error model, which mimics the systematic er-

ror of direct RNA sequencing as the reference. The

well-known DRACH/RRACH motif was localized and

identified, consistent with previous studies, using

differential analysis of ELIGOS to study the impact of

RNA m6A methyltransferase by comparing wild type

and knockouts in yeast and mouse cells. Lastly, the

DRACH motif could also be identified in the mRNA

of three human cell lines. The mRNA modification

identified by ELIGOS is at the level of individual base

resolution. In summary, we have developed a bioin-

formatic software package to uncover native RNA

modifications.

INTRODUCTION

The transcriptome is the collection of all RNA molecules
present in a given cell that can be determined by high-
throughput techniques, such as microarray analysis or
RNA sequencing (RNA-seq) methods (1). Using next-
generation sequencing (NGS) techniques, RNA-seq has
been replacing microarray analysis, because the former can
detect novel or unknown transcripts. Further, NGS enables
transcriptome analysis with a higher dynamic range of ex-
pression levels than microarrays (2). With improved sample
preparation methods and reduced sequencing costs, RNA-
seq by NGS has become the method of choice to analyze
transcriptomes.
The length of individual sequence reads generated with

most NGS platforms ranges from 35 nucleotides (nt) to
about 500 nt, so that single reads rarely cover a complete
transcript, which, on average, is approximately a thousand
nucleotides in bacteria, and can be much longer in eukary-
otes. Accurate alignment and assembly of such short se-
quences depend on the availability of a reference genome;
the identi�cation of spliced isoforms, edited messenger
RNA (mRNA), or gene-fusion transcripts remains a chal-
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lenge (3). Further, methods using reverse transcription (RT)
of RNA and polymerase chain reaction (PCR) ampli�ca-
tionmay introduce biases and artifacts (4). These shortcom-
ings can be overcome by directly sequencing native RNA
molecules using the Oxford Nanopore Technologies (ONT)
platform (Oxford, UK). Direct RNA sequencing (dRNA-
seq) without ampli�cation can generate long reads, typically
covering the full length of a transcript (5). The method can
accurately quantify transcripts to analyze differential gene
expression with a dynamic range comparable to traditional
RNA-seq derived from short-read sequencing, while it en-
ables accurate identi�cation of the structure and boundaries
of transcripts, including spliced products and polyadenyla-
tion (polyA) length (6,7).

An additional advantage of dRNA-seq is the detection of
transcriptional modi�cations inferred from the current sig-
nal as theRNAmolecule passes a nanopore:modi�edRNA
molecules cause a characteristic temporary current block-
ade, enabling simultaneous detection of diverse modi�ca-
tions such as 5-methylcytosine (m5C) or N6-methyladenine
(m6A) (5,7–9). Currently, there are >170 different types
of RNA modi�cations that have been described within
the prokaryote and eukaryote kingdoms and are collected
in various databases (10–12). High-throughput sequencing
coupled with methods to speci�cally enrich RNA modi�-
cation products makes it possible to study the epigenetics
of RNA, or its ‘epitranscriptome’ (13,14). However, cur-
rent methods are labor-intensive and may introduce ex-
perimental artifacts or biased results and are accompanied
with a relatively high false-positive rate (15). Moreover, the
transcriptome-wide approach can identify only a few of the
over 170 known types of RNA modi�cations, as they de-
pend on speci�c antibodies or chemical treatments (16).
Alternatively, many RNA modi�cation can be quanti�ed
simultaneously and accurately by liquid chromatography–
tandem mass spectrometry (LC–MS/MS) at the nucleotide
level, but this unfortunately forfeits the position of themod-
i�cation that is essential for comprehensibly describing the
epitranscriptome (16).

Translation of the obtained electrical current signals
into speci�c bases currently relies on either trained hidden
Markov models (HMMs) or arti�cial neural network mod-
els that produce an accuracy of individual DNA reads of
∼90%, on average (17). We typically experience a read ac-
curacy of ∼88% in RNA (6). The most commonly encoun-
tered errors are related to some type of base modi�cation,
presence of homopolymers, nucleic acid damage, or struc-
tural features of the nucleic acid molecules. Therefore, dis-
section and analysis of sequencing errors can potentially un-
cover RNAmodi�cations and other structural information
from native RNA sequences.
To more accurately capture this information, we de-

veloped the epitranscriptional landscape inferring from
glitches of ONT signals (ELIGOS) software tool that pre-
dicts the presence of modi�ed bases from a comparison
of background error data derived from in vitro transcrip-
tion (IVT) and RT sequence data. The output of the tool
was veri�ed with synthetic IVT by incorporation of modi-
�ed bases commonly found in mRNA and with rRNA se-
quences from Saccharomyces cerevisiae, E. coli, and cells
from a human cell line. After this veri�cation, we demon-

strate the use of ELIGOS to investigate the epitranscrip-
tional landscape in yeast, mouse, and human cells.

MATERIALS AND METHODS

Sequencing ofDNAandRNA templates on anONTplatform

All sequencing of DNA and RNA templates described here
was performed onMinIONMk1B �ow cells (ONT). For di-
rect complementary DNA (dcDNA) sequencing, a library
was produced from mRNA and polyA-tailed rRNA (de-
scribed below) using the SQK-DCS108 kit (ONT), which
includes an RT step, but no ampli�cation step, to give
double-strand DNA (dsDNA), after which the adaptor
containing the motor protein was attached by ligation. The
library was loaded directly onto a �ow cell for sequenc-
ing. Preparation of the library for dRNA-seq was done
with the SQK-RNA002 kit (ONT) and only required an
RNA stabilization step by the formation of DNA–RNA
hybrids through RT. After this, the motor protein was at-
tached speci�cally to the RNA strands. Each library was
loaded onto a �ow cell for a sequencing run lasting 48 h.
Both of the direct sequencing runs were performed on a sin-
gle R9.4.1/FLO-MIN106 (ONT) �ow cell.

The raw data generated by MinKNOW software (ver-
sion 1.7.14; ONT) were converted from .fast5 �les to base-
called .fastq �les using the local-based caller Guppy ver-
sion 2.3.4 software (ONT). Only reads greater than 200
bases were considered for further analysis. The reads were
aligned to reference sequences usingMinimap2 version 2.17
software (18) to generate a BAM �le. Each BAM �le, to-
gether with reference sequences and transcript annotation
�les in BED12 format, was used to retrieve substitutions,
insertions, and deletions of individual positions through
the pysam module version 0.13 (https://github.com/pysam-
developers/pysam).

Comparative error analysis and development of ELIGOS
software

The ELIGOS software compares the error pro�le between
native RNA sequences obtained with dRNA-seq and a
reference, which can be IVT RNA, cDNA sequences, or
the RNA background error model (rBEM). Moreover,
ELIGOS can be used to compare native RNA sequences
of different conditions directly to identify differential epi-
transcriptomes.
First, rBEMs were constructed to capture the systematic

noise of dRNA-seq using nonmodi�ed IVT sequences (hu-
man and synthetic, as described below). The Error of Spe-
ci�c Bases (ESB) count is de�ned as the frequency of the
sum of substitutions, insertions, and deletions of individual
positions, over the total mapped reads obtained from read
alignment results based on the reference sequence. These
were obtained for all possible sequence lengths (i.e. kmers)
of 5 nt (1,024 pentamer bins, corresponding to the num-
ber of ribonucleotides that dwell in the nanopore during se-
quencing (19)) and calculated over the reference sequence
for an individual 5mer bin by a sliding window of one ri-
bonucleotide. We aggregated the ESB information at indi-
vidual positions (l, left position; c, center or middle posi-
tion; r, right position), where l1 = −1 from c, l2 = −2 from
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c, r1 = +1 from c, and r2 = +2 from c for all pentamer bins
as long as they included at least 50 mapped reads, to pro-
duce a dataset called rBEM k5. A different error pro�le was
observed that was characteristic for reads derived from ho-
mopolymeric regions when compared with rBEM k5. We
then extended the rBEM k5 on the 3′ end with two more
nucleotides, r3 = +3 from c and r4 = +4 from c, to produce
dataset rBEM k5+2.
The difference of the percent ESB (%ESB) between native

RNA and corresponding dcDNA, nonmodi�ed IVT refer-
ence sequences, or rBEMs were evaluated using Fisher’s ex-
act test for a single 2 × 2 contingency table of indepen-
dence to produce odds ratios and P-values. The statisti-
cal P-values were further adjusted for multiple testing us-
ing the Benjamini–Hogberg method. To capture the sig-
nal alteration characteristics that can be present on one
ribonucleotide and/or its neighboring position, we per-
formed statistical tests for three scenarios: (i) data for po-
sition c only were compared; (ii) data were extended with
one nucleotide on both sides of c by aggregated ESB of
positions l1, c, and r1 and (iii) data were extended with
two nucleotides on both sides by aggregated ESB of posi-
tions l2, l1, c, r1 and r2. To capture the variations of er-
ror pattern within a 5mer at a speci�c position, the max-
imum value of odds ratio derived from the three scenar-
ios will be reported as a recommended result. The statis-
tical tests were performed by R suite software through the
rpy2 python module. ELIGOS is written in Python 3 and
is available at https://gitlab.com/piroonj/eligos2 and https:
//hub.docker.com/repository/docker/piroonj/eligos2.
The software was applied to the synthetic modi-

�ed IVT RNA, rRNA, and mRNA sequences ob-
tained with the materials described in the next sec-
tion. For rRNA investigations, the .fastq �les were
aligned onto a reference genome sequence (for S. cere-
visiae, genes NR 132209.1, NR 132215.1, NR 132213.1,
and NR 132211.1 were combined; for E. coli, posi-
tions 232785–23568, 1046691–1048228 and 232576–232686
from NZ KK583188.1 were combined; and for H. sapi-
ens, genes NR 023363.1, NR 003287.4, NR 146119.1 and
NR 145819.1 were combined) using minimap2 software
version 2.17 (18) to obtain BAM �les of the sequences.
For mRNA investigations, we performed an analysis of

two published data sets of the human cell line CEPH1463
(7) and yeast (20) with our generated experimental datasets
of mouse embryonic stem cells (mESCs) and human lung
cells (H460, small airway epithelial cells [SAEC]) as de-
scribed below. The analysis was performed using the refer-
ence genomes S288c for yeast, mm9 for mouse, and hg38
for human. All data generated in this study were deposited
in the Sequence Read Archives (SRA) database (acces-
sion number SRP166020). Some interesting regions were
explored at the signal-level through the re-squiggle signal
approach using Tombo software version 1.5 (ONT; https:
//github.com/nanoporetech/tombo.git).

De novo motif discovery. The sequences of six bases sur-
rounding the considered differential %ESB identi�ed by
ELIGOS were extracted based on the reference sequence
and were analyzed using BaMM software (21) to identify

conserved motifs and scan the locations of the identi�ed
motif using default parameters.

Genomic location of positions and transcripts comparison.
The relative location of the considered positions with ref-
erence to the gene location was compared using bedtools
version 2.25 (22) and the GenomicRanges package (23).
The results were summarized in Venn diagrams using ChIP-
peakAnno (24) or upset plots using UpsetR (25).

Standardized coordinate plot of identi�ed motifs. We used
Guitar package (26) for standardized coordinate plots to
evaluate the key landmark of the identi�ed motifs on the
structure of the transcript. The bed �le of the identi�ed po-
sition of the individual motif and dRNA-seq alignment was
used as the input to calculate the density of the population
along with the structure of the transcript. The density of the
motif was then normalized with dRNA-seq alignment den-
sity. The normalized density was plotted along with stan-
dardized structure of the transcript in R suite software.

Statistical analysis. The performance of ELIGOS predic-
tion based on synthetic IVTs and rRNAs was evaluated by
Receiver Operating Characteristic (ROC) curve analysis of
odd ratios using plotROCRpackage (27).Wilcoxon signed-
rank sum tests were used to test the difference of means
between two considered populations. All statistical analy-
sis was performed in R suite software.

IVTs used for sequencing

IVT luciferase gene with 5-methoxyuridine incorporated.
The transcript of the luciferase gene, containing standard
ribonucleotides with and without the incorporation of 5-
methoxyuridine (5moU), was obtained using CleanCap
Fire�y Luciferase mRNA (TriLink Biotechnologies, San
Diego, CA, USA). The IVT mRNA containing a poly-A
tail was puri�ed using AMPureXP beads (Beckman Coul-
ter, Brea, CA, USA) and eluted using nuclease-free water.

Synthetic DNA templates and IVT with the incorpora-
tion of modi�ed nucleotides. For a systematic analysis,
we constructed synthetic double-stranded DNA templates
through gBlocks Gene Fragments (Integrated DNA Tech-
nologies [IDT], Coralville, IA, USA) that were targeted
to contain a particular modi�ed base after IVT within
a de�ned pentamer, as �ve ribonucleotides dwell in the
nanopore during transit (19). All possible pentamers (45

or 1024 sequences) of the individual bases A, T, C and G
were investigated. Pentamers targeted to contain a modi-
�ed A in their IVT were �anked by two pentamers that con-
tained no A but were otherwise designed randomly with re-
striction of sequence complexity (e.g. BBBBB, or B5) un-
der gBlocks Gene Fragment criteria. Thus, for a template
targeted to contain one to �ve modi�ed A nucleotides in
their transcript, 15mers were designed as B5(NNNNN con-
taining at least one A)B5. Likewise, pentamers designed to
contain modi�ed U were �anked by V5, those with modi-
�ed G by H5, and those with modi�ed C were �anked by
D5. The 1024 constructs contained a standard T7 promoter

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
9
/2

/e
7
/5

8
7
6
2
8
4
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

https://gitlab.com/piroonj/eligos2
https://hub.docker.com/repository/docker/piroonj/eligos2
https://github.com/nanoporetech/tombo.git


e7 Nucleic Acids Research, 2021, Vol. 49, No. 2 PAGE 4 OF 13

sequence (5′-TAATACGACTCACTATAG-3′) in the sense
strand. Details of the template sequences are provided in
Supplementary Information.
IVT was performed with these templates using the Am-

pliScribe T7-Flash Transcription Kit (Lucigen Middleton,
WI, USA). For the production of transcripts contain-
ing modi�ed bases, the individual nucleotide triphosphate
was completely replaced by a modi�ed version, for which
m6A,N1-methyladenine (m1A), 5-methylcytosine (m5C), 5-
hydroxymethylcytidine (hm5C), 5-formylcytidine (f5C), and
pseudouridine (psU) were used (TriLink Biotechnologies,
San Diego, CA, USA), as well as 7-methylguanosine (m7G;
Sigma-Aldrich, St. Louis,MO,USA) and inosine (Ino; IBA
Lifesciences, Göttingen, Germany). Following the IVT re-
action, the RNA was puri�ed with RNeasy Mini kit (Qia-
gen, Germantown, MD, USA). A poly(A) tail was added
using E. coli Poly(A) (New England Biolabs, Ipswich, MA,
USA) following a published protocol (28) and then used for
library preparation.

IVT of human mRNA. Approximately 5 �g of puri�ed to-
tal RNA from a human papillary thyroid cancer cell line,
KTC-1, was depleted for rRNAs using QIAseq FastSelect
RNA Removal Kit (Qiagen, Germantown, MD, USA). To
produce sense IVT RNA from mRNA, we followed the ter-
minal continuation method developed by Che et al. (29).
The depletedRNAwasmixedwith a polyT (20mers) primer
and a primer containing a strong T7 promoter (30) (5′-GCC
GGG AAT TTA ATA CGA CTC ACT ATA GCG CTG
TTGGTGTGCT rGrGrG-3′). cDNAwas generated using
RT, and terminal continuationwas performedwithMaxima
Reverse Transcriptase (Thermo Fisher Scienti�c, Waltham,
MA, USA). The RNA was digested using RNAase Cock-
tail Enzyme Mix (Thermo Fisher Scienti�c), after which
double-strand DNA (dsDNA) synthesis was performed us-
ing Long Amp Taq Master Mix (New England Biolabs).
This dsDNA was used as the template for IVT, performed
as described abovewith canonical (nonmodi�ed) nucleoside
triphosphate and the resulting IVT RNA was puri�ed as
above.

Culture condition and RNA extraction for direct rRNA se-
quencing

RNA was extracted from yeast cells, E. coli cells, and from
the humanKTC-1 cells to directly sequence the rRNAs. For
yeast, the S. cerevisiae strain S288C was grown overnight
at 30◦C in 15 ml yeast extract-peptone-dextrose (YPD)
medium containing 10 g/l yeast extract, 20 g/l peptone,
and 20 g/l glucose. RNA was extracted using the Zymo-
BIOMICS Quick-RNA Fungal/Bacterial kit (Zymo Re-
search, Irvine, CA, USA). For E. coli strain ATCC 11775
was cultured overnight at 37◦C in 25 ml of Luria broth
(LB), and following centrifugation, the cell pellet was resus-
pended in 250 �l water, to which 750 �l of TRIzol Reagent
(Life Technologies, Carlsbad, CA, USA) was added. Fol-
lowing incubation for 5 min at room temperature, 200 �l
of chloroform was added. The liquid phases were mixed by
inverting the tube 15 times and then incubated for 10 min.
Following centrifugation at 12,000× g for 5 minutes at 4◦C,
400 �l of the aqueous phase was removed, and the RNA it

contained was cleaned using the Direct-zol kit (Zymo Re-
search).
For the human cell line, KTC-1 was grown to 85×90%

con�uence in 10 cm dishes in Roswell Park Memorial In-
stitute (RPMI) media supplemented with 10% fetal bovine
serum (FBS; R & D Systems, Minneapolis, MN, USA)
using standard techniques. RNA isolation was performed
with the Direct-zol RNA mini prep Kit (Zymo Research).
Total RNA was eluted in 20 �l RNase/DNase free water
and stored at –80◦C. A poly(A) tail was added as described
above. As most RNA in these samples represented rRNA,
the template was completely sequenced to obtain rRNA
reads.

Culture conditions and RNA extraction for direct mRNA se-
quencing

Yeast heat shock. S. cerevisiae strain S288C was grown on
YPD (10 g/l yeast extract, 20 g/l peptone, 10 g/l glucose)
for 12 h at 30◦C. One aliquot of the cultured yeast cells was
subjected to heat shock (45◦C for 1 h) while the reference
was kept at 30◦C for an hour as a control. After the treat-
ment, the cells were collected and immediately processed.
RNA was extracted using the RNeasy Mini kit.

Mouse cells. Mettl3 knockout and control mESCs were
provided by Dr Howard Y. Chang (Stanford University,
Stanford, CA) (31).Mettl14 knockout andwildtypemESCs
were provided by Dr Yawei Gao (Tongji University, Shang-
hai, China). Cells were maintained in DMEM (Invitro-
gen, Carlsbad, CA, USA) supplemented with 15% FBS,
1% nucleosides (100×), 1 mM L-glutamine, 1% nonessen-
tial amino acids, 0.1 mM 2-mercaptoethanol, 1000 U/ml
Leukemia Inhibitory Factor (LIF), 3�M CHIR99021 and
1�MPD0325901 in 37◦C and 5%CO2. RNAwas extracted
on the collected cells using the RNeasy Mini kit.

Lung cell lines and culture. Human lung cancer cells H460
(ATCC, HTB-177) were cultured in RPMI 1640 medium
(Corning Inc., Corning, NY, USA) supplemented with 10%
FBS, 100 U/ml penicillin and 100 �g/ml streptomycin
(Corning) and subcultured twice per week (32). Human
SAEC (CC-2547; Lonza Group, Basel, Switzerland) were
cultured in SAGM Small Airway Epithelial Cell Growth
Medium BulletKit (Lonza Group) and subcultured ev-
ery 5–7 days following the manufacture’s guidelines; the
medium was refreshed with pre-equilibrated medium ev-
ery 2 days, and these cells underwent up to �ve subcul-
tures. Both cell lines were maintained as monolayer cul-
ture at 37◦C and 5% CO2 in a humidi�ed incubator. The
cells were grown to∼70% con�uence and then dislodged us-
ing Trypsin/EDTA (Corning) and TrypsinNeutralizing So-
lution (Thermo Fisher Scienti�c), centrifuged and washed
with phosphate buffer saline, and cell pellets were collected.
RNA was extracted from the collected cells using RNeasy
Mini kit.

RESULTS

Distinguishing modi�ed RNA bases from sequencing errors

The nanopore sequencing signal can be affected by the
3D structures of an RNA template and by the presence of
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modi�ed ribonucleotides; both of these can lead to system-
atic, position-speci�c sequencing errors, in addition to other
stochastic errors in base calling. Because most of modi�ed
bases are absent when RNA is converted into cDNA, we
anticipated that an in-depth analysis of sequencing errors in
RNA and its correspondingmodi�cation-free cDNAmight
be allowed to differentiate between the presence of modi-
�ed bases and stochastic errors. In a pilot experiment, we
mimicked posttranscriptional modi�cations of RNA by se-
quencing IVT of a luciferase gene that had been produced
with 5moU. Sequencing signals obtained with this modi-
�ed mRNA (dRNAO) were compared to that of the cor-
responding cDNA by direct sequencing (dcDNAO) and to
RNA produced with unmodi�ed uridine by direct sequenc-
ing (dRNAU).
Figure 1A shows that incorporation of 5moU into the

RNA resulted in reads with signi�cantly higher %ESB than
dcDNAO (P < e−60) or dRNAU (P < 1e−100). Notably,
for values up to approximately 25%, the distributions of
%ESB for both dRNAU and dcDNAO were overlapping
and higher than those for dRNAO, but for values above
25%, dRNAO reported signi�cantly higher %ESB (Figure
1A).

To illustrate the effect on recorded signals when modi-
�ed bases are present, in Figure 1B the re-squiggled signals
are compared for a small region (position 989–1009) of the
luciferase gene containing four U bases in three positions.
The sequence signals obtained with dcDNAO (Figure 1B,
red in top panel) or from dRNAU (Figure 1B, blue in bot-
tom panel) matched those of the theoretical canonical sig-
nal model for DNA. In contrast, the re-squiggled signals
of dRNAO containing modi�ed U (Figure 1B, cyan in bot-
tom panel) were altered compared to the canonical RNA
signals. Thus, the presence of 5moU bases in the RNA tem-
platemost likely caused some of the observed perturbations,
while a RT step to produce cDNA removed this effect. The
5moU sites and the bases in their vicinity produced dramat-
ically perturbed signals in dRNAO, as is clearly visible for a
C at position 997 (Figure 1B, bottom panel). This has a di-
rect impact on the accuracy of base calling. Note that base
calling is typically performed on a window of pentamers
(19) so that any effect due to the presence of a modi�ed base
can affect the signal of bases in its direct vicinity.
The positions for which %ESB exceeded the cutpoint

of 25% were recorded for the complete dRNAO template
and for the dRNAU and dcDNAO templates (Supplemen-
tary Figure S1). High %ESB values were more frequently
obtained with the dRNAO template than with either the
dRNAU or the dcDNAO. Further, in positions where 5moU
was present, a higher %ESB was frequently produced. We
also recorded greater than 25% ESB values for some po-
sitions where other bases were present, while not all posi-
tions with 5moU increased the %ESB in the dRNAO reads.
Some of the observed errors derived from translocation
through the nanopore and ionic current alterations caused
a glitch in the corresponding output. In a number of cases,
a high %ESB coincided with the presence of homopoly-
meric stretches. Although these signals are not easily distin-
guishable from base modi�cations signals, homopolymeric
stretches can be readily identi�ed from the sequence. Fur-
ther, elevated %ESB values observed in both dRNAU and

dcDNAO are more likely to be caused by structural features
irrespective of the presence of modi�ed bases as systematic
background noises derived from the base-calling algorithm
that can be modeled.
Next, we compared the read mean quality score, which

re�ected the sequencing error derived from incorrect inter-
pretation of base calling of IVT RNAs with modi�ed bases
versus corresponding unmodi�ed IVT RNA derived from
synthetically constructed DNA templates (see Methods). A
similar sequence dataset containing m6A called Curlcake,
from a previous study (9), was also included. Apart from
5moUandm6A,we investigated othermodi�ed ribonucleo-
sides known to be present inmRNA (33–35) includingm1A,
m5C, hm5C, f5C, m7G, Ino and psU. The presence of each
of these modi�ed bases signi�cantly reduced the read mean
quality score (P < 1e−100) (Figure 1C).
To systematically capture the background noise related

to the presence of a given pentamer, we constructed rBEMs
of all pentamers (rBEM k5 and an extension of two nu-
cleotides at the 3′-end (rBEM k5+2) to capture the impact
of longer homopolymers, from nonmodi�ed IVT RNA se-
quences derived from the human transcriptome. The distri-
bution of the obtained %ESB values of rBEMs is shown
in the graph of Figure 1D and the distribution of all in-
dividual kmer occurrences is provided in Supplementary
Figure S2. In total, rBEM k5 consists of 1,024 pentamers
and rBEM k5+2 consists of 16,083 heptamers, of which 301
heptamers were not found in the human transcriptome. The
histogram illustrates a variation of the background error
among individual kmers that appear to re�ect sequence-
context–dependent behavior. Although a similar distribu-
tion of background errors was obtained with both rBEMs,
the rBEM k5+2 captured slightly more background er-
rors due to the longer sequence length. As expected, ho-
mopolymer stretches of G5 and C5 produced the high-
est background error for rBEM k5. The impact of back-
ground errors due to the homopolymers is even stronger in
rBEM k5+2. The constructed rBEMs were used as refer-
ences for the identi�cation of RNA modi�cations on the
native RNA sequences using the developed ELIGOS soft-
ware.

Sequencing errors of native RNA can predict common RNA
modi�cations but not m5C

We next evaluated the RNA modi�cation prediction per-
formance of ELIGOS by using rBEMs as the reference and
the modi�ed IVT RNA datasets that contained nine types
of base modi�cations (m6A, m1A, 5moU, psU, m7G, Ino,
hm5C, f5C and m5C). The results were compared to the op-
timal reference of nonmodi�ed IVTRNA, which represents
the best reference but may not always be available, and to
the cDNA (Figure 2A–L). We used the odds ratios, which
represent the level of error of native sequence over the un-
modi�ed RNA or rBEMs, as the predictor of sites with po-
tential modi�cations. Because the presence of a methylated
base can in�uence the differential %ESB of adjacent posi-
tions as seen in Figure 1B, �anking bases should also be
considered. Thus, we evaluated the performance of RNA
modi�cation predictions by ELIGOS by statistical tests for
three scenarios: (i) the effect was only calculated at the po-
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Figure 1. Characteristics of direct sequencing of IVT RNA. (A) The distribution of the %ESB of luciferase IVT containing 5moU (dRNAO) differs
signi�cantly from that of cDNA derived from this (dcDNAO) and from direct sequencing of unmodi�ed transcript (dRNAU), with ** P < e−60, ***P <

e−100 (insert). The black arrow indicates at which frequency of %ESB higher values are found in dRNAO than in the other two templates. The gray area to
the left of the plot represents the histogram of the �rst bin around zero. (B) Re-squiggled signal plots of a selected region of the luciferase gene obtained
with dcDNAO template (top), and overlaid signals obtained with dRNAU (blue) and dRNAO (cyan) (bottom). The vertical, bell-shaped curves at each
base position represent the distribution of the standard canonical model signals of base calling for either template. (C) Violin-boxplots of mean read quality
scores of the IVT RNAs derived from synthetical constructs of DNA templates from which RNAs were produced with various modi�ed ribonucleotides.
Curlcake refers to publish data from Liu et. al. (9). A signi�cantly lower quality of modi�ed IVT RNA (cyan) was obtained compared with nonmodi�ed
IVT RNA (blue) and cDNA (red) with *** P < e−100. (D) Characteristic of RNA rBEMs obtained with pentamers (k5) and heptamers (K5+2). The
density plot shows marginal rug on the bottom of maximum %ESB values of individual kmers. Boxplots include %ESB across positions producing the
highest maximum %ESB of rBEM k5 (green) and rBEM k5+2 (magenta). These were all related to homopolymers of C or G. (IVT, in vitro transcription;
%ESB, percentage Error of Speci�c Base; dRNAO, modi�ed mRNA; dcDNAO, corresponding cDNA by direct sequencing; dRNAU, RNA produced with
unmodi�ed uridine by direct sequencing; rBEMs, RNA background error models).

sition where the modi�cation was present; (ii) the effect
was extended to one position on both sides of the modi�ed
base position; (iii) the effect was extended with two posi-
tions on both sides of the modi�ed base position. Based on
odd ratio values presented in Supplementary Figure S3, we
found that these different scenarios produced different pre-
diction performances, depending on the type of RNAmod-
i�cations that is present. For example, the third scenario
gave the best prediction performance on the m7G dataset,
but the �rst scenario gave the best performance on the Ino
dataset. This indicates that, as expected, the sequence con-
text and the type of modi�cation affects the signal alter-
ation of modi�ed and adjacent positions. In general (with
the exception m5C), using maximum odd ratios among the

three scenarios for individual positions gave the best consis-
tency performance for predictingRNAmodi�cations (AUC
= 0.73–0.93). Both rBEMs resulted in a similar prediction
performance in the synthetic datasets, with comparable re-
sults, when using nonmodi�ed IVT RNA as the reference
sequence. Interestingly, the prediction performance of m5C
was poor, even though we observed a similar trend of low
read mean quality scores as with other RNAmodi�cations.
This indicated that signal alteration by m5C is not strong
enough to alter the Guppy base caller outcome. This might
be due to m5C being such a common modi�cation that
Guppy software does not distinguish between C and m5C
and call both as C. Unfortunately, we found that ELIGOS
cannot reliably predict the presence of m5C at this time.
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Figure 2. ROC curve plot with AUC values representing the prediction performance of RNAmodi�cation using ELIGOS in synthetic modi�ed IVT RNA
datasets as illustrated in Figure 1C and rRNA dataset of the three model organisms. (A) published m6A Curlcake dataset. The dashed lines indicate ROC
curves when considering the DARCH motif (9). (B) m6A. (C) m1A. (D) 5moU. (E) psU. (F) m7G. (G) hm5C. (H) m5C. (I) f5C. (J) m5C. (K) rRNA of
human cells (HS). (L) rRNA of yeast (SC) and (M) rRNA of E. coli (EC). Blue, red, green and magenta lines represent the prediction performance when
use nonmodi�ed IVT RNA, cDNA, rBEM k5 and rBEM k5+2 as the reference, respectively. The selected best performance for each dataset was used for
the plots. The details of all prediction scenarios are provided in Supplementary Figure S3. (ROC, Receiver Operating Characteristic; AUC, Area Under
Curve; IVT, in vitro transcription; (as B to M are explained above); rBEMs, RNA background error models)

Next, we investigated ELIGOS prediction performance for
a known biological context, the DRACH (D = G/A/U, R
= G/A, H = A/U/ C) motif-containing m6A in the Curl-
cake dataset (9). This resulted in excellent prediction accu-
racy (AUC > 0.97; Figure 2A and Supplementary Figure
S3B, D) that was comparable with the results reported by
Liu et al. (9).

Accurate prediction of RNAmodi�cation on rRNAmolecules
using ELIGOS

We continued our investigations with naturally modi�ed
RNAs, for which the rRNA from E. coli, yeast, and human
cell lines were analyzed. TheseRNAmolecules are naturally
modi�ed but contain much lower fractions of modi�ed ri-
bonucleotides than the IVT RNA molecules. We observed
an increase of %ESB of the native rRNAs sequences due
to modi�cation when compared with corresponding cDNA
sequences (Supplementary Figure S4). The results of the
ROC curve analysis on the rRNAs are shown in Figure 2K–
M. The performance of the predictions was benchmarked
against experimentally validated RNAmodi�cations on the
bases and sugar moieties of the rRNAs, as was recently de-
scribed by Taoka et al. (36). For the rRNA of human cell
lines (Figure 2I), it is obvious that using rBEMs derived
from IVT RNA produced from the human transcriptome
as the reference produced comparable results to the refer-

ence of nonmodi�ed IVT RNA (AUC > 0.91), while satis-
factory results were obtained for the other two organisms,
indicating the robustness of themethod. The prediction per-
formance using cDNA produced slightly lower AUC val-
ues than rBEMs for the three rRNA datasets, possibly due
to the differences in background derived from the sequenc-
ing chemistry of a DNA molecule that has an opposite ori-
entation (5′ to 3′ for dcDNA-seq and 3′ to 5′ for dRNA-
seq). Moreover, DNA passes the pore at a higher speed
(450 nt/s for dcDNA-seq) than RNA (70 nt/s for dRNA-
seq) during sequencing. The prediction performance for the
rRNAs of rBEM k5+2 was slightly better than rBEM k5
because the �rst better captures the background error de-
rived from long homopolymer sequences (Supplementary
Figure S5).
In summary, we were able to capture most of the com-

mon RNA modi�cations found in nature in various RNA
sequencing datasets, including sequences generated with
synthetic IVT RNA and rRNA of three species using
ELIGOS. This software can accurately detect a variety of
modi�ed ribonucleotides simultaneously in sequences ob-
tained from native RNA, with the exception of m5C. No-
tably, as rBEM k5+2 produced results that were compara-
ble with nonmodi�ed IVT RNA and better than rBEM k5,
we conclude that using rBEM k5+2 data as a reference can
give satisfactory results without the need to perform addi-
tion IVT experiments.
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Uncovering known RRACH motif from m6A in yeast during
meiosis state in vivo

Next, we demonstrated the capability of ELIGOS by
performing epitranscriptional landscapes analysis in vivo
of the well-study RNA modi�cation m6A. We applied
ELIGOS on the published dataset (9) of the yeast reference
and Δime4 knockout, producing m6A free transcripts un-
der meiosis state (37). By this experimental setup, we can
identify differential m6A by direct comparison of the na-
tive transcript sequences between the reference strain to the
knockout strain. As previously reported, the median level
of m6A modi�cations of the reference strain is around 20%
(38); therefore, an odds ratio of 1.2 with P < 0.001 used as
the cut-off for identi�cation of differential m6A resulted in
1,513 locations, consisting of 736 sites for A, 249 sites for
C, 235 sites for G, and 293 sites for U. We then extracted
6 bases surrounding the identi�ed A sites, considering the
differential m6A sites and used as the input to BaMM soft-
ware (21) to identify the consensus motif. With the unbi-
ased procedure, we uncovered an m6A consensus sequence,
which is almost identical to the RRACH motif, previously
reported for yeast, using the m6A-seq method (WRG-m6A-
CAWTW) (37) (Figure 3A). We scanned the consensus mo-
tif (Figure 3A) back to the extracted sequences by BaMM
software to identify high con�dence m6A methylated posi-
tions that resulted in 392 positions that strongly bias the 3′

end of the transcripts (Figure 3B), which is in agreement
with a previous report (37).
To evaluate whether the identi�ed epitranscriptional

regulation of m6A position is meiosis state-speci�c, we per-
formed a comparison of the high con�dence m6A position
with the transcriptome data from different growth condi-
tions such as carbon limited minimal media of glucose (glu)
(6), ethanol (eth) (6), rich media (ypd), and rich media with
heat shock (hs) treatment. The results derived from
ELIGOS analysis of those transcriptomes using
rBEM k5+2 as the reference was calculated at the
considered position (scenario 1); this gave a good predic-
tion performance on m6A modi�cations (Supplementary
Figure S3 panel E) to avoid the impact of other RNA
modi�cations nearby. The same cut-off of odds ratio of
1.2 with P < 0.001 was used for the comparison. The
upset plot (Figure 3C) shows the dynamic of m6A during
various growth phases and growth conditions, indicating
meiosis-dependent regulation of m6A as reported previ-
ously (39). We detected approximately 20 positions of m6A
for carbon starvation growth conditions (glu, eth), likely
due to the common m6A regulation in the meiosis and
starvation pathway (39). The selected examples of growth
condition-dependent m6A regulated positions (Figure
3D) on transcripts of TED1 for meiosis-dependent, GPR1
for common between meiosis and starvation on glucose-
limited growth, and CCL1 for common among meiosis and
the other growth conditions, increased sequencing errors
due to the presence of m6A.

Uncovering known DRACH-like motif from m6A in mESCs
in vivo

We further demonstrated the capability of ELIGOS in
mESCs, which have m6A methyltransferase complex of

METTL3 and METTL14 as the key cellular machinery for
m6A regulation. We performed native RNA sequencing on
theMettl13 andMettl14 knockout mESCs and their refer-
ence and used the data to identify differential RNA methy-
lation sites among them by comparing the reference cells
with the knockout cells similarly to the yeast dataset. When
comparing Metl13 knockout with the reference, and using
the same statistical cut-off as the yeast dataset, we identi-
�ed 10,569 differential sites consisting of 43% of sites for A,
18% for C, 18% for G, and 22% sites for U. For theMettl14
knockout dataset, we identi�ed 3,110 differential sites con-
sisting of 52% of sites for A, 15% for C, 12% for G and
21% sites for U base. We then extracted 6 bases surround-
ing the identi�ed A sites from both datasets and used it as
the input to BaMM discovery software to identify the con-
sensus motif. With the unbiased procedure, we uncovered
consensus motifs that were similar to the known canonical
m6AmethylationDRACHmotif (40,41), and found in both
of Mettl13 (Figure 3E) and Mettl14 (Figure 3F) knock-
out dataset. We next extracted and analyzed the position of
the identi�ed consensus motifs along with each transcript
presented in a standardized coordinate plot (Figure 3G).
This identi�ed a clear preference for the DRACH-like mo-
tif to be present at the gene-bordering �ank of the 3′ un-
translated region (UTR), which agrees with previous stud-
ies (40,42–44).We compared the identi�ed consensusmotif-
containing position between the two datasets (1,863 for the
Mettl13 dataset and 975 for theMettl14 dataset) and found
a high overlap among them as illustrated in the Venn’s di-
agram in Figure 3H. This indicates the synergic activity of
them6Amethyltransferase function ofMettl13 andMettl14
on mRNA as reported previously (45,46). The selected ex-
amples of positions in the transcripts of Pabpn1, Srsf2 and
Pdia4 represent a common m6A position and speci�c posi-
tions forMettl13 andMettl14 datasets (Figure 3I).

Epitranscriptional analysis on human transcriptome using
ELIGOS

Lastly, we analyzed the transcriptome of the reference
native RNA sequencing dataset of a transcriptome de-
rived from the human cell line CEPH1463 (7) using the
rBEM k5+2 as the reference. We used a stringent cut-off
of the odds ratio of 2.5 and adjusted P < 10e–5 to iden-
tify RNAmodi�cation sites. Based on the cut-off, 1,039,699
sites were identi�ed with 210,966 sites for A. We then ex-
tracted 6 bases surrounding the identi�ed A sites from the
dataset and used them for the BaMM software, determined
the consensus motif, and established corresponding loca-
tions on the transcripts (Figure 4A). The consensus motif
has pattern similar to the known DRACH for m6A mod-
i�cation (40,41) with an additional T base on the 5′ end
and a high probability of G based on positions 2 and 3,
indicating higher pattern speci�city. We compared the lo-
cations of the consensus motif with the locations of the
identi�ed A sites on the DRACH motif sequence (Figure
4B) and found a high fraction overlap among them. The
1,573 nonoverlapping positions with a DRACH sequence
pattern were observed due to the relaxing criteria of themo-
tif scan algorithm of BaMM software. The identi�ed mo-
tif (Figure 4A) was the most abundant subset motif of the
DRACH sequence pattern (Supplementary Table S1). We
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Figure 3. Differential epitranscriptional analysis of native transcriptome sequences derived from yeast (A–D) and mESCs (E-I) using ELIGOS. (A) Se-
quence logo plot of uncovered RRACHmotif from differential adenine sites derived from the yeast meiosis dataset. (B) Standardized transcript coordinate
plot of normalized density derived from the transcripts containing the RRACH motif to illustrate its preferential position in 3′ untranslated regions. (C)
Upset plot shows the presence/absence of the 392 high con�dence positions of the RRACH motif across different growth conditions (diff, the high con�-
dence position; ypd, rich media; hs, rich media with heat shock treatment; glu, glucose limited minimal media; eth, ethanol limited minimal media). The
insert shows the distribution of the 392 high con�dence position across different growth conditions. (D) Integrative Genomics Viewer(IGV) snapshot with
the gene name below the sequence of the three examples of differential m6A position of meiosis speci�c (left), common between meiosis and starvation on
glucose limited growth (middle), and common among meiosis and other growth condition (right). The plot shows across different growth conditions (ref,
miosis state of reference strain; �ime4, miosis state of ime4 knockout strain). The bottom row shows the location of RRACH like motif. (E) Logo plot of
DRACH like motif from differential adenine sites derived from mESCsMettl3 dataset. (F) Logo plot of DRACH like motif from differential adenine sites
derived frommESCsMettl14 dataset. (G) Standardized transcript coordinate plot of normalized density derived from the identi�edmotif ofMettl3 dataset
(blue) and Mettl14 dataset (�oral green). (H) Venn diagram shows the comparison of the identi�ed DRACH like motif positions between Mettl3 dataset
(blue) and Mettl14 dataset (�oral green). (I) IGV snapshot with the gene name below the sequence of the three examples of differential m6A positions of
common positions (left) and speci�c positions forMetl13 (middle) andMetl14 (right) dataset. The last two rows show the location of DRACH-like motif
derived from the two mESCs datasets.
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Figure 4. Epitranscriptional landscape analysis of human cells using ELIGOS. (A) Sequence logo plot of the identi�ed consensus DRACH like motif
surrounding differential A identi�ed by ELIGOS from the CEPH1463 dataset (7). (B) Venn diagram showing a comparison between the identi�ed position
of DRACH-like motif from panel A (red) with position of the DRACH (blue) of the differential %ESB adenine sites (black). (C) Standardized transcript
coordinate plot of normalized density of transcripts containing the identi�ed consensus motif (red) and DRACH motif with identi�ed differential A
sites (blue) to illustrate its preferential position in 3′ untranslated regions. (D) Venn’s diagram shows the comparison of differential %ESB adenine sites
surrounding the DRACH motif sequence for the three human cells CEPH1463 (black), H460 (magenta) and SAEC (green). (E) Examples of selected
oncogene transcripts ofMYC (left panel) and JUNB (right panel) in which both the identi�ed consensus DRACH-like motif and the DRACHmotif were
found to be modi�ed. A comparison is shown in IGV Genome Browser of our predictions and previous studies conducted with different human cells and
differentm6Apro�lingmethods. The tracks show (from top down): alignment coverage depth of dRNA reads of the transcripts derived fromCEPH1463 (i),
H460(ii) and SAEC (iii) dataset; (iv) transcript architecture; (v) location of theDRACHmotifs (blue); (vi) location of the identi�ed consensusDRACH-like
motifs (red); overlay bar plot of %ESB of native RNA sequences (cyan) and rBEM k5+2 (magenta) at the differential %ESB positions for A as identi�ed
by ELIGOS for the three human cells CEPH1463 (vii), H460 (viii) and SAEC (ix); (x) m6A miCLIP data of HEK293 cells using SySy m6A antibody
enrichment; (xi) miCLIP data of HEK293 cells using Abacam m6A antibody enrichment; (xii) UV crosslinking and immunoprecipitation (UV-CLIP)
data of CD8T cells; (xiii)UV-CLIP data of A549 cells; (xiv)MeRIP peak data of HEK293T cells; (xv)MeRIP peak data of hESCs cells at time point T0;
(xvi)MeRIP peak data of hESCs cells at time point T48. All MeRIP peak data were plotted based on the read coverage depth of m6A enriched (cyan) and
the reference sequencing library (magenta); (xvii)MeRIP peak region data of HeLa cells. (F) A zoomed output comparison shows single base resolution
for m6A positions identi�ed by ELIGOS agreed with miCLIP and UV-CLIP methods. The track information is the same as in panel E).

next analyzed the positions of the identi�ed A sites with
the DRACH motif and the consensus DRACH-like motif
along with each transcript and graphed it in a standardized
coordinate plot of normalized density (Figure 4C). This
identi�ed a clear preference for the motifs to be present at
the gene-bordering �ank of the 3′ UTR, which agrees with
previous studies (40,42–44). Therefore, the identi�ed A sites
with the DRACH motif could be considered as m6A. We
evaluated the impact of the cellular mutations on the m6A

pro�ling results by identifying point mutations from cDNA
sequences using Li’s method (47). We found that less than
0.35% of the identi�ed DRACHmotif contained point mu-
tations (Supplementary Figure S6). However, the detected
point mutations from cDNA sequences can be derived from
missed-base incorporation of RT due to the presence of
some modi�cations on the mRNA template (48), e.g. Ino
can be recognized as G by RT, then C is incorporated into
the cDNA as recently reported in ONT by Workman et al.
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(7). Therefore, genome resequencing may be required for
construction of an accurate reference genome for the RNA
modi�cation pro�ling.
RNA methylation, especially m6A, plays an important

role in carcinogenesis and treatment response (49,50), in-
cluding lung cancer (7). We performed additional pilot ex-
periments of native RNA sequencing on lung cancer cell
line H460 and primary SAEC to compare m6A pro�le with
the CEPH1463s. With the same cut-off, 379,882 sites were
identi�ed for H460 with 75,428 sites for A, and 319,353
sites were identi�ed for SAEC cells with 59,291 sites for
A. Approximately 10% of the identi�ed A sites located on
the DRACH motif sequences (5,940 for H460 and 7,243
SAEC cells) were considered to be m6A sites. Note that the
number of identi�ed modi�cation sites of the lung cells was
much less than the CEPH1463 cells due to the much lower
sequencing depth in the H460 and SAEC cells compared
to the CEPH1463 cells. We compared the identi�ed m6A
sites among the three cells presented in a Venn diagram,
in Figure 4D. The H460 and SAEC had 3,209 overlapped
m6A sites with 2,731 unique m6A sites for H460 and 4,034
unique m6A sites for SAEC cells. Most of the m6A modi-
�cation sites identi�ed in lung cells were in common with
the CEPH1463 cells. Even though lung cell datasets have
lower sequencing depth, we observed over 4,045 m6A sites
that were identi�ed in the lung cells and not identi�ed in the
CEPH1463 cell. These could indicate the cell type-speci�c
regulation of m6A RNA modi�cation.

We investigated the ELIGOS results of m6A with other
published methods with two oncogenes transcript, MYC
and JUNB, and presented in IGV snapshot (Figure 4E).
ForMYC transcript, ELIGOS identi�ed that the m6Aposi-
tion (identi�ed A sites with DRACH motif sequences) was
mostly consistent with the UV cross-linking immunopre-
cipitation (UV-CLIP) method (42) and methylated RNA
immunoprecipitation (MeRIP) data of HeLa cells (51). We
observed the absence of an m6A site on the 5′-UTR in the
m6A individual-nucleotide-resolution cross-linking and im-
munoprecipitation (miCLIP) data of HEK293 cells (40), in
MeRIP data from HK239T cells (43), and in MeRIP data
from hESCs (40). For the JUNB transcript, the results from
the MeRIP data of HK239T (43) and hESCs (31) seem to
have the most consistency with ELIGOS results. On the
other hand, miCLIP(abacam) data of HEK293 cells fail to
identify all of m6A on the JUNB transcript.

The inconsistency of m6Adetection across different stud-
ies indicates highly complex and dynamic cellular regula-
tion of methylation patterns that is cell type-speci�c and
method dependent. The miCLIP and UV-CLIP can give
single-base resolution form6A identi�cations, sowe focused
on the DRACH containing position of the two transcripts
(Figure 4F) to evaluate the ELIGOS result. ELIGOS cor-
rectly identi�ed the m6A position at single-base resolution,
and agreed with the miCLIP and UV-CLIP methods.

DISCUSSION

The major fraction of sequencing errors by ONT, which
captures single-molecule sequences, is derived from stochas-
tic noise that can be corrected by consensus base calling
from reads pile-up (52). The consensus error correction ap-

proach typically results in the correction of sequencing er-
rors when DNA is sequenced; however, approximately 1%
of the total errors typically needs to be further polished by
short reads (52). The sequencing of native RNA results in
more errors, as we found higher %ESB scores for this tem-
plate (Figure 1A).

When present, base modi�cations of nucleic acids alter
the ionic current signal recorded during ONT sequencing,
leading to errors that are inherent to the application of
the helicase and the pore protein for passage through the
pore. We developed ELIGOS for determining a compar-
ative error analysis of long-read sequences, as this can be
used as a signature to recognize base modi�cations. By se-
quencing IVT RNA, we can compare the errors recorded
with modi�ed RNA to that of nonmodi�ed RNA or cDNA
signals. The use of native RNA sequences from nonmod-
i�ed RNA obtained by IVT as a reference is suitable to
eliminate systematic errors. Nevertheless, the construction
of IVT to study genome-wide RNA modi�cations is not
trivial. Therefore, we developed the rBEMs that can mimic
error pro�les across different sequence contexts represent-
ing the systematic error of dRNA-seq. Using rBEM as the
reference to identify RNA modi�cation from native RNA
sequences gave a comparable prediction performance with
nonmodi�ed RNA in synthetic modi�ed RNAdatasets and
rRNA datasets. Moreover, ELIGOS captured most of the
known RNA methylation sites, for all four bases simulta-
neously, despite inherent differences in methylation of these
bases or the sugar backbone. This was demonstrated in E.
coli, yeast, and human RNA. This provides a promising ap-
proach to detect expected and novel RNAmethylations and
base modi�cations directly from native RNA sequences.
This capability is superior to traditional methods that can
detect only one type of methylation at a time and require
complex experimental procedures. Moreover, based on the
same principle, ELIGOS can be applied to identify DNA
modi�cations by the comparison of the errors between na-
tive DNA and cDNA or a PCR product (Supplementary
Figure S7). This potential will need to be further investi-
gated and compared with existing methods for direct DNA
modi�cation detection using ONT (20,53) or PacBio (54)
sequencing (Paci�c Biosciences, Menlo Park, CA).
Understanding the RNA modi�cation regulation of

RNA methyltransferase can be accomplished by compar-
ative investigation between the wild type cell and spe-
ci�c inactivation of the RNA methyltransferase through
gene knockout or knockdown. Differential %ESB analy-
sis between wild type and m6A methylase knockout using
ELIGOS was applied in yeast and mammalian cell system
to assess the impact of the m6A methyltransferase. With
ELIGOS, we can unbiasedly uncover the known biological
importance of the RRACH/DRACH motifs directly from
the analysis of differential %ESB sites. Using the same strat-
egy of differential %ESB analysis, using ELIGOS to study
different RNA methyltransferase will improve our under-
standing of cellular regulation of other RNA methyltrans-
ferase and their role in the development and disease pro-
cesses.
Using ELIGOS to identify epitranscriptional landscapes

bymean of rBEM k5+2, we were able to uncover known bi-
ologically relevant motifs containing m6A RNA in human
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cell datasets. We found that approximately 10% of the iden-
ti�ed A sites could be m6A sites, based on their sequence
context of the DRACH motif. The rest of the A sites could
be other types of modi�cations of A such as m1A as previ-
ously reported (55,56). The identi�ed modi�cation sites of
the other bases will need further investigations to uncover
such known (57) and novel ribonucleotide modi�cations in
mRNA.
ELIGOS can speci�cally identify the location of RNA

modi�cations, but at this time it cannot tell the exact type
of RNA methylation because sequencing errors are used as
the proxy of detection. This limitation requires further in-
vestigations to determine the nature of the RNA modi�-
cation position inferred by ELIGOS, by using traditional
techniques such as the LC–MS/MS approach (16). Alter-
natively, signal level analysis coupled withmachine learning
in the future might be able to discern the modi�cation types
from the ONT signal, as recently demonstrated on DNA
modi�cation (58). Besides, the input data for our method
depend on the results obtained from base calling and long-
read aligner software as a prerequisite. Therefore, the accu-
racy of these steps will in�uence the �nal result, and as they
improve, so will the ELIGOS results. Lastly, it is possible
that the method may be over-reporting the number of pre-
dicted modi�ed bases due to the noisy nature of the ONT
outputs.
In conclusion, this study provides a concrete foundation

to study native RNA sequences that carry important infor-
mation on RNA modi�cations. Detailed investigations to
dissect the complex properties of RNA from detected error
signatures is now feasible. Our ELIGOS software is publicly
available and can be used to detect possible RNA modi�-
cation sites quickly and on a global transcriptomic scale.
The study generated rich native RNA sequencing datasets
of various synthetic modi�ed RNA, rRNAs, and the tran-
scriptome of mouse and human cell lines that is useful for
the research community in advancing the development of
bioinformatics software to analyze such data. Moreover,
ELIGOS can be used as a diagnostics tool to improve the
base-calling algorithm of nanopore sequencing. We envis-
age that the sequencing of native RNA will become a pow-
erful and versatile tool to advance RNA biology.
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