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Abstract 22 

Sequencing of native RNA and corresponding cDNA was performed using Oxford Nanopore 23 

Technology. The % Error of Specific Bases (%ESB) was higher for native RNA than for 24 

cDNA, which enabled detection of ribonucleotide modification sites. Based on %ESB 25 

differences of the two templates, a bioinformatic tool ELIGOS was developed and applied to 26 

rRNAs of E. coli, yeast and human cells. ELIGOS captured 91%, 95%, ~75%, respectively, 27 

of the known variety of RNA methylation sites in these rRNAs. Yeast transcriptomes from 28 

different growth conditions were also compared, which identified an association between 29 

metabolic adaptation and inferred RNA modifications. ELIGOS was further applied to human 30 

transcriptome datasets, which identified the well-known DRACH motif containing N6-31 

methyadenine being located close to 3’-untranslated regions of mRNA. Moreover, the RNA 32 

G-quadruplex motif was uncovered by ELIGOS. In summary, we have developed an 33 

experimental method coupled with bioinformatic software to uncover native RNA 34 

modifications and secondary-structures within transcripts.  35 

 36 

 37 

MAIN TEXT 38 

The transcriptome is the collection of all RNA molecules present in a given cell that can be 39 

determined by high-throughput techniques, such as microarray analysis or RNA sequencing 40 

(RNA-seq) methods 1. RNA-seq using next-generation sequencing (NGS) techniques has 41 

been replacing microarray analysis, since the former is able to detect novel or unknown 42 

transcripts.  Further, NGS enables transcriptome analysis with a higher dynamic range of 43 

expression levels than for microarrays 2. With improved sample preparation methods and 44 

reduced sequencing costs, RNA-seq by NGS has become the method of choice to study 45 

transcriptomes. 46 

The length of sequence reads generated with most NGS platforms range from 35 nt up 47 

to about 500 nt, so that single reads rarely cover a complete transcript. Accurate alignment 48 

and assembly of such short sequences depends on availability of a reference genome, and the 49 

identification of spliced isoforms or gene-fusion transcripts remains a challenge 3. Further, 50 

methods depending on reverse transcription (RT) of RNA and amplification may introduce 51 

biases and artifacts 4. These shortcomings can be overcome by directly sequencing native 52 

RNA molecules using technologies such as the Oxford Nanopore Technologies (ONT) 53 

platform. Direct RNA sequencing without amplification (dRNA-seq) is able to generate long 54 

reads, typically covering the full length of a transcript 5. The method can accurately quantify 55 
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transcripts in order to analyze differential gene expression with a dynamic range comparable 56 

to traditional RNA-seq derived from short read sequencing, while it enables accurate 57 

identification of the structure and boundaries of transcripts including spliced products 6. 58 

An additional advantage of dRNA-seq is the detection of transcriptional modifications 59 

inferred from the current signal as the RNA molecule passes a nanopore: modified RNA 60 

molecules cause a characteristic current blockade, enabling simultaneous detection of diverse 61 

modifications such as 5-methylcytosine (m5C) or 6-methyladenine (m6A) 5, 7, 8. Presently, 62 

over 170 different types of RNA modifications have been described within the prokaryote and 63 

eukaryote kingdoms, which are collected in various databases 9, 10, 11. High throughput 64 

sequencing coupled with methods to specifically enrich RNA modification products create the 65 

possibility to study the epigenetics of RNA and describe the ‘epitranscriptome’, a term 66 

introduced in 2012 12. However, these methods are labor intensive and may introduce 67 

experimental artifacts or biased results, and they suffer from a relatively high false positive 68 

rate 13. Moreover, the transcriptome-wide approach nowadays can only identify only a dozen 69 

from 170 known different types of RNA modifications because limitation of available 70 

specific antibodies or chemical treatmnets14. Alternatively, using the traditional approach of 71 

LC–MS/MS can identify several types of modification however, the approach has limitations 72 

to identify the transcript that contains modifications and their position of modifications 14. 73 

ONT sequencing also has certain disadvantages, the main one being a relatively high 74 

error rate. Translation of the obtained electrical current signals into specific bases relies on 75 

either trained hidden Markov or neural network models 15. The accuracy of individual DNA 76 

reads is currently around 90% on average 15; and we typically experience an accuracy of 77 

about 88% in RNA reads 6. The most commonly encountered errors are related to presence of 78 

homopolymers, base modifications, nucleic acid damage and structural features of the nucleic 79 

acid molecules.  80 

It is known that Reverse Transcriptase can ignore modifications of the RNA template to 81 

produce cDNA devoid of modification information 16. We anticipated that the ONT 82 

sequencing signals obtained from cDNA and those derived from the same RNA molecules by 83 

dRNA-seq could be used to filter out systematic noise from data to detect locations of 84 

possible RNA modifications. To test this, we used in vitro transcripts of a luciferase gene 85 

produced with and without incorporation of 5-methoxy-uridine (5moU). By comparison of 86 

the resultant dRNA-seq data of unmodified and modified RNA with those obtained from 87 

direct cDNA sequencing (dcDNA-seq), we were able to filter out signals that were most 88 

likely due to presence of modified bases.  89 
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The software tool “Epitranscriptional Landscape Inferring from Glitches of ONT 90 

Signals” (ELIGOS) was developed to predict the presence of modified bases from a 91 

comparison of dRNA-seq and dcDNA-seq data, and the output of this tool was verified with 92 

ribosomal RNA sequences from yeast, bacteria (Escherichia coli) and human cells, after 93 

which the procedure was used to map the yeast transcriptome. Transcripts of Saccharomyces 94 

cerevisiae strain CEN.PK113-7D were compared for cells cultured in minimal medium in 95 

presence of glucose and under glucose depletion, and these were compared to transcripts of S. 96 

cerevisiae strain DBY746 grown in rich medium. The comparison was extended to the 97 

transcriptome of a human cell line, from which hyper-modified transcripts were identified. 98 

The implications of this novel approach to investigate the epitranscriptome of cells are 99 

discussed. 100 

 101 

 102 

Results  103 

Distinguishing modified RNA bases from sequencing errors 104 

The nanopore sequencing signal of RNA can be affected by three-dimensional structures of 105 

the RNA template, as well as by presence of modified ribonucleotides, both of which can lead 106 

to sequencing errors. Since modified bases are absent when RNA is converted into cDNA, we 107 

anticipated that an in-depth analysis of sequencing errors for both types of templates might be 108 

able to differentiate between the presence of modified bases and stochastic errors. In a pilot 109 

experiment, we mimicked post-transcriptional modifications of RNA by in vitro incorporation 110 

of 5-methoxy-uridine (5moU) into transcripts of a luciferase gene. Sequencing signals were 111 

compared for this modified mRNA (dRNAO), the corresponding dcDNA (dcDNAO), and from 112 

dRNA sequences obtained with unmodified uridine (dRNAU). 113 

Figure 1 shows that in vitro incorporation of 5moU resulted in dRNAO reads with 114 

significantly higher % Error at Specific Bases (%ESB, defined as described in the methods) 115 

than dcDNAO (p-value 8.3e-94) or dRNAU (p-value 4.6e-118). Notably, for values up to 116 

approximately 25%, the distributions of %ESB for both dRNAU and dcDNAO were 117 

overlapping and higher than those for dRNAO, but for values above 25%, dRNAO reported 118 

significantly higher %ESB (Figure 1A). We interpret this to mean that below 25% ESB the 119 

error rate was mostly due to random noise, but the increased %ESB of dRNA above that cut-120 

off might reflect a biological signal, possibly (but not exclusively) related to presence of 121 

modified bases that can be used to distinguish true signal from background noise.  122 
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To illustrate the effect on recorded signals when modified bases are present, in Figure 123 

1B the re-squiggled signals are compared for a small region (position 989-1009) of the 124 

luciferase gene containing four uracil bases in three loci. The sequence signals obtained with 125 

dcDNAO (Figure 1B, in red) or from directly sequencing RNAU (in blue) matched those of the 126 

theoretical canonical signal model for DNA. In contrast, the re-squiggle signals of dRNAO 127 

containing modified uridine were altered compared to the canonical RNA signals (Figure 1B, 128 

in cyan). Thus, presence of 5moU bases most likely caused some of the observed 129 

perturbations, while an RT step removed this effect. Not only the 5moU sites, but also bases 130 

in their vicinity produced dramatically perturbed signals in dRNAO, for instance at position 131 

997 (Figure 1B). This has a direct impact on the accuracy of base calling. Note, that base 132 

calling is typically performed on a window of 5-mers, so that any effect due to presence of a 133 

modified base can affect the signal of bases in its direct vicinity. 134 

The positions for which %ESB exceeded the cutoff of 25% were recorded for the 135 

complete dRNAO template, as well as for the templates dRNAU and dcDNAO (Figure 1C). 136 

High %ESB values were more frequently obtained with dRNAO template than with either 137 

dRNAU or dcDNAO. Further, positions where 5moU was present frequently produced 138 

higher %ESB.  We also recorded >25% ESB values for some positions where other bases 139 

were present, and not all positions with 5moU did increase the %ESB in the dRNAO reads. 140 

Some of the observed errors are due to the reduced speed of nucleotide translocation through 141 

the nanopore, causing a ‘glitch’ in the corresponding output. In a number of cases, 142 

high %ESB coincided with presence of homopolymeric stretches (Supplementary Figure S1). 143 

Although such signals are not easily distinguishable from signals due to base modifications, 144 

homopolymeric stretches can be readily identified from the sequence. Further, 145 

elevated %ESB values observed in both dRNAU and dcDNAO are more likely to be caused by 146 

structural features irrespective to presence of modified bases, and these should ideally be 147 

removed from the data. 148 

To this extent we developed a bioinformatics software tool, ELIGOS, that determines 149 

differential %ESB positions between dRNA and a reference sequence (either cDNA or non-150 

modified RNA of the same sequence).  We used a cut-off for an odds ratio of ≥2 and adjusted 151 

p-values <1e-50 to identify differential %ESB positions. The optimal %ESB cutoff was 152 

determined as 25% based on a loss-gain analysis using a 20-30% range, as shown in Figure 153 

S2. 154 

Since the presence of a methylated base can influence the differential %ESB of adjacent 155 

positions, flanking bases should also be considered (as exemplified in Figure 1B where the 156 
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signal of bases in the vicinity of 5moU was sometimes altered). Thus, we first recorded all 157 

positions for which the %ESB between the dRNAO signal and the reference signals differed. 158 

These positions were then extended to the flanking bases positioned directly 5’ and 3’ to 159 

produce triplet loci. These triplets were individually assessed, unless two recorded triplets 160 

overlapped or were direct neighbors, in which case their locus was extended, as shown in the 161 

example of Figure 1D.  162 

A total of 346 and 347 loci with differential %ESB were identified in the luciferase 163 

transcript using dcDNAO and dRNAU as the reference, respectively. These loci overlapped in 164 

318 cases. Since for the in vitro transcripts the exact positions of all methylated bases were 165 

known (i.e., all uridine was 5moU), their positions were compared to the identified loci to 166 

assess how well these matched with presence of methylated bases (Figure 1E). We found that 167 

78 identified loci contained at least one 5moU (in total these covered 146 5moU bases). The 168 

differential %ESB values that had identified these loci were likely caused by presence of the 169 

modified 5MoU bases, while potential loci not containing uracil may have been caused by 170 

features unrelated to base modification.  171 

Ideally, direct sequencing of unmodified RNA as a reference for comparison would be 172 

best. However, this is not practical for most biological systems, where in most cases dcDNA 173 

and native RNA are available.  If dcDNA were the only available reference, our findings 174 

would be similar, since only one locus identified with that reference did not match the 175 

findings obtained with dRNAU. We take this as evidence that the approach to compare 176 

differential %ESB values obtained from cDNA and modified RNA can indeed identify the 177 

presence of modified bases. We found 77 moU positions that did not produce elevated 178 

differentiated %ESB values in dRNA-seq signals when compared to dcDNAO or dRNAU; 179 

these produced %ESB values <25% in 67 of 77 cases (87%). These findings illustrate the 180 

limitation in case of a heavily modified synthetic RNA template, that contained the maximum 181 

fraction of modified uridine bases. We then continued to our investigations with natural 182 

modified RNA that normally has much lesser fraction of RNA modifications.       183 

 184 

Presence of artifactual specific triplets in dRNA-seq data of IVT 185 

We next checked whether any of the ELIGOS output data were caused by sequence-186 

dependent artifacts, by comparing the %ESB of all possible 52 triplets present in the 187 

luciferase gene in the dcDNAO, dRNAU and dRNAO data (see Supplementary Table S1 for 188 

details). This identified five triplets producing not only significantly higher %ESB values 189 

over the 25% threshold for dRNAO but also for unmodified dRNAU, when compared to 190 
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dcDNAO. These were CAC, CAU, CUU, UCU and UUC (Figure 1F). The differential %ESB 191 

for CAC could not be caused by presence of 5moU, so this was more likely due to a structural 192 

feature caused by this combination of nucleotides. For all these five triplets an inherit signal 193 

amplification of dRNA-seq was present that needs to be corrected for when cDNA is solely 194 

used as the reference for differential % ESB position. The remaining 47 triplets did not result 195 

in strongly elevated %ESB signals for dRNAU compared to dcDNA (see Supplementary 196 

Table S1), confirming that using dRNAU as the reference for differential %ESB position 197 

determination is a valid approach, while after subtraction of systematic errors from signals 198 

truly due to base modification, dcDNA sequences can be used as a reference. 199 

 200 

Evaluation of ELIGOS for prediction of modified rRNA bases 201 

The validity of ELIGOS predictions was tested for sequencing data obtained with ribosomal 202 

RNA (rRNA) from S. cerevisiae, E. coli and a human cell line, as the presence of modified 203 

bases and secondary structures in these RNA molecules has been extensively characterized. 204 

Total RNA was sequenced by dRNA-seq and dcDNA-seq, after which signals for the 205 

combined rRNA genes were extracted from the data. As observed with the in vitro transcripts, 206 

dRNA data for the rRNA produced significantly higher %ESB values than dcDNA, for all 207 

three organisms, with p-values of 2.5e-118, 4.9e-40, and 3.0e-50, for yeast, E. coli and human 208 

cells, respectively (Figure 2A). 209 

Yeast rRNA modifications have been extensively studied and well characterized 17.  210 

Using ELIGOS we identified 315 loci in yeast rRNAs (25S, 18S, 5S and 5.5S combined) with 211 

differential %ESB values. Of these, 67 loci matched known modified bases 17, covering 106 212 

base positions of the total of 111 described modified bases (95%) which is a statistically 213 

significant finding, p-value of 7.2e-84. Our prediction did not capture five bases described to 214 

be modified (their regions did not produce %ESB elevated values; see Supplementary Figure 215 

S1). However, 248 additional loci were identified by ELIGOS that have not previously been 216 

described to undergo modification (Figure 2B). We checked for presence of the five triplets 217 

that were likely to produce artifactual results (cf. Figure 1F) and found that these represented 218 

172 loci (54%). Interestingly, 35 of these have been previously documented as being 219 

methylated (Figure 2C). Thus, removal of these from the ELIGOS predictions would omit a 220 

number of experimentally verified modified base locations.   221 

The data obtained with rRNA from E. coli were also compared to experimental 222 

documentation of E. coli rRNA base methylation 18. Of the 36 described methylated 223 

nucleosides described for the three bacterial rRNA molecules combined, our approach 224 
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detected 33 (92%) with p-value of 1.3e-28 divided over 21 loci (Figure 2B). However, our data 225 

suggest that far more positions might contain modified bases. A total of 102 loci (42%) were 226 

due to the five triplets for which true and false signal could not be differentiated; 9 of these 227 

had been previously identified in the literature as being modified (Figure 1C). There were 3 228 

previously described methylation sites that produced %ESB values lower than the cut-off 229 

threshold, or remained undetected due to presence of homopolymeric sequences (see 230 

Supplementary Figure S1).  231 

The characterization of enzymes responsible for rRNA methylation in human cells is 232 

currently still incomplete 19. We compared our data with the Ribo-Methyl-seq data collected 233 

by Erales and colleagues 20 which at the time of analysis listed 106 2-O-methylation sites for 234 

rRNA of HeLa cells. Of the 413 loci predicted by ELIGOS, 58 overlapped with 79 positions 235 

of O-methylation sites (Figure 2B). Thus, 74% with p-value of 1.5e-37  of the data collected in 236 

RiboMethyl-seq were captured in our predictions. In a second analysis we compared our data 237 

to 3-dimensional human ribosome structural data derived from cryo-electron microscopy 238 

which can be employed to locate putative rRNA methylation sites with high confidence 21. 239 

The ELIGOS predictions captured around 78% with p-value of 5.1e-83 of those specific 240 

methylation sites. Interestingly, 35 of the 2-O-methylation bases reported by Erales et al. 20 241 

were not captured in the data by Natchair et al. 21, and for 55 positions the opposite applied. 242 

For only 31 loci did ELIGOS predictions overlap with both published datasets (Figure 2B). 243 

For 164 predicted loci the results were inconclusive as they represented the five triplets for 244 

which no reliable data could be obtained (Figure 2C).  245 

In summary, we were able to capture many of the known base modifications in rRNAs 246 

in yeast, E. coli, and human cells, as well as predict putative novel modified bases in rRNA. 247 

These results show that the method can detect a variety of potentially different modified bases 248 

simultaneously in native RNA. 249 

 250 

Comparison of dcDNA-seq and dRNA-seq from yeast transcriptomes 251 

We next compared poly-A mRNA isolated from yeast cells grown in minimum media 252 

supplemented with glucose, and from cells that had switched to ethanol as a carbon source. 253 

For each condition three experimental replicates were analysed. The differences in read 254 

characteristics obtained from dcDNA-seq and dRNA-seq for the two transcriptomes are 255 

summarized in Figure 3. The sequence yield obtained per hour on the ONT flow cells (Figure 256 

3A) was higher for dcDNA than for dRNA, due to the different motor proteins that control the 257 

rate of molecules passing through the nanopores (450 bases per second (b/s) for DNA and 80 258 
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b/s for RNA sequencing). The average % identities of both dcDNA and dRNA reads were 259 

comparable, around 88% (violin plot, Figure 3A). The base-calling step using Albacore 260 

software automatically classifies reads to fail or pass a specific cut-off. As seen in Figure 3B, 261 

on average 85% of the total dRNA reads but only 50% of dcDNA reads passed the default 262 

threshold of 7. The length of all reads combined (passed plus failed) indicated that the dcDNA 263 

reads were slightly longer than the obtained dRNA reads (Figure 3C).  264 

To explain the surprisingly high fraction of failed reads obtained with dcDNA, we re-265 

evaluated the quality of total reads (passed plus failed) by aligning both dcDNA and dRNA 266 

reads onto a reference genome. As presented in Figure 3D, between 61% and 67% of the 267 

dcDNA reads could be mapped, while between 80 and 86% of the dRNA reads mapped to the 268 

reference genome. Of note was the relatively high fraction of chimeras in dcDNA (between 269 

15 and 20%), while the fraction of unmapped reads (approximately 15%) did not significantly 270 

differ (p-value >0.05) between dcDNA and dRNA sequences. Further, the read quality score 271 

distribution of total reads differed between dcDNA and dRNA reads (Figure 3E), with higher 272 

scores for obtained for dRNA reads. Therefore, for the dRNA reads the recommended default 273 

of 7 was applied, while for dcDNA reads a less strict boundary quality score of 5 was deemed 274 

more suitable as transcript reads have a relatively shorter length than genomic DNA reads. 275 

This is in agreement with previous observations that shorter reads generated by ONT tend to 276 

produce lower quality scores 22. When the read length distribution was compared after 277 

removal of chimeric sequences from the dcDNA reads, this resulted in a comparable read 278 

length distribution for both sequencing strategies (Figure 3F).  279 

The read counts of individual transcripts derived from the two different templates (DNA 280 

and RNA) were compared by scatter plot and a correlation matrix was constructed (Figure 281 

4A). Within the same template, replicate experiments produced satisfying correlation 282 

coefficients (r =0.96 on average, range: 0.94-0.98), while on average an r of 0.92 (range: 283 

0.90-0.94) was obtained when dcDNA and dRNA sequences were compared for the same 284 

growth conduction. We have recently demonstrated that the negative binomial statistic is a 285 

valid approach to analyze dRNA-seq data 6; here we applied that method to compare the 286 

adjusted p-values and the observed mean log2fold changes, as illustrated in Figures 4B and 287 

4C, respectively. Even though the sequencing depth across the biological replicates varied, 288 

the results of both sequencing methods strongly correlated for transcriptomes that were 289 

obtained from cells grown under the same condition. Furthermore, biological functional 290 

enrichment was analyzed using Gene Ontology (GO) based on the dcDNA-seq and dRNA-291 

seq data; the results were found to be highly consistent, as 332 GO-terms were identified in 292 
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both datasets, and only 48 and 40 GO-terms were uniquely present in dcDNA-seq and dRNA-293 

seq data, respectively (Figure 4D). The previously published conclusions on differential gene 294 

expression between the two compared culture conditions 6 did not change for the 295 

transcriptome sequencing data obtained here. 296 

 297 

Over-representation of the artifactual triplets in modified base predictions  298 

ELIGOS predictions were next applied to the yeast transcriptomic data described above, 299 

complemented with a third dataset of mRNA isolated from S. cerevisiae strain DBY746 300 

grown in rich media (YPD) 5. A fourth dataset was added which consisted of mRNA isolated 301 

from human lymphoblastoid cell line, GM12878, which is part of the publicly available 302 

Oxford Nanopore Human Reference Dataset. Using the same statistical cut-off as defined in 303 

the previous section, approximately 18,000 positions in the yeast datasets and 85,000 304 

positions in the human cell line data were identified with differential %ESB positions. 305 

Comparing the four bases, the highest fraction of differential %ESB positions in all four 306 

datasets combined captured by ELIGOS was for cytidine, comprising 40% of the total 307 

differential %ESB positions on average (see Supplementary Table S2). We evaluated 308 

enrichment of motifs surrounding the differential %ESB positions and found four motifs that 309 

were consistently overrepresented in all four datasets, as illustrated in Figure 5A. The 310 

overrepresentation was strongest for motif UCU (with the underlined C being the identified 311 

base). The motif ucUCC (with variants UCCUC and CUCC for yeast strain DBY746 and 312 

human RNA, respectively) was overrepresented for positions containing uridine, and CAC 313 

(UCAC in human RNA) and CAUG (with variants uAuGG and CAuGG) for those containing 314 

adenine. Of note is that these motifs all contained the five over-represented triplets that had 315 

been identified as producing unreliable findings by the IVT luciferase analysis.   316 

The identified differential %ESB positions were cleaned for the four motifs for which 317 

artifactual and real signals could not be distinguished, resulting in a ~57% reduction (see 318 

Supplementary Table S2). This retained 8,889 differential %ESB loci in the mRNA dataset of 319 

yeast grown on minimal medium with glucose, corresponding to 691 transcripts. Likewise, 320 

6,806, 5,488 and 24,702 differential ESB loci were identified in yeast using ethanol, yeast 321 

cultured in YPD and in the human cell line dataset, corresponding to 788, 758 and 3,234 322 

transcripts respectively (only canonical transcripts were considered, excluding isoforms).  323 

 324 

Association of inferred RNA modifications with transcript abundance and length as 325 

exemplified by yeast 326 
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We next evaluated whether an association exists between transcript abundance or transcript 327 

length and their number of inferred RNA modification loci, per dataset. No strong correlation 328 

was found between the number of differential ESB loci and transcript length, in all four 329 

datasets (R2 <0.0005 for yeast on glucose, <0.007 for yeast on ethanol, <0.007 for yeast in 330 

YPD and 0.01 for human cell transcripts, respectively; see Supplementary Figure S3). The 331 

analysis of the three yeast datasets combined is shown at the top of Figure 5B.   332 

A weak linear trend was observed between highly abundant transcripts (covered by 333 

≥100 reads) and their number of differential ESB loci (Figure 5B, bottom). This weak positive 334 

correlation was found in all four datasets (R2 = 0.20 for yeast on glucose minimal media, 0.17 335 

for yeast on ethanol minimal media, 0.35 for yeast in YPD and 0.12 for human cell 336 

transcripts, respectively; see Supplementary Figure S3). Lack of a correlation between 337 

inferred RNA modification status and expression levels can be exemplified by zooming in at 338 

some of the hyper-modified transcripts, defined as having >20 differential ESB loci, in the 339 

yeast datasets. These covered 104, 100, and 56 transcripts from cells grown on glucose, 340 

ethanol, and YPD, respectively (Supplementary Figure S4 illustrates the overlap between 341 

these datasets in a violin jitter plot and an Upset plot and more details of individual gene is 342 

provided in Table S4).  Some of the hypermodified transcripts were extremely abundant 343 

during growth on ethanol, e.g., carnitine acetyltransferase (YAT1, with >5600 reads) and the 344 

chromosomal gene for Hexose Transporter Induced by Decreased Growth (HXT5, >3600 345 

reads), but the transcript of the Shmoo tip protein (HBT1) was much less abundant (~250 346 

reads), while these three transcripts all contained 65 modification sites. 347 

A correlation between base modification levels and transcript abundance was obvious, 348 

however, when zooming in at specific pathways. This is exemplified by the central metabolic 349 

pathway shown in Figure 5C. We mapped relevant transcripts and their number of inferred 350 

RNA modification loci to simultaneously assess the effect of transcriptional and 351 

posttranscriptional regulation during metabolic reprogramming required for the diauxic shift. 352 

The presented global overview shows the well-known adaptations 23 of yeast cells as they 353 

switch from glucose to ethanol, by changing gene expression of a number of key enzymes. In 354 

addition to transcriptional regulation, we found many transcripts that had undergone changes 355 

in base modifications under these conditions. Examples are genes under regulation to switch 356 

from glycolysis to ethanol utilization (ADH2 and ACS1), key genes regulating the TCA cycle 357 

activity (CIT1, ACO1 and SDH1,2), the glyoxylate shunt (ICL and MLS1) and the key 358 

enzyme in gluconeogenesis (PCK1). On the other hand, the enzymes involve in glycogen-359 

trehalose homeostasis were transcriptionally regulated while hypo-modified (e.g., NTH1, 360 
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TPS1,2, GLC3, PGM2) or not modified (e.g., ATH1, TSL1, GPH1, GDB1). Interestingly, 361 

acetaldehyde dehydrogenase ALD6 was upregulated when cells utilized ethanol but its 362 

transcript modification only marginally differed between the conditions. These results 363 

indicate there exists a complex association between transcript modifications and metabolic 364 

reprogramming.  365 

 366 

The Human Transcriptome: Capturing known m6A and RNA G-quadruplexes 367 

Lastly, we analyzed the transcriptome of the human cell line and examined the two most 368 

abundant motifs surrounding the modification sites captured by ELIGOS, shown in Figure 6. 369 

(The most abundant identified motifs of all four datasets is shown in Supplementary Figure S5.) 370 

Interestingly, the two most abundant motifs in the human dataset both have known biological 371 

relevance (Figure 6A, B). The first motif GGACH (Figure 6B) is the known DRACH 372 

consensus sequence for m6A recognition sites, where D = A/G/U, R = A/G, and H = A/C/U 373 

24, 25. This motif is recognized by epigenetic ‘reader’ proteins (YTH RNA-binding domain 374 

proteins 26, 27).  YTH RNA-binding domain proteins control several important pathways, 375 

including neural development in humans 28. The motif in Figure 6A represents the most 376 

abundant base methylation site identified to date, and is the best studied case of 6mA RNA 377 

methylation in eukaryotes. We identified this as the most abundant adenine motif with of e-378 

value of 5.1e-224 and 14 % occurrence, corresponding to 965 transcripts (see Supplementary 379 

Table S4 for details on numbers of loci/motifs in each transcript). For these 965 transcripts, 380 

we analyzed the positions of the identified DRACH motifs along each transcript and 381 

compared this to the sequencing depth of dRNA-seq over the location of the transcripts; the 382 

data are presented in a standardized coordinate plot in the lower part of Figure 6A. This 383 

identified a clear preference for the DRACH motif to be present at the gene-bordering flank 384 

of the 3’ untranslated region (UTR), which agrees with previous studies 24, 29, 30, 31. The second 385 

motif (Figure 6B) represents the most abundant guanine motif with e-value 6.1e-89 and 41% 386 

occurrence, corresponding to 1250 transcripts (see Supplementary Table S4 for details). This 387 

motif GGAGG was identified to form RNA G-quadruplexes (rG4s) 32. By plotting the 388 

standardized coordinates of the location of this rG4s motif and comparing it to the sequencing 389 

depth of dRNA-seq (Figure 6B, lower panel), we found an even distribution of the motif with 390 

a small bias for the gene-bordering flank of the 3’ untranslated region (UTR).  391 

Presence of both the DRACH and rG4s motifs in a single transcript may imply complex 392 

post-transcriptional regulation. To give an example, the transcript of RNA binding protein 393 

hnRNP A2/B1 (which promotes primary microRNA processing, is involved in splicing 394 
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regulation and potentially serves as a m6A reader 33), can itself undergo alternative splicing to 395 

produce two experimentally confirmed isoforms and another rare isoform associated with 396 

presence or absence of exons 1, 7 and 8 34. In the transcripts of this gene we identified 2 397 

DRACH and 4 rG4 motifs containing modified bases, including one of each in exon 7 and a 398 

DRACH motif in exon 8 (Figure 6C). Interestingly, ELIGOS identified other %ESB loci 399 

where DRACH motifs were absent that have been described as containing m6A, detected in 400 

miCLIP(abacam) data of HEK293 cells 24, in MeRIP data of HK239T30 and in MeRIP data of 401 

HeLa cells 35. The inconsistency of m6A detection across different studies indicates highly 402 

complex and dynamic cellular regulation of methylation patterns that is cell type specific. The 403 

coverage plot from the alignment of dRNA-seq reads indicates that the third isoform with the 404 

shortest 3’ UTR was the most abundant isoform of hnRNP A2/B1 in the investigated 405 

transcriptome, while minor amounts of the first isoform were also detected, indicated by the 406 

low coverage depth of the first exon. The abundance of the second isoform, which produces 407 

the shortest protein among the three isoforms (lacking exons 7 and 8), was too low to be 408 

detected. This shortest isoform lacks a glycine-rich region and other important domains and 409 

posttranslational modification sites necessary for protein function. Therefore, inclusion of 410 

exons 7 and 8 is important for protein function, and the presence of both the m6A and rG4s 411 

motifs, containing modified bases as predicted by ELIGOS, is most likely involved in this 412 

inclusion to promote translation of the biologically active isoform. A role of base 413 

modification in these motifs involved in their biological functions can be assumed, in line 414 

with studies that have shown that exon inclusion into mRNAs is promoted by m6A through 415 

YTHDC1 36 and by secondary structures formed by rG4s 37.  416 

A second example of a transcript containing both DRACH and rG4s motifs is hnRNP 417 

A0, heterogeneous nuclear ribonucleoprotein A0 that contains six and one of these, 418 

respectively (Figure 6D).  ELIGOS predictions highly agreed with all experimental miCLIP 419 

data, even at single nucleotide resolution (see Supplementary Figure S6 of a zoomed view), 420 

and with MeRIP studies on the region that has high depth coverage of dRNA-seq. In addition, 421 

the differential %ESB of adenine in this transcript that was filtered out by the artifactual 422 

triplet CAC was detected by miCLIP(SySy) 24 as an m6A modification. This observation 423 

again supports the undistinguishable RNA modification from artifactual signals (see 424 

Supplementary Figure S6). 425 

 426 

Discussion  427 
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The major fraction of sequencing errors by ONT, which captures single molecule sequences, 428 

is derived from stochastic noise that can be corrected for by consensus base calling from reads 429 

pileup 38. The consensus error correction approach typically results in correction of 430 

sequencing errors when DNA is sequenced, however ~1% of the total errors typically need to 431 

be further polished by short reads 38. Sequencing of native RNA results in more errors, as we 432 

found higher %ESB scores for this template (Figure 1A). We demonstrated that this is a 433 

combined effect of ribonucleoside modifications as well as presence of secondary structures. 434 

The ONT technology is still in its infancy and especially base calling software for RNA is not 435 

as well developed yet as for DNA; for example, the RNN model used for RNA has only been 436 

updated once so far, while the DNA model is more advanced 15. Our observations that five 437 

particular triplets are overrepresented in high %ESB scores (Figure 1F) can assist in further 438 

fine tuning the base calling software in the near future, which we expect will improve the base 439 

calling model for RNA. 440 

When present, base modifications and secondary structures of nucleic acids alter the 441 

ionic current signal recorded during ONT sequencing, leading to errors that are inherent to the 442 

application of helicase and pore protein for pore passage. We developed ELIGOS for 443 

determining a comparative error analysis of long read sequences, as this can be used as a 444 

signature to recognize base modifications and secondary structures. By sequencing in vitro 445 

transcribed RNA, we are able to compare the errors recorded with modified RNA with that of 446 

naked RNA or cDNA signals. Although similar results were obtained (Figure 1E), the use of 447 

dRNA sequences from naked RNA obtained by IVT as the reference is more suitable to 448 

eliminate the systematic errors caused by particular triplets as well as secondary structures. 449 

Nevertheless, construction of in vitro transcripts to study genome-wide RNA modifications is 450 

not trivial, and the use of cDNA as a reference results in proper identification of secondary 451 

structures such as those caused by the rG4 motif (Figure 6). This capability can be potentially 452 

extended to study RNA secondary structures.  453 

Distinct error signatures were identified by ELIGOS between native, modified RNA 454 

and cDNA templates at base resolution, which captured most of the known RNA methylation 455 

sites, for all four bases simultaneously, despite inherent differences in methylation of these 456 

bases. This was demonstrated in yeast, E. coli and human RNA. This provides a promising 457 

approach to detect expected as well as novel RNA methylations and base modifications 458 

directly from native RNA sequences. This capability is superior to traditional methods that 459 

can detect one type of methylation at the time only and require complex experimental 460 

procedures. Moreover, based on the same principle, ELIGOS can be applied to identify DNA 461 
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modification by the comparison of the errors between native DNA and cDNA or a PCR 462 

product as shown in the Supplementary Figure S7. This potential will need to be further 463 

investigated and compared with existing methods for direct DNA modification detection 464 

using ONT 39, 40 or PacBio 41 sequencing.     465 

The procedure can result in possible high false positives from artifactual signals, as was 466 

demonstrated for five triplets that caused errors in the nanopore sequencing signals that were 467 

irrespective of presence of 5moU in the IVT experiment.  Such systematic errors can be 468 

filtered out from the ELIGOS results if different mRNA datasets can be compared, helping to 469 

reduce false positives, at the cost of removing true signals that can be presented by these 470 

sequences. Using this approach, we were able to uncover known biologically relevant motifs 471 

containing m6A RNA methylation and rG4 secondary structures. ELIGOS can specifically 472 

identify the location of RNA modifications but it cannot tell the exact type of RNA 473 

methylation.  This is a limitation of the approach and it would require further investigations to 474 

determine the nature of the RNA modification loci inferred by ELIGOS by using such 475 

traditional technique of LC–MS/MS approach 14. This will be a complementary approaches 476 

for epitranscripome profiling. 477 

Systemic analysis of transcriptional and epitranscriptional regulations would provide a 478 

better understanding of cellular adaptions. We applied our method here to either rRNA or 479 

poly-A RNA transcripts. It has previously been reported that in a given cell population, even 480 

rRNA methylation patterns can be heterogeneous 42 whose nature may depend on dynamic 481 

processes taking place at a cellular level, and on the stage and cell type that can be used as a 482 

marker for cancer 42. We have further demonstrated (Figure 5) that metabolic reprogramming 483 

of the central metabolic pathways of yeast during the diauxic shift from glycolysis and 484 

alcoholic fermentation to aerobic respiration and gluconeogenesis relied on regulation of both 485 

transcript abundance and base modifications. To our knowledge this has not been previously 486 

reported in the literature. This kind of regulation coupling was also found in RNA undergoing 487 

methylation-mediated pathways in cancer cells, so that our method now opens a new strategy 488 

to study carcinogenesis 43. 489 

The limitations of our method is that for a number of sequence triplets, false-positive 490 

signal could not be distinguished from real signals. Moreover, the method identifies the 491 

location of putative modification sites but not its nature, whose identity would need further 492 

investigations. Besides, the input data for our method depend on the results obtained from 493 

base calling and long read aligner software as a prerequisite, therefore the accuracy of these 494 

steps will influence the final result.  Lastly, it is possible that the method is over-reporting the 495 
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number of predicted modified bases due to the noisy nature of ONT output. Nevertheless, this 496 

systematic sequence approach to determine the epitranscriptome of a cell can be used to direct 497 

an experimental work flow, especially since expression levels can simultaneously be 498 

considered. 499 

In conclusion, this study provides a concrete foundation to study native RNA sequences 500 

that carry important information on RNA modifications, secondary structures and possible 501 

other features responsible for sequence errors. Detailed investigations to dissect the complex 502 

properties of RNA from detected error signatures is now feasible. Our ELIGOS software is 503 

publicly available and can be used to detect possible RNA modification sites and secondary 504 

structures quickly, on a global transcriptomic scale. Moreover, ELIGOS can be used as a 505 

diagnostics tool to improve the base calling algorithm of nanopore sequencing. We envisage 506 

that sequencing of native RNA will become a powerful and versatile tool to advance RNA 507 

biology.  508 

 509 

Methods 510 

In vitro transcription of luciferase mRNA  511 

In vitro transcription (IVT) to produce mRNA of the luciferase gene (L-7602 CleanCap™ 512 

Firefly Luciferase, TriLink Biotechnologies, San Diego, CA, USA) was carried out with 513 

standard ribonucleotides and with incorporation of 5-methoxyuridine (5moU, TriLink 514 

Biotechnology). The produced mRNA containing a poly-A tail was purified using 515 

AMPureXP beads (Beckman Coulter, Brea, CA, USA) and eluted using nuclease-free water.   516 

Culture conditions and RNA extraction  517 

Yeast RNA used for ribosomal RNA was isolated from S. cerevisiae strain S288C grown 518 

overnight at 30°C in 15 mL medium containing 10 g/L yeast extract, 20 g/L peptone, and 20 519 

g/L glucose. RNA was extracted using the ZymoBIOMICS Quick-RNA Fungal/Bacterial kit 520 

(Zymo Research, Irvine, CA, USA) according to the manufacturer’s protocol. The yeast poly-521 

A RNA used to compare the transcriptome of different culture conditions is the same as 522 

previously described 2, 6. S. cerevisiae strain CEN.PK113-7D was cultivated overnight in 523 

minimal medium containing 20 g/L glucose as the carbon source. Cells were harvested during 524 

mid-exponential growth on glucose and during late-phase growth, when the cells had 525 

switched to aerobic respiration and consumed ethanol due to glucose limitation. The same 526 

RNA aliquots were used to produce dcDNA sequences as described below. The data from 527 

three independent replicate experiments were used, producing 12 sequence data sets (three 528 
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each for dcDNA-seq and dRNA-seq from either glucose-grown (glu) or glucose-depleted 529 

cells (eth)).   530 

Escherichia coli strain ATCC 11775 was cultured overnight at 37°C in 25 mL of Luria broth 531 

(LB) and following centrifugation the cell pellet was resuspended in 250 µL, to which 750 µL 532 

of TRIzol reagent (Life Technologies, Carlsbad, CA, USA) was added. Following incubation 533 

for 5 minutes at room temperature, 200 µL of chloroform were added. Phases were mixed by 534 

inverting the tube 15 times and then incubated for 10 min. Following centrifugation at 12,000 535 

x g for 5 min at 4°C, 400 µL of the aqueous phase was removed and the RNA it contained 536 

was cleaned using the Direct Zol kit (Zymo Research).  537 

Human cell line KTC-1 (human papillary thyroid cancer cell line) was grown to 85-90% 538 

confluence in 10cm dishes in RPMI media supplemented with 10% fetal bovine serum 539 

utilizing standard techniques. The cells were rinsed twice with cold, sterile PBS after which 540 

700 µl TRIzol reagent (Life Technologies) was added. Following incubation for 5 min at 541 

room temperature, the cells were collected and mixed with 700 µl absolute ethanol. RNA 542 

isolation was performed with the Direct-Zol RNA mini prep Kit (Zymo Research) as per 543 

manufacturer’s instructions. Total RNA was eluted in 20µl RNase/DNase free water and 544 

stored at -80°C. As most RNA in these samples represented ribosomal RNA, the template was 545 

completely sequenced to obtain rRNA reads. 546 

The total RNAs for the rRNA experiments were firstly add poly-A using E. coli Poly(A) 547 

Polymerase (New England Biolab, UK), following the manufacturer’s protocol, then used for 548 

sequencing library preparation.   549 

Library preparation, dcDNA-Seq and dRNA-Seq by ONT 550 

A total of 530~600 ng total yeast RNA was enriched for poly-A RNA by means of oligo(dT) 551 

beads and this was used to prepare both libraries. The dcDNA library was produced using the 552 

SQK-DCS108 kit (ONT, Oxford, UK) which includes an RT step but no amplification step. 553 

RNA was then converted to double strand DNA, after which ligation of the adaptor attached 554 

the motor protein (Supplementary Figure S8). The library was loaded directly onto a flow cell 555 

for sequencing using a MinION Mk1B. Preparation of the library for dRNA-seq, SQK-556 

RNA001 was used, only required an RNA stabilization step by formation of DNA-RNA 557 

hybrids through reverse transcription. After this, the motor protein was attached to the RNA 558 

strands specifically. Each library was loaded onto a flow cell for a 48 hours sequencing run 559 

lasting. Direct sequencing of the poly-A RNA (dRNA) was performed on a single R9.5/FLO-560 

MIN107 flow cell.  561 

Bioinformatics and statistical analysis 562 
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Data processing and mapping of reads: The ONT raw data (.fast5 files) generated by 563 

MinKnow software (version 1.7.14) were converted to basecalled .fastq files using the local-564 

based software Albacore version 2.1.3. This step automatically classifies failed and passed 565 

reads based on a specific cut-off for mean quality scores of 7 and only reads >200 bases were 566 

included. The ONT reads in standard fastq format were aligned to the reference sequences 567 

using Minimap2 to generate a BAM file. The dRNA reads were converted to DNA sequences 568 

and reverse complement sequences of dcDNA reads were generated before alignments.  For 569 

analysis of mapping results of yeast, we employed SAMtools (version 1.6) to investigate the 570 

BAM files and to classify sequence reads into categories of mapped, unmapped, chimeric and 571 

other reads based on standard CIGAR string information. 572 

Comparative errors analysis and development of ELIGOS software: The ELIGOS software 573 

was developed to compare the error signals between dRNA and dcDNA/cDNA sequences. 574 

The percentage of errors at a specific base (%ESB) is defined as the percentage of the sum of 575 

substitutions, insertions and deletions of individual positions over total mapped reads 576 

obtained from read alignment results based on the reference sequence. Each pair of BAM 577 

files, together with reference sequences and transcript annotation files in bed12 format, was 578 

used as the input of the ELIGOS software. The calculations of %ESB through the pysam 579 

module and the statistical tests (explained below) by R were performed using individual base 580 

positions of transcripts over the reference sequences with multithread parallelization 581 

architecture. The software was then applied to the rRNA and the mRNA sequencing datasets. 582 

ELIGOS is written in python and is available at https://bitbucket.org/piroonj/eligos.git.  583 

The difference of the %ESB between dRNA and dcDNA sequences of identical positions in 584 

the reference sequences were evaluated using either Fisher’s exact test for a single 2×2 585 

consistency table (one biological replicate) or Cochran–Mantel–Haenszel test for multiple 586 

(more than one biological replicate) 2×2 consistency tables of independence. The statistical p-587 

values were further adjusted for multiple testing using the Benjamini-Hogberg method. The 588 

adjusted p-values <1e-50 and odds ratios (errors presented in dRNA sequence over errors 589 

presented in dcDNA sequence) ≥2 were used as cut-offs to reject the null hypothesis that the 590 

errors at the individual base of dRNA and dDNA sequences were equal. Furthermore, a cut-591 

off of ≥25% ESB in dRNA sequence was used as additional filter to remove noise due to the 592 

error-prone long reads as illustrated in Figure 1A. Some interesting regions were explored at 593 

the signal-level through the re-squiggle signal approach using Tombo software version 1.4 594 

(https://github.com/nanoporetech/tombo.git).  595 
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For ribosomal RNA investigations, the fastq files were aligned onto a reference genome 596 

sequence (for S. cerevisiae: NR_132209.1, NR_132215.1, NR_132213.1, and NR_132211.1 597 

combined; for E. coli: positions 232785-23568, 1046691-1048228 and 232576-232686 from 598 

NZ_KK583188.1; and for H. sapiens NR_023363.1, NR_003287.4, NR_146119.1 and 599 

NR_145819.1 combined) using minimap2 software 44 to obtain BAM files of the sequences. 600 

Evaluation of mRNA sequencing characteristics:  The yeast dRNA reads from strain 601 

CEN.PK113-7D were downloaded from the SRA database (accession number SRP116559), 602 

and after generation from the same sample aliquots, the corresponding dcDNA reads. The 603 

sequence reads from yeast strain DBY746 grown in YPD were downloaded from BioSample 604 

SAMN07688322 5. A fourth dataset was added which consisted of mRNA isolated from 605 

human cell line, GM12878, which is part of the publicly available Oxford Nanopore Human 606 

Reference Dataset  (https://github.com/nanopore-wgs-607 

consortium/NA12878/blob/master/RNA.md) under creative license 4.0 8. All data generated 608 

in this study were deposited in the SRA database (accession number SRP166020). 609 

Differential gene expression evaluation: We followed the workflow to analyze differential 610 

gene expression of yeast transcripts as previously described previously 6. In brief, the read 611 

count table of individual transcripts for the dcDNA and dRNA sequences were generated 612 

using Bedtools version 2 45. We then employed the DESeq2 package 46 to calculate adjusted 613 

p-values of individual transcripts between the two compared growth conditions. 614 

Consequently, functional gene enrichment analysis based on GO annotation was performed 615 

using the PIANO package 47. 616 

De novo motif discovery: The sequences of 20 bases surrounding the differential %ESB of all 617 

A, T, C, or G positions identified by ELIGOS were extracted based on the reference sequence 618 

and these four separate datasets were analyzed using XXmotif software 48 to identify 619 

conserved motifs. The selected results of common motifs across the four experimental 620 

datasets are illustrated as logo plots with e-values and percent occurrence. 621 

Genomic locations of loci and transcripts comparison: The relative location of considered 622 

loci with reference to gene position was compared using Bedtools version 2 45 and the 623 

GenomicRanges package 49. The results were summarized in Venn diagrams using 624 

ChIPpeakAnno 50 or Upset plots using UpsetR 51. 625 

Statistical analysis: Fisher’s exact test was used for a single 2×2 consistency table (one 626 

biological replicate) and the Cochran–Mantel–Haenszel test for multiple (more than one 627 

biological replicate) 2×2 consistency tables of independence. The statistical p-values were 628 
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further adjusted for multiple testing using the Benjamini-Hogberg method. These statistical 629 

tests were used to compare %ESB of individual bases. The results from Fisher’s exact test 630 

were used to generate Figures 1E, 2B, 2C, and the human cells dataset. Cochran–Mantel–631 

Haenszel test was used for the yeast datasets. Negative binomial statistics of the DESeq 632 

package was employed for differential expression analysis of the yeast grown in minimal 633 

media and shown in Figure 4B. Statistical analysis of gene-set enrichment was performed 634 

under PIANO package and shown in Figures 4C, D. Student’s t-test was used in Figures 1A, 635 

2A to compare populations of %ESB between dRNA and dcDNA.  Wilcoxon signed-rank 636 

sum tests were employed to test the difference of means between two considered populations 637 

in Figure 1F, to compare %ESB between of the five artifactual triplets among dRNAO, 638 

dRNAU and dcDNA. Statistical significance of reported comparisons between methylation 639 

predictions and published experimental results of rRNA were calculated using 640 

hypergeometric test to reject the null hypothesis that the findings were produced by random 641 

events. The statistical analyses were performed using the R suite software.    642 

 643 
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 850 
Figure 1.  Direct sequencing of in vitro transcripts of the luciferase gene with and without 851 
incorporation of 5-methoxy-uridine. (A) The distribution of the percentage Error at a Specific Base 852 
(%ESB) for dRNAO differs significantly from that of dcDNAO and dRNAU, with ** P<e-60, ***<e-100. 853 
The black arrow indicates at which frequency of %ESB higher values are found in dRNAO than in the 854 
other two templates. The thick gray area to the left of the plot represents the histogram of the first bin 855 
around zero. (B) Re-squiggled signal plots of a selected region obtained with dcDNAO template (top), 856 
and overlaid signals obtained with dRNAU (blue) and dRNAO (cyan) (bottom). The vertical, bell-857 
shaped curves at each base position represent the distribution of the standard canonical model signals 858 
for either template. C) Position-specific %ESB passing the 25% cutoff for (from top downwards) 859 
dRNAO, dRNAU and dcDNAO. The bottom line presents %ESB of dRNAO only for positions where U 860 
is present. The positions of all uridines are shown in magenta below the colored sequence line. (D) 861 
Locus determination based on differential %ESB positions and merging of adjacent signals. From the 862 
top: 5moU positions shown as magenta bars; %ESB of dRNAO sequences shown as cyan bars; %ESB 863 
of dRNAO sequences shown as blue bars; dcDNAO lane indicating absence of % ESB that pass the 864 
cutoff of 25 %; Sig. dRNAU and Sig. dcDNAO lanes illustrating the differential %ESB detected when 865 
comparing dRNAO with dRNAU (blue) or dcDNAO (red), respectively. The middle colored blocks 866 
represent the differential ESB positions, the thinner black bars above them represent the locus 867 
extension with flanking bases on both sides, while the thin bars below the colored blocks represent the 868 
resultant merged loci. (E) Venn diagram of loci (black numbers) identified by differential %ESB 869 
values of dRNAO compared to dcDNAO (red circle), or compared to dRNAU (blue circle). The 870 
numbers of all uridine positions are given in gray. To the right of the Venn diagram is the %ESB 871 
distribution shown for the 77 uridine positions not overlapping with the other two datasets. (F) 872 
Artifactual differential %ESB signals are sequence-dependent. The %ESB values of five identified 873 
triplets that differed significantly between dRNAU and dcDNAO or dRNAO (a:  p<0.05, b: p<e-3 and c: 874 
p<e-8 as derived from Wilcoxson’s rank sum test).  875 
 876 
 877 
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  878 

Figure 2.  Direct sequencing of native rRNA and corresponding cDNA of yeast, E. coli and 879 
human cells. (A) The %ESB for dRNA differs significantly from that of dcDNA with * p<e-30, *** 880 
p<e-100 derived from Student’s t-test. (B) Venn diagrams showing in red circles ELIGOS-predicted 881 
loci (black numbers) and individual base positions (gray numbers) overlapping with described 882 
methylation sites (gray circles), for the three species. The human cell line data were compared to 883 
known methylation information retrieved from Natchair et al.  21 (superscript N in central 884 

interception) and Erales et al. 20 (superscript E). (C) The same Venn diagrams, separating out the 885 
five motifs that could possibly produce artifacts (orange numbers).   886 
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 887 
Figure 3. Comparison of read characteristics for six datasets of yeast RNA sequenced as dcDNA 888 
or dRNA. (A) Sequence yields per hour and violin boxplot of %read identity; (B) numbers of reads 889 
that passed (green) or failed (black) the quality score of 7 by Albacore software; (C) read length 890 
distribution of all reads combined (passed plus failed); (D) numbers of all reads that could be mapped 891 
to a reference genome; (E) quality score distribution of mapped and unmapped reads, and (F) read 892 
length distribution of the reads after removal of chimeric sequences. Data are shown for glucose-893 
grown cells (glu) and for glucose-deprived cells (eth).  894 
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 895 
 Figure 4.  Comparison of transcript abundances based on dcDNA-Seq and dRNA-seq. (A) a 896 
combined scatter plot and correlation matrix. (B,C) Scatter plots showing the correlation of statistical 897 
values between all individual transcripts combined as identified by dcDNA and dRNA based on 898 
adjusted p-values (B)  and on observed mean log2fold changes (C) derived from three biological 899 
replicates. (D) Venn diagram of GO-terms identified in dcDNA and dRNA datasets. 900 
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 901 
Figure 5.  Capturing RNA modification and structural signatures inferred by ELIGOS in 4 902 
datasets of mRNA. (A) Logo plots of the most common motifs around the differential ESB positions 903 
identified by ELIGOS (indicated by the dashed line ovals) in the transcriptomes from yeast strain 904 
CEN.PK113-7D grown in glucose (i) and in ethanol (ii), yeast strain DBY746 grown in YPD (iii) and 905 
from a human cell line (iv), for (left to right) cytidine, uridine or adenine. Above each plot, e refers to 906 
the e-value of the motif, and o reports the occurrence of the motif. (B) Scatter plots  of the yeast data 907 
sets with linear regression lines, showing no correlation between transcript length (top) and weak 908 
correlation between transcript abundance (bottom) and their number of identified inferred RNA 909 
modification loci. (C) Concerted analysis of differential gene expression and RNA modifications as 910 
inferred by ELIGOS on the central metabolic pathway during the diauxic shift of yeast. The green and 911 
blue boxes represent the difference in number of inferred RNA modifications in individual transcripts 912 
that are higher in glucose and ethanol, respectively, with the numbers of inferred RNA modifications 913 
on the left and right of the boxes, respectively. The grey boxes represent transcripts that have no 914 
inferred RNA modifications detected. The edges represent the fold changes of transcript abundances. 915 
 916 
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 917 

Figure 6. Epitranscriptome of human cell line CEPH1463s. (A) Logo plot of the DRACH motif 918 
surrounding m6A identified by ELIGOS, with below it the standardized coordinate plot of 995 919 
transcripts containing the motif to illustrate its preferential position in 3’ untranslated regions. (B)  920 
Logo plot of the RNA G-quadruplexes (rG4s) motif with below it the standardized coordinate plot of 921 
the 1250 transcripts containing the motif. Other motifs identified in the yeast datasets are shown in 922 
Supplementary Figure S6. (C, D) Examples of selected transcripts hnRNP A2/B1 (C) and hnRNP A0 923 
(D) in which both the DRACH and the rG4s motifs were found to be modified. A comparison is 924 
shown in IGV Genome Browser of our predictions and previous studies conducted with different 925 
human cells and different m6A profiling methods. The tracks show (from top down): i) alignment 926 
coverage depth of dRNA reads of the transcripts;  ii) isoform architecture showing (D) transcripts t1, 927 
t2 (missing exons 7 and 8, shown in red), and t3; iii) location of ELIGOS identified DRACH motifs 928 
(green); iv) location of ELIGOS identified rG4s motifs (yellow); v) %ESB of dRNA (cyan) and 929 
dcDNA (red) sequences at the differential %ESB loci for adenine as identified by ELIGOS; vi) m6A 930 
individual-nucleotide resolution crosslinking and immunoprecipitation (miCLIP) data of HEK293 931 
cells using SySy m6A antibody enrichment 24; vii) miCLIP data of HEK293 cells using Abacam m6A 932 
antibody enrichment 24; viii) UV crosslinking and immunoprecipitation (UV-CLIP) data of CD8T cells 933 
29; ix) UV-CLIP data of A549 cells 29 x) methyl-RNA immunoprecipitation (MeRIP) peak data of 934 
HEK293T cells 30; xi) MeRIP peak data of hESCs cells at time point T0 52; xii) MeRIP peak data of 935 
hESCs cells at time point T48 52. All MeRIP peak data were plotted based on the read coverage depth 936 
of 6mA enriched (cyan) and the reference sequencing library (red); xiii) MeRIP peak region data of 937 
HeLa cells 35. A zoomed output is shown in Supplementary Figure S6. 938 
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