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DecodinF the Golay Code with Venn Diagrams 
MARIO BLAUM AND JEHOSHUA BRUCK 

Abstract -A decoding algorithm based on Venn diagrams to decode 
the [23, 12, 71 Golay code is presented. The decoding algorithm is based 
on the “design” properties of the parity sets of the code. As for other 
decoding algorithms for the Golay code, decoding can be easily done by 
hand. 

I. INTRODUCTION 

Let C be a binary linear [ n , k , d ]  error-correcting code [4] 
defined by the parity-check matrix H. Let 

where each h, is a binary vector of length n. We associate to 
each h, its support Ai, where the support of a vector is the set 
of coordinates corresponding to nonzero elements. For example, 
the support of u=(10101 is (1,3,5, . .-) .  The sets A, are 
called parity sets of C .  Let U be a codeword transmitted through 
a noisy channel, and r be the received vector, i.e., r = v e e ,  
where e is the error vector (“e” denotes exclusive OR). There is 
a one-to-one correspondence between error patterns of weight 
I [(d - 11/21 and syndromes [4], where the syndrome of e is the 
vector of length n - k defined as 

= ( S, , s2 ,- . . , s,, - k )  = eH = rH’ 

where H denotes the transpose of H. 
We denote by E the support of the error vector e. We call the 

set E the error set. The goal of the decoder is to determine the 
error set E from the syndrome s. Notice that 

s = eHT = ( e .  h I ,  e ‘ h , ,  * . . , e .  h,, - k )  (1) 

where the single center dot denotes inner product. The inner 
product between two binary vectors is equal to the parity of the 
intersection of their supports, Le., 

s = e H T  

= ( 1 E n A I l m o d 2 , I E n  A , ( r n o d 2 ; ~ ~ , ( E ~ A n ~ , J m o d 2 ) .  (2) 

From (21, we see that the parity set A, contains an odd number 
of locations in error if and only. if s, = 1 (1 5 j s n - k) .  If s, = 1, 
we say that A, is flagged; otherwise, A, is unflagged. If set A, is 
flagged then it contains at least one location in error. Using this 
observation, we can easily see that the following decoding algo- 
rithm corrects one error (a nice description of the algorithm 
using Venn diagrams is presented in [5]). 

Decoding Algorithm 1. I (for I-Error Correcting Codes) 

Let C be a binary [ n ,  k ,  d ]  1-error-correcting code (Le., d 2 3) 
defined by the parity sets A , ,  A 2 , . . . , A , l p k .  Using the previous 
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notation, assume that no more than one error has occurred 
during transmission. Denote the flagged sets by F,, F2; . ., F, 
and the unflagged sets by U , ,  U,; . ., Ll,,-,-,,,. Then 

E = F, F2 . . . Fw,ol  U, . . . q, - ,,,, 

where E =0 if w = 0, AB denotes A n B and x i s  the comple- 
ment of A with respect to (1,2; . ., n). 

Example 1.1: Cansider the [7,4] Hamming code [4] in which 
the parity-check matrix is 

1 i 0 1 1 1 0 0 1  

1 1 0 1 1 0 0  
H = 1 0  1 1  0 1 0 .  

The parity-check sets are A ,  ={1,2,4,5), A 2  =(1,3,4,6) and 
A, ={2,3,4,7). Assume we receive r =(lo01 010). Since H is in 
systematic form [4], the first four bits are the information bits. 
The syndrome is s = r H T  =(Oil). So, set A ,  is unflagged and 
sets A, and A, are flagged. Applying algorithm 1.1, E = 
XI A,A, = (3). So, bit 3 is in error and r is decoded as U = 
(1011 010). If we are only interested in the information symbols, 
we decode r as (1011). 

We end this section by presenting a simplified version of the 
decoding algorithm 1.1 for the [7,4] Hamming code. The idea is 
to use at most one parity set at a time for decoding. A similar 
principle will be used later to decode the Golay code. Given the 
parity sets A , ,  A,, and A, of Example 1.1 we eliminate from 
them the locations corresponding to the redundancy (5, 6, and 
7) as well as location 4. With this new definition, the parity sets 
are A,={1,2), A2={1,3) and A3=(2,3}. 

The error set E will contain elements from {1,2,3,4) only, 
since we are not interested in errors in the redundant bits. 
Complements are now taken with respect to the generic set 
{1,2,3). Let w be the weight of the syndrome. The algorithm 
makes a decision based on w. 

Decoding Algorithm 1.2 (for the [ 7 , 4 ]  Hamming Code) 

as follows. 
Given a syndrome s of weight w,  the error set E is obtained 

1) w < l = E = 0 .  
2) w = 2 - E = complement of the unflagged set. 
3) w = 3 - E = { 4 ) .  

For instance, applying Algorithm 1.2 to the syndrome in 
Example 1.1, since the unflagged set is A ,  then E = A ,  = {3). 
The main contribution of this correspondence is a decoding 
algorithm for the [23,12,7] Golay code. The algorithm finds the 
error set E using set operations on the parity sets similar to 
Algorithm 1.2. It is not a surprise that the Golay code is more 
complicated to handle. We need to study the relations between 
subsets of size 1, 2, or 3 (since the Golay code is 3-error-cor- 
recting) with respect to the parity sets of the code. This will be 
done in the next section. The actual decoding algorithm is stated 
and proved in Section 111. 

11. P A R T I A L  D E S C R I P T I O N S  A N D  C O N F I G U R A T I O N S  OF SETS 

In this section, we consider subsets of a generic set (1,2, . . , U). 
Given two subsets A and E ,  we denote by AB their intersection 
A n B  and by the complement of A with respect to 
{1,2;..,u). 
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Definition 2.1: Let A be a subset of (1,2;. . , U ) .  We say that 
( a l , a , ; ~ ~ , a , ) b , , b , ; ~ ~ , ~ ,  is a partial description of A if and 
only if ( a , , a , ; ~ . , a , ) ~ A  and ( b , , b l ; . . , b , ) ~ ~  We use the 
notation A = (a, ,az;. . ,a,)b, ,b,; . . ,b, . .  Of course, in gen- 
eral, a partial description of a set is not unique. The following 
lemma is clear. 

Lemma 2.1: Let A be a set having two partial descriptions, 
A = ( a , , a , ; . . , a , ) b , , b , ; . . , b , .  and 

. U { b ; , b:, , . . . , b$}.  

For example, if A=(1,2)3,4 and A=(1,5,6)4,7, then A =  
(1,2,5,6)3,4,7. The next concept we want to convey is the one 
of configuration. 

Definition 2.2: Given a family of subsets A ,, A,; . . ,A,, ,  and 
a fixed subset C = ( c , ,  cZ; . ., c , )  of {1,2; . . , U ) ,  the configura- 
tion determined by C with respect to A , , A , ; . . , A , , ,  is the 
family of partial descriptions of A ,, A,, . . . , A,,, given by using 
only the elements of C. 

Example 2.1: Let the generic set be (1,2,3} and A ,  ={1,2), 
A,  =(1,3), A,=(2,3) (these sets were defined in the previous 
section as modified parity sets of the [7,4] Hamming code). Let 
C = (1). Then a configuration of C with respect to A ,, A,, A ,  is 

A way to denote the configuration in Example 2.1 is as 
A ,  ( I ) ,  A ,  ( I ) ,  -4, = ( 

follows: 

In other words, we have two columns: in the first column, we 
write the sets that contain one element of C, while in the second 
column we write the sets that contain no elements of C. The 
next example deals with the parity sets of the [23,12,7] Golay 

redefine the parity sets in such a way that elements 12 and 
12 + j are excluded and the generic set is (1,2,. . . , l l ) .  Thus, we 
have 

A ,  = {1,3,7,8,9,11} 

A,  = {1,2,4,8,9,10} 

A ,  = {2,3,5,9,10,11} 

A4={1,3,4,6,10,11} 

A, = {1,2,4,5,7,11} 

A ,  = { 1,2,3,5,6,8} 

A ,  {2,3,4,6,7,9} 
A,  = {3,4,5,7,8,10} 

A ,  = {4,5,6,8,9,11} 

A , , ,  = {1,~ ,6 ,7 ,9 ,10}  
A , ,  = {2,6,7,8,10,11}. 

For example, the configuration determined by C = (1,2) is 

(1,2) (1)2 ( )1,2 
(1,2) (1)2 ( )1,2 
(1,2) ( 1 9  

(2)1 
(2)1 
(2)1 

As we can see, we denote the configuration of a subset C with 
respect to sets A , , A , ; .  . ,A , , ,  with [Cl+ 1 columns: in the first 
column, we write all the partial descriptions containing the [Cl 
elements of C; in the second column, we write all the partial 
descriptions containing ICI- 1 elements of C; and so on. Even- 
tually, in the last column, we write all the partial descriptions 
containing no elements of C. From now on, we concentrate on 
the configurations associated with the Golay code. We are 
interested in configurations of sets of size up to 3, for reasons 
that will become clear in the next section. 

Consider the sets A ,, A,, . . . , A , , defined in Example 2.2. 
The following two lemmas describe the basic properties of the 
sets. 

Lemma 2.2: Let a,b,c be elements of (1,2;..,11). We then 
have the following. 

1) ( a )  is contained in exactly six sets. 
2) (a ,b)  is contained in exactly three sets. 
3) ( a ,  b)  is disjoint with exactly two sets. 
4) (a,b,c) is contained in either one or two sets. 
5) ( a ,  b, c )  is disjoint with at most one set. 

code. 
Example 2.2: The [23,12,71 Golay code can be defined as the 

code in which the parity-check matrix in systematic form is [41 
H = (PII , , ) ,  where I, I is the 11 x 11 identity matrix and P is the 
11 x 12 matrix 

P =  

' 1 0 1 0 0 0 1 1  1 0 1  1 
1 1 0 1 0 0 0 1 1 1 0 1  
0 1 1 0 1 0 0 0 1 1 1 1  
1 0 1 1 0 1 0 0 0 1 1 1  
1 1 0 1 1 0 1 0 0 0 1 1  
1 1 1 0 1 1 0 1 0 0 0 1  
0 1 1 1 0 1 1 0 1 0 0 1  
0 0 1 1 1 0 1 1 0 1 0 1  
0 0 0 1 1 1 0 1 1 0 1 1  
1 0 0 0 1 1 1 0 1 1 0 1  

1 0 1 0 0 0 1  1 1 0 1 1  1 

Using the notation of Section I, the sets Ai, 1 I j I 11, have 
eight elements each. Observe that element 12 appears in all of 
the sets and element 12+ j appears exactly once in set A,. We 

The next lemma is the dual of the previous one. 

ple 2.2. We then have the following. 
Lemma 2.3: Let A,, A, ,  A ,  be any three of the sets in Exam- 

1) 
2) 
3) 
4) 
5) 

A ,  contains exactly six elements. 
A,A, contains exactly three elements. 
AA, contains exactly two elements. 
A,A,Ak _ _ _  contains either one or two elements. 
A,A,A,  contains at most one element. 

The next step is to find the configuration of sets of size up to 3 
with respect to the 11 sets. As we can see from Lemma 2.2, 
there are two possibilities for a subset of size 3. We say that 
(a,b,c)  is of class 1 if it is contained in exactly one set A,, 
1 5 j I 11. Otherwise we say that ( a ,  b, c) is of class 2. 
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The next lemma is an easy corollary of Lemma 2.2. It de- 
scribes the complete configurations of subsets with one, two, 
and three elements. 

Lemma 2.4: Let ( U ,  b, c )  c ( l , 2 , .  . ., 11) .  Then we have the 
following. 

1) {a )  has the following configuration: 

( a )  ( > a  
( a )  ( >a 
( a >  ( >a  
( a )  ( > a ’  
( a )  ( >a 
( a )  

2) {a, b) has the following configuration: 

( a , b )  ( a ) b  ( ) a , b  
( a , b )  ( a ) b  ( ) a , b  
( a , b )  ( a ) b  

( b ) a  
( b ) a  
( b ) a  

3) (a, 6 ,  c )  has only two possible configurations. 
a) If (a ,b ,c}  is of class 1,  then it has the following 

configuration: 

( a , b , c )  ( a , b ) c  ( a ) b , c  ( ) a , b , c  
( a , b ) c  ( b ) a , c  
( a , c ) b  ( c ) a , b  
( a , c ) b  
( b , c ) a  
( b , c ) a  

b) If (a ,b ,c )  is of class 2, then it has the following 
configuration: 

( a , b , c )  ( a , b ) c  ( a ) b , c  
( a , b , c )  ( a , c ) b  ( a ) b , c  

( b , c ) a  ( b ) a , c  
( b ) a , c ’  
( c ) a , b  
( c ) a , b  

The proofs of the previous three lemmas follow from observ- 
ing the structure of the sets A , ,  A , ; .  ., A , , .  It is also possible 
to prove the lemmas by using the theory of t-designs [4]: the 1 1  
sets correspond to a Hadamard two-design and the statement 
about three-sets can be obtained using the concept of block 
intersection numbers. 

The next results are concerned with some particular intersec- 
tions of the sets A1,A,; .  . , A l l .  They will be used in the next 
section. We prove only one of them, the others are proved 
similarly. In all cases (a ,  6,c)  c(1,2;. ., l l} .  

Lemma 2.5: Consider the configuration of (a ,b)  in Lemma 
2.4. Let A,I = ( a , b ) ,  AI2 = ( n , b ) ,  A,, = ( a , b ) ,  A,* = ( ) a , b ,  
and A,$ = ( ) a ,  b. Then 

1 )  A , ~ A , , + , ~ & ~ ~ ~  = ( a , b ) ;  
2) 414;43~l,4$ =0; 
3) AIIAIZAI3AI ,AI5 =D. 

Proof: 

1) Clearly, ( a , b ) c  A , I A , 2 A , 3 & , ~ C .  By Lemma 2.2, a subset 
of three elements cannot be contained in more than two 
sets A,, so we have equality. 

2) Assume C E A , ~ A , ~ T ~ A , , & , ,  c$E(a,b).  Then, A , I =  
( a , b , c ) ,  A, ,  = ( a , b , c ) ,  A,, = ( a , b ) c ,  A , , =  ( c ) a , b ,  and 
A,, = ( )a,  b, c .  Since (a, b, c )  appears in two sets, it is of 
class 2. By Lemma 2.4, there is no set in the configuration 
of (a ,h ,c )  in which the partial description is ( )a,b,c.  
But A,, = ( ) a , b , c ,  which is a contradiction. 

3) Assume c E A, lT ,&3A, ,A ,5 .  Then, A, I  = ( U ,  b , c ) ,  
A , ? = ( a , b ) c ,  A , , = - ( a , b ) c ,  A , , = ( c ) a , b ,  and A , $ =  
( c ) a ,  b. Since both A,, and A,, have the partial descrip- 
tion ( a ,  b)c ,  by Lemma 2.4 we conclude that ( a ,  b, e )  is of 
class 1. Also by Lemma 2.4, since both A,, and A,, have 
the partial description ( c ) a , b ,  (a ,b ,c )  is of class 2.  This 
is a contradiction. U 

Lemma 2.6: In the configuration of (a,b),  let A,I  = ( a ) b ,  
A,? = ( a ) b ,  A , ,  = ( a ) b ,  A,, = ( b ) a  and A,, = ( b ) a .  We then 
have the following. 

Lemma 2.8: In the configuration of (a ,b) ,  let A,,  = ( a , b ) ,  
A , 2 = ( a , b ) ,  A , ? = ( a , b )  and A , , = (  )a ,b .  Then we have the 
following. 

1) A_I,A,2AI,”, ={a) .  
2) A,IA,ZA,,A,,=@. 

Lemma 2.10: Let (a ,  b, c )  be of class 2. In the configuration of 
( a , b , c } , l e t A , I = ( b , c ) a , A , ~ = ( a , c ) b a n d A , 1 = ( a , b ) c . T h e n  
A,,A,?A,,  =k). 

111. DECODING OF THE [23,12,7] GOLAY CODE 
In this section we state and prove the decoding algorithm for 

the [23,12,7] Golay code. The proof strongly relies on the 
results of the previous section. For several other methods to 
decode the Golay code the reader is referred to [1]-[4], [6], [7], 
[8]. Some of these other decoding algorithms can also be done 
by hand and have similar complexity. The algorithm performs 
set operations (union, intersection and complement) on either 
the flagged or unflagged parity sets, whichever is smaller. So, 
the algorithm works with at most five sets at a time. As with the 
[7,4] Hamming code, we restrict the set E to the information 
bits (i.e., E c(1,2; . ., 12)). 
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Let w be the weight of the syndrome and m = min(w, 11 - w). 
So there are either rn flagged or m unflagged sets. Denote 
those rn flagged or unflagged sets by B,,B,; . . ,B, , , .  The next 
decoding algorithm for the [23,12,7] Golay code is our main 
result. 

Decoding Algorithm 3.1 for the [23,12, 71 Golay Code 

tions. 
The error set E is found by one of the following set opera- 

1) w13 then E =O. 
2) w = 4  then: 

a) E ={i), where (i)= BIB2c7B_4;_or 
b) E = (i, 12), where (i) = El B,B,B,; or 
c) E = (i, j ,  k) ,  where (i, j ,  k )  = U B ,  BbBc B,, the union 

running over the six partitions ( a ,  b)  U {c ,  d )  = 

{l, 2,3,4). 

3) w =  5 then: 

a) E = (i), where {i)= B I B ? ~ 7 B _ 4 ~ ; ~ r  
b) E = (i, 12), where (i) = B,B,B,B,B,; cr 
c) E = (i, j ,  12}, where (i, j )  = B,B,B, B,B, for one of the 

ten partitions {a ,b ,c )U{d,e)= (1,2,3,4,5); or 
d) E = {i, j ) ,  where (i) = B,B,B,~,Bc, and ( j )  = 

B,B,B,B,B, for one of the ten partitions (a ,b,c)U 
M e ) =  (1,2,3,4,5). 

_ _ _  

4) w = 6  then: 

_ _ _ _  a) E = (i, 12), where (i) = B,_B,B,B,B,; or 
b) E = (i), where (i) = BIB,B,B,Bs or {i) = B,B,B, B,B, 

for one of the five partitions ( a ) U { b ,  c, d ,  e )  = 

c) E = {i,;), where { i , j ) =  B,B,B, E</B, ,  for one of the 
(1,2,3,4,51; or 

ten partitions ( a ,  b, c)u ( d ,  e )  = (1,2,3,4,5). 

5 )  w = 7  then: 
_ _ _ _  

a) E = (i), where (i) = B , B , B , B 4 ~ o ~  
b) E = (i, j ) ,  where (i, j )  = B,B,B, B, for one of the six 

partitions ( a ,  b)  U (c, d )  = {l,  2,3,4), or (i, j )  = 

B,B,B,B, for one of the four partitions ( a , b , c ) U ( d )  
= (1,2,3,4). 

6) w = 8  then: 
_ _ _  

a) E = (i), where (i) = BIB,B,; or 
b) E = (i, j ,  k ) ,  where (i, j ,  k )  = B,B,B, U B,B,B, U 

7) w 2 9, then E = (12). 

B, B, E,. 

Proofi The proof considers all cases of a errors in the 
information bits and b errors in the redundant bits, a + b I 3. 
Then we verify that each case of error is solved by a step in the 
decoding algorithm. 

1) No errors in the information bits; then w I 3 and Step 1 
of the algorithm takes care of this case. 

2) Exactly one error in bit i, 1 I ~ I  11; there are three 
subcases. 

a) No errors in the redundancy; since i is contained in 
exactly six sets (Lemma 2.21, then w = 6. By Step 4b) of 
the algorithm, n := ,8, = ( i) ,  finding the error in i. 

b) One error in the redundancy; we have two possibili- 

w = 5. Since the error is in the five flagged sets, it 
is found by Step 3a) of the algorithm. The intersec- 
tion of five sets cannot contain more than one 
element by Lemma 2.2. 
w = 7. Since the error is in none of the four un- 
flagged sets, it is found by Step 5a) of the algo- 
rithm. By Lemma 2.2, the intersection of the com- 
plements of four sets cannot contain more than 
one element. 

c) Two errors in the redundancy; we have three possibili- 

w = 4. The error is found by Step 2a) of the algo- 
rithm. 
w=6 .  The error will be in exactly one unflagged 
set and will not be in the other four unflagged sets, 
hence, it is found by Step 4b). 
w = 8. The error is found by Step 6a). 

ties. 

ties. 

3) One error in bit 12; we may have either no errors, one 
error or two errors in the redundancy. Any set such that 
only bit 12 is in error (and not its redundant bit) is 
flagged, hence w = 11, 10 or 9, and the error is deter- 
mined by Step 7 of the algorithm. 
Two errors in bits i and j ,  1 I i < j I 11; there are two 
subcases. 

a) No errors in the redundancy; by Lemma 2.4, subset 
(i, j )  is contained in exactly three sets and it is disjoint 
with exactly two sets. These five sets are unflagged, 
hence w = 6. The errors are then found by Step 4c) of 
the algorithm. Lemma 2.5 assures that we obtain the 
right solution, since all the intersections are empty 
except for one. 

b) One error in the redundancy; there are two possibili- 
ties. 

w = 5; without loss of generality, we may assume 
that three of the flagged sets contain i and do not 
contain j ,  while the other two flagged sets contain 
j and do not contain i. So i is in one of the ten 
intersections B,B,B,BdEK of Step 3d), while j is 
in its “conjugate” B,B,B,B,B,. Lemma 2.6 as- 
sures that there is only one partition ( a ,  b, c) U { d ,  e )  
with this property. 
w = 7; if the error in the redundancy corresponds 
to one of the three sets containing {i,;), then two 
of the unflagged sets contain (i,;) and two of them 
have empty intersection with (i, j ) .  If the error in 
the redundancy corresponds to one of the two sets 
in which the intersection with (i,;) is empty, then 
three of the unflagged sets contain {i, j )  and only 
one has empty intersection with (i,;). In any case, 
the errors are found by Step 5b). Lemmas 2.7 and 
2.8 assure that only one of the ten intersections 
gives the two locations in error. 

5 )  One error in bit i, 1 I i I 11, and one error in bit 12; 
there are two subcases. 

a) No errors in the redundancy; in this case w = 5 ,  since 
bit i is in six of the sets (Lemma 2.21, and these sets 
are unflagged because bit 12 is also in error. Since i is 

4) 
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in none of the five flagged sets, the errors are found by 
Step 3b). 

b) One error in the redundancy; consider the two possi- 
bilities. 

w = 4 ;  since i is in none of the flagged sets, E is 
found by Step 2b). 
w = 6; bit i is in the five unflagged sets, so E is 
found by Step 4a). 

6) Three errors in bits i, j ,  and k ,  where 1 I i < j < k I 11; 
we have two subcases (Lemma 2.2). 

a) The three bits i ,  j ,  and k are contained in exactly one 
set (i.e., (i, j ,  k )  is of class 1). Then set (i, j ,  k )  has the 
configuration of Lemma 2.4. There are four flagged 
sets (i.e., w = 4) according to this configuration. As- 
sume that B, = (abc) ,  B, = (a )bc ,  B, = ( b ) a c ,  B, = 
(c)ab.  The errors are then found by Step 2(c). Lemma 
2.9 assures that this is the right solution. 

b) The three bits i, j ,  and k are contained in exactly two 
sets (i.e., (i, j ,  k )  is of class 2). Now set {i, j , k )  is of 
class 2 and its configuration is given by Lemma 2.4. 
According to this lemma, there are three unflagged 
sets. Assume that B,  = ( a b ) c ,  B, = ( a c ) b ,  B, = 
(bc )a .  The errors are then found by Step 6(b). Lemma 
2.10 assures that this is the right solution. 

7) Two errors in bits i and j ,  1 I i < j I 11 and one error in 
bit 12; the pair (i, j )  is contained in exactly three sets 
(Lemma 2.2) and since bit 12 is also in error, these sets 
are flagged. The other flagged sets are those having 
empty intersection with {i, j ) .  There are two of them 
(Lemma 2.21, so w = 5; the errors are then found by Step 
3c). The solution is the right one by Lemma 2.7. 

Since the code has minimum distance 7 and we have exhausted 
0 all the possibilities, up to three errors will be corrected. 

implemented by hand. An interesting research problem is find- 
ing similar algorithms for other codes. 

Regarding complexity, let us count the number of boolean 
operations (OR, exclusive OR, AND) needed to decode. The first 
step is finding the syndrome. This step requires 77 operations 
(each of the 11 rows in the parity check matrix has weight 8, so 
we need 7 exclusive-os operations in each). Then we apply the 
algorithm itself. The worst case occurs when w, the weight of 
the syndrome, is 5 (Step 3 in Algorithm 3.1). Then, a) and b) 
take 44 boolean operations, c) takes 440 (there are 10 cases), 
and d) also takes 440 operations (half of the intersections were 
found in c)). This gives a total of 968 operations. If we add the 
complexity of the syndrome, we have a total of 1045 operations. 
As a comparison, the worst case of permutation decoding in- 
volves computing 14 times the syndrome 13,231: this gives a total 
of 14 X 77 = 1078 operations. 

Let us find average case complexity. We find the average for 
each step in Decoding Algorithm 3.1, then we add all those 
partial averages, obtaining the total average. In Step 2a), there 
are 11(:) = 165 possible patterns (this case corresponds to one 
error in the information part and two errors of type 1 + 0 in the 
redundancy). Since each pattern requires 33 operations for 
decoding (we are multiplying 4 vectors of length l l) ,  Step 2a) 
requires, on average, (165 x 33)/2048 operations. In Step 2b), 
there are 11 x 5 = 55 possible patterns, since there is an error in 
one of the first 11 bits, an error in bit 12, and an error of type 
1 + 0 in the redundancy. So, Step 2b) requires, on average, 
(55  X 66)/2048 operations (each pattern takes 66 operations, 
since first it has to be verified that Step 2a) did not occur). As 
for Step 2c), there are ( 141) - 165 -55 = 110 patterns. Since each 
pattern requires 66 + 6 X 33 + 5 X 11 = 319 operations, the aver- 
age of Step 2c) is (1 10 X 319)/2048. Adding the average of Steps 
2a), 2b), and 2c), the average of Step 2 is 

1 6 5 x 3 3 + 5 5 ~ 6 6 + 1 1 0 ~ 3 1 9  

2048 
= 21.6. (4) 

Example 3.1: Let us look at several syndromes and apply 
decoding Algorithm 3.1 to them. Using an analogous procedure, we estimate the averages 

Let s=O1110010101. Since w =6,  we go to Step 4 of 
the algorithm. The unflagged sets are B,  = A , ,  B, = A,, 
B, = A,, B, = A,  and B, = A, , , .  In Step 4c), we obtain 

A,,&A,A,x,,, = (3,8} = E .  

Let s = 10110100101. Again, we have w = 6. The un- 
flagged sets are now B, = A,, B, = A,, B, = A,, B, = 
A, and B, = A,”. Step 4b) gives 

x2A,x7x,xl, = (11) = E .  

Let s=OO110111000. Now we have w = 5 .  The five 
flagged sets are B ,  = A,, B, = A,, B, = A, ,  B, = A, 
and B, = A,. From Step 3a), we obtain that 
A3A4A,A7A,={3)= E .  

IV. CONCLUSION 

corresponding to Steps 3 ,  4, 5 ,  and 6 of the algorithm. The 
average number of operations in Step 3 is = 130.7, in Step 4 it is 
= 48, in Step 5 it is = 27.5 and in Step 6 it is = 4.1. Adding all 
these averages together with the 77 operations necessary to find 
the syndrome, the average number of operations in Decoding 
Algorithm 3.1 is approximately 279. As a comparison, permuta- 
tion decoding involves finding the syndrome 7 times on average, 
giving 77 x 7 = 539 operations. 
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We described a decoding for the [23, 1 2 7 7 i  Golay [h] 
code. The decoding algorithm is based on set operations over no 


