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Abstract

Brain imaging research has largely focused on localizing patterns of activity re-
lated to specific mental processes, but recent work has shown that mental states can
be identified from neuroimaging data using statistical classifiers. We asked whether
this approach could be extended to predict the mental state of an individual using a
statistical classifier trained on other individuals, and whether the information gained
in doing so can provide new insights into how mental processes are organized in the
brain. Using a variety of classifier techniques, we achieved cross-validated classification
accuracy greater than 80% across individuals (where chance = 13%). Based on classi-
fier sensitivity analysis we recovered a low dimensional representation common to all
cognitive/perceptual tasks, and used an ontology of cognitive processes to determine
the cognitive concepts most related to each dimension. These results reveal a small
ordered set of large-scale networks that map cognitive processes across a highly diverse
set of mental tasks, suggesting a novel way to characterize the neural basis of cognition.

1 Introduction

Neuroimaging has long been used to test specific hypotheses about brain-behavior rela-
tionships. However, it is increasingly being used to infer the engagement of specific mental
processes. This is often done informally, by noting that previous studies have found an
area to be engaged for a particular mental process and inferring that this process must
be engaged whenever that region is found to be active. Such “reverse inference“ has been
shown to be problematic, particularly when regions are unselectively active in response to
many different cognitive manipulations (Poldrack, 2006). However, recent developments in
the application of statistical classifiers to neuroimaging data provide the means to directly
test how accurately mental processes can be classified (e.g. O’Toole et al., 2007; Haynes &
Rees, 2006). In this paper, we first examine how well classifiers can predict which of a set
of eight cognitive tasks a person is engaged in, based on patterns from other individuals,
and we show that it is possible with high accuracy. Second, we examine the dimensional
representation of brain activity that underlies this classification accuracy, and find that
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the differences between these tasks can be described in terms of a small set of underlying
dimensions. Finally, we examine how these distributed neural dimensions map onto a the
component cognitive processes that are engaged by these diverse tasks, by mapping each
task onto an ontology of mental processes. The results demonstrate how neuroimaging can
in principle be used to map brain activity onto cognitive processes rather than tasks.

There is increasing interest in using the tools of machine learning to identify signals
that can allow ”brain-reading”, or prediction of mental states or behavior directly from
neuroimaging data (O’Toole et al., 2007). These classifiers are first trained on ”in-sample”
fMRI data and then used to make predictions about ”out-of-sample” patterns within the
same experimental task. Such methods typically show perfect classification on the in-
sample training data, whereas for out-of-sample cases classification ranges between 70-90%
correct, which is quite exceptional given the noisiness of the fMRI signal. For example, it
is now well-established that fMRI data from the ventral temporal cortex provide sufficient
information to accurately predict what class of object (e.g., faces, houses etc) a person is
viewing (Hanson & Halchenko, 2008; Hanson et al., 2004; Haxby et al., 2001). In other
kinds of tasks one can tell whether the subject is conscious of visual information (Haynes
& Rees, 2005) or even ”read out” the intention of the subject prior to their behavioral
response (Haynes et al., 2007). Thus, it is possible to reliably identify mental states for a
given individual within a specific task, using training data from the same individual. There
have also been some demonstrations of accurate classification across individuals (Mourao-
Miranda et al., 2005; Shinkareva et al., 2008), which have distinguished between a relatively
limited set of classes.

2 Classifying tasks across individuals

To investigate classification of tasks across individuals, we combined data across eight fMRI
studies performed in the first author’s laboratory, including a total of 130 participants
(Table 1) performing a wide range of mental tasks. The data were collected on the same
3T MRI scanner with consistent acquisition parameters and analyzed using the same data
analysis procedures (see Materials and Methods). This large-scale and methodologically
consistent dataset allowed us to ask the following question: Is it possible to tell which
mental task a person is engaged in, solely on the basis of fMRI data?

For each subject, a single statistical parametric (Z) map was obtained for a contrast
comparing the task condition to a baseline condition. These Z-statistic data were submitted
to classification using a multi-class linear support vector machine (SVM) (Boser et al., 1992;
Hsu & Lin, 2002; Schölkopf & Smola, 2002). SVM provides a computationally tractable
means to classify extremely high-dimensional data (in this case, over 200,000 features).
Accuracy at predicting which task a subject was performing was computed using leave-one-
out crossvalidation; the classifier was trained on all subjects except for one, and then tested
on that left-out individual, which was repeated for each individual (see Supplementary
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Figure 1 for overview of analysis).
Using data from the intersection set of in-mask voxels (which included 214K voxels

across the entire brain), 80% classification accuracy was achieved for subjects in the out-
of-sample generalization set. Similar levels of accuracy were obtained using neural network
classifiers; see Supplementary Table 1 for an exhaustive list of classifier results with this
dataset. Table 2 presents the confusion matrix for this analysis, which shows that all tasks
were classified with relatively high accuracy, though there was some variability between
tasks. Statistical significance of classification accuracy versus chance was assessed using a
randomization approach to obtain an empirical null distribution; mean chance accuracy was
13.3%, and according to this analysis accuracy greater than 18.5% is significantly greater
than chance at p < .05. When the classifier was trained on one run and then generalized
to a second run for the same individuals (for the six tasks that had multiple runs), 90%
classification accuracy was achieved for the second run (see Supplementary Table 2a for
the confusion matrix for this analysis). Thus, the generalizability of task classification
across individuals was nearly as high as the accuracy of generalization across runs within
individuals. It is difficult to compare these accuracy levels to previous studies of within-
subject classification, since those studies have often used much smaller image sets or single
images to perform classification, whereas we used summary statistic images in the present
analysis.

If this classification ability relies upon general cognitive features of the tasks, then it
should be possible to classify individuals performing different versions of the same tasks on
which the classifier was trained. This was examined using data from two additional studies,
which used similar (but not identical) versions of two of the trained tasks (Tasks 2 and 8).
These datasets were collected from subjects who had been included in the original training
set, but performing different tasks (Tasks 4 and 7, respectively). When the classifier was
trained excluding the data from these subjects from the original set, accurate classification
was obtained for the new datasets (84%) (Supplementary Table 2b). This demonstrates
that the classifier trained on the original data can accurately generalize to different studies
using different versions of the same mental tasks. When the datasets from those same
subjects (on different tasks) were included in the training set, accuracy was reduced but
still high (66%; Supplementary Table 2c). This decrease in accuracy reflects the fact that
the classifier was somewhat sensitive to individual characteristics of the training examples;
in particular, when the same subjects performed task 8 in the test data but task 7 in the
training data, they were often (7/20) misclassified as performing task 7 in the test. No
such misclassification occurred for task 2. These results demonstrate that the classifier
is more sensitive to task-relevant information than to idiosyncratic activation patterns of
individual subjects, but does retain some sensitivity to task-independent patterns within
individuals.
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3 Localizing the sources of classification accuracy

In order to determine the anatomical sources of the information that drove classification
accuracy, we used three independent sensitivity methods to identify anatomical areas that
were potentially diagnostic for the SVM classifier performance. First we looked at the
predictive power within each of a set of independent anatomical regions of interest (ROIs)
using an SVM classifier within each ROI. Second we applied a localized SVM centered
at every voxel with a fixed 4mm radial ROI (Hanson & Gluck, 1990; Kriegeskorte et al.,
2006; Poggio & Girosi, 1990). These analyses tended to agree and indicated that many
regions throughout the cortex provided information that allowed some degree of accurate
prediction (30-50%) of cognitive states (Figure 1; Supplementary Table 3). Substantial
predictability was present in sensory cortices; given the fact that the different studies
varied substantially in their visual stimulus characteristics and the presence of auditory
stimuli, this was not surprising, and it suggested that the classification does not necessarily
reflect the higher-order cognitive aspects of the tasks. However, a number of regions in
the prefrontal cortex also showed substantial predictability, including the premotor and
anterior cingulate cortices. When the local kernel extent was expanded to 8 mm, it was
striking that one of the only regions not providing substantial classification accuracy was
in the dorsolateral prefrontal cortices (Supplementary Figure 2). This could either reflect
the fact that those regions are equally engaged across mental tasks (Duncan & Owen,
2000), that substantial individual variability renders them non-predictive across subjects,
or that the radial ROIs are too small to detect relevant inter-regional interactions (since
generalization accuracy was so much lower than full brain SVM).

The foregoing analyses demonstrated which regions provide information that might be
useful for task classification, but do not tell us which regions are diagnostic for particular
tasks. In order to determine this, we performed an analysis that measured the diagnosticity
of each voxel; that is, how predictive it is of a specific task. This was achieved by deter-
mining from the whole-brain dataset which voxels have the greatest effect on the classifier
error, which is equivalent to the effect of removing them individually to see which ones
have the greatest effect on the classification (see Supplementary Methods for details). The
results of this analysis (Supplementary Figure 3) showed that the set of voxels identified
as diagnostic for each task is heavily overlapping but much smaller than the set of voxels
identified as active in a standard GLM analysis. These analyses have different goals: for the
GLM the goal is voxel detection while for classifiers it the identification of voxels that are
diagnostic for tasks, which has the potential for higher specificity (Hanson & Halchenko,
2008).

4 Relating neural and psychological similarity spaces

The ability to accurately classify mental tasks based on brain imaging data requires that
brain patterns from the same task are more similar in the high-dimensional voxel space than
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patterns from different tasks. We next set out to examine how this neural similarity space
is related to the psychological similarity space of the specific tasks used in the dataset, by
visualizing the location of each individual subject’s brain data in a brain activation space
with greatly reduced dimensionality.

So far we have shown that SVM provides strong evidence for a valid classification
function based on whole-brain data (200,000 features). Although the identified support
vectors are diagnostic of the boundaries of the decision surface, they, by design, cannot
at the same time provide probablistic information about the underlying feature space or
the class-conditional probability distributions. On the other hand, based on the impressive
performance of the SVM classifier, it is likely that a conservatively chosen feature selec-
tion/extraction set could be used to approximate the classification function identified and
at the same time allow visualization of the feature space and information on the class-
conditional probability distribution that SVM does not provide. One candidate for this
classification approximation is a related learning method which also has the ability to both
select exemplar patterns like SVM and find prototypes based on interesting projections in
the feature space: Neural networks (which are additive sigmoidal kernel function approxi-
mators). Unsupervised dimensionality reduction methods, such as principal or independent
components analysis, can also identify lower-dimension projections of fMRI data, but are
not constrained at the same time by the particular classification problem, as is a neural
network. However, one limitation of neural networks is that depending on the complexity
of the decision surface, they will be unable to process more than about 10,000 features
due to memory and computational constraints, and thus in the present case, will require
feature selection/extraction.

In our study, feature selection was performed by computing the relative entropy over
all brains and tasks in each voxel; in comparison to feature selection using variance within
features, this provided a more sensitive measure of voxel sensitivity to brain and task
variation. This measure resulted in 2173 voxels at a p < .01 threshold; the selected voxels
were sparsely distributed throughout the brain (Supplementary Figure 4). These voxels
were used to train a sigmoidal neural network (with a varied number of hidden units), which
was able to produce similar classification accuracy to the SVM analyses using whole brain
data (71% at 6 hidden units with little improvement to higher values; see Supplementary
Table 1). To further confirm the validity of entropy-based feature selection, we used these
voxels with an SVM classifier, which achieved reduced but similar accuracy (72%) to the
original analysis using 200K voxels, thus producing a compression factor of 100 to 1.

The NN classifier was trained on all exemplars and was able to achieve high classification
accuracy and simultaneously project the data into a lower-dimensional subspace (6 hidden
units). To further characterize this space we first performed an agglomerative hierarchical
cluster analysis (see Supplementary Methods for more details) in the 6-dimensional space
derived from the hidden units of the network (Figure 2). It is clear from this cluster space
that the neural activity patterns not only preserve task differences, but also reflect the
similarity structure of the mental tasks. For example, the three tasks that require linguistic
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processing (READ, RHYME, SEM) are adjacent, as are the two tasks that require attention
to auditory stimuli (WM and INH). In order to characterize the derived dimensionality of
the task space, we constructed a visualization of the dimensions per task using star plots,
which code the contribution of each dimension to each task. These plots (in Figure 3)
reveal two important results: (1) brain function across these diverse tasks are ordered on
a small set of unknown functional features (3-6) which suggests a recruiting of similar
brain networks over all tasks, and (2) the dimensions are ordered from sensory/perceptual
(auditory, visual) to more complex function (decision making, categorization, language
supporting functions, etc).

5 Mapping neural and mental spaces using ontologies

To characterize the neural dimensions obtained from the NN analysis in terms of basic
mental processes, we coded each task according to the presence or absence of a number of
such processes (as depicted in Supplementary Figure 5). These were then projected onto
all 6 functional dimensions, in order to characterize which cognitive processes were most
strongly related to each neural processing dimension (Figure 4). Dimension 1 loads most
heavily on the cognitive concept “audition”, and the neural pattern associated with this
dimension is primarily centered on the superior temporal gyrus (i.e., auditory cortex) and
precentral gyus. Dimension 2 orders tasks related to language (SEM, READ, CAT), and
factors a bilateral network including Broca’s and Wernicke’s areas and their right hemi-
sphere homologs as well as parahippocampal gyrus, medial parietal, and medial prefrontal
regions. Dimensions 3 and 4 select tasks related to learning and memory and decision
making, and are associated with highly overlapping neural structures including thalamus,
striatum, amygdala, medial prefrontal cortex, and parietal cortex. Dimension 5 is mostly
strongly associated with memory and vision, and is tightly focused on the dorsomedial
thalamus and dorsal striatum. Finally, dimension 6 shows a pattern of loading that is very
similar to activation observed in studies of response inhibition (right IFG, basal ganglia,
and medial prefrontal cortex; e.g.,(Aron & Poldrack, 2006)), and the mental concept most
associated with this pattern is indeed “response inhibition.” In each case is it also clear
that the pattern is not specific to those concepts, as seen in the relatively strong loading
of other concepts as well. These data suggest that the function of these networks is only
partially captured by these specific terms; however, the relatively small number of tasks
certainly biases the particular associations that were observed.

6 Discussion

The results presented here show that fMRI data contain sufficient information to accu-
rately determine an individual’s mental state (as imposed by a mental task), using clas-
sifiers trained on data from other individuals. This generalizes previous results, which
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have demonstrated significant classification within individuals (Haxby et al., 2001; Han-
son et al., 2004; Haynes & Rees, 2005) and between individuals (Mourao-Miranda et al.,
2005; Shinkareva et al., 2008), and provides a proof of concept that fMRI could be used to
detect a relatively broad range of cognitive states in previously untested individuals. The
results also demonstrate how large-scale neuroimaging datasets could be used to test the-
ories about the organization of cognition. Whereas previous imaging studies have nearly
always focused on determining the neural basis of a particular cognitive process using spe-
cific task comparisons to isolate that process, the approach outlined here shows how data
from multiple tasks can be used to examine the neural basis of cognitive processes that
span across tasks. To the degree that cognitive theories make predictions regarding the
similarity structure of different tasks, these theories could be tested using neuroimaging
data.

6.1 Relation to standard neuroimaging analyses

The standard mass-univariate approach to fMRI analysis asks the question: What regions
are significantly active when a specific mental process is manipulated? Examination of
the statistical maps associated with each of the eight tasks in the present study shows
substantial overlap between different sets of tasks, as well as some distinctive features.
The classifier analysis used in the present study asks a very different question: What task
is the subject engaged in, given the observed pattern of brain activity? It is common in the
neuroimaging literature to use univariate maps to infer the engagement of specific mental
processes from univariate analyses (i.e. reverse inference), but without using a classification
technique it is impossible to determine the accuracy of such inferences. More directly, our
diagnosticity analysis shows that the set of voxels that are activated by a task is much
larger than the set of voxels whose activity is diagnostic for engagement of a particular
task. This suggests that informal reverse inference is almost certain to be highly inaccurate
in task domains like those examined here. These results suggest that approaches like the
one used here are necessary in order to make strong inferences about cognitive processes
from neuroimaging data.

6.2 Ontologies for cognitive neuroscience

The use of formal ontologies (Bard & Rhee, 2004) (such as the Gene Ontology; (Ashburner
et al., 2000)) has become prevalent in many areas of bioscience as a means to formalize
the relation between structure and function. The results presented here, in which a simple
ontology of mental processes was mapped onto dimensions of neural activity, provides a
proof of concept for the utility of cognitive ontologies as a means to better understand how
mental processes map to neural processes (cf. (Price & Friston, 2005; Bilder et al., 2009)).
It is not possible at present to determine how well the present methods could scale to a
complete ontology of mental states. Such analyses would require large databases of statis-
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tical results from individual subjects, which are not currently available; the present results
suggest that such databases could be of significant utility to the cognitive neuroscience
community. In addition, it is likely that differences in acquisition parameters will have
significant effects on the ability to classify and cluster neuroimaging data across studies.
The development of neuroimaging consortia using consistent data acquisition parameters
across centers could help reduce this problem.
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Table 1: Datasets included in analysis (* - only one scanning run was available for this
task)

Task Task name Task code # of subjects Design type

1 Risky decision making (Balloon ana-
log risk task)

RISK 16 Event-related

2 Probabilistic classification (no feed-
back)

CLS 20 Event-related

3 Rhyme judgments on pseudowords RHYME 13 Blocked*

4 Working memory (tone counting) WM 17 Blocked*

5 50/50 gain-loss gamble decisions DEC 16 Event-related

6 Living/nonliving decision on mirror-
reversed words

SEM 14 Event-related

7 Reading pseudowords aloud READ 19 Event-related

8 Response inhibition (stop-signal task) INH 15 Event-related
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Table 2: Confusion matrix for SVM analyses: Generalization
across subjects using leave-one-out crossvalidation

True RISK CLS RHYME WM DEC SEM READ INH Accuracy

RISK 14 0 0 0 1 0 1 0 87.50%

CLS 0 18 0 0 0 0 1 1 90.00%

RHYME 1 2 8 0 1 1 0 0 61.54%

WM 0 0 0 14 0 0 0 3 82.35%

DEC 0 3 0 0 11 2 0 0 68.75%

SEM 0 2 0 0 1 11 0 0 78.57%

READ 0 1 0 0 0 0 17 1 89.47%

INH 0 0 0 1 0 0 3 11 73.33%
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44%20% 20% 41%

Figure 1: Localized accuracy of “reverse inference“ across the eight cognitive tasks, iden-
tified using a searchlight technique (localized SVM performed across a 4mm radial ROI
centered at each voxel). Results are overlaid on a population-average surface using CARET
software (Van Essen, 2005).
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Figure 2: Visualization of the reduced dimension dataset. The cluster tree is based on a
hierarchical clustering solution using the 6-dimension data obtained from the hidden unit
activity in a neural network when presented with each individual’s data. The data on each
component for each subject are presented in grayscale form in the lower panel (brighter
values represent higher values on each component). Each final branch in the tree and
column in the heatmap represents a single individual. Task labels are presented in Table
1.
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risk gamble
classify prob.

rhyme judgements

working memory tones
gamble 50/50

Semantic categorization/mirror

reading psuedowords aloud
response inhibition

Risk-taking (RISK) Classification (CLS) Rhyme judgments (RHYME)

Working memory (WM) Gambling decisions (DEC) Semantic judgments (SEM)

Reading aloud (READ) Response inhibition (INH)

Figure 3: Dimensional loadings per task shown in a star plot display where the coefficient
loading for each specific dimension in each task is coded by the relative size of its wedge
in the plot.
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Figure 4: Visualization of the loading of mental concepts onto brain systems. The slice
images show regions that exhibited positive (red-yellow) loading on the particular dimen-
sion; the original voxel loading maps were smoothed in order to create these images. The
tag clouds represent the strength of association between the cognitive concepts and dimen-
sions via the size of the text; larger words are more strongly associated with the dimension
direction of the same color.
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