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Epigenetic alterations, that is, disruption of DNAmethylation and
chromatin architecture, arenowacknowledgedas auniversal feature
of tumorigenesis1.Medulloblastoma, a clinically challenging,malig-
nant childhoodbrain tumour, isnoexception.Despitemuchprogress
from recent genomics studies, with recurrent changes identified in
eachof the fourdistinct tumour subgroups (WNT-pathway-activated,
SHH-pathway-activated, and the less-well-characterized Group 3 and
Group 4)2–4, many cases still lack an obvious genetic driver. Here we
present whole-genome bisulphite-sequencing data from thirty-four
humanand fivemurine tumoursplus eight humanand threemurine
normal controls, augmentedwithmatchedwhole-genome,RNAand
chromatin immunoprecipitation sequencing data. This compre-
hensive data set allowed us to decipher several features underlying
the interplay between the genome, epigenome and transcriptome,
and its effects on medulloblastoma pathophysiology. Most notable
were highly prevalent regions of hypomethylation correlating with
increased gene expression, extending tens of kilobases downstream
of transcription start sites. Focal regions of lowmethylation linked
to transcription-factor-binding sites shed light on differential tran-
scriptional networks between subgroups, whereas increased meth-
ylation due to re-normalization of repressed chromatin in DNA
methylation valleys was positively correlated with gene expression.
Large, partiallymethylateddomains affectingup to one-third of the
genome showed increased mutation rates and gene silencing in a
subgroup-specific fashion. Epigenetic alterations also affectednovel
medulloblastoma candidate genes (for example, LIN28B), resulting
in alternative promoter usage and/or differential messenger RNA/
microRNA expression. Analysis of mouse medulloblastoma and
precursor-cell methylation demonstrated a somatic origin formany
alterations.Our data provide insights into the epigenetic regulation

of transcriptionandgenomeorganization inmedulloblastomapath-
ogenesis, which are probably also of importance in a wider devel-
opmental and disease context.
Medulloblastoma is an embryonal tumour with few differentiation

markers and minimal normal-cell infiltration, making it well suited to
epigenomic studies (where heterogeneity can be confounding). Thirty-
four tumour andeight control sampleswere selected froma largermeth-
ylation array cohort forwhole-genome bisulphite-sequencing analysis5

(WGBS; average 28.5-fold average coverage and 91.4% of CpGs cov-
ered$103; Supplementary Tables 1, 2 andMethods). Individual CpG
sites showed a predominantly bimodalmethylation pattern (either fully
unmethylated or fully methylated), linked to CpG density (Extended
Data Fig. 1a–c).Non-CpGmethylationwas low in tumours, but higher
in adult cerebellum (Extended Data Fig. 1d, e), as recently reported for
other brain regions6.
Matching gene expressiondata enabled a comprehensive assessment

of correlation with DNA methylation (see Methods), revealing nega-
tively and positively correlating regions (CRs). Very few negative CRs
were in promoter-associatedCpG islands (CGIs).Of 13,380 geneswith
a promoterCGI, 333 (2.5%)were significantly differentiallymethylated,
and only 79 showednegative correlationwith expression (ExtendedData
Fig. 2a and Supplementary Table 3a). TheWNK2 tumour suppressor7,
for example,was silencedbyCGIhypermethylation inmostWNTmedul-
loblastomasandsomeSHHandGroup3samples (ExtendedDataFig.2b, c).
Overall, medulloblastomas showed slightly higher CGImethylation than
normal cerebellum, butwithout evidence for aCGImethylator pheno-
type (Extended Data Fig. 2d). Thus, the classical notion of gene silenc-
ing through promoter hypermethylation was not a prominent feature,
andmany differentiallymethylated promoters were at genes that were
not expressed even in unmethylated samples.
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Muchmore abundantwere negativeCRs extending several kilobases
(kb) downstream of the promoter (promoter downstream (pd)CRs),
affecting 1,194 genes (Supplementary Table 3b). Correlation density
peaked at,2 kb downstream of the transcription start site (TSS), with
most pdCRs extendingmuch farther (often tens of kilobases, and some-
times greater than 50 kb; Fig. 1a–c). For example, RUNX2, encoding a
WNT-activated transcription factor8, showed a hypomethylated pdCR
andhigh expression exclusively inWNTmedulloblastomas (Fig. 1d, e).
Overall, pdCRswere found in 8.4%of expressed genes, withmany show-
ing tumour-subgroup-specific differentialmethylation (Fig. 1f, Extended
Data Fig. 3a, b and Supplementary Table 3b).Methylation and expres-
sion levels of genes harbouring a pdCR clearly distinguished between
the tumour subgroups (Fig.1g).Almost20%ofgenes specifically expressed
by a subgroup contain a pdCR (636 out of 3,304), suggesting that this
methylationpatternplays an important part indetermining the distinct
transcriptomes ofmolecular variants ofmedulloblastoma (Supplemen-
tary Table 3b, c).

Analysis of publicly availableWGBS data from various tissues (Sup-
plementaryTable2d) revealedpdCRs as auniversal feature,moreprom-
inent in homogeneous cell populations (for example, sorted neuronal or
haematopoietic lineages versus infiltrative tumours or whole organs).
A similar pattern in CpG ‘shores’ and ‘shelves’ (up to 2 kb and 2–4 kb
fromCGIs, respectively) has beendescribed in some tissues using array-
based methods or smallWGBS cohorts, and has been linked to tissue-
specific expressionpatterns9–11and to thepresenceofH3K4me3 (ref. 12),
an active chromatin mark. Chromatin immunoprecipitation followed
by sequencing (ChIP-seq) in twomedulloblastoma cell lines (D425and
MEB-MED-8A)confirmedanoverlapof pdCRs andelevatedH3K4me3
(ExtendedData Fig. 3c, d).Our results highlight the extent of pdCRs as
an abundant, previouslyunderappreciatedpatternof correlationbetween
methylation and expression. Possible explanations for this hypomethy-
lation range frompassivemethylation loss during cell division at highly
RNA-polymerase-occupied regions (inaccessible toDNAmethyltrans-
ferases), to a regulated process that actively marks genes for increased
transcription.
WealsoproducedWGBSprofiles formurineSHHmedulloblastomas

arising owing to inactivation of patched homologue 1 (Ptch1;Math1-

creERT2:Ptch1fl/fl (ref. 13)) together with matched purified cerebellar
granule neuron precursors (GNPs)—the precursor for SHHmedullo-
blastoma and therefore the optimal normal control.When comparing
mouse tumours and precursor cells, 161 pdCRs larger than 2 kb were
detected (Supplementary Table 3d). For example, Pdlim3 shows a clear
pdCRandhigh expression inhumanandmouseSHHmedulloblastoma,
but not inGNPs (Fig. 1h, i, and ExtendedData Fig. 3e, f). Other known
SHHmedulloblastomagenes, such asPtch1,Cdk6 andBoc, showed a sim-
ilar pattern. Thus, although someDNAmethylation differences between
the subgroups areprobably linked to an epigenetic ‘fingerprint’ or ‘mem-
ory’ of developmental lineages, alterations also arise somatically during
tumour development.
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Figure 1 | Negative correlation between methylation and expression is
enriched in extensive regions downstream of promoters. a, Density plot of
CpGs negatively (neg.) correlating with gene expression with respect to
distance from the TSS (n5 36 samples). b, c, pdCR length in kb (b) and as a
proportion of gene length (c). d, Methylation plot for RUNX2 (n5 42),
showing a large WNT-medulloblastoma hypomethylated pdCR extending
,19 kb downstream of the promoter. Grey box, region of interest; red,
methylated; blue, unmethylated. e, Correlation of expression and methylation
for the RUNX2 pdCR in the extended validation cohort (n5 95). CBM,
cerebellum; r, Pearson’s correlation coefficient. f, Overview of genes associated
with a pdCR (correlated), those that are significantly differentially methylated
(Diff. meth.) across medulloblastoma subgroups and controls, and those
that are specifically differentially methylated in a given tumour subgroup.
g, Heat-map representation of methylation (n5 42) and gene expression
(n5 36) of subgroup-specific pdCRs. h, i, pdCR at PDLIM3 in human (n5 42)
(h) and murine (n5 9) (i) SHH medulloblastoma, but not in matched GNPs,
indicating a somatic origin.
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Figure 2 | Differential methylation around LIN28B reveals a novel
promoter, tightly correlated with expression in Group 3 and Group 4
medulloblastomas. a, Methylation plot for the LIN28B promoter region
(n5 42), with a novel TSS giving rise to an alternative transcript (LIN28B long).
Arrows indicate bidirectional enhancer RNA transcription. Representative
RNA-seq data are shown for samples methylated (Meth.) or unmethylated
(Unmeth.) at the canonical promoter. Red, methylated; blue, unmethylated.
CBM, cerebellum. b, Correlation of expression andmethylation of an upstream
CR at the novel TSS. r, Pearson’s correlation coefficient. c, Correlation of
LIN28B and LET-7i (n5 59). d, Association of LIN28B expression with overall
survival inGroup 3medulloblastoma (Kaplan–Meier analysis,P, log-rank test).
See also Extended Data Fig. 5f.
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Wenext sought to identify novel promoters regulated by pdCRs. RNA
sequencing (RNA-seq) data for 43medulloblastomas and 7 control sam-
ples were assessed for splice junctions linking to unannotated 59 exons
(that is, novel first exons; see Methods). This revealed 2,479 exons not
annotated in RefSeq in 1,937 genes (Supplementary Table 3e). Of these
exons, 1,714were listed inGENCODE,providing support forourmethod.
Around40%wereupstreamof the annotated 59 end of the gene,with the
remainderbeing internal. For example,C9orf3, hosting themiRNAcluster
MIR-23b–27b–24-1 cluster, was associated with a novel gene-body start
site that harboured a pdCR specifically in theWNT subgroup (Extended
Data Fig. 4a). Upregulation of thismicroRNA (miRNA) cluster has previ-
ouslybeennoted inWNTmedulloblastomas14, and correlationwithmeth-
ylationwas observed in ourmiRNAdata set (ExtendedData Fig. 4b–e).
To avoid confounding signals fromcanonical promoters,we focused

on novel exons located .15 kb upstream of the previously annotated
start site (the farthest being.500 kb upstream). Of 262 such exons, 49
showed patterns indicative of a pdCR (Supplementary Table 3d). One
notable example is themiRNA-processing geneLIN28B, which showed
differential regulation at a novel alternative first exon in Group 3 and
Group 4 medulloblastomas. A pdCR at this start site (representing a
bidirectional promoter with LINC00577) is hypomethylated in almost
all Group 3 and Group 4 medulloblastomas, with increased LIN28B
expression, whereas the canonical promoter was mostly hypermethy-
lated (Fig. 2a, b andExtendedData Fig. 5a–c).LIN28B regulatesmultiple
oncogenic processes, in part by downregulating the tumour-suppressive
LET-7miRNA family15. Group 3 and 4medulloblastomas showed signi-
ficantly lower expression of most LET-7miRNAs compared withWNT

and SHHmedulloblastomas (Fig. 2c andExtendedData Fig. 5d, e).High
LIN28Bexpressionhasbeen linkedwithpoorprognosis inneuroblastoma16,
and this also held true for Group 3 and 4 medulloblastomas (Fig. 2d
and Extended Data Fig. 5f).
Broader inspectionof genome-widemethylation revealedmegabase-

scalepartiallymethylateddomains (PMDs)10,17–19, affectingup toone-third
of the tumour genome (Fig. 3a, b and Extended Data Fig. 6a, b). These
regions account for the decreased globalmethylation observed inWNT
and Group 3 tumours (Extended Data Fig. 1c). Although PMDs have
been noted as a prominent feature of tumourmethylomes1, with global
hypomethylation common in cancer, the affected regions showed clear
subgroup specificity inWNTandGroup3medulloblastomas, and they
werevirtually absent inSHHandGroup4 tumours (Fig. 3b andExtended
Data Fig. 6c–e).
PMDs have been linkedwith inactive chromatin and large-scale gene

silencing17,18,20.Genes inside subgroup-specific PMDswere significantly
less expressed than non-PMD genes in that subgroup (positive correla-
tionwithmethylation; SupplementaryTable 4a), even (to a lesser extent)
in tumours without clear hypomethylation (Extended Data Fig. 7a, b).
Intra-subgroup heterogeneity, however, suggested some divergence in
PMDformation (for example, for calmin (CLMN) inGroup3; Extended
Data Fig. 7c, d). ChIP-seq in D425 cells confirmed an association of
PMDs with long, organized domains of repressive marks (H3K9me3,
H3K27me3)17–19, andanabsenceof theactiveH3K36me3mark (Fig. 3c, d
andExtendedDataFig. 7e). LongerPMDsshowedwidespreadH3K9me3
bordered by H3K27me3, whereas shorter PMDs showed H3K27me3
only (Fig.3d).Asignificantly increasedsomaticmutationratewasobserved
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Figure 3 | Megabase-scale silenced domains and
smaller DMVs are associated with distinct
histone marks and positive correlation with
expression. a, Example of a region on
chromosome 6 showing large, subgroup-specific
PMDs (n5 42). Negative (Neg.) andpositive (Pos.)
CRs are indicated. Partial methylation on
chromosome 6 in WNT medulloblastomas (4/5
showmonosomy 6) supports thenotion that PMDs
are stochastically acquired and not allele specific.
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cerebellum. b, Genome-wide quantification of
PMDs. c, d, D425 cell line methylation (Meth.) and
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t-test). f, For WNT- or Group-3-specific PMDs,
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i, j, Methylation plot around FOXG1 (n5 42),
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in PMDs (Fig. 3e, f), consistent with increased mutagenesis in late-
replicating heterochromatin21. Mutant allele fractions indicated that
most of this additional mutational burden is probably occurring early
in tumorigenesis (data not shown).
The subgroup specificity of PMDs implies a non-randomheterochro-

matization.Expressionof tumourPMD-relatedgeneswas lower innormal
cerebellum thannon-PMDgenes (ExtendedData Fig. 7a, b), indicating
pre-existing silencing in certain normal precursors. Variable hypomethy-
lationwithin tumours, however, suggests a stochastic loss amongdifferent
cell populations (ExtendedData Fig. 6c, d).WGBSdata ofmedulloblas-
tomacell lines support a gradual acquisitionmodel, as hypomethylation
wasmuchmore pronounced in long-established lines (MEB-MED-8A,
D425) comparedwitha recentmodel (HD-MB03;ExtendedDataFig. 6a).
Thus, PMDs probably arise progressively due to failed transmission of
methylation in late replicating, repressive domains22, and are probably
secondary to, rather than causative of, heterochromatin formation.
More localized hypomethylated regions surrounding smaller genes,

termed DNA methylation valleys (DMVs) or lowly methylated ‘can-
yons’, have recently been reported as regulating tissue-specific gene
expression23,24.Thispattern, associatedwithH3K27me3and/orH3K4me3
histone marks, is reminiscent of previously described, evolutionarily
conserved polycomb-binding sites25. OurWGBS data revealed several
hundred valleys per sample, with 1,754uniqueDMVsoverlapping a gene
(Fig. 3g). Almost 20% (n5 309) encompassed an entire gene, andmany
were correlated with expression (Fig. 3h, Extended Data Fig. 8a–c and
SupplementaryTable 4b).Aspreviously noted24, a largenumberofDMVs
affect developmental transcription factors and neuronal lineage genes.
Interestingly, 16.8%ofDMVs showed a positive correlation between

methylation and expression. These regions are reminiscent of PMDs,
but are present in all tumours and controls, aremuch shorter, and have
a higher CpG density (Supplementary Table 4c). One example is the
region around FOXG1, a transcription factor linkedwith stem cell self-
renewal in Group 3 and Group 4 medulloblastomas26. This gene is
hypomethylated andnot expressed innormal cerebellum,whereashyper-
methylation of the DMV in Group 3 and Group 4 tumours is coupled
with markedly increased expression (Fig. 3i, j).
ChIP-seqdata forDMVs inD425 cells that are also present in primary

tumours andencompass an entire gene (n5 129) revealed a notablepat-
tern of either H3K4me3 (when the gene was expressed) or H3K27me3
(no expression) marks, with few bivalent sites (Fig. 3k). The absence of
DNAmethylation inDMVs showing positive correlation betweenmeth-
ylation and expression may reflect a particularly dense heterochromatin
that is inaccessible to the methylation machinery. Increasedmethylation
is associated with gain of the active mark H3K4me3, loss of H3K27me3,
and increased expression (for example, at the PITX2 locus; Extended
Data Fig. 8d, e). Thus, reactivationmay involve a ‘normalization’ of the
chromatin state from densely packed heterochromatin to a more open
conformation, with re-establishment of the DNAmethylation pattern
typical of other genomic regions.DMVs are generally thought to be hypo-
methylated innormal tissues, andhavebeenreported to containCGIs that
are particularly prone to silencing by hypermethylation in cancer24,27,28.
We demonstrate, however, that cancer-specific gain of DNAmethyla-
tion in DMVs is also linked to reactivation of repressed genes. This
relationship is similar to that observed previously for a subset of PMDs
in embryonic stem cells, which showed high levels of H3K27me3 and
low methylation presumably linked with polycomb-mediated repres-
sion.DecreasedH3K27me3 and increasedDNAmethylation in several
of these PMDs, indicating relieved repression, was noted in differen-
tiated IMR90 fibroblasts19. Both shorter PMDs and positively correlat-
ing DMVs may therefore be linked to similar regulatory processes.
Negatively correlatingDMVs(n5111)were also identified,withhypo-

methylation and concomitant upregulation of expression (Supplementary
Table 4d).Onenotable examplewasOTX2, a knownmedulloblastoma
oncogene with roles in cell cycle regulation and differentiation29. It is
strongly hypomethylated andmarkedly overexpressed inWNT,Group 3
and Group 4 tumours (Fig. 3l, m).

OTX2was also highlighted by an analysis of additional focal regions
that did not fit into the categories described earlier, but clearly showed
differential methylation. Localized lowly methylated regions (LMRs)
have previously been linked with transcription-factor-binding sites
and gene regulation19,30. To prove a functional link between LMRs and
transcription-factor binding inmedulloblastoma,we performedChIP-
seq forOTX2.As expected, ChIP-seq peakswere associatedwith hypo-
methylation,whichwas strongest at the centreof thepeak.Theperiodicity
in flanking methylation levels matched the size of a nucleosome, sug-
gesting that hypomethylation of transcription-factor-binding sites may
spread to adjacent linker regions (Fig. 4a). Conversely, 75.9% of LMRs
that contained an OTX2-binding motif, identified in a systematic ana-
lysis, overlappedwith anOTX2ChIP-seq peak (ExtendedData Fig. 9a).
Approximately70,000LMRswere identifiedper sample,with.45,000

unique regions showing subgroup-specific patterns (Supplementary
Table 5a). Clustering revealed six groups: four with specificity for each
medulloblastomasubgroup,plus onenon-SHH/non-cerebellumandone
non-Group3/non-Group4 cluster (Fig. 4b andExtendedData Fig. 9b).
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Figure 4 | Focal LMRsmark binding sites for key transcriptional regulators.
a, Sites of OTX2 binding as defined by ChIP-seq in the D425 cell line are
marked by hypomethylation and possess anOTX2-bindingmotif.Methylation
(meth.) around the peak summit reveals a nucleosome periodicity. Red,
methylated; blue, unmethylated. b, Heat-map representation of subgroup-
specific (spec.) LMRs (61.5 kb around centre) grouped according to k-means
clustering. Motif analysis on these LMR clusters revealed enrichment for
several key transcription factors, with representative examples shown (see
Supplementary Table 5b). CBM, cerebellum. c, Examples of downstream
regulation of gene expression. Binding motifs for the identified transcription
factors are strongly enriched in the LMRs of the most highly overexpressed
genes in the respective subgroup. ***P, 0.001 (motif enrichment score, see
Methods). d, e, Example of upstream LMRs at the PTCH1/Ptch1 locus in
human/murine medulloblastomas with GLI2-binding sites. The same sites
are not hypomethylated in mouse GNPs, indicating a somatic origin. There is
also a pdCR at this site in both mouse (n5 9) and human (n5 41; sample
ICGC_MB1, with homozygous PTCH1 deletion, is not shown). Asterisk
indicates deletion of Ptch1 exon 3 (flanked by LoxP sites in thePtch1fl/flmodel).
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In a systematic analysis, each cluster showed enrichment for certain
transcription-factor-bindingmotifs, implicatingknownmedulloblastoma-
relatedgenes andnewcandidates (for example,NR2F6 inGroup3medul-
loblastoma; Supplementary Table 5b). To test whether the transcription
factors highlighted by LMR clustering might regulate downstream net-
works,we also looked atLMRsassociatedwith themost highly expressed
genes within the subgroups. Many transcription-factor-binding motifs
identified in a particular LMR cluster were also highly enriched in these
genes, demonstrating a key role for these transcription factors in deter-
mining subgroup identity (Fig. 4c and Supplementary Table 5b).
Analysis of differentially methylated LMRs therefore represents a

powerful tool to provide a global, unbiased assessment of the key tran-
scription factor regulatory networks acting in different tissues.
Analysis of our own and public mouseWGBS data again supported

a somatic origin formany LMRs.PTCH1/Ptch1, for example, harboured
several upstream LMRs with GLI2-binding sites in human and mouse
SHHmedulloblastoma thatwere not seen innormal cerebellumorGNPs
(Fig. 4d, e and Extended Data Fig. 10). The GLI2-binding motif was
enriched inmouse-tumour-specific LMRs, in keeping with the human
data (Extended Data Fig. 9c and Supplementary Table 5c).
Our integrative analysis has uncovered a wealth of alterations in the

methylome landscape ofmedulloblastoma. The regulatory effect of such
epigenetic alterations in modulating the cancer phenotype allows for
gradual global changes during tumour evolution, and their interplay
with single time-point events suchas geneticmutationswill be an impor-
tant future avenue of investigation. New targets that may be important
for the pathophysiology of these tumours and for therapeutic interven-
tionwere also identified. These data, and the analysismethods applied,
represent a valuable resource for further investigation into epigenetic
regulatorymechanisms in cancer biology and in awider context of other
disease processes and organismal development.

METHODS SUMMARY
All patients contributingmaterial to this studyprovided informedconsent.Tumour
samples were collected before adjuvant chemo- or radiotherapy. Control cerebel-
lumsampleswere froma commercial supplier (BioChain). Cohort details are given
in Supplementary Table 1. Tumour subgrouping was based on DNAmethylation
profiling, as previously described5. Genome-widemethylomeprofileswere derived
by whole-genome bisulphite sequencing, as described in Methods. Sequencing
metrics are given in Supplementary Table 2. CRs were derived by merging over-
lapping 5-CpG windows that showed correlation between DNA methylation and
gene expression. Differential methylation and expression were assessed using ana-
lysis of variance and post-hoc testing. Further details are provided in Methods.

Online Content Any additional Methods, ExtendedData display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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21. Schuster-Böckler, B. & Lehner, B. Chromatin organization is a major influence on
regional mutation rates in human cancer cells. Nature 488, 504–507 (2012).

22. Aran, D., Toperoff, G., Rosenberg, M. & Hellman, A. Replication timing-related and
gene body-specific methylation of active human genes. Hum. Mol. Genet. 20,
670–680 (2011).

23. Jeong, M. et al. Large conserved domains of low DNA methylation maintained by
Dnmt3a. Nature Genet. 46, 17–23 (2014).

24. Xie, W. et al. Epigenomic analysis of multilineage differentiation of human
embryonic stem cells. Cell 153, 1134–1148 (2013).

25. Tanay, A., O’Donnell, A. H., Damelin, M. & Bestor, T. H. Hyperconserved CpG
domains underlie Polycomb-binding sites. Proc. Natl Acad. Sci. USA 104,
5521–5526 (2007).

26. Manoranjan, B. et al. FoxG1 interacts with Bmi1 to regulate self-renewal and
tumorigenicity ofmedulloblastoma stemcells. StemCells31,1266–1277 (2013).

27. Ohm, J. E. et al. A stem cell-like chromatin pattern may predispose tumor
suppressor genes toDNAhypermethylation andheritable silencing.NatureGenet.
39, 237–242 (2007).

28. Schlesinger, Y. et al. Polycomb-mediated methylation on Lys27 of histone H3
pre-marks genes for de novomethylation in cancer. Nature Genet. 39, 232–236
(2007).

29. Bunt, J. et al.OTX2 directly activates cell cycle genes and inhibits differentiation in
medulloblastoma cells. Int. J. Cancer 131, E21–E32 (2012).

30. Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal
regulatory regions. Nature 480, 490–495 (2011).

Supplementary Information is available in the online version of the paper.

AcknowledgementsWe thank the members of the ICGC PedBrain Tumor Project, the
German Cancer Research Center (DKFZ) Genomics and Proteomics Core Facility, the
European Molecular Biology Laboratory (EMBL) Genomics Core Facility, M. Schick,
R. Fischer,M.Bewerunge-Hudler,M.Knopf,R.Kabbe,A.Benner, R.VolckmanandP. van
Sluis for technical support andhelpful discussion. ActiveMotif, Inc. is acknowledged for
ChIP and library preparation. We also thank C. Plass for critical reading of the
manuscript. This work was principally supported by the PedBrain Tumor Project
contributing to the International Cancer Genome Consortium, funded by German
Cancer Aid (109252) and the German Federal Ministry of Education and Research
(BMBF, grants #01KU1201A, MedSys #0315416C and NGFNplus #01GS0883).
Additional support came from the DKFZ-Heidelberg Center for Personalized Oncology
(DKFZ-HIPO), the Dutch Cancer Foundations KWF (2010-4713) and KIKA (M.Ko.), and
the German Research Foundation (DFG; grant LA2983/2-1 to P.La.).

Author Contributions D.T.W.J., S.Pi., W.W., M.S., S.B., J.B., C.C.B., C.v.K., R.V., S.S., S.W.,
J.F. and P.La performed and/or coordinated experimental work. V.H., M.K., P.A.N., K.S.,
N.J., H.-J.W.,M.Ra., K.K., S.E., C.L., J.E., J.K. andP.La. performeddata analysis.M.Ry., T.M.,
O.W., T.P., S.R., W.S., M.D.T. and A.K. collected data andprovidedpatientmaterials. V.H.,
D.T.W.J., M.K., P.A.N., M.Z., B.R., S.M.P. and P.Li. prepared the initial manuscript and
figures. D.T.W.J., U.D.W., B.B., G.R., A.B., H.L., R.J.W.-R., R.E., M.-L.Y., A.K., P.La., M.Z., B.R.,
S.M.P. and P.Li. provided project leadership.

Author InformationShort-read sequencing data have been deposited in the European
Genome-phenome Archive (http://www.ebi.ac.uk/ega/) under accession number
EGAS00001000561. Methylation array data have been deposited in the Gene
Expression Omnibus under accession number GSE54880. Reprints and permissions
information is available at www.nature.com/reprints. The authors declare no
competing financial interests. Readers are welcome to comment on the online version
of the paper. Correspondence and requests for materials should be addressed to
B.R. (b.radlwimmer@dkfz-heidelberg.de), S.M.P. (s.pfister@dkfz-heidelberg.de), or
P.Li. (peter.lichter@dkfz-heidelberg.de).

LETTER RESEARCH

2 6 J U N E 2 0 1 4 | V O L 5 1 0 | N A T U R E | 5 4 1

Macmillan Publishers Limited. All rights reserved©2014

www.nature.com/doifinder/10.1038/nature13268
www.nature.com/doifinder/10.1038/nature13268
http://www.ebi.ac.uk/ega
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54880
www.nature.com/reprints
www.nature.com/doifinder/10.1038/nature13268
www.nature.com/doifinder/10.1038/nature13268
mailto:b.radlwimmer@dkfz-heidelberg.de
mailto:s.pfister@dkfz-heidelberg.de
mailto:peter.lichter@dkfz-heidelberg.de


METHODS
Sample collection and preparation. An Institutional Review Board ethical vote
(Ethics Committee of the Medical Faculty of Heidelberg) was obtained according
to the International Cancer Genome Consortium (ICGC) guidelines (http://www.
icgc.org), along with informed consent for all participants. No patient underwent
chemotherapy or radiotherapy before surgical removal of the primary tumour.
Tumour tissues were subjected to neuropathological review for confirmation of
histology and for tumour cell content.80%. Analytes were isolated as previously
described3. Normal cerebellum samples of eight individual donorswere purchased
from BioChain. Lot numbers are given in Supplementary Table 1.
Cells were cultured at 37 uC with 5% CO2. D425_Med (D425; a gift from D. D.

Bigner) and MEB-MED-8A cells (from the authors’ own stocks; T. Pietsch) were
cultured inDMEMwith10%FCS (LifeTechnologies).HD-MB03 cells31were grown
in RPMI-1640 with 10% FCS (Life Technologies). All cells were regularly authen-
ticated and tested for mycoplasma.
Details of theMath1-creERT2:Ptch1fl/flmousemedulloblastomamodel have been

described previously13. Mice were bred and maintained at the Sanford Burnham
Animal Facility. Experiments were performed in accordance with national regula-
tions andprocedureswere approvedby the InstitutionalAnimalCare andUseCom-
mittee. GNPs were harvested at postnatal day 4 (three biological replicates of pooled
precursor-cell populations), and the mean age of mice for tumour tissue collection
was 131 days (range 81–260 days, five individual tumours from female mice).
Library preparation and sequence data generation
Whole-genome bisulphite sequencing. Whole-genome bisulphite library pre-
parationwas carried out as recently described32, withmodifications to a previously
published protocol33. In brief, 5mg of genomic DNAwere sheared using a Covaris
device. After adaptor ligation, DNA fragments with insert lengths of 200–250 bp
were isolated using an E-Gel electrophoresis system (Life Technologies) and bisul-
phite converted using the EZ DNA Methylation kit (Zymo Research). PCR amp-
lification of the fragments was performed in six parallel reactions per sample using
the FastStart High Fidelity PCR kit (Roche). Library aliquots were then pooled per
sample and sequenced on an Illumina HiSeq 2000 machine.
Whole-genome sequencing. Samplesup to ICGC_MB51weredescribedpreviously3.
Data for six additional samples were generated using identical conditions.
RNA-seq.RNA-seq libraries were prepared as described3,34 usingmethods to pre-
serve strand specificity. A subset of libraries was prepared using purified polyA1
RNAfractions,with the remainderusing ribosomal-RNA-depleted fractions. Sequenc-
ingwas carried out on theHiSeq 2000 platformusing 23 51 cycles according to the
manufacturer’s instructions. All samples profiled by WGBS sequencing, whole-
genome sequencing, 450k array and RNA sequencing were in silico genotyped to
exclude possible sample swaps.
miRNA sequencing. Small RNA libraries were prepared essentially as previously
described35, with minor adjustments. 39-Adaptor ligation was performed on total
RNAwith barcodedpre-adenylated adapters and five samples were pooled for suc-
cessive steps. 39-Adaptor-ligated products corresponding to small RNAs of 19–35
nucleotides were fractionated by polyacrylamide gel electrophoresis for further
processing. Sequencing of pooled, barcoded sampleswas performedon an Illumina
HiSeq 2000 following standard procedures.
ChIP-seq. H3K4me3 (AM#39159, Active Motif), H3K9me3 (AM#39161, Active
Motif), H3K27me3 (#07-449, Millipore) and H3K36me3 (AM#61101, Active
Motif)ChIP librarypreparationofD425 andMEB-MED-8Acell lineswasperformed
atActiveMotif according to proprietarymethods. Libraries were sequenced on the
IlluminaHiSeq2000platformusing 23 101cycles according to themanufacturer’s
instructions.
OTX2 immunoprecipitation of the D425 cell line was performed as previously

described36. Sequencing libraries were generated using standard Illumina adapters
and sequenced on the Illumina GA IIx platform using 13 33 cycles according to
the manufacturer’s instructions.
Expression array analysis. Affymetrix U133 Plus2.0 expression array data were
extracted from publicly available data sets via the R2 software tool for analysis and
visualization of genomic data (http://r2.amc.nl), and for additional cases on an
early access basis through a collaboration between the DKFZ and the Microarray
Department of the University of Amsterdam. Sample library preparation, hybrid-
ization and quality control were performed according to protocols recommended
by themanufacturer. TheMAS5.0 algorithmof theGCOSprogram (Affymetrix Inc.)
was used for normalization and assignment of detection P values. Log2-transformed
expression values were used for all analyses and illustrations. Gene expression values
in Fig. 1g were centred by subtracting the gene-wise median. Genes were considered
as expressed if themaximumlog2 expression value in any sample of theWGBScohort
was larger than 6 (n5 14,183 genes).
Affymetrix Mouse Genome 430 2.0 expression array data of GNPs and SHH

medulloblastoma tumourswas generated according to themanufacturer’s instruc-
tions at the DKFZ Genomics and Proteomics Core Facility.

Methylation array analysis. In addition to whole-genome bisulphite sequencing,
a partially overlapping validation cohort was assessed using the lllumina Infinium
HumanMethylation450 BeadChip array. Sample processing and hybridizationwas
performed according to the manufacturer’s instructions at the DKFZ Genomics
andProteomicsCore Facility. Downstreamarray processingwas performed as previ-
ously described5, with exclusion of probes containing an annotated single nucleo-
tide polymorphism (SNP) (dbSNP132Common) within 5 bp of and including the
targeted CpG site, or probes notmapping uniquely to the genome allowing for one
mismatch. Except for normalization to internal controls, no additional normali-
zation techniques were applied.

Next-generation-sequencing data analysis
Whole-genome bisulphite sequencing. WGBS sequencing data were analysed
usingmethylCtools (V.H. et al., manuscript in preparation). In brief, methylCtools
builds upon BWA and adds functionality for aligning bisulphite-treated DNA to a
reference genome in a similar manner to that described previously37. Sequencing
reads were adaptor-trimmed using SeqPrep (https://github.com/jstjohn/SeqPrep)
and translated to a fullyC-to-Tconverted state.Alignmentswere performedagainst
a single index of both in silico bisulphite-converted strands of the human reference
genome (hg19, NCBI build 37.1) or mouse reference genome (mm10, NCBI build
38) using BWAversion 0.6.1-r104 (ref. 38) and the non-default parameters -q 20 -s.
Previously translated bases were translated back to their original state, and reads
mapping antisense to the respective reference strandwere removed. Putative PCR
duplicates were filtered using Picard MarkDuplicates (http://picard.sourceforge.
net). Single-base-pairmethylation ratios (b-values) were determined by quantify-
ing evidence for methylated (unconverted) and unmethylated (converted) cyto-
sines at all CpG positions. Only properly paired or singleton reads with mapping
quality of$1 and baseswith a Phred-scaled quality score of$20were considered.
To account for population variability, we filtered CpGs for which more than 25%
of reads at a given position (on either strand) were not supportive of this CpG
being in fact a CpG in the sample being analysed. Formouse samples, which share
the same genetic background, this filtering stepwas performed on themergeddata
set. Subsequently, information from both strands was combined and CpGs with a
coverage of less than five readswere not considered in the respective sample. Non-
conversion rates were estimated on the basis of lambda phage genome spike-ins.
Concordance ofmethylation b-values betweenWGBS sequencing andDNAmeth-
ylation array was extremely high (r5 0.97360.006).

Methylation plots were generated using the Gviz Bioconductor package. Essen-
tially, CpGswithin the region being visualizedwere binned into 1,000 equally sized
windows. The averagemethylation levels of all CpGs perwindowwere thenweighted
by their distance to adjacent CpGs, and plotted using a heat-map scale.

Whole-genome sequencing. Whole-genome sequencing data were analysed as
previously described3. For the analysis integrating SNVs andPMDs, only SNVsmap-
ping to chromosome 1 to 22 were considered.

RNA-seq. Strand-specific RNA-seqdatawere analysed using STARversion2.3.0e39,
supplying RefSeq gene annotations (obtained from the UCSC genome browser).
Uniquely mapping reads were obtained by setting outFilterMultimapNmax to 1,
otherwise default parameters were used. Reads permillion (RPM) values were cal-
culated relative to all sequencing reads mapping to annotated exons.

Novel first exons were detected by performing reference-guided (RefSeq gene
annotations) transcript assembly using cufflinks40 version 2.1.1 with the following
non-default parameter: library-type fr-firststrand. Transcript assemblieswere com-
bined using cuffmerge version 1.0.0 supplying reference annotations. Novel first
exons were filtered for being smaller than 2 kb in size and being linked directly or
through additional novel exons to annotated transcripts by junctions covered by at
least 50 sequencing reads.

miRNA sequencing. SmallRNAsequencingdatawere analysedbyaligningadaptor-
and barcode-trimmed reads to a referencedatabase containing precursor sequences
of miRBase version 1841. Bowtie42 was used for sequence alignment with the fol-
lowing non-default parameters: seedmms 1, maqerr 1000, seedlen 21, norc, best,
strata,M1. Expression ofmaturemicroRNAswas quantified relative to all aligned
reads. For all analyses and illustrations, log2-transformed RPM values were used.

ChIP-seq.Histone ChIP-seq data were analysed using BWA version 0.5.10. Puta-
tive PCR duplicates were filtered using Picard MarkDuplicates. For downstream
analyses, we generated whole-genome coverage tracks with reads normalized to all
properly paired reads (RPM; paired-end reads/fragments per million). We used
igvtools version 2.2.2 (http://www.broadinstitute.org/igv/igvtools) and the non-
default parameter pairs and a window size of 25.

OTX2ChIP-seqdatawere analysed usingBWA.Peak callingwas performedusing
MACS43 version 1.4.1 using default parameters and enabling calling of subpeaks.
A whole-genome coverage track was generated using the detected fragment size
and a window size of 10 bp.

Integrative analysis of DNA methylation and gene expression. Downstream
analyses were performed using R version 2.15.2 (ref. 44), making extensive use of
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the GenomicRanges Bioconductor package. We developed a novel approach to
define CRs between DNAmethylation and gene expression. To this aim, methyla-
tion levels for every sample of theWGBS cohort were combined inwindows of five
adjacent CpGs for up to 100 kb surrounding and within annotated genes. These
five CpGwindows were then correlated to Affymetrix-derived expression levels of
annotated genes. Five CpGwindowswere termed correlated if showing a Pearson’s
correlation coefficient smaller/larger than6 0.5 and a maximummethylation dif-
ference between any two samples of at least 0.5. Additionally, we used a permuta-
tion test (permutation of sample labels) to estimate the probability of obtaining a
more extreme correlation coefficient by chance.Only thosewindows associatedwith
aP value smaller than 0.001 (0.01 for analysis ofmouse pdCRs)were taken as being
correlated. Overlapping correlated five-CpGwindowswere thenmerged into CRs.
Both negative and positive CRs were required to contain at least ten CpGs to be
further considered. Average methylation levels of CRs were calculated by taking
the mean of all CpGs per sample. If there were multiple gene expression probesets
associated with a single gene, the one containing the most CpGs within CRs was
used (ties were resolved by higher mean expression).
pdCRs. pdCRsweredefinedusing anovel approach. EveryCpGstarting from500bp
downstreamof theTSS (to not overlapwith gene promoter annotations) was given
a score based onbeing locatedwithin anegativeCR (11) or not (22).CpGsunmeth-
ylated in controls (averagemethylation level,0.15 in 1 kbwindows; see later)were
not scored. The cumulative sum from the first to every downstream CpGwas cal-
culated. The outer pdCR boundary was defined as the last CpG within a CR for
which the cumulative sum was larger than 0.
DMVs. DMVs for each sample were detected in a similar fashion to that previ-
ously described24. Average methylation levels within windows of 1 kb were calcu-
lated (individual CpGsweighted by the distance of both adjacentCpGs), in steps of
1 bp. Overlapping 1 kb windows with average methylation levels smaller than 0.15
were merged and resulting regions larger than 5 kb were termed DMVs. DMVs of
individual samples were merged if present in at least two tumour samples or any
control sample.
PMDs.PMDs for each samplewere detected in a similar fashion to that previously
described17. Average methylation levels within windows of 10 kb were calculated
(individual CpGs weighted by the distance of both second-next CpGs), in steps of
1 bp. Overlapping 10 kb windows with an average methylation level ,0.6 were
merged, and resulting regions larger than 100 kb were termed PMDs.
LMRs. LMRs for each sample were detected using theMethylSeekR Bioconductor
package45 with a methylation level threshold of 0.5 and a minimal number of four
CpGs. An additional filtering step of LMRs probably located within PMDs was
performed by filtering LMRs associated with an average methylation level ,0.75
of the 30 adjacent CpGs on both ends (,0.6 of 10 adjacent CpGs inmouse). LMRs
of individual samplesweremerged if present in at least two tumour samples or any
control sample.
Subgroup-specific differential methylation. Subgroup-specific differential methy-
lationwas determined independently for the differentmethylation patterns described.
ForpdCRdifferentialmethylationanalysis, negativeCRswere intersectedwithpdCRs.
ForDMVdifferentialmethylation analysis, negative andpositiveCRswere intersected
with DMVs. For global positive CR differential methylation analysis, all positive
CRswere used.However, CRs couldnot be located farther than the adjacent anno-
tated expressed gene, and at least 50CpGs falling into aCRwere required per gene.
For promoterCGIdifferentialmethylationanalysis (obtained from theUCSCgenome
browser), CGIs were linked to genes if located within21,500/1500 of annotated
TSSs and all overlappingCpGs were used. Similarly, for LMR differential methyla-
tion analysis, all overlapping CpGs were used.
Forall patternsdescribedearlier, the averagemethylation level per geneandsample

was calculated for the entire WGBS cohort. Analysis of variance was used to deter-
mine genes differentially methylated between all four medulloblastoma subgroups
and combined controls (adjustedP value, 0.001). The Benjamini–Hochberg pro-
cedure was used to adjust for multiple testing. Subgroup-specific differentially
methylated geneswere determined by applying a post-hoc test on genes previously
determined as being differentially methylated. (R package: multcomp, functions:
mcp and glht). Individualmedulloblastoma subgroups were required to be signifi-
cant against all other subgroups combined, and against control samples separately
(P value, 0.001; in essence eight comparisonsweremade). This testing procedure
was deemed appropriate because of large sample sizes and continuousmethylation
levels resulting of averaging of multiple CpGs. Identical testing was performed on
the array-based methylation verification cohort (n5 284 samples, using all CpG
probes that were located within CRs), and the array-based gene expression cohort
(n5 95) to provide further proof of correlation in regions of interest.
Additional statistical analyses.Kaplan–Meier analysiswas performed for samples
with matching Affymetrix U133 Plus2.0 expression array data and patient survival
data. Samples were stratified into high or low expression of LIN28B using a thresh-
old of 250 expression units (probeset 229349_at).

An unpaired t-test was used to test for differences between continuous variables,
with the exception of Fig. 3e and Extended Data Fig. 7a, b in which paired t-tests

were used. Unequal variances within groups were assumed for all tests.

Boxplots displayed in Figs 1e, 2b, 3f, j, m and Extended Data Figs 1c, d, 2c, 3b,
d–f, 4b–e, 5b–d, 7a, b, 8a, e and 10a, b, d were generated in R using default settings
(function: boxplot).

The Jaccard index as a measure of PMD similarity between any two samples is
defined as the ratio of the combined length of the genomic regionswithin PMDs in
both samples (intersect) and in at least one sample (union).

Position weight matrices of transcription factor binding motifs (as defined by
theTRANSFACdatabase version 2013 or a recent study46) weremapped against the
genome using the FIMO tool (part of the MEME suite, version 4.9.0) and the fol-
lowingparameters: thresh 1e-5,max-seq-length 4e9,max-stored-scores 1e7. Enrich-
ment of transcription-factor-binding motifs overlapping LMRs was tested using
the chi-squared test over the clusters generated by k-means clustering (R function:
kmeans, 10 starting sets, maximum of 10,000 iterations, using mean methylation
levels per sample and LMR). The Benjamini–Hochberg procedure was used to
adjust for multiple testing. The ratio of observed over expected motif occurrences

was taken as a measure for determining motifs enriched in a particular cluster.
As transcription factors of the same family often share similar bindingmotifs, the
transcription factors indicated in Fig. 4b andExtendedData Fig. 9b, c were further
refined by taking into account available gene expression data (see also Supplemen-
taryTable 5b, c). For heat-map representations ofOTX2ChIP-seq peaks and LMRs
2,000 sites were randomly sampled for illustration purposes.

Motif enrichment of downstreamtargetswas analysedadapting the gene set enrich-
ment analysis (GSEA) approach47. Genes were ordered by the log2 fold change in
expression between indicated subgroups and remaining samples, and the running
motif enrichment score was calculated by motif occurrences within LMRs assoc-
iatedwith the particular gene (up to 500 kb upstream, within gene body), allowing
for multiple LMRs per gene. ‘Hits’ (motif overlapping LMRs) were weighted by
the absolute log2 fold change. Themaximum runningmotif enrichment valuewas
used as the motif enrichment score. A P value was calculated by performing a

permutation test (randomizing association of motifs and LMRs, in 200,000 itera-
tions) to obtain a more extreme motif enrichment score by chance.
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Extended Data Figure 1 | Global properties of DNA methylation.
a, Fraction of genome-wide CpGs showing different methylation states, binned
into ten windows. The majority of CpGs show a bimodal pattern close to
either fully methylated or unmethylated, with few intermediate values.
b, Distribution of average methylation rate with varying CpG density, showing
that CpG-dense regions are typically unmethylated, with high methylation in
CpG-poor regions. c, Genome-wide methylation rates by tumour subgroup
or age (for controls). All tumour subgroups show significantly reduced
methylation compared with fetal cerebellum (CBM), with the largest reduction

in WNT and Group 3 tumours. *P, 0.05, **P, 0.01, ***P, 0.001.
d, Minimal non-CpG (CH) methylation is seen in tumours or fetal cerebellum,
with levels significantly below that of adult normal cerebellum. ***P, 0.001.
e, The distribution of methylation states for non-CpG methylation does not
show a similar bimodal pattern to CpG methylation, with a marked shift
towards low percentages (indicating heterogeneity of methylation levels within
a tissue). The curves are truncated at a lower limit of 0.1 to increase resolution in
the higher range, as the vast majority of sites show methylation rates ,0.1.
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Extended Data Figure 2 | Hypermethylation of CGIs is rare in
medulloblastoma. a, Overview of number of genes associated with
significantly differentially methylated CGIs across the four medulloblastoma
subgroups and control cerebellum, and those that are specifically differentially
methylated in a given tumour subgroup. The fraction of differentially
methylated promoter CGIs per subgroup that are hypo- (blue) or
hypermethylated (red) relative to control cerebellum is also shown.
b, Methylation plot for the 59 end ofWNK2, showing a region of methylation
extending into the promoter CGI in some WNT, SHH and Group 3

medulloblastomas. c, Methylation of theWNK2 promoter region is negatively
correlated with gene expression in the extended, array-based validation cohort.
Sample numbers are indicated next to the boxplots (n5 95 overlap). CBM,
cerebellum; r, Pearson’s correlation coefficient; p.adj.expr, expression-adjusted
P value (analysis of variance (ANOVA), Benjamini–Hochberg adjustment);
p.adj.meth, methylation-adjusted P value. d, A summary of methylation levels
at all promoter CGIs across medulloblastoma cell lines and tumours, and
normal tissues.
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Extended Data Figure 3 | pdCRs overlap with the H3K4me3 histone mark.
a, Methylation plot for ESYT2, showing hypomethylation of a pdCR in some
Group 4 medulloblastomas. The variable methylation states at the boundaries
of the pdCR suggest subpopulations of differing values within a tumour.
Additionally, the heterogeneity across the subgroup indicates a potential
somatic acquisition of this demethylation. b, Methylation of theESYT2 pdCR is
negatively correlated with gene expression in the extended, array-based
validation cohort. c, Methylation plot including H3K4me3 ChIP-seq data for
the SOAT1 and FSTL1 loci, showing differential pdCRs methylation in two

medulloblastoma cell lines. Notably, the pdCR overlaps with the presence of
H3K4me3. d, When looking at segments of pdCRs unique to either
medulloblastoma cell line, H3K4me3 levels are significantly higher in the cell
line showing the extended pdCR. e, Methylation levels at the pdCR of PDLIM3
are negatively correlated with expression in the extended array cohort (see
also Fig. 1h). f, Mouse SHH medulloblastomas also show hypomethylation of
a pdCR inPdlim3 that is associated with increased expression, which is not seen
in GNPs (that is, somatic in origin, see also Fig. 1i).
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Extended Data Figure 4 | The MIR-23b–27b–24-1 cluster is epigenetically
regulated in WNT medulloblastoma. a, An example of a novel first exon
within a gene body is seen for C9orf3, which is the primary transcript hosting
theMIR-23b–27b–24-1 cluster. b–d, Methylation aroundMIR-23b, MIR-27b

andMIR-24-1 is negatively correlated with expression of these miRNAs in
an extended validation cohort. e, Negative correlation of methylation and
expression is also observed for C9orf3 itself.
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Extended Data Figure 5 | Members of the LET-7 family negatively correlate
with LIN28B expression. a, Proportion of Group 3 and Group 4
medulloblastomas showing methylation of the canonical LIN28B promoter in
the extended validation cohort. Sample numbers are indicated. b, Coverage
of RNA-seq reads for exon 1 and 2 of the canonicalLIN28B transcript separated
by promotermethylation state for Group 3 and 4medulloblastomas, showing a
loss of exon 1 expression in those samples with methylation of the canonical
promoter. c, Group 3 and 4 medulloblastomas that are unmethylated at the

canonical promoter show even higher LIN28B expression than other samples
in these subgroups. d, Expression levels of LET-7 family miRNAs for
medulloblastoma subgroups and normal cerebellum. RPM, reads per million.
e, Correlation of LIN28B expression with LET-7 family miRNAs within
Group 3 and Group 4 medulloblastomas and across all medulloblastoma
subgroups. f, Association of LIN28B expressionwith overall survival inGroup 4
medulloblastomas (Kaplan–Meier analysis; P, log-rank test).
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Extended Data Figure 6 | PMDs are restricted to WNT and Group 3
tumours and are subgroup specific. a, A global view of genome-wide
methylation values, shown in 100 kb bins and sorted according to similarity,
gives a clear picture of the PMDs inWNTandGroup 3 tumours. Also notable is
the extensive hypomethylation in the cell lines. b, Indication of the fraction
of total PMD length in each tumour that is covered by genes, showing that
PMDs are typically gene-poor regions compared to the genome average
(left-most bar). c, Overview of methylation values in WNT PMDs, showing a

high similarity between samples (with the exception of ICGC_MB46, which
does not show the same pattern). d, An overview of methylation values in
Group 3 PMDs, showing some similarity between samples, but with more
variation in extent and sites of demethylation compared with WNT tumours.
e, Similarity of PMD regions in WNT and Group 3 medulloblastoma samples
that show elevated levels of PMDs (samples with a total of .0.2Gb covered
by a PMD). Correlation is higher within rather than between subgroups.
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Extended Data Figure 7 | PMDs are associated with decreased gene
expression. a, Genes located within WNT PMDs are expressed at a
significantly lower level in those WNT tumours that have PMDs compared
with normal cerebellum. WNTmedulloblastomas lacking clear PMDs (that is,
ICGC_MB46) show intermediate expression. Genes not in PMDs show
a slightly elevated expression in the tumours. *P, 0.05, **P, 0.01,
***P, 0.001. b, Genes located within Group 3 PMDs are expressed at a
significantly lower level in those Group 3 tumours that have PMDs compared

with normal cerebellum. Group 3 medulloblastomas lacking clear PMDs show
intermediate expression. Genes not in PMDs show a slightly elevated
expression in the tumours. *P, 0.05, **P, 0.01, ***P, 0.001. c, An example
of a PMD in Group 3 medulloblastoma around the CLMN gene, showing
heterogeneous methylation levels within the subgroup. d, Methylation levels of
the CLMN PMD are positively correlated with gene expression in Group 3
medulloblastoma (n5 11). e, PMDs are typically associated with H3K9me3 or
H3K27me3 histone marks, but less commonly with both.
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Extended Data Figure 8 | Positively correlating DMVs overlap regions of
differential H3K27 trimethylation. a, Boxplots of the number of DMVs
identified per sample, split by tumour subgroup (or age group for controls,
n5 42 samples). b, c, Overview of genes encompassed by a negatively or
positively correlating DMV, those that are significantly differentially
methylated across the four medulloblastoma subgroups and control
cerebellum, and those that are specifically differentially methylated in a given
tumour subgroup. The fraction of subgroup-specific, gene-encompassing
DMVs that are hypo- (blue) or hypermethylated (red) relative to control
cerebellum is also shown. d, Methylation plot forPITX2, located in aDMV that

shows differential methylation in a variety of subgroups. This DMV is
hypomethylated in control cerebellum, but methylation is re-established in
several tumours. In the MED-8A cell line, this locus is hypomethylated and
covered by the inactivating H3K27me3mark, and is not expressed. In D425, in
which PITX2 is expressed, re-establishment of methylation is accompanied by
loss of H3K27me3 and gain of the active H3K4me3 modification. e, This
re-establishment of methylation, representing normalization of chromatin,
is positively correlated with increased gene expression in the extended,
array-based validation cohort.
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Extended Data Figure 9 | Systematic analysis of LMRs identifies
transcriptional regulators in human and mouse medulloblastoma.
a, Heat-map representation of genomic regions of 3-kb-centred LMRs
predicted to contain an OTX2-bindingmotif. More than 75% of LMRs overlap
with a ChIP peak, with strongest binding at those sites where the motif more
closely matches the consensus sequence. b, Heat-map representation of a
k-means clustering of subgroup-specifically methylated LMRs. A single
methylation value per sample and LMR is shown, as used for the clustering.
c, Heat-map representation of a k-means clustering of LMRs in GNPs, SHH

medulloblastoma mouse model and external data sets. Left, a single
methylation level per sample and LMR is shown, as used for the clustering.
Right, genomic regions of 3 kb centred around the LMR of selected samples
are shown. Selected transcription-factor-binding motifs enriched within
specific clusters are indicated. The relevance of this analysis for highlighting
transcriptional regulators is further supported by an LMR cluster with
specificity for sorted neuronal cells (NeuN1), which showed clear enrichment
forMef2c binding (a key regulator of neuronal cell fate48).
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Extended Data Figure 10 | Epigenetic regulation of a novel GLI2 transcript
variant. a, Methylation levels at a pdCR in PTCH1 are negatively correlated
with expression in the extended array cohort (see also Fig. 4d). b, Mouse SHH
medulloblastomas also show hypomethylation of a pdCR in Ptch1 that is
associated with increased expression, which is not seen in GNPs (that is,

somatic in origin; see also Fig. 4e). c, Methylation plot for GLI2, showing an
exon upstream of the annotated transcript inWNT and SHHmedulloblastoma
and adult cerebellum. RNA-seq data are shown in reads per million (RPM)
below the heat map. d, Methylation at the GLI2 upstream exon is negatively
correlated with gene expression in the extended, array-based validation cohort.
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