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G Schalk1,2, J Kubánek1,3, K J Miller4,5, N R Anderson6, E C Leuthardt7,8,
J G Ojemann7, D Limbrick8, D Moran6, L A Gerhardt2 and J R Wolpaw1

1 BCI R&D Progr, Wadsworth Ctr, NYS Department of Health, Albany, NY, USA
2 Elec, Comp, and Syst Eng Department, Renss Polyt Inst, Troy, NY, USA
3 Department of Cybern, Czech Tech University, Prague, Czech Republic
4 Department of Physics, University of Washington, Seattle, WA, USA
5 Department of Medicine, University of Washington, Seattle, WA, USA
6 Department of Biomed Eng, Washington University, St. Louis, MO, USA
7 Department of Neurosurgery, University of Wash School of Med, Seattle, WA, USA
8 Department of Neurol Surg, Barnes-Jewish Hospital, St. Louis, MO, USA

E-mail: schalk@wadsworth.org

Received 27 September 2006

Accepted for publication 30 May 2007

Published 22 June 2007

Online at stacks.iop.org/JNE/4/264

Abstract

Signals from the brain could provide a non-muscular communication and control system, a

brain–computer interface (BCI), for people who are severely paralyzed. A common BCI

research strategy begins by decoding kinematic parameters from brain signals recorded during

actual arm movement. It has been assumed that these parameters can be derived accurately

only from signals recorded by intracortical microelectrodes, but the long-term stability of such

electrodes is uncertain. The present study disproves this widespread assumption by showing in

humans that kinematic parameters can also be decoded from signals recorded by subdural

electrodes on the cortical surface (ECoG) with an accuracy comparable to that achieved in

monkey studies using intracortical microelectrodes. A new ECoG feature labeled the local

motor potential (LMP) provided the most information about movement. Furthermore, features

displayed cosine tuning that has previously been described only for signals recorded within the

brain. These results suggest that ECoG could be a more stable and less invasive alternative to

intracortical electrodes for BCI systems, and could also prove useful in studies of motor

function.

M This article features online multimedia enhancements

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Brain–computer interfaces (BCIs) use brain signals to

communicate a user’s intent [1]. Because these systems do not

depend on peripheral nerves and muscles, they can be used by

people with severe motor disabilities. Practical applications of

BCI technology are currently impeded by the limitations and

requirements of non-invasive and invasive methods.

Non-invasive BCIs use electroencephalographic activity

(EEG) recorded from the scalp [1]. While non-invasive

BCIs can support multidimensional control [2], their use

requires extensive user training. Invasive BCIs use activity

from multiple neurons recorded within the brain [3–6].

Signals recorded within cortex have higher fidelity and might

support BCI systems that require less training than EEG-based

systems. However, clinical implementations are impeded
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Figure 1. Electrode locations in the five subjects. The electrodes were projected on the right hemisphere for subjects A and E (see
asterisks). The brain template on the bottom right highlights the location of the central sulcus and Sylvian fissure, and also outlines relevant
Brodmann areas.

Table 1. Clinical profiles. All subjects were literate and functionally independent. Subject A had a prior left anterior temporal lobectomy.
Subject B had no traumatic or structural lesion. Subject C had a right anterior frontal traumatic injury. Subject D had a right posterior
temporal arteriovenous malformation embolized 20 years earlier. Subject E had a left frontal dysembryoplastic neuroepithelial tumor.

Subject Age Sex Hand Cognitive capacity Grid location Seizure focus

A 23 M R Normal (IQ 88) Left frontal temporal Left temporal
B 24 F R Normal (IQ 97) Right frontal temporal Right orbitofrontal and temporal
C 38 M R Borderline (IQ 70) Right frontal Right frontal
D 48 M R Normal (IQ 82; Right sup Right temporal Right temporal occipital focus

quadr visual deficit)
E 18 F R Normal (IQ 86) Left frontal Left frontal

mainly by the risks of surgical implantation and by the

substantial problems in achieving and maintaining stable long-

term recordings [7, 8]. While a few recent studies have begun

to apply non-invasive and invasive BCI technologies to the

needs of severely disabled individuals [9, 10], these issues

remain crucial obstacles that currently prohibit widespread

clinical use in humans.

In the current absence of techniques to extract high-

fidelity signals from EEG and of methods to record activity

from within the brain safely and over long periods, the use

of electrocorticographic activity (ECoG) recorded from the

cortical surface could be a powerful and practical alternative.

ECoG has higher spatial resolution than EEG (i.e., tenths of

millimeters versus centimeters), broader bandwidth (i.e., 0–

500 Hz [11] versus 0–40 Hz), higher amplitude (i.e., 50–

100 µV maximum versus 10–20 µV), and far less vulnerability

to artifacts such as EMG [12]. At the same time, because

ECoG does not require electrodes that penetrate cortex, it

is likely to have greater long-term stability [13–17] and to

produce less tissue damage.

We previously showed that ECoG signals associated with

imagery of arbitrary tasks can provide one-dimensional BCI

control with little training [18]. It is possible that using more

intuitive tasks (such as imagined hand movements) might

more efficiently extend this control to multiple dimensions.

However, most studies that decoded hand movements from

brain signals have been in monkeys [19–21]. Only limited

relevant information is available in humans [18, 22, 23].

In this study, we set out to determine if it is possible

to faithfully decode in real time kinematic parameters from

ECoG signals recorded in humans. We studied five subjects

who were asked to use a joystick to move a cursor so as

to track a target that moved on a computer screen. The

principal results show that ECoG signals can be used to

accurately decode two-dimensional joystick kinematics in

humans. They also show that these results are within the range

of those achieved in studies using intracortical microelectrode

recordings in monkeys that also aimed to decode two-

dimensional kinematic parameters. Furthermore, they indicate

that a new brain signal component, which we label the local

motor potential (LMP), holds substantial information about

movement direction. Finally, ECoG features can also exhibit

the same kind of cosine tuning previously detected only with

intracortical microelectrodes in monkeys [21, 24–32]. These

results provide strong evidence that ECoG could be used

to provide accurate multidimensional BCI control, and also

suggest that ECoG is a potentially powerful tool for the study

of brain function.

2. Methods

2.1. Subjects

The subjects in this study were five patients with intractable

epilepsy who underwent temporary placement of subdural

electrode arrays to localize seizure foci prior to surgical

resection. They included three men (subjects A, C and D)

and two women (subjects B and E). (See table 1 for additional

information.) All gave informed consent. The study was

approved by the Institutional Review Board of the University

of Washington School of Medicine. Each subject had a 48-

or 64-electrode grid placed over the fronto-parietal-temporal

region including parts of sensorimotor cortex (see figure 1

for details). These grids consisted of flat electrodes with a
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diameter of 4 mm (2.3 mm exposed) and an inter-electrode

distance of 1 cm, and were implanted for about 1 week.

Grid placements and duration of ECoG monitoring were based

solely on the requirements of the clinical evaluation, without

any consideration of this study. Following placement of

the subdural grid, each subject had postoperative anterior–

posterior and lateral radiographs to verify grid location.

2.2. Experimental paradigm

During the study, each subject was in a semi-recumbent

position in a hospital bed about 1 m from a video screen.

He/she used a joystick with the hand contralateral to the

implanted electrode array to move a white cursor in two

dimensions to track a green target. The target moved counter-

clockwise in a circle that was positioned in the center of a

computer screen. The target encouraged the subjects, who

were often impaired by post-operative recovery, to engage in

continuous movements. Substantial variability in the subjects’

tracking trajectories allowed us to make additional inferences

about different aspects of the movement (see section 4 for

details). The diameter of the circle was 61% (one subject)

or 85% (all other four subjects) of the screen’s height. One

full revolution of the target took 6.3 s for all subjects. (At the

same movement speed, a typical center-out task (i.e., moving

a cursor from the center of the screen to the periphery of the

screen) would have had a movement duration of less than

1.2 s.) To allow for offline analyses, the position of the cursor

and the target were stored along with the digitized ECoG

signals. Joystick position was mapped to cursor velocity and

the joystick produced significant force feedback to the subject

so that this task approached the isometric force tasks used in

[33–35]. Subjects were asked to use shoulder and proximal

arm movements rather than wrist movements. They were also

asked to maintain a constant posture, but neither body, head,

nor hand were restrained in any way.

2.3. Data collection

In all experiments, we recorded ECoG from the electrode

grid using the general-purpose BCI system BCI2000 [36]

connected to a Neuroscan Synamps2 system. Simultaneous

clinical monitoring was achieved using a connector that split

the cables coming from the subject into one set that was

connected to the clinical monitoring system and another

set that was connected to the BCI2000/Neuroscan system.

Thus, at no time was clinical care or clinical data collection

compromised. All electrodes were referenced to an inactive

electrode. The signals were amplified, bandpass filtered

between 0.15 and 200 Hz, digitized at 1000 Hz, and stored

in BCI2000. The amount of data obtained varied from subject

to subject, and depended on the subject’s physical state and

availability. The duration of the datasets averaged 443 s

(range 130–830 s). Each dataset was visually inspected and

all channels that did not clearly contain ECoG activity (e.g.,

such as channels that contained flat signals or noise due to

broken connections) were removed prior to analysis, which left

48–64 channels for our analyses.

2.4. 3D cortical mapping

We used lateral skull radiographs to identify the stereotactic

coordinates of each grid electrode with software [37] that

duplicated the manual procedure described in [38]. We

defined cortical areas using Talairach’s Co-Planar Stereotaxic

Atlas of the Human Brain [39] and a Talairach transformation

(http://ric.uthscsa.edu/projects/talairachdaemon.html). We

obtained a template 3D cortical brain model (subject-specific

brain models were not available) from source code provided

on the AFNI SUMA website (http://afni.nimh.nih.gov/afni/

suma). Finally, we projected each subject’s electrode locations

on this 3D brain model and generated activation maps using a

custom Matlab program.

2.5. Feature extraction and selection

We first re-referenced the signal from each electrode using

a common average reference (CAR) montage. To do this,

we obtained the CAR-filtered signal s ′

h at channel h using

s ′

h = sh −
1
H

∑H
q=1 sq . H was the total number of channels and

sh was the original signal sample at a particular time.

For each 333 ms time period (overlapping by 166 ms), we

then converted the time-series ECoG data into the frequency

domain with an autoregressive model [40] of order 50. Using

this model, we calculated spectral amplitudes between 0 and

200 Hz in 1 Hz bins. We averaged these spectral amplitudes in

particular frequency ranges (8–12 Hz, 18–24 Hz, 35–42 Hz,

42–70 Hz, 70–100 Hz, 100–140 Hz, 140–190 Hz) in the

mu, beta and gamma frequency bands, similar to those used

in [21]. In addition, visual inspection identified specific

channels in which ECoG voltage level appeared to correlate

with kinematic parameters. It thus seemed that these locations

were amplitude-modulated in the time-domain (i.e., exhibiting

the local motor potential (LMP)) rather than in a low band in

the frequency-domain.

Figure 2 shows an example ECoG time course for subject

C (A), the spatial distribution of channels that exhibit the

LMP (B), and the magnified time course of channel 35, as

well as the X position of the cursor and moving target (C).

The correlation of the ECoG time course with the movement

parameters is evident and clearly focused on select channels

over hand sensorimotor cortex. The magnification shown in

(C) demonstrates an example of good correlation between

ECoG time course (black trace) with the X position of

the cursor (thick dark green trace). It also illustrates an

example of modest tracking performance indicated by the poor

concurrence between the X position of the cursor (thick dark

green trace) and the X position of the moving target (thin light

green trace) between 45 and 60 s.

To account for the possibility of movement-related LMP

modulation, we added to the frequency-based features listed

above the 333 ms running average of the raw unrectified signal.

This yielded eight features per channel, i.e., a total maximum

of 8 × 64 = 512 features. Finally, we applied a running

average filter (boxcar window, length was 9 samples (9 ×

166 ms = 1494 ms)) to each of these features.

To reduce this large number of features, we employed the

correlation-based feature selector (CFS) that is implemented in
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Figure 2. Example ECoG time course for subject C. (A) Time course of ECoG signals for channels 21–40 and for the X position of the
cursor (Xcrs), the X position of the tracking target (Xtrk), as well as the Y position of the cursor (Ycrs) and target (Ytrk). Channels that exhibit
a time course that is correlated with the movement parameters Xcrs or Ycrs (i.e., a time course exhibiting the LMP) are indicated with
symbols. (B) Electrode locations including channel numbers. Symbols indicate the locations of channels that show the LMP.
(C) Magnification of ECoG time course of channel 35 from 30 to 60 s, as well as the X position of the cursor (thick dark green trace) and the
X position of the moving target (thin light green trace).

the Java-based Weka package [41], which ranks feature subsets

rather than individual features. (It thereby takes into account

not only the correlation of any one particular feature with the

values to be decoded, but also the cross-correlation between

features.) The use of this procedure reduced the number of

features to 5–20 (10 on average) for the different datasets.

2.6. Classification

Using the ECoG features selected by the CFS procedure, we

then derived one linear model for each of the four kinematic

parameters of the subject’s cursor (i.e., horizontal position,

vertical position, horizontal velocity, vertical velocity). We

used the ECoG features to decode each of the four kinematic

parameters immediately following the period representing

these features (i.e., causal prediction) so that the same

procedure could be used in real time.

2.7. Evaluation

The performance of the linear models was evaluated using 5-

fold cross-validation, i.e., each dataset was divided into five

parts, the linear models were determined from 4/5th of the

dataset (training set) and tested (i.e., the coefficients of the

linear model derived using the regression were applied) on

the remaining 1/5th (test set). This procedure was then

repeated five times—each time, a different 1/5th of the dataset

was used as the test set. (The feature selection procedure was

always applied to the training set only.)

We evaluated the performance of each of the five models

by cross-correlating the decoded kinematic parameters with

the actual values for position and velocity. This resulted in a

correlation coefficient r for each dataset, cross-validation fold,

and each of the four kinematic parameters.

2.8. Directional tuning

In additional analyses, we determined the relationship between

each ECoG feature f and the direction (i.e., angle) of

movement. To do this, we assigned, for each cross-validation

fold of each dataset, the feature samples f to the corresponding

movement direction, which we discretized in 20 equidistant

bins from −180 to +180◦. Depending on the length of the

dataset and the joystick movement patterns, each of these

bins contained a variable amount of feature samples (19

on average). The 20 bins i and the distribution of feature

samples f i within each bin defined a tuning curve for each

feature, location, cross-validation fold and subject. We then

determined whether these observed tuning curves were a

function of movement direction (i.e., they were tuned) or a

cosine function of movement direction (i.e., they were cosine

tuned), similar to the approach in [21]. This procedure is

described in short below.
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To determine whether a curve was tuned, we calculated

the probability that each tuning curve differed from randomly

generated tuning curves. To do this, we first calculated a tuning

index measure SNR that related the variance of all feature

values σ 2(f) to the average variance of the feature values

within each bin
(

1
20

∑20
i=1 σ 2(f i)

)

: SNR =
σ 2(f)

1
20

∑20
i=1 σ 2(f i )

.

Then, we shuffled all feature values such that they were

assigned to randomly chosen bins, calculated the value of

SNR, and repeated this procedure 200 times, which resulted in

200 measures of SNR. We modeled these measurements using

a Gaussian distribution (i.e., we calculated the SNR mean and

standard deviation)1. We finally determined the probability

pt that the value of SNR for the observed tuning curve was

generated by the Gaussian model distribution of randomly

generated SNR values. A tuning curve was considered tuned

if pt was smaller than 0.001.

For each tuning curve that was considered tuned, we

also determined whether it was cosine tuned. To do this, we

calculated the mean value f i of all features within each bin,

which defined the average observed tuning curve. We then

calculated the correlation coefficient r between this average

tuning curve and a cosine function that was fit through

to this curve. Similar to above, we then determined the

probability pct that the observed tuning curve was generated

by a distribution of randomly generated r values. A tuning

curve was considered cosine tuned if pct was smaller than

0.001.

3. Results

To study the fidelity of the trajectory decoding and

the characteristics of the associated brain signals, we

determined the accuracy of decoded cursor position and

velocity, compared it to published results using implanted

microelectrodes, and established the anatomical location and

ECoG features that held the most information. We also

determined the anatomical location and ECoG features that

were cosine tuned to movement direction. The results of these

evaluations are described below.

3.1. Accurate decoding of kinematic parameters

Table 2 shows the principal results of this study, which are

given in correlation coefficients calculated between actual and

decoded kinematic parameters. The generally high correlation

coefficients demonstrate that it is possible to infer accurate

information about joystick kinematic parameters in real time

using ECoG signals in humans (see figure 3 and the movie

in the supplementary material at stacks.iop.org/JNE/4/264 for

actual and decoded trajectories). Because the calculation of

decoding parameters only involves the training dataset, but

not the test dataset, similar results can be expected in online

experiments.

Table 3 compares the results of the present study to

those previously reported for decoding of two-dimensional

1 We assessed the normality of these measurements using a Kolmogorov–

Smirnoff test. This test determined that 90% of all distributions were

considered Gaussian at the 0.05 level.

Table 2. Decoding of kinematic parameters. Correlation
coefficients (r) between the actual and decoded kinematic
parameters (horizontal position of the cursor (X), vertical position
(Y), horizontal velocity (Vx) and vertical velocity (Vy)) and the
average across kinematic parameters (Avg r). Top group:
correlation coefficients are given, for each parameter and dataset, for
the worst and the best of the five cross-validation folds. Bottom
group: median values of correlation between the actual and decoded
kinematic parameters, calculated across all five cross-validation
folds. These results demonstrate that good reconstruction of
kinematic parameters (on data that were not used to train the
algorithm) is possible using ECoG signals in humans.

Subject X Y Vx Vy Avg r

A 0.49–0.61 0.20–0.49 0.18–0.48 0.39–0.66
B 0.19–0.60 −0.13–0.72 0.03–0.73 0.18–0.52
C 0.50–0.81 0.18–0.80 0.04–0.35 0.45–0.85
D 0.40–0.64 0.28–0.78 0.30–0.72 0.58–0.68
E 0.14–0.52 0.04–0.48 0.09–0.61 0.11–0.66

A 0.58 0.38 0.42 0.59 0.49
B 0.42 0.55 0.59 0.32 0.47
C 0.71 0.51 0.10 0.67 0.50
D 0.57 0.68 0.58 0.66 0.62
E 0.37 0.22 0.32 0.49 0.35

movement parameters using intracortical implants in non-

human primates. This table shows that the correlation of the

actual with the decoded trajectories, and thus the fidelity of the

decoding, reported in the present study, is within the range of

those achieved before only using implanted microelectrodes.

3.2. Relative importance of anatomical areas and eCoG

features

We also studied the relative importance of the different

anatomical areas and ECoG features (i.e., the seven frequency-

based features and the LMP) that were implicated in the

decoding of cursor position and velocity. To do this,

we analyzed the data as described before except that we

first normalized the features with respect to their standard

deviations2. This allowed the weights that were derived by the

linear regression and associated with particular features and

locations to be used as a measure of importance in decoding

a certain kinematic parameter. We then used the CFS feature

selection procedure and linear regression to produce weights

for specific features at particular locations for the best four

cross-validation folds in each subject, and for each of the four

kinematic parameters. We finally removed the bias due to the

number of electrodes by normalizing each set of weights by

the sum of all weights.

To determine the relative importance of different

anatomical areas, we then simply accumulated the weights

for each location (so that one electrode could be assigned

multiple weights from different folds and/or features) and

plotted the results on a 3D model of the cortex. (Subjects

A and E had electrode grids on the left hemisphere. We

projected the electrode locations from these subjects to the

2 We did not utilize this normalization before because we were interested in

deriving results that could have been achieved in real time. We here calculated

the standard deviation on the whole dataset, which cannot be performed in

real time.
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Figure 3. Actual and decoded movement trajectories. This figure shows examples for actual (thin red traces) and decoded (thick green
traces) X and Y cursor position for all subjects (for the best cross-validation fold for each of X and Y cursor position), as well as the
respective correlation coefficients r. The high correlation coefficients evidence the generally close concurrence between actual and decoded
cursor positions.

Table 3. Comparison to intracortical studies. We compared the results of the present study to published results using two-dimensional tasks
and microelectrode recording in monkeys. (We included only those reports that described methods that could have been achieved in real
time.) Average correlation coefficients for published position and/or velocity values (Position r and Velocity r, respectively) across all
subjects are shown. The correlation of the actual with the decoded trajectories, and thus the fidelity of the decoding, reported in the present
study, is within the range of those achieved using implanted microelectrodes in monkeys.

Study and source Position r Velocity r

Schwartz and Moran (1999, p 2713) – 0.77
Carmena et al (2003, figures 1(F) and 3(C)) 0.33–0.63 0.27–0.73
Paninski et al (2004, table 1) 0.47 –
Lebedev et al (2005, table 2) – 0.56
Averbeck et al (2005, est. from figures 8(A) and (B)) – 0.74
Present study (2006, table 2) 0.50 0.48

right hemisphere to facilitate interpretation.) These results are

shown in figure 4, which shows the topographical distribution

of weights (color coded with red corresponding to the highest

weight) accumulated for all features and subjects. Table 4

reports these weights broken down by Brodmann’s area and

ECoG feature.

These weights are generally high for motor and pre-motor

cortical areas (Brodmann’s area 4 and 6, respectively), but

also for additional areas such as dorsolateral prefrontal cortex

(which has been implicated in other guided motor tasks [42])

and those that do not have obvious motor control relevance

(such as the activation at the tip of the temporal pole). The

high weights reported in table 4 for the LMP also indicate the

important contribution of the LMP to our results.

We draw four conclusions from these analyses. First,

the cortex offers opportunities to infer kinematic parameters

over widespread areas of cortex, not only over classical

sensorimotor areas. This notion is consistent with a recent

review on this topic [43]. Second, sensory cortex had only

a modest influence, which suggests that movement decoding
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Figure 4. Anatomical areas holding information about movement parameters. Colors represent the weights accumulated for all features and
subjects at the respective locations, and thus indicate the relative importance of these sites in decoding cursor position or velocity
(transparent color and red correspond to zero and maximum weight, respectively). The weights are normalized for each movement
parameter. The dominant focus over hand and proximal arm areas of motor cortex, indicated by the highest weights given to these areas, is
evident. In addition, other locations are involved for which the anatomical relevance is not clear. The total area covered by the electrode
grids in the five subjects is indicated by the blue outline.

Table 4. Relative importance of anatomical areas and ECoG features. The four tables contain weights assigned to signals in particular
Brodmann’s areas and ECoG features for cursor position and velocity. The two most important areas and features are given in bold. Motor
and pre-motor cortices, as well as the LMP feature, held the highest weights, and thus the most information about kinematic parameters.

Horizontal cursor position Vertical cursor position

Area 8–12 18–24 35–42 42–70 70–100 100–140 140–190 LMP SUM Area 8–12 18–24 35–42 42–70 70–100 100–140 140–190 LMP SUM

1 0.10 0.06 0.40 0.55 1 0.03 0.03 0.06

2 0.02 0.06 0.38 0.63 0.99 0.19 2.28 2 0.05 0.19 0.21 0.08 0.03 0.04 0.53 1.12

3 0.14 0.21 0.60 0.94 3 0.38 0.51 0.16 0.53 0.23 2.36 4.16

4 0.07 0.18 0.51 1.44 0.99 3.20 4 0.25 0.04 0.01 0.03 1.53 1.85

6 0.20 0.18 0.33 0.17 0.46 0.10 1.05 2.49 6 0.03 0.13 0.18 0.12 2.51 2.97

7 7 0.29 0.07 0.36

8 0.10 0.67 0.77 8 0.06 0.05 0.05 0.31 0.47

9 0.06 0.08 0.08 0.23 0.03 1.71 2.18 9 0.05 0.06 0.40 0.12 1.02 1.65

10 0.11 0.11 0.22 10 0.18 0.18

20 0.01 0.01 20

21 0.20 0.04 0.06 0.32 0.62 21 0.08 0.17 0.09 0.35

22 0.26 0.57 0.19 0.42 1.44 22 0.14 0.05 0.10 0.08 0.31 0.69

37 0.06 0.06 37 0.06 0.06

38 0.04 0.11 0.74 0.89 38 0.18 0.09 1.02 1.29

39 39 0.01 0.01

40 0.19 0.19 0.15 0.66 1.19 40 0.05 0.01 0.05 0.18 0.13 0.04 0.57 1.03

42 0.04 0.05 0.29 0.38 42 0.10 0.10

43 0.13 0.07 0.02 0.22 43 0.18 0.16 0.34

44 0.11 0.04 0.13 0.39 0.67 44 0.13 0.05 0.19

45 0.08 0.08 45 0.07 0.03 0.11

46 0.05 0.06 0.02 0.52 0.66 46 0.04 0.07 1.30 1.40

47 0.18 0.21 0.79 1.18 47 0.11 0.08 0.10 1.34 1.63

SUM 1.23 0.45 1.55 0.94 1.01 2.06 3.50 9.25 SUM 1.55 0.75 1.22 1.14 0.48 1.27 0.47 13.12

Horizontal cursor velocity Vertical cursor velocity

Area 8–12 18–24 35–42 42–70 70–100 100–140 140–190 LMP SUM Area 8–12 18–24 35–42 42–70 70–100 100–140 140–190 LMP SUM

1 0.05 0.17 0.23 1 0.05 0.12 0.06 0.31 0.54

2 0.20 0.05 0.25 0.02 0.13 1.10 1.76 2 0.08 0.08 0.18 0.54 1.42 0.08 2.38

3 0.08 0.07 0.34 0.34 1.07 1.89 3 0.04 0.30 0.12 0.06 1.17 0.01 1.70

4 0.15 0.24 2.38 2.77 4 0.06 0.07 1.12 1.33 2.59

6 0.33 0.14 0.21 0.03 0.09 2.19 2.99 6 0.21 0.05 0.42 0.07 0.25 0.19 1.91 3.10

7 0.28 0.03 0.31 7 0.03 0.03

8 0.08 0.40 0.48 8 0.04 0.56 0.60

9 0.07 0.31 0.04 0.83 1.25 9 0.04 0.10 0.06 1.06 1.25

10 0.14 0.14 10 0.07 0.13 0.19

11 11 0.78 0.78

21 0.25 0.11 0.07 0.19 0.61 21 0.08 0.07 0.47 0.62

22 0.12 0.09 0.38 0.59 22 0.13 0.06 0.05 0.51 0.75

33 33 0.11 0.11

37 37 0.06 0.06

38 0.09 0.11 0.24 1.13 1.56 38 0.11 0.09 0.06 0.67 0.93

39 0.10 0.10 39

40 0.23 0.20 0.09 0.81 1.32 40 0.05 0.30 0.07 0.96 1.38

42 0.07 0.07 42 0.04 0.19 0.23

43 0.04 0.01 0.29 0.34 43 0.12 0.04 0.38 0.55

44 0.08 0.08 44 0.50 0.50

45 0.08 0.17 0.25 45 0.04 0.20 0.12 0.35

46 0.05 0.04 0.09 1.88 2.06 46 0.08 0.07 0.04 0.67 0.85

47 1.22 1.22 47 0.04 0.13 0.09 0.28 0.53

SUM 0.88 0.47 1.22 0.88 0.54 0.80 1.20 14.02 SUM 0.79 0.69 1.27 0.81 0.39 1.00 4.06 11.01
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is primarily related to the execution of movement and not

to sensory feedback. Third, eye movements likely did not

play a substantial role in movement decoding in our paradigm.

Fourth, the evident anatomical relevance suggests that our

signals are not an artifact but rather reflect physiological events

related to movement control.

3.3. Directional tuning

The previous section described the importance of particular

brain areas and ECoG features for the decoding of cursor

position and velocity using a linear model. These analyses

focused on decoding strategies that could be utilized in

real time, which is important for potential brain–computer

interfacing applications. Studies in the primate literature have

also investigated the relationship of signal features with the

movement direction (i.e., the angle of the movement). These

studies (e.g., [24]) have shown that signal features (i.e., firing

rates of particular neurons) that are derived from electrodes

implanted within the brain can be tuned, i.e., are a function

of movement direction, or even cosine tuned, i.e., are a cosine

function of movement direction.

To study this possibility for our ECoG features, we

investigated the effect of movement direction on feature

amplitude using an approach similar to that employed in [21].

In short, we calculated the amplitudes of the eight features

as a function of movement direction (i.e., the angle of the

movement measured in −180 to +180◦). This produced one

tuning curve for each subject, cross-validation fold, electrode

location and feature. As described in section 2, we then derived

the probabilities that the resulting tuning curves were tuned

(pt) and cosine tuned (pct). We selected those tuning curves

from the best four cross-validation folds that were tuned at

pt < 0.001 and cosine tuned at pct < 0.001 and derived from

each of them an index of cosine tuning (ict = −log10(pct)).

As in the previous analysis, in which we used the CFS feature

selector and linear regression, the present analysis derived

measures (i.e., cosine tuning indices ict) for particular features

at particular locations, cross-validation folds and subject. We

then accumulated these cosine tuning measures across cross-

validation folds and subjects and again projected the electrode

locations for subjects A and E onto the right hemisphere.

The results of these analyses are shown in figure 5. This

figure shows the cosine tuning indices, accumulated for all

subjects and features (figure 5(A)) and for all subjects and

each feature (figure 5(B)). These accumulated cosine tuning

indices are color coded (see color bars). It is also shown

in figure 5(C) three example LMP tuning curves for three

subjects and for locations marked in the LMP in figure 5(B).

The high values of the cosine tuning indices over primarily

different motor cortical areas and for the LMP (the scale

of the LMP in figure 5(B) is from 0 to 20) again validate

the dominant role of these locations and this ECoG feature,

respectively. Furthermore, the topographies of the tuning

indices show substantial correlation for the different frequency

features but are markedly different for the LMP. The tuning

index topography for the LMP is more diffuse, but again peaks

over hand area of motor cortex.

4. Discussion

In this study, we showed that ECoG signals can be used

to accurately decode two-dimensional joystick trajectories

in humans. We also characterized a new brain signal, the

local motor potential (LMP), that holds substantial information

about kinematic parameters. Furthermore, we demonstrated

that ECoG features can exhibit the same kind of cosine tuning

that has been previously described for neuronal firing rates

and local field potentials (LFPs) recorded using intracortical

microelectrodes [21, 44]. These results indicate that ECoG

provides information that greatly exceeds in specificity that

provided by EEG and is in important respects comparable to

that provided by microelectrodes implanted in cortex. This

study further implies that ECoG has characteristics that make

it attractive not only for BCI research, but also for basic

neuroscience investigations of brain function.

4.1. The local motor potential

The successful decoding of joystick movement achieved in

this study depended in large part on the LMP component.

Because no previous report has, to our knowledge, described

the relationship of this new brain signal feature to kinematic

parameters, we were concerned that it might be artifactual.

Our results strongly indicate that this is not the case. First, the

initial step in analysis was the application of a common average

reference filter. This filter, which improved performance

compared to when it was not applied, removes signals with

low spatial frequencies such as those that would be expected

for an artifact created by wire movement or some other external

influence. Furthermore, analyses showed that the LMP was

most often located over anatomically relevant areas, and that it

could exhibit cosine tuning similar to that described for signals

recorded by intracortical microelectrodes.

It is surprising that the LMP has apparently not been

previously described in intracortical or scalp recordings. It

is possible that the LMP cannot be detected on the scalp.

Moreover, in our paradigm kinematic parameters changed

relatively slowly (i.e., one full circle in 6.3 s = 0.16 Hz),

whereas intracortical studies in monkeys often utilized higher

speeds (i.e., around 1–2 Hz). In the latter cases, associated

LMP components could have been masked by other activity.

Alternatively, the LMP could be a continuous correlate to

evoked LFP changes that have been described for other tasks,

such as center-out [45] and reaching tasks [46]. Finally,

it is possible that in previous studies the LMP component

was filtered out at the amplification or post-processing stage.

Indeed, when we re-analyzed data from our previous study

[18] without applying a high-pass filter3, we found that

LMP amplitude in one particular location was modulated by

the direction of joystick movement, and LMP amplitude in

one immediately adjacent location was modulated by hand

opening/closing and rest. These locations closely matched

those that showed modulation of the spectral amplitude at

3 In the previous study, we had analyzed signals from 0 to 200 Hz. However,

we had subtracted the mean from each 280 ms window prior to analysis, which

acted as a high-pass filter.
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(A)

(B)

(C)

Figure 5. Cosine tuning. This figure shows the spatial distribution of the cosine tuning index, accumulated for all subjects and features (A),
and for all subjects and each feature (B). The cosine tuning index is color coded (see color bars). The scale of the LMP figure in (B) is from
0 to 20. The tuning curves in (C) are calculated for the LMP at the locations marked in the LMP figure in (B).

18 Hz (i.e., a traditional frequency-based feature in
the beta band). See the supplementary materials at
stacks.iop.org/JNE/4/264 for details.

At this point, the physiological origin of the LMP
component is a matter of speculation. It is possible that it
reflects firing rate modulation of neurons located immediately
underneath the electrode. In this case, the LMP may be
related to the directionally-specific rate modulations observed
in single-unit studies using center-out or tracking tasks

[21, 47–54]. What complicates this interpretation is the fact
that the tuning topographies for the LMP and frequency-
based features are clearly different (see figure 5(B)), which
suggests differing originating processes. Furthermore, it may
be difficult to theoretically model the relationship between
single-unit activity and ECoG activity as resulting ECoG
activity could be dominated by the degree of synchronous
activity of underlying cells rather than simply by the magnitude
of cell activity. Hence, determination of the relationship
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between these sources of brain signal activity will likely

require simultaneous recordings of single-unit and ECoG

activity (e.g., [55]), or at least of single-unit and local field

potential activity (e.g., [20, 56, 57]).

4.2. Relevance for brain–computer interfaces

Together with results from previous studies in monkeys,

the present results suggest that ECoG-based BCI use could

be more intuitive, i.e., subjects could use movement-

related imagery rather than imagery of arbitrary tasks for

multidimensional BCI control. Thus, BCI training time might

be reduced by using ECoG and movement-related imagery.

At the same time, it is currently not clear what factors

govern the need for BCI training time. It is possible that

the physiological nature of the brain signal is important. In

a typical mu- or beta-rhythm EEG-based BCI, brain signals

associated with imagined limb movements are first identified.

These signals are then used to provide one- or two-dimensional

control. While the origins of these scalp-recorded rhythms

are not entirely clear [58, 59], they are not believed to be

strongly correlated with movement direction. Thus, their use

for directional movement control might require considerable

plasticity and user training. In contrast, BCI systems using

implanted microelectrodes may require less user training.

These systems typically utilize single-unit action potentials

or local field potentials (LFPs) derived from neurons in motor

cortex. Neurons are then identified that have firing rates/LPFs

related to parameters of hand movements [24, 52, 53, 60–69].

They are then combined to produce multidimensional control

signals. When monkeys are provided feedback based on

brain signals rather than actual hand movements, they initially

continue to move the hand but then learn to produce the

same signals without the actual physical movements [4]. It

is likely that the transformation of brain signals that typically

encode movement direction into directional non-muscular

commands demands less cortical reorganization and user

training than the transformation of brain signals that do not

normally encode direction, such as scalp-recorded mu and

beta rhythms. Thus, the results of the present study, which

show that kinematic parameters can be decoded from ECoG

signals, suggest that the potential training-time advantage of

implanted microelectrode recordings could also be achieved

using ECoG.

For clinical applications of BCI technology, chronic

implants of ECoG electrodes would be required. The

literature suggests that subdural/epidural electrodes exhibit

good long-term stability [13–17]. In addition, there are several

theoretical reasons why ECoG electrodes will probably not

be affected by the substantial stability problems associated

with implanted microelectrodes. The area covered by each

ECoG electrode is much larger, and thus its impedance much

lower, than is the case for a microelectrode. Moreover,

since ECoG electrodes do not penetrate cortex, the reactive

responses of the brain typical with microelectrodes should

be substantially reduced. Even if scar tissue were to form

underneath the electrodes, the electrodes’ low impedance

should enable effective long term recordings. Furthermore,

ECoG recordings require a dramatically lower bandwidth (i.e.,

500 Hz sampling, and much less if only the LMP is extracted)

than single-neuron recordings using microelectrodes (i.e., 10–

50 kHz). These lower technical needs translate to substantially

decreased processing and power requirements. Lower power

requirements mean less heat dissipation and longer battery

life. These substantial technical advantages will facilitate

the design of electrode/telemitter systems that could be

chronically implanted and would not require any percutaneous

connection. This would greatly reduce the long-term risk of

infection.

Our results did not depend on the circular trajectory of the

target and were specific to the joystick movements. Tracking

performance (i.e., how well the subjects tracked the target) was

modest (r = 0.56, r = 0.57, r = 0.50, r = 0.50 calculated,

for each of the kinematic parameters, between the cursor

and the target, respectively) and not predictive of decoding

performance (p = 0.84, p = 0.88, p = 0.62, p = 0.91

for the four kinematic parameters, respectively). This is

inconsistent with the hypothesis that decoding performance

is dependent on how well the subjects tracked the circular

trajectory of the target. In summary, our results did not depend

on the circular trajectory of the target and there was some

degree of independence between the kinematic parameters. At

the same time, the current paradigm was simply not designed

to independently examine all four kinematic parameters. In

consequence, future studies could expand on our initial results

and utilize different movement patterns, directions and speeds,

to determine how the results in humans using ECoG relate to

the body of knowledge that has been established for signals

recorded from intracortical microelectrodes.

4.3. Current experimental limitations

The present results strongly encourage further investigations

using ECoG. At the same time, there will ultimately be limits

to what can be achieved using the currently used patient

population. Our study, like practically all human ECoG studies

to date, relied on electrode grids implanted for clinical reasons.

Thus, the grids often do not cover locations most appropriate

for our purpose and, in addition, are different for each patient.

Furthermore, the physical and cognitive condition and level

of cooperation of each patient are impaired and/or variable.

Finally, the patients’ posture can be controlled for mostly only

using instructions. This relatively uncontrolled experimental

situation is in contrast to the typically rigorously controlled

animal studies.

Despite these issues, the present results, in which we

utilized all available data for each subject, compare favorably

to results that have been achieved in highly controlled animal

studies. At the same time, the present situation simply does not

permit systematic studies using controlled experiments, which

will ultimately limit the information that can be derived. We

expect that the present results, and the results of the studies

that will follow, will provide ample evidence of the utility of

the ECoG platform to support FDA approval of subdural or

epidural implants in humans for BCI purposes.
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