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We show that an arbitrary system described by two dipole moments exhibits coherent superpositions of

internal states that can be completely decoupled from the dissipative interactions ~responsible for decoherence!

and an external driving laser field. These superpositions, known as dark or trapping states, can be completely

stable or can coherently interact with the remaining states. We examine the master equation describing the

dissipative evolution of the system and identify conditions for population trapping and also classify processes

that can transfer the population to these undriven and nondecaying states. It is shown that coherent transfers are

possible only if the two systems are nonidentical, that is the transitions have different frequencies and/or decay

rates. In particular, we find that the trapping conditions can involve both coherent and dissipative interactions,

and depending on the energy level structure of the system, the population can be trapped in a linear superpo-

sition of two or more bare states, a dressed state corresponding to an eigenstate of the system plus external

fields or, in some cases, in one of the excited states of the system. A comprehensive analysis is presented of the

different processes that are responsible for population trapping, and we illustrate these ideas with three ex-

amples of two coupled systems: single V- and L-type three-level atoms and two nonidentical two-level atoms,

which are known to exhibit dark states. We show that the effect of population trapping does not necessarily

require decoupling of the antisymmetric superposition from the dissipative interactions. We also find that the

vacuum-induced coherent coupling between the systems could be easily observed in L-type atoms. Our

analysis of the population trapping in two nonidentical atoms shows that the atoms can be driven into a

maximally entangled state which is completely decoupled from the dissipative interaction.

PACS number~s!: 32.80.Qk, 32.50.1d, 42.50.Gy, 42.50.Ar

I. INTRODUCTION

The control and manipulation of information transfer pro-

cesses is a topic of much current interest because of the

many possible applications in quantum computation, telepor-

tation, and quantum information theory. Ways of controlling
decoherence, and of producing maximum entanglement, are
of particular importance.

Information can be transferred between two systems by
coherent or incoherent interactions. The coherent interactions
can be stimulated by an external field such as a laser that can
induce coherent oscillations of the dipole moments of the
systems, or can produce coherent superpositions of their in-
ternal states. The incoherent interactions occur as spontane-
ous emission from one system to the other resulting from the
coupling of the systems to the same modes of the vacuum
field. Coherent interactions lead to nondissipative ~revers-
ible! transfers of population between systems, whereas trans-
fers induced by spontaneous emission are dissipative ~irre-
versible!. Whilst coherent processes are easy to control, the
spontaneous emission from two interacting systems leads to
losses ~decoherence! as only a small part of the radiation
emitted by one system can be absorbed by the other. More-
over, these two processes are not complementary to each
other, since any coherent interaction is accompanied by
spontaneous emission. Therefore, the problem of transferring
information in modified environments which suppress or re-
duce spontaneous emission has attracted considerable inter-
est in recent years. It has been shown that an effective
method to modify spontaneous emission is to place a radiat-
ing system in a frequency-dependent reservoir such as an

electromagnetic cavity @1#, an optical waveguide @2#, or a

photonic band-gap material @3#, which changes the density of

modes of the vacuum field into which the system can emit.

Another process that can modify spontaneous emission is

quantum interference. It was predicted by Agarwal @4# in a

degenerate three-level atom and is now a well-known phe-
nomenon that can lead to many interesting effects, such as
electromagnetically induced transparency @5#, lasing without
inversion @6#, and the narrowing of optical transitions @7,8#.
The essential feature of quantum interference is the existence
of quantum superposition states, which can be decoupled
from the coherent and incoherent interactions. These states,
known as dark or trapped states, were also predicted in other
configurations of three-level and multilevel atoms, as well as
in multiatom systems @9,10#, and many practical applications
have been suggested, for example, in high-resolution laser
spectroscopy @11#, laser cooling @12#, and quantum comput-
ing @13–15#.

Although the trapping states have the common property
that the population will stay in such a state for an extremely
long time, they can, however, be implemented in different
ways. In a multilevel system the population can be trapped in
a linear superposition of two or more bare states, a dressed
state corresponding to an eigenstate of the atoms plus exter-
nal fields, or in some cases, in one of the excited states of the
system. The starting point of the standard analysis of the
origin of population trapping in a specific multilevel system
is a numerical or analytical solution for the populations, the
coherences, or the fluorescence or absorption spectra @16–
20#. The results are then analyzed in terms of the parameters
of the system such as the damping rates, detunings, and Rabi
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frequencies of the driving fields, and the origin of population
trapping is usually explored in terms of dressed states of the
system.

In this paper we demonstrate a qualitatively different ap-
proach to the problem of population trapping. We show how
the master equation of two coupled systems enables us to
identify conditions for population trapping and to classify the
coherent and incoherent processes responsible for the trans-
fer of population to a trapping state. Specifically, we exam-
ine the dynamics of two arbitrary systems coupled through
the three-dimensional electromagnetic vacuum field and
driven by a single-mode coherent laser field. The systems are
represented by transition dipole moments which refer either
to the two transitions in a single multilevel atom, or to the
individual transitions in two separate two-level atoms. The
master equation for two interacting systems can, of course,
be solved directly in many cases and, as we have mentioned
above, the conditions for population trapping can be found
from the final results. Nevertheless, in some cases such a
direct method can be laborious and uninformative. Our ap-
proach provides a simple picture of the processes responsible
for the population trapping which enables us to obtain a bet-
ter understanding of the physics of this effect. Using an uni-
tary transformation of the dipole moments of the systems, we
rewrite the master equation in the representation of superpo-
sition systems that are not coupled to each other through the
vacuum field, but can be coupled through coherent interac-
tions. We find the general condition for the complete decou-
pling of one of the superpositions from the dissipative inter-
actions and identify coherent processes that can transfer the
population between the superpositions. To our knowledge,
the analysis of the conditions and processes responsible for
the transfer of the population between two coupled systems
has not been previously presented in the literature.

In Sec. II we give a general description of the master
equation for two arbitrary systems and then, in Sec. III, we
introduce a unitary transformation to the superposition sys-
tems. Finally, in Sec. IV we illustrate our approach for three
specific examples of two coupled systems, and obtain a num-
ber of interesting results. For instance, our study of popula-
tion trapping in the system of two nonidentical atoms shows
that the atoms can be driven into a maximally entangled state
which exhibits zero decoherence.

II. MASTER EQUATION OF TWO

INTERACTING SYSTEMS

We start with a quite general description of two interact-
ing systems, driven by a single-mode coherent laser field of
amplitude E and phase f . The systems, which we will call
bare systems, are represented by induced dipole moments

m̃15m1S1
1

1m1
*S1

2 ,

~1!

m̃25m2S2
1

1m2
*S2

2 ,

where mi is the dipole matrix element of the ith system, and

S i
1 and S i

2 (i51,2) are dipole raising and lowering opera-

tors, respectively. The dipole moments are assumed to oscil-

late with different frequencies v1 and v2, and are coupled to
the three-dimensional multimode electromagnetic field
whose modes are in a vacuum state. The total Hamiltonian
describing the energies of the systems, electromagnetic field
and interactions, in the electric-dipole and RWA approxima-
tions, is composed of four terms

H5Hs1H
v
1HsL1Hsv

, ~2!

where

Hs5\v1S1
1S1

2
1\v2S2

1S2
2 ~3!

is the Hamiltonian of the two bare systems,

H
v
5(

ks
\vksS âks

† âks1

1

2
D ~4!

is the Hamiltonian of the three-dimensional multimode elec-
tromagnetic field,

HsL52

1

2
\@~V1S1

1
1V2S2

1!e ivLt
1H.c.# ~5!

is the interaction of the systems with the coherent laser field,
and

Hsv
5(

ks
$@m1•gks~r1!S1

1
1m2•gks~r2!S2

1# âks1H.c.%

~6!

is the interaction of the bare systems with the multimode
vacuum field. Here, vL is the frequency of the driving laser

field, âks
† and âks are the creation and annihilation operators

of a photon in the mode (k,s) with wave vector k and po-
larization s, the coefficient mi•gks(ri) is the coupling con-
stant of the dipole moment mi with the mode function gks(ri)
of the three-dimensional multimode vacuum field, evaluated
at the position ri of the ith dipole, and

V i5mi•Ee ikL•ri/\ ~7!

is the Rabi frequency of the ith system located at a point ri

and kL is the wave vector of the driving laser field. For a
single laser coupled to both systems the Rabi frequencies V1

and V2 are related by

V25V1

m2 cos u1

m1 cos u2

e ikL•(r22r1), ~8!

where u i is the angle between mi and the polarization vector
of the laser field, m i5umiu is the magnitude of the ith dipole
moment, and exp@ikL•(r22r1)# is the phase difference aris-
ing from different positions of the dipoles.

A standard procedure employing the Born and Markoff
approximations leads to a description of the dynamics of the
systems in terms of the master equation for the reduced den-
sity operator r . For two general systems, the master equation
can be written in the Lindblad form as

ṙ5Lndr1Ldr , ~9!
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where the Liouville operator Lnd describes the nondissipa-
tive part of the evolution

Lndr52

i

\
@H8,r# , ~10!

and Ld the dissipative part

Ldr52

1

2
G1~S1

1S1
2r1rS1

1S1
2

22S1
2rS1

1!

2

1

2
G12~S1

1S2
2r1rS1

1S2
2

22S2
2rS1

1!

2

1

2
G12~S2

1S1
2r1rS2

1S1
2

22S1
2rS2

1!

2

1

2
G2~S2

1S2
2r1rS2

1S2
2

22S2
2rS2

1!, ~11!

with

H85\~v11d1
(2)!S1

1S1
2

1\~v21d2
(2)!S2

1S2
2

1\d1
(1)S1

2S1
1

1\d2
(1)S2

2S2
1

1\d12
(2)~S1

1S2
2

1S2
1S1

2!

1\d12
(1)~S1

2S2
1

1S2
2S1

1!1HsL , ~12!

and HsL is given in Eq. ~5!. The coefficient

G i5p(
ks

umi•gks~ri!u
2d~k2k i! ~ i51,2! ~13!

is the spontaneous damping rate of the ith system resulting
from the coupling of the system to the vacuum field, and

G125G215p(
ks

@m1•gks~r1!#@m2
*•gks

* ~r2!#d~k2k0!,

~14!

is a generalized ~cross-! damping rate arising from the cou-
pling of the bare systems through the vacuum field. The
terms proportional to G12 represent an incoherent exchange
of the excitation between the systems such that one of the
systems spontaneously emits photons which are then ab-
sorbed by the other system.

The remaining parameters

d i
(6)

5P
1

c (
ks

umi•gks~ri!u
2

1

k6k i

~15!

represent a part of the Lamb shift, induced by the first-order
coupling in the Hamiltonian Hsv

, of the ground and excited
states of the systems, while

d12
(6)

5d21
(6)

5P
1

c (
ks

@m1•gks~r1!#@m2
*•gks

* ~r2!#
1

k6k0

~16!

is the vacuum-induced coupling between the systems. In
Eqs. ~13!–~16!, k5uku, k i5v i /c , k05(v11v2)/2, and P
refers to the Cauchy principal value.

According to Eq. ~12!, the parameters d i
(6) can be consid-

ered as a part of the frequencies v1 and v2, and thus they
can be omitted or, in general, can be included into the dy-

namics by redefining the frequencies to ṽ i5v i1d i
(2) .

Therefore, we will not present calculations of the Lamb shift.
However, we are interested in the qualitative effects of the

interactions between the systems, and the role played by d12
(6)

in their dynamics. It is evident from Eq. ~12! that the param-

eter d12
(6) does not appear as a shift of the energies, but con-

tributes to the coherent coupling between the bare systems
@21#. Thus, the interaction with the vacuum field not only
produces dissipative spontaneous emission but also leads to a
coherent coupling between the systems.

We may find the explicit form of the damping rates and
the coherent coupling coefficient by evaluating the sums in
Eqs. ~13!, ~14!, and ~16!. In the plane-wave representation of
the three-dimensional multimode field in free space, gks(ri)
is defined as

gks~ri!5S ck

2pe0\~2p !3D
1/2

êkse
ik•ri, ~17!

where êks is the unit polarization vector of the field mode
(k,s…. In the spherical representation the unit orthogonal po-

larization vectors êk1 and êk2 may be taken as @22#

êk15~2cos u cos f ,2cos u sin f ,sin u !,

êk25~sin f ,2cos f ,0!, ~18!

and the sum over k can be changed into an integral

(
ks

→
1

c (
s51

2

E
0

`

k2 dkE
0

p

sin u duE
0

2p

df , ~19!

where (k ,u ,f) denote spherical coordinates. Substituting
Eq. ~19! into Eqs. ~13! and ~14!, and assuming that the dipole
moments are both linearly or both circularly polarized, we
obtain the following explicit expressions for the spontaneous
damping rates:

G i5

k i
3m i

2

6pe0\
~ i51,2!, ~20!

and the cross-damping rate

G125
3

4
AG1G2H @~m̂1•m̂2!2~m̂1• r̂12!~m̂2• r̂12!#

sin~k0r12!

k0r12

1@~m̂1•m̂2!23~m̂1• r̂12!~m̂2• r̂12!#

3F cos~k0r12!

~k0r12!
2

2

sin~k0r12!

~k0r12!
3 G J , ~21!
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where r125ur22r1u, and m̂i and r̂12 are unit vectors along the
ith dipole moment and the line connecting the two systems,
respectively.

Using Eq. ~19! and the explicit expressions for G i and

G12 , the coherent coupling d125d12
(1)

1d12
(2) can be written

as

d125

AG1G2

p
PE

2`

`

dk F~kr12!S 1

k2k0

1

1

k1k0
D , ~22!

where F(kr12)5G12 /AG1G2, and G12 is given in Eq. ~21!.
The parameter d12 depends on r12 and can have signifi-

cantly different values depending on whether kr1250 or
kr12Þ0. For kr1250 which, for example, occurs for two
dipole moments in the same atom, F(kr12)51 and then d12

reduces to a form similar to the Lamb shift. When kr12Þ0,
we can evaluate the integral by contour methods, and obtain

d125
3

4
AG1G2H 2@~m̂1•m̂2!2~m̂1• r̂12!~m̂2• r̂12!#

cos~k0r12!

k0r12

1@~m̂1•m̂2!23~m̂1• r̂12!~m̂2• r̂12!#

3F sin~k0r12!

~k0r12!
2

1

cos~k0r12!

~k0r12!
3 G J , ~23!

which is the familiar retarded dipole-dipole interaction be-
tween the systems @23–27#. The parameters ~21! and ~23!
depend on the mutual orientation of the dipole moments of
the systems and their separation r12 . For large separations
k0r12 goes to infinity, and then G125d1250, independent of
the mutual orientation of the dipole moments. By contrast,
for very small separations ~much smaller than the optical
wavelength!, k0r12 goes to zero, and then G12 and d12 reduce
to

G125AG1G2~m̂1•m̂2!, ~24!

and

d125
3AG1G2

4~k0r12!
3

@~m̂1•m̂2!23~m̂1• r̂12!~m̂2• r̂12!# . ~25!

For this case d12 corresponds to the static dipole-dipole in-
teraction potential. The magnitude of the parameters ~24! and
~25! depends on the mutual orientation of the dipole mo-
ments and vanishes when they are perpendicular. For parallel
dipole moments the parameters attain their maximal values.

III. SUPERPOSITION SYSTEMS

Equations ~11! and ~12! illustrate the significance of the
generalized damping rate G12 and the interaction energy d12 .
These two parameters are not associated with individual sys-
tems but appear as coupling terms between the two systems.
The parameter G12 introduces a coupling through the dissi-
pative process of spontaneous emission, while d12 introduces
a coherent coupling through the nondissipative process.

These two couplings introduce off-diagonal terms into the
master equation.

The traditional method of solving the master equation is
to calculate equations of motion for the density-matrix ele-
ments and solve them by direct integration, or by a transfor-
mation to easily solvable algebraic equations. Another
method is to diagonalize the Hamiltonian H8, which leads to
the dressed states of the system, and next to represent the
dissipative part as spontaneous emission among these
dressed states @28#. Here, we propose an alternative method
where we introduce a unitary transformation of the dipole
moments of the bare systems which diagonalizes the dissipa-
tive part of the master equation. In this approach the two
coupled systems are represented by linear superpositions,
which decay independently with significantly different rates,
but which can be coupled through coherent interactions. This
will allow us to identify the coherent processes which can
transfer population between the two systems in the absence
of the dissipative interaction.

We introduce new dipole operators Ss
1 and Sa

1 that are

linear combinations of the S1
1 and S2

1 operators

Ss
1

5uS1
1

1vS2
1 ,

~26!
Sa

1
5vS1

1
2uS2

1 ,

where u and v will be related through the condition

uuu2
1uvu2

51, ~27!

which ensures that the transition to the superposition opera-

tors is a unitary transformation. The operators Ss
1 and Sa

1

represent, respectively, symmetric and antisymmetric super-
positions of the dipole moments of the two bare systems. In
terms of the operators ~26!, and with a proper choice of u and

v , we can rewrite the dissipative part ~11! of the master
equation in a form

Ldr52Css~Ss
1Ss

2r1rSs
1Ss

2
22Ss

2rSs
1!

2Caa~Sa
1Sa

2r1rSa
1Sa

2
22Sa

2rSa
1!

2Csa~Ss
1Sa

2r1rSs
1Sa

2
22Sa

2rSs
1!

2Cas~Sa
1Ss

2r1rSa
1Ss

2
22Ss

2rSa
1!. ~28!

By simple comparison of coefficients in Eqs. ~11! and
~28!, we can express Cmn (m ,n5s ,a), u and v in terms of
G i (i51,2) and G12 as

Css5

1

2

~G1
2
1G2

2
12G12AG1G2!

G11G2

, ~29!

Caa5

~AG1G22G12!AG1G2

G11G2

, ~30!

Csa5Cas5

1

2

~G12G2!~AG1G22G12!

G11G2

, ~31!

and
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u5

AG1

AG11G2

, ~32!

v5

AG2

AG11G2

. ~33!

The transformed dissipative part ~28! of the master equa-
tion has a form similar to Eq. ~11!. Of course, the real ad-
vantage of any unitary transformation of Eq. ~11! appears
only if the transformed part is less complicated than the ini-
tial one. Although in general the two forms ~11! and ~28!
look similar, the advantage of the transformed form ~28!

over ~11! is obtained when G125AG1G2 and/or the damping
rates of the original systems are equal (G15G25G). Ac-

cording to Eq. ~21!, G125AG1G2 when the two dipole mo-
ments are parallel and separated by distances smaller than
the optical wavelength. When the damping rates are equal,
Csa5Cas50, and then the symmetric and antisymmetric su-
perpositions decay independently with the decay rates 1

2 (G
1G12) and 1

2 (G2G12), respectively. In other words, for G1

5G2 the transformation ~26! diagonalizes the dispersive part

of the master equation. Furthermore, if G125AG1G2 then

Caa5Csa5Cas50 regardless of the ratio between G1 and
G2. In this case the antisymmetric superposition decouples

from the dissipative interactions and consequently does not
decay. This implies that spontaneous emission can be con-
trolled and even suppressed by appropriately engineering the
dissipative interaction G12 between the systems.

The above discussion shows that the basic feature of the
two coupled systems is the existence of an antisymmetric
superposition which can be decoupled from the dissipative
interactions. The modification of the dissipative interactions
is an example of quantum interference between two coupled
systems, in that the spontaneous emission from one of them
modifies the spontaneous emission from the other. This phe-
nomenon leads to symmetric and antisymmetric superposi-
tions which may decay independently with significantly
modified rates. The decay rate of the antisymmetric superpo-
sition may be greatly reduced or even completely sup-
pressed. An interesting question arises as to whether the non-
decaying antisymmetric superposition can still be coupled to
the coherent interactions. These interactions can coherently
transfer population between the superpositions. In order to

check this, we rewrite the Hamiltonian H8 in terms of the Ss
1

and Sa
1 operators as

H852\F S DL1

~G12G2!

G11G2

D D Ss
1Ss

2
1S DL2

~G12G2!

G11G2

D D Sa
1Sa

2
12D

AG1G2

G11G2
~Ss

1Sa
2

1Sa
1Ss

2!G
1\d12F2AG1G2

G11G2
~Ss

1Ss
2

2Sa
1Sa

2!1

~G12G2!

G11G2
~Ss

1Sa
2

1Sa
1Ss

2!G2

\

2AG11G2

@~AG1V11AG2V2!~Ss
1

1Ss
2!

1~AG2V12AG1V2!~Sa
1

1Sa
2!# , ~34!

where D5
1
2 (ṽ22ṽ1) and DL5vL2

1
2 (ṽ11ṽ2) is the de-

tuning of the laser field from the average frequency of the
two dipole moments.

The first term in Eq. ~34! arises from the Hamiltonian Hs

and shows that the energies of the symmetric and antisym-
metric superpositions depend on the energy difference D be-
tween the bare systems and the damping rates G i . Moreover,
the energy difference D introduces a coherent coupling be-
tween the superpositions. If the bare systems are identical
(D50 and G15G2) then the superpositions have the same
energies and there is no contribution to the coherent interac-
tion from the Hamiltonian Hs .

In the transformed representation the interaction d12 be-
tween the two bare systems, given by the second term in Eq.
~34!, has two effects on the coherent dynamics of the sym-
metric and antisymmetric superpositions. The first is a shift
of the energies and the second is the coherent interaction
between the superpositions. It is seen from Eq. ~34! that the
coherent interaction between the superpositions vanishes for
identical atoms with G15G2 and then the effect of d12 is
only the shift of the energies from their unperturbed values.
It is interesting that the interaction d12 shifts the energies in
the opposite directions.

The third term in Eq. ~34! represents the interaction of the
superpositions with the driving laser field. We see that the
symmetric superposition strongly couples to the laser field
with an effective Rabi frequency proportional to V11V2,
whereas the Rabi frequency of the antisymmetric superposi-
tion is proportional to V12V2 and vanishes for V15V2. In
the latter case, the laser field couples only to the symmetric
superposition. According to Eq. ~8!, this takes place only if
the dipole moments experience the same phase of the driving
field.

We can rewrite the Hamiltonian ~34! in a more compact
form,

H852\@~DL1D8!Ss
1Ss

2
1~DL2D8!Sa

1Sa
2

1Dc~Ss
1Sa

2
1Sa

1Ss
2!#

2

\

2AG11G2

@~AG1V11AG2V2!~Ss
1

1Ss
2!

1~AG2V12AG1V2!~Sa
1

1Sa
2!# , ~35!

where
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D85

1

G11G2
@~G12G2!D22d12AG1G2# ~36!

and

Dc5

1

G11G2
@2DAG1G21d12~G12G2!# . ~37!

The physical interpretation of Eq. ~35! is straightforward: D8

is a shift of the energies of the superposition systems and Dc

is the magnitude of the coherent coupling between the super-
positions. The parameters depend on the vacuum-induced
coherent coupling d12 , which can strongly affect the coher-
ent evolution of the systems. For d12Þ0 and identical bare
systems the shift D8Þ0, but can vanish for nonidentical bare
systems. This occurs for

d125
1

2

~G12G2!D

AG1G2

. ~38!

In contrast to the shift D8, which is different from zero for
identical systems, the coherent coupling Dc can be different
from zero only for nonidentical bare systems. However, even
in this case the coupling can vanish, which happens for

D52

d12~G12G2!

2AG1G2

. ~39!

Thus, with the condition ~39! and G125AG1G2 the antisym-
metrical superposition of two nonidentical bare systems
completely decouples from the interactions.

The master equation with the dissipative part ~28! and the
Hamiltonian ~35! gives an elegant description of the physics
involved in the existence of coherent superpositions in the
interaction of two dipole systems, their dissipative interac-
tions with the vacuum field ~environment!, and the coupling
to the coherent interactions. An important point is that the
master equation is quite general and can be applied to an
arbitrary system composed of two dipole moments. The con-

dition G125AG1G2 for the decoupling of the antisymmetric
superposition from the dissipative interaction is valid for ar-
bitrary dipole systems, whereas the presence of the coherent
interaction between the superpositions depends on specific
examples of the dipole systems and appears only if the bare
systems are nonidentical with different energies and/or spon-
taneous damping rates. In the next section we will consider
specific examples of two systems and discuss the conditions
of their couplings to coherent interactions.

IV. EXAMPLES

Let us illustrate our considerations with three examples of
a quantum system which is composed of two interacting sub-
systems. The three particular quantum systems we consider
are a single V-type three-level atom, a single L-type three-
level atom, and two nonidentical two-level atoms. Each of
the three systems is represented by two dipole moments m1

~system 1! and m2 ~system 2! coupled to the same vacuum

field and driven by a coherent laser field. These systems are
known to exhibit the population trapping phenomenon, that
is, the system can be driven into a dark state from which the
population is unable to leave.

A. Three-level V system

We consider a three-level atom in the V configuration
composed of two nondegenerate excited levels u1& and u2&
and a single ground level u3&. The levels u1& and u2& can
decay to the ground level by spontaneous emission with de-
cay rates G1 and G2, respectively, whereas transitions be-
tween the excited levels are forbidden in the electric dipole
approximation. The two interacting systems have dipole mo-
ments m13 and m23 sharing the same atomic ground level u3&
and represented by the operators S1

1
5(S1

2)†
5u1&^3u and

S2
1

5(S2
2)†

5u2&^3u. In this three-level atom the superposi-

tion systems correspond to the symmetric and antisymmetric
superpositions of the atomic excited states

us&5

1

AG11G2

~AG1u1&1AG2u2&), ~40!

ua&5

1

AG11G2

~AG2u1&2AG1u2&). ~41!

The evolution of the system is described by a master
equation of the same type as Eq. ~9! with the specific form of
the Hamiltonian H8. Since we have a single atom, the dipole
moments are at the same point r15r2, the Rabi frequencies
are related by

V25V1AG2

G1

cos u1

cos u2

, ~42!

and the cross-damping term is given by @7#

G125pAG1G2, ~43!

where p5(m̂1•m̂2) determines the mutual polarization of the
dipole moments of the two atomic transitions. For parallel
dipole moments p51, whereas p50 for perpendicular po-
larizations. In the former case, the antisymmetric state de-
couples from the dissipative interaction and consequently
does not decay. However, the population of this state can
still evolve in time due to the coherent coupling to the sym-
metric state. In order to show this in more detail, we derive
the equation of motion for the population raa of the antisym-
metric state, which for G15G25G is given by

ṙaa52~12p !Graa1iDc~ras2rsa!. ~44!

In the derivation of Eq. ~44!, we have assumed equal Rabi
frequencies, V15V2, and hence the antisymmetric state is
not driven by the laser field. This will allow us to identify
excitation channels different from the laser field. The first
term on the right-hand side of Eq. ~44! arises from the dis-
sipative interaction of the antisymmetric state with the
vacuum, while the second term arises from the coherent in-
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teraction with the symmetric state. Note that the interaction

between the superpositions does not involve the ground state,
and therefore is not accompanied by spontaneous emission.
If Dc50 the steady-state population raa50, unless p51
and then raa retains its initial value. This is the population
trapping effect, predicted by Agarwal @4#, that a degenerate
three-level atom excited initially into the antisymmetric su-
perposition of the excited levels will stay in this state for all
times. For DcÞ0 and in the absence of the driving field, the
steady-state population raa50 regardless of the initial value.
This implies that the coherent interaction destroys the popu-
lation trapping in the state ua&.

The role of the coherent coupling can reverse in the pres-
ence of the driving field. In this case the coherent coupling
Dc can transfer the population from the driven us& state to the
undriven and nondecaying ua& state. This is shown in Fig. 1,
where we plot the steady-state population raa as a function
of DL for D55,d1250.1 and different V . It is seen that the
antisymmetric state is populated by the presence of the co-
herent coupling to the symmetric state. The amount of popu-
lation in ua& increases with increasing V and attains the
maximum value raa'1 for DL50 and very strong driving
fields.

The coherent transfer of the population between the su-
perpositions can leave us& unpopulated despite that the state
is continuously driven by the laser field. We illustrate this in
Fig. 2, where we plot the population rss as a function of DL

for D55,d1250.1 and different V . For DL50 the population
rss50 regardless of the value of V . The coherent interaction
between the superpositions transfers the population to the
state ua& leaving the state us& unpopulated.

The appearance of the zero in the population rss results
from the presence of the coherent coupling Dc , but the quan-
tity which determines the position of the zero is the detuning
D8. According to Eq. ~36!, for G15G2 the detuning D8 de-
pends solely on the vacuum induced coherent coupling d12 .
Therefore, an experimental observation of a shift of the zero

from the DL50 position would provide evidence of the
vacuum induced coherent interaction in the V system. In Fig.
2 we have chosen d1250.1, and even with such a large value
of d12 no shift of the zero is visible. Cardimona and Stroud
@21# have shown that the effect of d12 on the dynamics of the
V system could be observed as a change in the fluorescence
intensity profile. However, the predicted changes are also
very small and could be difficult to observe. In Sec. IV B,
however, we show that d12 can have an experimentally sig-
nificant effect on the dynamics of a L system.

The lack of population in the state us& , see Fig. 2, can be
interpreted as a population trapping induced by the laser field
and the coherent interaction. However, the induced trapping
state is not entirely the ua& state but rather a linear superpo-
sition of the ground u0& and ua& states. Only in the limit of a
strong driving field does the induced trapping state reduces
to ua& . An alternative way of viewing the process of trans-
ferring population from the state us& to ua& is to employ the
dressed-atom model of the system @28#. The dressed atom
approach provides a transparent picture of the physical pro-
cesses responsible for population transfer and trapping phe-
nomena. In this model we use a fully quantum-mechanical
description of the Hamiltonian H8, which for the three-level
system discussed here takes the form

H85H01VL , ~45!

where

H052\DL~Ss
1Ss

2
1Sa

1Sa
2!1\vLaL

†aL ~46!

is the Hamiltonian of the uncoupled system and the laser
field, and

VL52\D~Ss
1Sa

2
1Sa

1Ss
2!2

\

A2
g~aL

†Ss
2

1Ss
1aL! ~47!

is the interaction Hamiltonian which includes the coherent
coupling between the superposition states and the coupling

FIG. 1. The stationary population of the antisymmetric state ua&
as a function of DL for G251, d1250.1, D55, p51, and differ-

ent V:V51 ~solid line!, V55 ~dashed line!, V510 ~dashed-

dotted line!, V525 ~dotted line!. All parameters are scaled to G1

throughout the figures and, for simplicity, we take G151.

FIG. 2. The stationary population of the symmetric state us& as a

function of DL for G251, d1250.1, D55, p51, and different

V: V51 ~solid line!, V55 ~dashed line!, V510 ~dashed-dotted

line!.
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of the symmetric state to the laser field. In Eq. ~47!, g is the

system-field coupling constant, and aL (aL
†) is the annihila-

tion ~creation! operator for the driving field mode.
For DL50 the Hamiltonian H0 has three degenerate

eigenstates u3,N&, ua ,N21&, and us ,N21&, where ui ,N& is
the state with the atom in state ui& and N photons present in
the driving laser mode. When we include the interaction VL

the degeneracy is lifted, resulting in triplets ~dressed states!

u1 ,N&5

1

A2
@2aua ,N21&1us ,N21&2A2bu3,N&],

u0,N&52A2bua ,N21&1au3,N& ,

u2 ,N&5

1

A2
@2aua ,N21&2us ,N21&2A2bu3,N&],

~48!

with energies

EN ,15NvL1V8,

EN ,05NvL , ~49!

EN ,25NvL2V8,

where V85AD2
1

1
2 V2, a5D/V8, and b5V/2V8.

The dressed states ~48! group into manifolds, each con-
taining three states. Neighboring manifolds are separated by
vL , while the states inside each manifold are separated by
V8/2. The dressed states are connected by transition dipole
moments. It is easily verified that nonzero dipole moments
occur only between states within neighboring manifolds. Us-
ing Eq. ~48! and assuming that m135m235m, we find that
the transition dipole moments between ui ,N11& (i50,2 ,
1) and u0,N& are

^N11,1umu0,N&5am,

^N11,0umu0,N&50, ~50!

^N11,2umu0,N&52am,

whereas the transition dipole moments ^N ,0umui ,N21& be-
tween u0,N& and the dressed states ui ,N21& of the manifold
below are equal to zero. It is apparent from Eq. ~50! that
transitions to the state u0,N& are allowed from the states of
the manifold above, but are forbidden to the states of the
manifold below. Therefore, the state u0,N& is a trapping state
such that the population can be transferred into this state, but
cannot leave it. The transfers are allowed only when DÞ0,
i.e., in the presence of the coherent coupling between the
symmetric and antisymmetric superpositions. Otherwise, for
D50, the state u0,N& is completely decoupled from the re-
maining dressed states. In this case the three-level system
reduces to that equivalent to a two-level atom. We see from
Eq. ~48! that the dressed state u0,N& is a linear superposition
of the ua& and u3& states, and reduces to the state ua& for a
very strong driving field (V@D).

Thus, the coherent interaction between the superpositions
can have a constructive or destructive effect on the popula-
tion trapping in a V-type three-level atom. In the absence of
the driving field the coupling has a destructive effect on the
population trapping in that it depopulates the state ua&. On
the other hand, in the presence of the driving field the cou-
pling has a constructive effect on the population trapping
since it creates a trapping superposition state of the ground
and the nondecaying antisymmetric states.

B. Three-level L system

Here, we consider a three-level L-type atom composed of
a single upper level u3& and two ground levels u1& and u2&.
The two interacting systems have dipole moments m31 and
m32 sharing the same atomic upper level u3&. After introduc-

ing superposition operators Ss
1

5(Ss
2)†

5u3&^su and Sa
1

5(Sa
2)†

5u3&^au, where us& and ua& are the superposition

states of the same form as Eqs. ~40! and ~41!, we obtain the
master equation of the same type as Eq. ~9! with the dissi-
pative part ~28! and the Hamiltonian ~35! given by

H852\H ~DL1D8!Ss
2Ss

1
1~DL2D8!Sa

2Sa
1

1Dc~Ss
2Sa

1
1Sa

2Ss
1!1

1

2

AG1V

AG11G2

~Ss
1

1Ss
2!J ,

~51!

with G125pAG1G2, and we have assumed that V15V2

5V . Note that the ordering of the superposition operators in
Eq. ~51! is the reverse of that for the V system.

Following our procedure, we analyze conditions for popu-
lation trapping using the equation of motion for the popula-
tion raa of the antisymmetric state. For the L system, the
equation of motion is of the following form:

ṙaa5

2G1G2

G11G2
~12p !r332iDc~ras2rsa!. ~52!

In the steady state ( ṙaa50) with pÞ1 and Dc50 the
population in the upper state r3350. Thus the state u3& is not
populated despite that is continuously driven by the laser. In
this case the population is entirely trapped in the antisym-
metric state @29#. This is the well-known coherent population
trapping effect predicted by Alzetta et al. @30#, and experi-
mentally observed by Orriols @31# ~see also @32#!. However,
for p51 and Dc50 the antisymmetrical state decouples
from the interactions, and then the steady-state population
r33 is different from zero @33#. This shows that coherent
population trapping is possible only in the presence of dissi-
pative spontaneous emission from the upper level to the an-
tisymmetric superposition state. Moreover, coherent popula-
tion trapping does not appear even if pÞ1. According to Eq.
~52! this happens when DcÞ0. We see that, similar to the V

system, the coherent coupling destroys population trapping.
This is shown in Fig. 3, where we plot the steady-state popu-
lation r33 as a function of D for DL50, V55, d1250.1,
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p50.5, and two different values of G2. It is evident that the
cancellation of the population r33 appears only at Dc50, i.e.,
in the absence of the coherent coupling between the antisym-
metric and symmetric states. For G15G2 the cancellation
appears at D50, while for G1ÞG2 the effect appears at

D52

1

2

G12G2

AG1G2

d12 . ~53!

Thus, for G1 significantly different from G2 , the shift can be
large despite that d12 is very small. Therefore, the vacuum-
induced coherent coupling can be experimentally observed in
the L system as a shift of the zero of the population r33 .
Note that in contrast to the V system, where the effect of d12

could be important for nearly degenerate transitions @21#, in
the L system the effect could be observed with nondegener-
ate transitions.

It is important to note that, in contrast to the V system,
there is no laser-induced population trapping in the L sys-
tem. We can show this by calculating the transition dipole
moments between the dressed states of the system. The pro-
cedure of calculating the dressed states of the L system is the
same as for the V system. The only difference is that now
the eigenvalues of the unperturbed Hamiltonian H0 are
u3,N21& , ua ,N&, us ,N& , and the dressed states, with p51
and G15G2, are given by

u1 ,N&5

1

A2
@2aua ,N&1us ,N&2A2bu3,N21&],

u0,N&52A2bua ,N&1au3,N21& , ~54!

u2 ,N&5

1

A2
@2aua ,N&2us ,N&2A2bu3,N21&].

Although the dressed states ~54! are similar to that of the
V system @Eq. ~48!#, there is a crucial difference in that the
transition dipole moments between ui ,N11& and u0,N& are

all zero, but there are nonzero transition dipole moments
between u0,N& and the dressed states ui ,N21& of the mani-
fold below, since

^N ,0umu6 ,N21&56am,

~55!
^N ,0umu0,N21&50.

Therefore, population is unable to flow into the state u0,N&,
but can flow away from it. If D50 then a50, and the state
u0,N& completely decouples from the remaining states. For
DÞ0 the state u0,N& is coupled to the remaining states, but
does not participate in the dynamics of the system because it
cannot be populated by transitions from the other states.
There is no trapping state among the dressed states ~54! as
each state of a given manifold has nonzero transition dipole
moments to the dressed states of the manifold below.

We conclude that the process responsible for the popula-
tion trapping in the L system is different from that in the V

system. In the former the trapping results from the dissipa-
tive decay of the population into the antisymmetric state,
whereas in the latter the trapping appears only if the antisym-
metric state is completely decoupled from the dissipative in-
teraction. Moreover, in the presence of the coherent coupling
between the superposition states no population is trapped in a
specific state of the L system.

C. Two nonidentical two-level atoms

In this section we consider two nonidentical atoms sepa-
rated by r12 , coupled to each other via a retarded dipole-
dipole interaction and to the three-dimensional electromag-
netic vacuum field, leading to dissipative spontaneous decay.
Each atom is modeled as a two-level system with ground
state ug i& (i51,2) and excited state ue i&, connected by a
transition dipole moment mi . The atoms are assumed to have
the transition frequencies v1 and v2 respectively, and the
corresponding decay rates G1 and G2. The master equation
for this system involves all parameters appearing in Eqs. ~28!
and ~35! with d12 being the retarded dipole-dipole interaction
~23!. As we have mentioned in Sec. III, the dipole-dipole
interaction has two effects on the dynamics of the system.
The interaction shifts the energies of the superposition sys-
tems in opposite directions, and contributes to the coherent
coupling between them. The latter happens only if G1ÞG2.

It is convenient to represent the superposition systems in
terms of the so-called collective states of the two-atom sys-
tem, which correspond to the symmetric and antisymmetric
superpositions of the atoms @23,24#. In this representation,
the two-atom system is equivalent to a single four-level sys-
tem with a single ground state u0&5ug1&ug2& , two intermedi-
ate ~entangled! states

u1&5

1

AG11G2

~AG1ue1&ug2&1AG2ue2&ug1&), ~56!

u2&5

1

AG11G2

~AG2ue1&ug2&2AG1ue2&ug1&), ~57!

FIG. 3. The stationary population of the upper state u3& of a

L-type atom as a function of the splitting D for DL50, V55,

d1250.1, p50.5, and different G2 : G251 ~solid line!, G2550

~dashed line!.
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and a single upper state u1&5ue1&ue2&. The entangled states
~56! and ~57! are independent of D , but depend on the damp-
ing rates G1 and G2. For G15G2 the states are maximally
entangled, whereas for either G1!G2 or G1@G2, the en-
tangled states reduce to the product states ue i&ug j& (iÞ j). In
the basis of the collective states the superposition operators

Ss
1 and Sa

1 are of the following form:

Ss
1

5

1

G11G2
@2AG1G2u1&^1u2~G12G2!u1&^2u#1u1&^0u,

~58!

Sa
1

5

21

G11G2
@2AG1G2u1&^2u1~G12G2!u1&^1u#1u2&^0u.

~59!

Before proceeding further, it is worth pointing out the physi-
cal significance of various terms in Eqs. ~58! and ~59! to gain
insight into the underlying dynamics of the system. We see
that there are two channels of excitation in the two-atom
system: The symmetrical channel u0&→u1&→u1&, and the
antisymmetrical channel u0&→u2&→u1&. The channels are
independent for identical atoms, but become correlated when
G1ÞG2. It is interesting to note that unequal damping rates
correlate transitions only from the upper to the intermediate
states, while the transitions from the intermediate states to
the ground state remain independent.

Now, let us consider population trapping conditions in the
two-atom system and the mechanism of population transfer
between the superpositions, especially between the entangled
states ~56! and ~57!. As before, for the V and L systems, we

assume that G125AG1G2 and derive the equation of motion
for the population of the antisymmetric state u2& , which is of
the following form:

ṙ225

~G12G2!2

G11G2

r111iDc~r122r21!

2

1

2
iV

~G12G2!

AG1~G11G2!
~r122r21!. ~60!

We see immediately that the antisymmetric state u2& does
not decay, but can be populated by spontaneous emission
from the upper state u1& and also by the nondissipative in-
teraction with the state u1&. The first condition is satisfied
only when G1ÞG2. The last condition is satisfied only when
Dc50. Thus, the transfer of population to the state u2& does
not appear when the atoms are identical, but is possible for
nonidentical atoms. In this case the upper state decays to a
superposition of the intermediate states, but then only a part
of the population, that part in the symmetric state u1&, can
decay to the ground state u0&.

In Fig. 4 we plot the steady-state population of the state
u2& as a function of DL for two different types of noniden-
tical atoms. In the first case the atoms have the same damp-
ing rates (G15G2) but different transition frequencies (D
Þ0), while in the second case the atoms have the same
frequencies (D50) but different damping rates (G1ÞG2). It
is seen from Fig. 4 that in both cases the antisymmetric state

can be populated even if it is decoupled from the dissipative
interaction and the driving field. The population is trans-
ferred to u2& through the coherent coupling Dc which, simi-
lar to the V-type atom, leaves the other excited states com-
pletely unpopulated. This is shown in Fig. 5, where we plot
the steady-state populations r11 and r11 for G15G2 , D
51, d12510, and V55. It is evident from Fig. 5 that for
DL52d12 the states are not populated. In a similar way to
the V system, the population is trapped in a linear superpo-
sition of the u0& and u2& states, and for a very strong field
can be completely transferred to the state u2&. This is shown
in Fig. 6, where we plot the steady-state population r22 for
the same parameters as in Fig. 5, but different V . Clearly, for
a strong driving field the population is completely transferred
to the state u2&.

This result shows that we can relatively easily prepare
two atoms, with different transition frequencies, in a maxi-
mally entangled state. The closeness of the prepared state to
the ideal one is measured by the fidelity F. Here F is equal to
the obtained maximum population in the state u2&. For V

FIG. 4. The stationary population of the entangled state u2& of

two nonidentical atoms for V55, d12510, p51, and G251, D

51 ~solid line!, G252, D50 ~dashed line!.

FIG. 5. The stationary population of the entangled state u1& and

the upper state u1& of two nonidentical atoms for G251, V55,

D51, d12510, and p51: r11 ~solid line!, r11 ~dashed line!.
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@G1 the fidelity of the prepared state is maximal, equal to 1.
The system has the advantage that the maximally entangled
state u2& is completely decoupled from the dissipative inter-
action, i.e., is a decoherence-free state.

V. SUMMARY

In this paper we have examined the dynamics of two sys-
tems, coupled through the three-dimensional vacuum field
and driven by a single-mode laser field. The systems have
been described in terms of the transition dipole moments,
which refer either to two transitions in a single multilevel
atom, or to the two transitions in two separate two-level at-
oms. We have shown that in each case the systems can be
represented by coherent symmetric and antisymmetric super-
positions whose dynamics depend solely on the frequencies
of the dipole moments, their mutual polarizations, and the
phase difference arising from possible different positions of
the dipoles. For identical systems confined in a region much
smaller than the resonant wavelength, so that the dipole mo-
ments experience the same phase, the antisymmetric super-
position totally decouples from the dynamics and remains
unaccessible by any interactions. A small frequency differ-
ence between the dipole moments introduces a coherent cou-
pling between the superpositions, which can have a construc-
tive or destructive effect on the population trapping. In the
absence of the driving field the coupling destroys the popu-
lation trapping that depopulates the dark superposition, while
one can drive the population into the dark superposition in
the presence of driving. We have also shown that the effect
of population trapping does not necessarily require decou-
pling of the antisymmetric superposition from the dissipative
interactions. For example, coherent population trapping, pre-
dicted in a L-type three-level atom, appears only in the pres-

ence of the dissipative coupling of the antisymmetric state to
the atomic upper state. A similar feature occurs in the system
of two nonidentical atoms. However, in this system, we also
show that the atoms can be driven into a maximally en-
tangled state which exhibits zero decoherence.
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