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DECOHERENCE, CHAOS,

THE QUANTUM AND THE CLASSICAL

W. H. Zurek and J. P. Paz

Theoretical Astrophysics, T-6, MS B288

Los Alamos National Laboratory, Los Alamos, NM 875_5

The key ideas of the environment-induced decoherence approach are reviewed.

Application of decoherence to the transition from quantum to classical in open

quantum systems with chaotic classical analogs is described. The arrow of time

is, in this context, a result of the information loss to the correlations with the en-

vironment. The asymptotic rate of entropy production (which is reached quickly,

on the dynamical timescale) is independent of the details of the coupling of the

quantum system to the environment, and is set by the Lyapunov exponents. We

also briefly outline the existential interpretation of quantum mechanics, justifying

the slogan "No information without representation".

1. Introduction

Quantum theory allows many more states for the objects described by it than we

seem to encounter. Moreover, quantum dynamics (especially the dynamics required

to model measurements, but also dynamics of quantum systems whose classical

analogs exhibit "chaos") takes simple, localized initial states of individual systems

into complicated nonlocal superpositions. We do not perceive such superpositions.

Macroscopic objects always appear to us in a small classical subset of a much

larger quantum menu which is in principle available in the Hilbert space. No one

has made this point more clear than Albert Einstein, who, in a 1954 letter to

Max Born writes1: "Let _1 and _2 be solutions of the same Schr6dinger equation

... When the system is macroscopic and _1 and _2 are 'narrow' with respect

to the macrocoordinates, then ... [typically] this is no longer the case for _ =

_1 + _2. Narrowness with respect to macrocoordinates is not only independent

of the principles of quantum mechanics, but, moreover, incompatible with them..."

Hence, predictions of quantum theory seem to be in conflict with our perceptions.

The purpose of the decoherence approach is to show that this conflict is only

apparent: Classical behavior of systems we encounter as well as the uniqueness of

our perceptions can be accounted for by the "openness" of the macroscopic objects,

including the devices employed by us, the observers, to keep records. The purpose
of this paper is twofold:

_

i) We will outline key ingredients of the decoherence approach to the tran-

sition from quantum to classical, including the recent developments, such as the

predictability sieve and the existential interpretation (a more complete summary is

available in the literature2,3,4).
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ii) We will briefly discuss the transition from quantum to classical in open

quantum systems which are classically chaotic (a more complete presentation will

be published elsewhere 5).

2. Decoherence

The key point of the decoherence approach is simple: There is a basic difference

between the predictions of quantum theory for quantum systems which are closed

(isolated) and open (interacting with their environments). In the case of a closed

system, SchrSdinger equation and the superposition principle apply literally. By

contrast, for an open quantum system superposition principle is not valid. There

the relevant physics is quite different, as was realized already some time ago in

the context of condensed matter physics, quantum chemistry, etc. However, the

paramount implications of the interaction with the environment for the transition

from quantum to classical were not appreciated until recently. Especially impor-

tant is the fact that the evolution of open quantum systems violates the "equal

rights amendment" pointed out by Einstein in his comment above, and guaranteed

for each and every state in the Hilbert space of a closed system by the superpo-

sition principle. Thus, decoherence results in a negative selection process which
dynamically eliminates non-classical states.

The distinguishing feature of classical observables, the essence of "classical re-

ality" is the persistence of their properties - the ability of systems to exist in pre-

dictably evolving states, to follow a trajectory which may be chaotic, but is deter-

ministic. This suggests the relative stability - or, more generally, predictability of

the evolution of quantum states - as a criterion which decides whether they will

be repeatedly encountered by us, the observers, and used as the ingredients of the

"classical reality". The characteristic feature of the decoherence process is that a

generic initial state- a random sample taken from the vast menu present in the

Hilbert space where every state is a possibility allowed by quantum mechanics -

will be dramatically altered on a characteristic decoherence timescale: Only certain

stable states (which turn out to be, in a sense, decay products of the other states)

will be left on the scene. Another key idea which must be kept in mind is that _he

states of our records must be also treated as a part of the sample. And only stable

records - states of neurons or other memory devices which can survive decoherence

and maintain correlations with the measured system - can be used as a physical

basis for the perception of classical reality.

Quantum measurement is a classic example of a situation in which a coupling of

a macroscopic quantum apparatus ,4 and a microscopic measured system $ forces

the composite object into a correlated but usually exceedingly unstable state: In a

notation where IAo > is the initial state of the apparatus and I¢ > the initial state

of the system, evolution establishing an ,4- $ correlation is described by:

I¢ > IAo > "- _ aklak > IAo >_ _ aklo"k > IAk > -- I_ > . (1)
k k
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A popular example is the Stern-Gerlach apparatus. There the states lak 3> describe

orientations of the spin and the states IAk > are the spatial wavefunctions cen-

tered on the trajectories corresponding to different eigenstates of the spin. When

the separation of the beams is large, the overlap between them tends to zero

(< AklAtk >,_ _Skk,). This is a precondition for a good measurement. Moreover,
when the apparatus is not consulted, ,4-S correlation would lead to a mixed

density matrix for the system _q:

Ps - _ lakl2l_rk>< _rk] -- Tr_t]O >< _]. (2)
k

However, this single, instantaneous pre-measurement quantum correlation does not

provide a sufficient foundation to build a correspondence between quantum formal-

ism and the familiar classical reality. It only allows for non-separable, Einstein -

Podolsky - Rosen quantum correlations between ,4 and S, for pairing of an arbi-

trary state - including non-local, non-classical superpositions of localized states of

the apparatus (observer) - with the corresponding relative state of the other system.

This is a prescription for a SchrSdinger cat, not a resolution of the measurement

problem. What is needed is a fixed set of states in which classical systems can

safely exist, but which instantly decay when superposed. What is needed is a an

effective superselection rule which will "outlaw" superpositions of these preferred

pointer states. It cannot be absolute - there must be a timescale sufficiently short,

or interaction strong enough to render it invalid, for otherwise measurements could

not be performed at all. It should become more effective with the increase in size

of the system. It should follow from quantum mechanics, superposition principle

notwithstanding. It should apply in general, to all objects (not just idealized models

of a quantum apparatus) and allow one to deduce elements of the familiar reality

of everyday experience- including the spatial localization of macroscopic systems
- from hamiltonians and not much else.

Environment - induced decoherence fits this bill. The transition from a pure

state I(I, >< OI to the effectively mixed PA$ can be accomplished by coupling the

apparatus A to the environment g. The requirement for getting rid of the un-

wanted, excessive, EPR-like correlations, Eq. (1), boils down to the demand that

the correlations between the record-keeping pointer states of the apparatus and the

measured system ought to be preserved in spite of an incessant measurement-like

interaction between the apparatus pointer and the environment. In simple models

of the apparatus this can be assured by postulating existence of a pointer observ-

able with eigenstates (or, more precisely, eigenspaces) which remain unperturbed

in course of evolution of the open system: This "nondemolition" requirement will

be exactly satisfied when the pointer observable A commutes with the total hamil-

tonian generating the evolution of the system:

[H + Hint, A] = 0. (3)

For an idealized quantum apparatus this condition can be assumed, and - providing
that an apparatus is in one of the eigenstates of A - it leads to an uneventful
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evolution:

IAk > I£0 >4 IAk > IEk(t) > (4)

However, when the initial state is a superposition corresponding to different eigen-

states of A, the environment will evolve into an ]A k > - dependent state:

(_ aklAa >)lE0 >--* _ ak[Ak > I_k(t) > • (5)
!

k k

The decay of the interference terms is inevitable. The environment causes decoher*

ence only when the apparatus is forced into a superposition of states which are dis-

tinguished by their effect on the environment. The resulting continuous destruction

of the interference between the eigenstates of A leads to an effective environment-

induced superselection. Only states which are stable in spite of decoherence can

exist long enough to be accessed by the observers - to be counted as the elements

of the familiar, reliably existing reality.

Effective reduction of the state vector immediately follows. When the environ-

ment becomes correlated with the apparatus:

Iff_> lEO> _ _aklA k > lak > IEk(t) > = 19 > (6)
k

but is not consulted (so that it must be traced out) then we will have

PA$ = Tr_l_ >< ffgl= _ lakl21Ak >< Akllak >< akl . (7)
k

Only correlations between the pointer states and the corresponding relative states

of the system retain their predictive validity. This form of PA$ follows providing

that the environment becomes correlated with the set of states {]Ak >} (it could

have been any other set) and that it has acted as a good measuring apparatus, so

that < Ck(t)[Ek,(t ) >= _kk' - the states of the environment correlated with the

different outcomes are orthogonal.

3. Reduction of the Wavepacket in quantum Brownian motion

3.1 Predictability Sieve

Can a similar process be responsible for the classical behavior of systems which

cannot be idealized as simply as an abstract apparatus? The crucial difference

arises from the fact that, in general, there will be no (non-trivial) observable which

will commute with both parts of the total hamiltonian H . Hint. Thus all of the
states - and all of the correlations - will evolve on some timescale. The distinction

between various states will now have to be quantitative, rather than qualitative: The
majority of states will deteriorate on the decoherence timescale. This is the time

required for the reduction of the wavepacket. For non-cl_sical states of macroscopic

objects, it is many orders of magnitude shorter than the dynamical timescale - so



short that, from the point of view of the observers responding on their dynamical

timescale, it can be regarded as iitstantaneous.

The interaction with the environment will continue to play a crucial role: Mon-

itoring of the to - be - classical observable by the environment is still the process

responsible for decoherence, and Hint determines the set of states which leave dis-

tinguishable imprints in the environment. For example, the commutation condition,

Eq. (3), for the interaction hamiltonian alone explains the approximate localization

of classical states of macroscopic objects: The environment is coupled nearly always

through the coordinate x (interactions depend on distance) and, therefore, states

which are localized will be favored 6' This feature of the preferred states follows

from the form of the interaction alone - it does need to be put in by hand.

However, this cannot be the whole story. The kinetic term in the hamiltonian

(p2/2m) does not commute with the position observable. Therefore, exact position

eigenstates - which have to be, because of the Heisenberg indeterminacy, completely

"nonlocal in momentum" - are also unstable. We need a more systematic proce-

dure to filter out non-classical states. A natural generalization of absolutely stable

pointer states of the apparatus are the most predictable states of less idealized open

quantum systems. An algorithm for "trying out" all of the states in the Hilbert

space can be readily outlined3: For each candidate initial state we can calculate the

density matrix which obtains from its evolution in contact with the environment,

compute its entropy as a function of time, and - at some instant much in excess

of a typical decoherence timescale - construct a list of the pure initial states or-

dered according to how much entropy was generated, or how much predictability

was lost in the process. The most predictable states near the top of the list would

be, in effect, most classical. A similar procedure could be also used to compare the
predictability of mixed initial states.

This predictability sieve was recently proposed 3 and implemented for a harmonic

oscillator with the resulting evolution of the reduced density matrix generated by

1 the appropriate master equation 7. For a weakly damped harmonic oscillator, pure

states selected by the predictability sieve turn out to be the familiar coherent states s.

This is true in spite of the fact that the stability of the states is crucially influenced

by their dispersion in position. For instance, for pure states the rate of purity loss

(quantified by the linear entropy given by Trp 2) is proportional to their dispersion
in x;

drrp (<  lxzl¢ > -I < ¢ xl¢ > 12). (8)

Most predictable mixtures turn out to be also gaussian and- for a weakly damped

oscillator- symmetric in x and p.

3.2 Towards "Classical Reality"

It is clear from this recapitulation of the decoherence process and its conse-

quences that naive attempts at an interpretation based solely on the instantaneous

eigenstates of the density matrix of a single system are, at best, a poor caricature



of the implications of environment - induced decoherence. This oversimplification

(which ignores the original focus on correlations 9, so essential in the discussion of the

information acquisition through measurements, the existence of the preferred sets

of states, or the issue of predictability and determinism, crucial in the definition of

effective classicality) may be, of course, easier to describe. We shall discuss an exis-

tential interpretation which focuses primarily on the stable existence (or predictable

evolution) of states as a defining feature of "classical reality." First, however, let us

address several specific comments which are sometimes brought up by the critics of

the decoherence approach.

For example, it is often emphasized that the concept of systems is crucial in

the discussion of decoherence 8. Is this "artificial division of the physical world" a

reason for dismissing decoherence as a step towards a resolution of the measurement

problem? Certainly not! The problem of measurement cannot be even stated

without dividing the Universe into a system and the apparatus 3. In absence of

such a division any closed system will evolve in a completely deterministic, unitary

manner, in accord with the SchrSdinger equation. Difficulties with interpretation

start only when one realizes that such a deterministic trajectory in the Hilbert space

takes a composite object (i.e. apparatus/observer plus the measured system) from

an initial state in which each of them has a definite property to a state where neither

of them appears to be entitled to "a state of its own".

Since the problem of measurement cannot be posed without recognizing that

systems exist, there is no need to apologize for assuming their existence in search
for its resolution: And the addition of the environment is not an addition of an

arbitrary extra ingredient, but a recognition of an existing component which makes

idealized models of measurements more realistic. Indeed, in all familiar situations

observations are carried out by "bleeding off" a fraction of the information already

imprinted on and present in the environment (for example, in the photons scattered

by the object we see). If the minuscule fraction of the record imprinted in just a few

select kinds of environment that we are capable of deciphering suffices to satisfy our

information - gathering needs, it is easy to appreciate the accuracy with which all

of the environmental degrees of freedom are monitoring observables of macroscopic

objects. This is not to say that the issue of the definition of the system can be

dismissed altogether or considered unimportant: On the contrary, the role systems

play both in the formulation of the measurement problem and in its resolution
deserves attention.

Details of the definition of a system will not alter the resolution of the mea-

surement problem suggested by decoherence: The exact location of the bound-

ary between the system and the environment matters very little for the onset of

environment-induced superselection. The correlations with the macroscopically dis-

tinguishable states of the system spread through the environment very quickly, and

a single unaccounted for correlation suffices to destroy quantum coherence.

The next issue often raised by the critics is the applicability of the decoherence
approach to the Universe as a whole and its relation to the consistent histories



approach 10. The Universe is a closed system, so it does not have an environment.

However, macroscopic subsystems within it (including recording apparatus and ob-

servers) do have environments. Hence, the decoherence program can be readily

implemented in this setting. The projection operators which define sequences of

events in the consistent histories approach would then have to satisfy not just the

probability sum rules. (The resulting consistency conditions turn out to be easy to

satisfy exactly by numerous sets of projection operators which have nothing to do

with the "familiar reality.") Rather, the process of decoherence singles out events

and observables which become (relatively permanently) "recorded" as a result of

environmental monitoring. For example, when a well-defined pointer basis exists,

the histories consisting of sequences of pointer states are consistent: Approximate

consistency of the familiar classical histories as a consequence of environment - in-

duced superselection 3'11. Thus the additivity of probabilities of histories expressed

in terms of the "usual" observables appears to be guaranteed by the efficiency with

which unstable states and the corresponding off-diagonal terms of the density ma-

trix in the preferred pointer basis representation are removed by a coupling with
the environment.

4. Decoherence, Chaos and the Second Law

According to the picture presented above, an open quantum system prepared

in a generic initial state would suffer a very fast decoherence process after which

its state will become an approximate mixture of pointer states (e. g., coherent

states in the case of an underdamped particleS). In this context, it is natural to

ask what other consequences the openness of the quantum system has. One should

first notice an important fact: the effectiveness of decoherence does not necessarily

imply noticeable presence of other observable dissipative effects. In fact, as has

been pointed out before, in a typical quantum Brownian systems one has;

-rdec -- 7-1()_dB)2
(9)

where 7 is the relaxation rate, ,_dB is the thermal de Broglie wavelength and Ax is

the distance over which the quantum state is coherent. This implies that in realistic

situations the decoherence timescale can be many orders of magnitude smaller than

the characteristic relaxation timescale: For typical macroscopic parameters rdec

turns out to be 40 orders of magnitude smaller than 1/7. 2

Thus, the transfer of energy to the reservoir can be made arbitrarily slow, but

what about the entropy? Here we will briefly analyze the rate at which the informa-

tion initially contained in the system is lost in the correlations with the environment

and point out a major difference between quantum analogs of systems which are

classically chaotic or regular. The main result (details of which will be published

elsewhere 5) is that for quantum open systems whose classical analogs are chaotic,

the rate of von Neumann entropy production reaches, on a dynamical timescale, an

asymptotic value whihc is independent of the coupling with the environment and



is dominated by the largest positive Lyapunov exponent. On the way to this result

we shall also point out that:

i) Decoherence limits, from below, the scale of the structure of quantum states

in the phase space (i. e., Wigner function W cannot vary on a scale set by a certain

characteristic dispersion in momentum, crc).

ii) As a result of this limit on the "resolution" of W for open chaotic quan-

tum systems, classical dynamics will hold for periods much longer than for closed

systems. The Poison bracket, which generates Liouville evolution, and the Moyal

bracket, which generates quantum evolution in phase space, approximately coin-

cide when evaluated for such "blurred" W's. Thus, decoherence resolves the long-

standing question of the correspondence between quantum and classical in the con-

text of chaotic systems.
f,

To make our analysis concrete let us address first a simpler issue asking what

are the properties of the quantum dynamics of a system which classically exhibits

the defining property of chaos - exponential divergence of trajectories - and which

is coupled to an environment. As a tractable model of such system we will discuss

the inverted harmonic oscillator and represent the effects of the coupling with the

environment through a master equation (using the high temperature Markovian al_-
proximation). In such a case, the Wigner function obeys Fokker-Planck equation':

oppwW = +op)w + 2op(pw)+

Above, w is the frequency of the unstable oscillator (which also plays the role of the

Lyapunov exponent), 7 is the relaxation rate and the coordinate x has been rescaled

x _ mwx where m is the mass. The characteristic (m_mentum) dispersion, which

will play a crucial role in what follows, is defined as;

a2 =--29, (11)w

where the diffusion coefficient is D = 27mkBT and T is the temperature of the

environment. The three terms on the right-hand side of Eq. (10) play different

roles: The first term generates a Liouville flow in the phase space. (In the case

of linear systems Poisson and Moya/ brackets coincide.) The second one causes

relaxation - gradual loss of energy to the reservoir. The third is a diffusion term

which is responsible for decoherence 2'12.

In genera/, three different stages of the evolution of W can be identified. First,

a generic initial state, containing interference effects - which correspond to a non-

positive, rapidly oscillating Wigner function- will decohere very fast. This will

take place on a timescale (9), which is, for typical macroscopic parameters, much

shorter than any dynamical timesca/e. To illustrate how the interference structure

present in the Wigner function on scales of the order of lp (e. g., oscillations of such

wavelength in the interference terms of W) will disappear on a timesca/e of the



order Tdec = w-l(lp/ac) 2, one can repeat calculations outlined elsewhere 2'12 For

example, when the initial state is a superposition of two coherent states separated

by a distance L, Ip cx h/L, and the ratio between the wavelength of the "interference

fringes" in momentum and crc is 2 2 2Crc/1p = 7/w(L/AdB ) . Therefore, the decoherence

time is given by Eq. (9).

In addition to this very fast decoherence stage, the evolution has two qualita-

tively different stages- reversible and irreversible - whose origin can be understood

as follows: For the unstable oscillator, as well as for a general chaotic system, there

are two competing processes affecting the evolution, the Liouville flow and the dif-

fusion. The instability present in the Hamiltonian tries to exponentially "expand"

the wavepacket in one direction (the coordinate associated with this expanding di-

rection is v = p- x) and "contract" it along another direction (the contracting

coordinate is u = p+ x). Exponential expansion and contraction produce squeezing

of the Wigner function. Diffusion, which is the main ingredient of decoherence, op-

poses this exponential contraction, as it induces spreading of the wavepacket. (By

contrast, it has little effect on the exponential expansion.) The result of this com-

petition is a balance which implies the existence of a critical width for the Wigner

function along the contracting direction. This is crc, which is given by (11). In fact,

using the above equation one can show that an initial Wigner function (smooth on

a scale of the order of Crc) will evolve, after a few dynamical times w -1 into:

/?1 duW(u, 0 t 0) (12)v,t)= , =
V zrcr_ o_
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Figure 1: W(u, v) is plotted (for fixed value of v) as a function of the contracting coordinate u.

(a), and the "comoving" coordinate u0, (b). Plots in the left correspond to an open system evolving

according to equation (10). The existence of a critical width, which fixes a lower bound for the small

scale structure of W is clearly seen.



Therefore, when the initial state has a characteristic spread which is larger

than a¢, and no substructure on smaller scales, the initial stage of the evolution

will be reversible anH characterized by negligible entropy production: The state

will contract in one direction and expand in the other with diffusion contributing

little to its evolution for as long as the the smallest scale of variations of W will

be much larger than ac. The irreversible stage of the evolution begins when, due

to the contraction, small scale structure shrinks to the characteristic size ac (see

Figure 1). When this happens the contraction stops but the expansion continues:

Therefore, during the irreversible evolution, the area enclosed by the 1-a contour of

the Wigner function grows at a rate fixed by the expansion rate (which is equal to

¢o). This area can be related to the entropy (in effect, entropy is a natural logarithm

of that volume in the phase space). Therefore, we conclude that in the third stage

of the evolution, the entropy grows at a rate which is fixed by w-1.

1.2 I,,, I, I'l' I I l Ill' I''' I ' 'll' ' I|

ap(t)=a, J1

0.8-

0.4

0.2

%(t)>>

I , , , I .--_', I , _ , i i i i I i , , J
0 0 2 4 6 8 10

_t

Figure 2: The von Neumann entropy production rate as a function of time for an unstable

harmonic oscillator considered here. The wavepacket evolves according to equation (10) and the

reversible and irreversible phases are clearly distinguished by the rate of entropy production.

A clear distinction between the last two stages of the evolution is apparent in

Figure 2 where the von Neumann entropy of a gaussian packet is plotted. In fact,

a very good approximation for the entropy production rate turns out to be;

a2 I) . (13)

Thus, the transition between reversible area-preserving deformation of the wavepacket

and irreversible, diffusive asymptotic regime occurs at the time is;

T = w-I log(ap(O)/ac) , (14)



which corresponds to the time for which the spread in momentum becomes compa-

rable with the characteristic dispersion ac. The above result should be contrasted

with what happens in the case of a stable harmonic oscillator where the entropy

growth is slower and depends upon the coupling 7.

So far, we presented an argument based on the study of the simplest possible

exponentially unstable system. The relation with the evolution of chaotic systems

is apparent once one realizes that a local analysis around a point in the phase space

will reveal the existence of stable and unstable directions, with a "saddle point"

structure analogous to an unstable harmonic oscillator 13. In fact, this is the way

one defines local Lyapunov exponents (as the rate at which two neighboring points

in phase _paco tend to separate in time). Thus, the Liouville flow associated with

a chaotic Hamiltonian system has, locally, a pattern similar to the one around an

hyperbolic point. However, as is well known, the quantum Wigner distribution

does not follow the Liouville flow but depart from it after a characteristic time t x.

This crossover time (after which classical and quantum expectation values begin

to diverge for chaotic systems) can be found by analyzing the equation for the

Wigner function in which the classical Poisson bracket is replaced by the Moyal

bracket which contains higher order derivative terms. Assuming one can Taylor

expand the potential V, the n-th order correction introduced by the Moyal bracket

is proportional to;

h2n oq2n+lvo2n+lw (15)
#n = (2n+ 1)! 22n z p .

±

Let us define a characteristic lengths associated with the derivatives of the potential
as;

(X,_)2'_ = (O_Y/O_'_+lY), n >_1, (16)

and introduce a characteristic momentum dispersion as;

(17)

In terms of these quantities we can easily write the condition for the n-th correction

due to the Moyal bracket to be much smaller than the classical terms as;

h << Xn_p(t) • (18)

Above, we have assumed that the state has an asymptotic Gaussian form given
by (12), so that a single dispersion in momentum suffices to characterize all of its

higher derivatives. The condition (18) is, we believe, a key criterion in assuring

the correspondence between the quantum and classical dynamics, especially in the

context of chaotic quantum systems. It states that, as long as the small scale

structure of W is smooth on scales large compared to those on which the force is

significantly non-linear (and which are defined by (16)), the Liouville flow and the

Moyal evolution will be essentially indistinguishable. In the context of the present
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discussion, this condition for quantum - classical correspondence will be assured

whenever the characteristic length;

(19)

is small when compared to scales associated with the nonlinearities of the potential.

The cause of the usual "chaotic" problems 14 with the correspondence between

quantum and classical and the reason for their disappearance in presence of effective

decoherence can be understood as follows: For a chaotic system, the exponential

Liouville flow tends to generate small structure in W exponentially fast. Therefore,

one has ap(t) cc ap(O)exp(-wt). Replacing this, one easily gets the expression for
the crossover time;

t_ = w-1 log(_p(0)nn/h) . (20)

The condition for the validity of our previous considerations is then that t:_ must be
much larger than the time required by the environment to stop the contraction of

ap. As we pointed out above, this is the time for the transition from the reversible

to the irreversible regime z = w-1 log(ap(O)/ac). Consequently, the condition for

the validity of the "classical" argument is:

acXn >> h. (21)

When this is satisfied, W follows the Liouville flow and the conclusions drawn from

the local analysis in phase space can be applied.

We have demonstrated that an open chaotic quantum systems can exhibit, in

addition to the very rapid onset of decoherence, a dynamically (nearly) reversible

phase of evolution. This period is necessarily followed by an irreversible phase in

which the entropy increases linearly at the rate determined by the Lyapunov expo-

nents. By contrast, open quantum systems classical analogs of which do not generate

exponentially diverging trajectories will continue to evolve with little entropy pro-

duction (although possibly with a significant change in dynamics). Thus, quantum

dynamics of open systems allows for a qualitative distinction between chaotic and

regular motions. It suggests not only a clear distinction between the integrable and

chaotic systems, but also shows that increase of entropy in the context of quantum

measurement 15 and the dynamical aspects of the second law are intimately related

and can be traced to the same cause: Impossibility of isolating macroscopic systems
from their environments.

5. Existential Interpretation

Perception of unique events at well-defined instants of time can be naturally

accounted for from within the framework of decoherence. All of the arguments

against decoherence express dissatisfaction with it as an explanation of our percep-

tions because it does not force all of the wavefunction of the Universe into a unique

state directly corresponding to our experience. Rather, it explicitly assumes that
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the observers are an integral part of the Universe and analyses the measurement-like

processes through which perception of the familiar classical reality comes about.

In this setting the observer must be demoted from the position of an all-powerful

external experimenter dealing, from without, with one more physical system (the

Universe) to a subsystem of that Universe, with all of the limitations arising from

such a confinement to within the physical entity he/she is supposed to monitor.

Correlation - between the memory of the observer and the outcomes (records) of

the past observations - emerges as a central concept. Observers never have enough

evidence, enough memory capacity to worry about the state of the Universe as a

whole. All they can immediately access is their own records- the state of their

own knowledge - and must rely on the fact that this state corresponds (because of

the correlations) to certain states of other systems. The veracity of the record is

then checked by comparing predictions based on it with the outcomes of the future
measurements.

To propose an interpretation - establish the correspondence between quantum

formalism and our perceptions, our direct experience- it is crucial to appreciate the

double role of the records maintained by the observers: On the one hand, a record

is "just a record" - it stores the information acquired by the observer. On the other

hand, the record is also the state of a subsystem, defining in part identity of the

observer. (Thus, for example, if one were to "copy" an observer, it would necessary

to specify also the state of the observers memory!) In this very direct sense "bit is it"

and "information is physical" 16. Conscious observer is (in part) information! The

knowledge - records acquired through measurement or communication- become an

"identity card" deciding who the observer is: There can be no information without

representation.

Modifications of the observers identity as a result of quantum goings on may be

drastic (as would be the case for Schr6dingers cat) or subtle (as for Wigners friend).

Observers may or may not be conscious of them (whatever "being conscious" might

mean). Only states which can continue to define both the state of the observer and

the state of his/her knowledge for prolonged periods of time, at least as long as the

characteristic information - processing timescales of our own nervous system (cer-

tainly more than a millisecond, which is in turn many orders of magnitude longer

than it takes to decohere) will correspond to perceptions. Information is impossi-

ble to separate from the stable existence of records. This requirement of stability

and the ultimate sameness of the identity and perceptions define the existential

interpretation of quantum mechanics.

The role of d.ecoherence is to cause the negative selection, and thus define the

stable alternatives - states of the observers identity which can persist in spite of

their immersion in the environment. The concept of "events" and the "reality"

of the states of macroscopic objects can be deduced from within this decoherence-

inspired framework: Events happen because the environment defines a set of options

(rather small compared to the set of possibilities available in principle in the Hilbert

space). Each time the system of interest (or a memory of an apparatus, computer,



i i

or our own nervous system) is forced into a superposition which violates environ-

ment - induced superselection rules, it will decohere on a timescale which is nearly

instantaneous when the options are macroscopically distinguishable. This onset

of decoherence is the apparent "collapse of the wavepacket." Thereafter, each of

the alternatives sprouts a new branch of the Everett's universal state vector. It will

evolve on its own, with negligible chances of interference with the other alternatives,
but with the correlation of the records with all the relevant states of the measured

observables intact.

In nearly all cases effective collapse of the state of a macroscopic object (such

as an apparatus) happens irrevocably long before our neurons ever get involved.

Thus, the selection of a set of outcomes concludes well in advance of the instant

in which "consciousness" can be invoked. Moreover, there is no evidence that any

mysterious and essentially quantum ingredient needs to be invoked to explain the

operation of our brains.

In spite of the Everett-like framework of this discussion, the picture that emerges

in the end is very much in accord with the views of Bohr17: Macroscopic observer

will have recording and measuring devices which will behave in a very classical

manner. Any measurement will lead to an almost instantaneous reduction of the

wavepacket, so that the resulting mixture can be safely regarded as corresponding
to just one unknown measurement outcome.

According to the existential interpretation, what observer perceives is not "a

wavefunction of the Universe" but its specific branch consistent with all of the

records observers state happens to consist of. The freedom to partition the global

state vector into any set of branches (present in the original work of Everett) has

been significantly constrained by the common sense requirement that the state of

the observer (including its memory content) should be able to persist on dynamical

timescales, that is for much longer than the decoherence time. Global wavefunction

of the Universe - save for the bundle of branches consistent with the identity of the

observer, including in particular his/her records - is completely inaccessible. Such

observer will perceive events, remember a specific history, and agree about it with
the others.
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