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We study the non-Markovian entanglement dynamics of two qubits in a common squeezed bath. We see a
remarkable difference between the non-Markovian entanglement dynamics and its Markovian counterpart. We
show that a non-Markovian decoherence-free state is also decoherence free in the Markovian regime, but all
the Markovian decoherence-free states are not necessarily decoherence free in the non-Markovian domain. We
extend our calculation from a squeezed vacuum bath to a squeezed thermal bath, where we see the effect of finite
bath temperatures on the entanglement dynamics.
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I. INTRODUCTION

Entanglement is a remarkable feature of quantum me-
chanics, and its investigation is of both practical and the-
oretical significance. It is also viewed as a basic resource
for quantum information processing [1], like entanglement-
based quantum cryptography [2], quantum teleportation [3],
dense coding [4], and cluster-state quantum computation [5].
Thus the real-world success of these quantum information
processing schemes relies on the longevity of entanglement in
multiparticle quantum states. Entanglement is also related to
the basic issue of understanding the nature of nonlocality in
quantum mechanics [6,7]. However, a quantum system used in
quantum information processing inevitably interacts with the
surrounding environment, which induces the quantum world
into the classical world [8,9]. The presence of decoherence
in communication channels and computing devices degrades
the entanglement when the particles propagate or computation
evolves. The coupling of the quantum system with its sur-
roundings and the consequent decay of entanglement motivate
important questions such as how to understand its sources and
possibly how to find ways to circumvent it through different
types of controlled environments.

The dynamics of open quantum systems, however, may be
rather involved, mostly due to the complex structure of the
environment interacting with the quantum system. Generally,
the nonunitary evolution of the reduced-density matrix of
the system is obtained after taking partial traces over bath
variables. In this process, some approximations are often made
in the derivation of a master equation for the system’s reduced-
density matrix. The most important approximations [8,10]
are the weak coupling or Born approximation, assuming
that the coupling between the system and the reservoir is
small enough to justify a perturbative approach, and the
Markov approximation, assuming that the correlation time of
the reservoir is very short compared to the typical system
response time so that the reservoir correlation function is
assumed to be δ correlated in time. Although, the use of
the Markovian approximation is justified in a large variety
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of quantum optical experiments where entanglement has been
produced, one should notice that non-Markovian effects are
crucial, for example, for high-speed quantum communication
where the characteristic time of the relevant system becomes
comparable with the reservoir correlation time, or if the
environment is structured with a particular spectral density,
for example, for quantum systems embedded in solid-state
devices, where memory effects are typically non-negligible. In
these cases, the dynamics can be substantially different from
the Markovian dynamics. Due to their fundamental importance
in quantum information processing and quantum computation,
non-Markovian quantum dissipative systems have attracted
much attention in recent years [8,11–22], one of the main
purposes of which in the long run is to engineer different
types of (artificial) reservoirs and couple them to the system
in a controlled way. Great progress has been made in the
non-Markovian features of system-reservoir interactions, but
the theory is far from completion, in particular how different
kinds of non-Markovian environments influence the systems,
and the difference between Markovian and non-Markovian
system evolutions is still a subject that demands further
investigation.

If the environment would act on the various parties the
same way it acts on single systems, one would expect that
a measure of entanglement, say the concurrence, would also
decay exponentially in time. However, this is not always the
case. Recently Yu and Eberly [23] showed that, under certain
conditions, the dynamics could be completely different and
the quantum entanglement of a bipartite qubit system could
vanish in a finite time. They called this effect “entanglement
sudden death (ESD).” This phenomenon of entanglement
sudden death has been extensively studied [24] in the context
of the Markovian master equation. Entanglement dynamics for
system of two qubits interacting with their local independent
reservoir is completely different from that when they interact
with the same common reservoir. We see that entanglement
may not be destroyed by the interaction with the environment,
and sometimes it persists at whatever be the temperature of
the bath. A common reservoir indirectly couples the qubits,
and there have been some suggestions [25] for creating as well
as enhancing [26] entanglement between two or more parties
by their collective interactions with a common environment.
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In the same vein, non-Markovian entanglement dynamics is
fundamentally different from the Markovian entanglement dy-
namics. With respect to the study of non-Markovian dynamics
of two independent qubits, each locally interacting with its own
reservoir, it was shown [18,19] that, although no interaction
is present or mediated between the qubits, there is a revival
of their entanglement following the ESD. The backaction
of the non-Markovian reservoir [18,19] is responsible for
revivals of entanglement after sudden death. The dynamics
of entanglement in two independent non-Markovian channels
is shown [20] to be oscillating at high temperatures, whereas
in the Markovian channel entanglement was shown to decay
exponentially. The appearance of sudden death and sudden
birth of entanglement in common structured reservoirs has
also been discussed [21].

Different schemes have been derived to remove the effects
produced by the environment, for example, quantum error
correction, decoherence-free subspace (DFS), dynamical de-
coupling, and the quantum Zeno effect. In the presence of the
environment, the DFS is a set of all states which is not affected
at all by the interaction with the bath. There have been some
proposals related to the use of DFS as the memory space for
storing quantum information [27]. Recently, decoherence-free
entanglement has been studied for two two-level systems
interacting with a common squeezed vacuum bath [28]. The
Markovian entanglement dynamics of two two-level atoms
that interact with a common squeezed vacuum reservoir has
been extensively studied [29]. The phenomenon of sudden
death and revival of entanglement has been investigated for
the initial states that are very close to (as well as far from) the
Markovian DFS. It has been claimed that, for states belonging
initially to the DFS plane, the phenomenon of entanglement
sudden death never occurs. However, if the initial state is away
from the DFS plane, the sudden death shows up, followed by
sudden revival of entanglement.

Several proposals to physically realize the squeezed reser-
voir have been put forward in the literature, the simplest of
which consists in considering a two-level atom immersed
in a squeezed multimode radiation field [30–32]. Parkins
et al. [33] showed how a two-level system can be coupled
to an almost ideal squeezed vacuum by assuming an atom
strongly interacting with a cavity field which is illuminated by
finite-bandwidth squeezed light. It has also been shown [34]
how a squeezed environment can be obtained by means of
a suitable feedback of the output signal corresponding to
a quantum-nondemolition (QND) measurement of suitable
quadrature operators. In Ref. [35], the authors showed how
to mimic the interaction of a two-level system with a squeezed
reservoir by using a four-level atom interacting with circularly
polarized laser fields. Assuming a strong decay of the two
most excited levels, it was shown that the dynamics of the two
ground atomic states is effectively similar to that of a two-level
system interacting with a squeezed reservoir. A recent theoret-
ical study [36] was made to generate a squeezed reservoir
for a two-level system by engineering the Hamiltonian of
a �-type three-level atom interacting with a single cavity
mode and laser fields with suitable intensity and detuning.
Another experimental proposal [37] for two two-state atoms in
a common squeezed reservoir was made employing quantum-
reservoir engineering to controllably entangle the internal

states of two atoms trapped in a high-finesse optical cavity.
Using laser and cavity fields to drive two separate Raman
transitions between stable atomic ground states, a system,
corresponding to a pair of two-state atoms coupled collectively
to a squeezed reservoir, could be realized.

In this article, we analyze the entanglement dynamics for
two qubits interacting with a common squeezed reservoir
in the non-Markovian regime. We see multiple cycles of
entanglement sudden death and revival in the non-Markovian
case, showing a striking difference between the Markovian
and non-Markovian entanglement dynamics. We extend our
result for the finite-temperature case where we see the non-
Markovian entanglement oscillations gradually decrease as
one increases the temperature. A finite temperature of the
bath accelerates the phenomenon of ESD in general. We show
that the Markovian decoherence-free states remain invariant
under a finite temperature of the bath, and all states in the
Markovian DFS plane are not necessarily decoherence free in
the non-Markovian regime. Interestingly, the singlet state
(which satisfies a more general DFS condition) is found to
be decoherence free in both the Markov and the non-Markov
regime and is also found to be robust against finite bath
temperature. In Sec. II, we describe our model and present
the non-Markovian master equation. In Sec. III we discuss the
difference of DFS and entanglement dynamics between the
Markovian and non-Markovian cases. In Sec. IV we present
the numerical results and discuss our main observations,
and we end the article with some concluding remarks in
Sec. V.

II. MODEL AND QUANTUM MASTER EQUATIONS

We consider a pair of two-level atoms (two qubits) coupled
to a common non-Markovian thermal squeezed reservoir.
The microscopic Hamiltonian of the system plus reservoir is
given by

H = ω0(σ 1
+σ 1

− + σ 2
+σ 2

−) +
∑

k

ωkbk
†bk + HI , (1)

where the interaction Hamiltonian HI has the form

HI =
∑

k

gkS+bk + g∗
k S−bk

†. (2)

Here S+ = σ 1
+ + σ 2

+ and S− = σ 1
− + σ 2

− are collective raising
and lowering operators for the two-qubit system with σ i

+ =
|1i〉〈0i |, and σ i

− = |0i〉〈1i |, where |1i〉 and |0i〉 are up and
down states of the ith qubit, respectively. Let us now proceed
to the master equation for this two-qubit system interacting
with a common squeezed thermal bath according to the
Hamiltonian (1). We assume the factorized initial system-
reservoir state with the initial state of the reservoir as a
squeezed thermal equilibrium state given by

ρR(0) =
∏
k

U (rk,θk)ρthU
†(rk,θk), (3)

U (rk,θk) = exp

(
1

2
ξ ∗
k b2

k − 1

2
ξkb

†
k

2
)

, (4)

ρth = exp(−βωkbk
†bk)

Tr exp(−βωkbk
†bk)

, (5)
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where β = 1/KT with K being the Boltzman constant and
T being the temperature, and we have introduced the unitary
squeeze [8] operator U (rk,θk) with ξk = rke

iθk .
The non-Markovian master equation in the interaction

picture for the two-qubit reduced-density matrix ρ(t) in the
Born approximation can be calculated and written as

∂ρ

∂t
= 
(t){S+ρS− − ρS−S+} + 
∗(t){S+ρS− − S−S+ρ}

+µ(t){S−ρS+ − S+S−ρ} + µ∗(t){S−ρS+ − ρS+S−}
+α(t){2S+ρS+ − S+S+ρ − ρS+S+}
+α∗(t){2S−ρS− − S−S−ρ − ρS−S−}. (6)

The time-dependent coefficients appearing in the master
equation are respectively given by


(t) =
∫ t

0
dt1

∫ ∞

0
dωJ (ω)N (ω)ei(ω0−ω)(t−t1), (7)

µ(t) =
∫ t

0
dt1

∫ ∞

0
dωJ (ω)[1 + N (ω)]ei(ω0−ω)(t−t1), (8)

α(t) =
∫ t

0
dt1

∫ ∞

0
dωJ (ω)M(ω)ei(ω0−ω)(t+t1), (9)

where

N (ω) = n(ω)[cosh2 r + sinh2 r] + sinh2 r, (10)

M(ω) = − cosh r sinh reiθ [2n(ω) + 1]. (11)

with the frequency-independent resonant squeeze parameter
r and the resonant phase θ , and we have written n(ω) =
1/[exp(βω) − 1] for the Planck distribution. The master
equation (6) is valid for an arbitrary temperature (provided that
the Born approximation still holds) and the squeezed vacuum
reservoir case is just the zero-temperature limit of it. In the
zero-temperature limit, n(ω) = 0, so, N (ω) = N = sinh2(r),
and M(ω) = − cosh(r) sinh(r)eiθ = −Meiθ , where M =
sinh(r) cosh(r) = √

N (N + 1). The non-Markovian character
is contained in the time-dependent coefficients, which contain
the information about the system-reservoir correlations. In the
previous equations, J (ω) = ∑

k |gk|2δ(ω − ωk) is the spectral
density characterizing the bath, where the index k labels the
different field mode of the reservoir with frequency ωk . We
may consider any form of the reservoir spectral density. But for
simplicity, here we consider an Ohmic squeezed bath [11,12]
with the spectral density given by

J (ω) = �ω exp
(−ω2/ωc

2
)
, (12)

where ω is the frequency of the bath, ωc is the high-frequency
cutoff, and � is a dimensionless constant characterizing
the interaction strength of the environment. For the
finite-temperature Markovian case, n(ω) = n(ω0). Since we
consider two qubits in a common bath, they will have to be
quite near so that the interatomic separation is much smaller
than a typical wavelength of the bath; that is, the length scale
of the resonant wavelength λ0 = h̄c/ω0 in the model [38],
where c is the wave speed of the bath. Thus we do not consider
here the effect of qubit size, nor the spatial dependence on
qubit-environment coupling strength [38,39] (gk is assumed
to be position-independent). We also assume that there is

no direct interaction between the qubits except the indirect
coupling through the common environment.

III. DIFFERENCE BETWEEN MARKOVIAN
AND NON-MARKOVIAN DYNAMICS

Our next goal is to show the difference between the
Markovian and non-Markovian entanglement dynamics for
this system-reservoir model. The Markovian master equation,
in the interaction picture, for two two-level systems interacting
with a broadband squeezed vacuum bath (at zero temperature)
is well studied [28,29,40] and is given by

∂ρ

∂t
= 1

2
γ (N + 1)(2S−ρS+ − S+S−ρ − ρS+S−)

+ 1

2
γN (2S+ρS− − S−S+ρ − ρS−S+)

− 1

2
γMeiθ (2S+ρS+ − S+S+ρ − ρS+S+)

− 1

2
γMe−iθ (2S−ρS− − S−S−ρ − ρS−S−), (13)

where γ = π�ω0. Using this Markovian master equation (13),
the entanglement dynamics (the phenomenon of sudden death
and revival of entanglement) of a pair of two-level atoms has
been extensively studied [29]. The DFS for this model (Markov
approximation, broadband squeezed vacuum) is found in
Ref. [28], and we call it Markovian DFS.

The main result of the present article rotates around the
discussion of DFS and entanglement dynamics according to
the Markovian master equation (13) and its non-Markovian
counterpart (6), showing the striking difference between
them. This Markovian master equation (13) can be writ-
ten in an explicit Lindblad form using only one Lindblad
operator [28]:

∂ρ

∂t
= γ

2
(2LρL† − ρL†L − L†Lρ), (14)

where

L = √
N + 1S− −

√
N exp{iθ}S+. (15)

In this case, the DFS [41] is composed of all eigenstates of L

with zero eigenvalues. The two orthogonal vectors in the DFS
plane for this Markovian evolution are [28]

|φ1〉 = 1√
N2 + M2

(N |11〉 + Me−iθ |00〉), (16)

|φ2〉 = 1√
2

(|01〉 − |10〉). (17)

One can also define the states |φ3〉 and |φ4〉 orthogonal to the
{|φ1〉,|φ2〉} plane:

|φ3〉 = 1√
2

(|01〉 + |10〉), (18)

|φ4〉 = 1√
N2 + M2

(M|11〉 − Ne−iθ |00〉). (19)

It is important to mention here that the state |φ1〉, Eq. (16), is
a decoherence free state only for the Makovian evolution (13),
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but for a general non-Markovian dynamics |φ1〉 is not deco-
herence free. A more general discussion on the DFS condition
can be found in Refs. [41,42]. It is important to note that
decoherence is the result of the entanglement between system
and bath caused by the interaction term HI , Eq. (2), of the
Hamiltonian (1). In other words, if HI = 0, then system and
bath are decoupled and evolve independently and unitarily
under their respective Hamiltonians HS and HB . Clearly, then,
a sufficient condition for decoherence-free dynamics is that
HI = 0. However, since one cannot simply switch off the
system-bath interaction, in order to satisfy this condition, it
is necessary to look for a special subspace (say, H) of the
full-system Hilbert space such that the system evolves in a
completely unitary fashion on that subspace H. As shown first
by Zanardi and Rasetti [42], such a subspace can be found
by assuming that there exists a set of degenerate eigenvectors
of the system coupling operators S± in the system-reservoir
interaction Hamiltonian. In our case, focusing on the form of
interaction Hamiltonian HI given by Eq. (2), it is clear that the
DFS is made up of those states |ψ〉 satisfying [41]

S±|ψ〉 = 0. (20)

The singlet state, Eq. (17), is one which satisfies Eq. (20)
with vanishing total angular momentum. Hence the singlet
state |ψ〉 = |φ2〉 = (|01〉 − |10〉)/√2 is a decoherence-free
state for this type of Hamiltonian. This is why the singlet
state |φ2〉 is decoherence free both for Markovian (13) and
non-Markovian (6) dynamics at any temperature. This result
is also confirmed by the numerical calculations shown in
Sec. IV.

We note here that the qualitative characteristics of the
non-Markovian entanglement dynamics with oscillations and
sudden deaths and revivals (shown in Sec. IV) may not be
specific to the squeezed reservoir, but the quantitative feature
of this dynamics will depend on various properties of the
reservoir, such as spectral density, squeezing, and temperature.
Furthermore, it is important to mention here that the Markovian
master equation for two two-level systems interacting with a
common (unsqueezed) heat bath is

∂ρ

∂t
= 1

2
γ (N + 1)(2S−ρS+ − S+S−ρ − ρS+S−)

+ 1

2
γN (2S+ρS− − S−S+ρ − ρS−S+). (21)

In this case, the DFS is composed of common eigenstates of
the Lindblad operators L± = S± with zero eigenvalues. The
singlet state |φ2〉 = (|01〉 − |10〉)/√2 satisfies this condition.
So, the singlet state |φ2〉 is the only state which is decoherence
free for an unsqueezed common reservoir. Interestingly, we
see that for an unsqueezed reservoir, the DFS calculated from
the Lindblad operators L± = S± and that obtained from the
system-bath interaction (Zanardi and Rasetti criterion [41,42])
Hamiltonian HI are the same. Hence there will be no difference
between the Markovian and non-Markovian entanglement
dynamics for this DFS state. On the other hand, for the
squeezed reservoir, one can have infinitely many Markovian
DFS states |φ1〉, Eq. (16), just by varying continuously the
squeeze parameters θ and r . In this case, squeezing plays
an important role in showing the difference between the

Markovian and non-Markovian entanglement dynamics for
these Markovian DFS states. This is quantitatively shown
in Fig. 3 in the next section. Now, in order to study the
sudden death and revival of entanglement of two qubits in
this common squeezed bath (in both the Markovian and
non-Markovian regimes), we consider as initial states of the
form [28,29]

|�1〉 = ε|φ1〉 +
√

1 − ε2|φ4〉, (22)

|�2〉 = ε|φ2〉 +
√

1 − ε2|φ3〉, (23)

where ε is a variable amplitude of one of the states belonging to
the Markovian DFS plane {|φ1〉,|φ2〉}. We would like to study
the effect of varying ε (0 � ε � 1) on the sudden death and
revival of entanglement for these initial states. We calculate
the time-evolved two-qubit density matrix for the initial states
|�1〉 and |�2〉 using the Markovian (13) as well as the non-
Markovian (6) master equations. The various components of
the time-dependent density matrix depend on the initial states
as well as on the squeezing parameters.

IV. NUMERICAL RESULTS

We calculate numerically the time evolution of the density
matrix according to Eqs. (13) and (6) and we choose the
Wootters entanglement measure [43], the concurrence C(t),
defined for the time-evolved two-qubit density matrix ρ(t) as

C(t) = max(0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4), (24)

where λ1, λ2, λ3, and λ4 are the eigenvalues of the matrix
ρc = ρ(t)(σy ⊗ σy)ρ∗(t)(σy ⊗ σy) in descending order. The
entanglement dynamics (in both the Markovian and non-
Markovian regimes) is shown in Fig. 1 for two qubits initially
in the state |�1〉. The state |�1〉 is a superposition of two states
|φ1〉 (belonging to the Markovian DFS) and its orthogonal |φ4〉.
We vary ε between 0 and 1 for fixed values of the parameters
r = 0.31 and θ = 0 as in Ref. [29]. Let us recapitulate the
observation made in Ref. [29] about the Markovian dynamics
of entanglement for the state |�1〉 in the parameter interval
0 � ε < 0.5 [see also the curve in the dashed line in Fig. 1(a)],
where it was shown that the initial entanglement decays to
zero in a finite time td . Then after a finite period of time
during which the concurrence stays null, it revives at a later
time tr , then reaching asymptotically its steady-state value.
For this Markovian case, it was also observed that this death
and revival cycle happens only once for the initial state |�1〉.
For ε = 0.5, the entanglement dies and revives simultaneously
and eventually goes to its steady-state value [see also the
curve in the dashed line in Fig. 1(b)]. For 0.5 � ε < 1, no
entanglement sudden death was found [29] in the Markovian
dynamics [see also the curve in the dashed line in Fig. 1(c)].
Finally, when ε = 1, |�1〉 = |φ1〉 is a decoherence-free state
so that the concurrence remains constant with time [see also
the curve in the dashed line in Fig. 1(d)]. This was the picture
for the Markovian master equation (13). Now we compare
this Markovian case with the non-Markovian entanglement
dynamics according to Eq. (6) for the initial state |�1〉.

In the non-Markovian case for ε = 0, we see from the curve
in the solid line in Fig. 1(a) that the initial entanglement decays
to zero in a finite time showing sudden death of entanglement
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FIG. 1. (Color online) Non-Markovian (solid lines) and Markovian (dashed lines) time evolution of the concurrence for |�1〉 as an initial
state with varying ε: (a) ε = 0, (b) ε = 0.5, (c) ε = 0.9, and (d) ε = 1. The values of the other parameters are r = 0.31, θ = 0, γ = 1, and
ωc = ω0 = 1. The number of ESDs and revivals in the non-Markovian case increases. The state |φ1〉 (|�1〉 with ε = 1) no longer remains
decoherence free for the non-Markovian evolution although it is decoherence free in the Markovian case.

and then it revives again, following four successive deaths and
revivals, and finally the steady-state value of the concurrence
is reached at large times. Whereas in the case of Markovian
dynamics, we see only one death and revival. It is also
important to note that the ESD occurs much faster in the
non-Markovian case compared to the Markovian one. The
time gap between adjacent death and revival is small (that
is, the rate at which the death and revival occurs is very fast)
compared to its Markovian counterpart. The striking difference
shown in Fig. 1(a) between the Markovian and non-Markovian
entanglement dynamics is that in the non-Markovian case,
the entanglement is nonzero (showing a three-revival cycle)
in a time window when the concurrence remains null in
the case of Markovian dynamics. Similar multiple death and
revival cycles are observed for the state with ε = 0.5 in
the non-Markovian case showing a clear departure from the
Markovian dynamics. When 0.5 � ε < 1, that is when we
get closer to the Markovian DFS; it was shown [29] that the
whole phenomenon of sudden death and revival disappears
for the initial state |�1〉. Contrary to that, we see [for the
initial state |�1〉 with ε = 0.9 in Fig. 1(c)] clear sudden death
and revival for this range of ε as well in the non-Markovian
case.

Figure 2 shows the dynamical behavior of the entanglement
in terms of the concurrence for the initial state |�2〉. The
state |�2〉 is a superposition of two states |φ2〉 (belonging
to the Markovian DFS) and its orthogonal |φ3〉. We again
vary ε between 0 and 1 for fixed values of the parameters
r = 0.31 and θ = 0. For the initial state |�2〉, we also see
multiple cycles of death and revival of entanglement in the non-

Markovian regime (in the parameter interval 0 � ε < 1/
√

2),
showing completely different behavior from its Markovian
counterpart [29]. When 1/

√
2 � ε < 1, no sudden death

was observed for the state |�2〉 in the Markovian regime,
whereas we see clear sudden death for this case also in the
non-Markovian regime [see Fig. 2(d)].

Finally we emphasize again that the state |φ1〉 (the state
|�1〉 with ε = 1) is not a decoherence free state for non-
Markovian master equation (6) although it belongs to the
DFS for Markovian master equation (13) [see Fig. 1(d)].
The Markovian and non-Markovian entanglement dynamics
for the Markovian DFS states |φ1〉, Eq. (16), with varying
squeeze parameters r and θ are shown in Fig. 3. We consider
in Fig. 3 two separate cases: (a) r = 0.05 and r = 0.09 with
θ = 0 and (b) θ = π/6 and θ = π with r = 0.3. We find that
the initial entanglement and final asymptotic entanglement at
large times (Markovian and non-Markovian) for the initial
Markovian DFS states, Eq. (16), depend on r , not on θ . One
can observe from Fig. 3(b) that, when the squeeze parameter r

is fixed and the phase θ is varied, the Markovian concurrence
curves do not vary and they remain the same and overlap.
This is because, when r is varied, the values of N and
M in Eq. (16) change considerably and so do the resultant
Markovian DFS states, while different values of θ change
only the relative phase between |11〉 and |00〉 in the resultant
Markovian DFS states of Eq. (16). Nevertheless, one can see
that these Markovian DFS states are not decoherence-free in
the non-Markovian regime and the characteristics of this non-
Markovian oscillations of concurrence depend on the squeeze
parameters r and θ . On the other hand, the state |φ2〉 (the
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FIG. 2. (Color online) Non-Markovian (solid lines) and Markovian (dashed lines) time evolution of the concurrence for |�2〉 as an initial
state with varying ε: (a) ε = 0.1, (b) ε = 0.4, (c) ε = 0.54, and (d) ε = 0.707. The values of the other parameters are r = 0.31, θ = 0, γ = 1,
and ωc = ω0 = 1. The number of ESDs and revivals in the non-Markovian case increases. The state |φ2〉 (|�2〉 with ε = 1) remains decoherence
free for both the Markovian and the non-Markovian evolution.

state |�2〉 with ε = 1) is decoherence free for both Markovian
and non-Markovian master equations. This was verified by
obtaining a straight line C(t) = 1, showing that the entangle-
ment remains constant for this state at zero temperature of the
reservoir.

Next, we go to the finite-temperature case for which
N (ω) and M(ω) are given by Eqs. (10) and (11). To show
the effect of temperature on the Markovian evolution let us
focus on the entanglement dynamics of two specific initial
states (|�1〉 with ε = 0, and |�2〉 with ε = 0.1). From the
zero-temperature Markovian dynamics of these two states [see
Figs. 1(a) and 2(a)] we see that at long time the entanglement
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FIG. 3. (Color online) Non-Markovian entanglement dynamics
for various Markovian DFS states |φ1〉 with varying squeeze parame-
ters r and θ : (a) r = 0.05 and r = 0.09 with θ = 0, (b) θ = π/6 and
θ = π with r = 0.3. The values of the other parameters are γ = 1
and ωc = ω0 = 1.

finally saturates to a finite value after which no death of
entanglement occurs, whereas at finite temperatures (say,
KT > 2ω0) the Markovian dynamics of these two states shows
a complete death of entanglement at a long-time limit [see
Figs. 4(a) and 4(c) and their insets]. From Fig. 2(a) we see
for the zero-temperature case that the Markovian ESD occurs
at a relatively slower rate, whereas in the finite-temperature
case [Fig. 4(c)] the ESD rate is much faster. The difference
between the zero-temperature entanglement dynamics and the
finite-temperature entanglement dynamics is more transparent
in the non-Markovian case. The non-Markovian entanglement
dynamics at zero temperature shows several death and revival
cycles in a short-time limit while there is only one or two
death-revival cycles following a decay of entanglement for
the finite temperature (say, KT > 2ω0) non-Markovian case.
In the non-Markovian evolution (Fig. 4), as one gradually
increases the temperature, the number of death and revival
cycles of the concurrence reduces and the effect of temperature
on concurrence in general is seen as decaying in nature
(concurrence asymptotically reaches to its zero value at
large times) with an exception to the DFS. That is, in the
long-time limit, the non-Markovian entanglement saturates
to a certain nonzero value at low temperature, while at high
temperatures (KT > 2ω0) the concurrence finally decays to
zero in the long-time limit. Note also that the concurrence
disappears more quickly at finite temperatures for both
Markovian and non-Markovian cases. It is seen that the death
time for the Markovian dynamics is always less compared
to that for the non-Markovian dynamics at a given finite
temperature. We have seen that the state |φ2〉 (the state |�2〉
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FIG. 4. (Color online) Non-Markovian and Markovian time evolution of the concurrence at finite temperatures for |�1〉 as an initial state with
(a) ε = 0 and (b) ε = 1 and for |�2〉 as an initial state with (c) ε = 0.1 and (d) ε = 0.54. The values of the other parametrs are r = 0.31, θ = 0,
γ = 1, and ωc = ω0 = 1. The insets show the entanglement dynamics in the short-time region. The non-Markovian entanglement oscillations
gradually disappear as one increases the temperature. The state |φ2〉 remains decoherence free in both the Markovian and non-Markovian
regimes at any temperature of the reservoir. But the state |φ1〉 (|�1〉 with ε = 1) that is decoherence free at any reservoir temperature in the
Markovian case no longer remains decoherence free for the non-Markovian evolution.

with ε = 1) remains decoherence free in both the Markov
and non-Markov regimes at any finite temperature of the
reservoir. This was verified by obtaining a straight line
C(t) = 1, showing that the entanglement remains constant for
this state |φ2〉 at any arbitrary temperature of the reservoir.
It is quite striking that the state |φ1〉 shows ESD at finite
temperature in the non-Markovian dynamics, although it
remains a DFS at finite temperature for the Markovian case
[see Fig. 4(b)]. We have also checked numerically that the non-
Markovian oscillations of entanglement gradually diminish as
one increases N defined in Eq. (10) for fixed values of other
parameters.

V. CONCLUSION

In summary, we study the non-Markovian entanglement
dynamics of two qubits in a common squeezed bath. We
consider the initial two-qubit states which are very close to
(as well as far from) the Markovian DFS for this system.
We see (Figs. 1 and 2) multiple cycles of ESD and revival
in the non-Markovian case, showing striking a difference
between the Markovian and non-Markovian entanglement
dynamics. We also observe that a non-Markovian decoherence
free state (for example, |φ2〉) remains decoherence free in
the Markovian regime, but all the Markovian decoherence-
free states (for example, |φ1〉) are not necessarily decoher-
ence free in the non-Markovian domain [Fig. 1(d)]. Finally,
we extend our result for the finite-temperature case where we
see that the non-Markovian entanglement oscillations gradu-

ally decrease as one increases the temperature. We found that
the Markovian decoherence-free states remain invariant under
finite temperatures [Fig. 4(b)]. We also see from Fig. 4 that
the finite temperature of the bath accelerates the phenomenon
of ESD for the non-decoherence-free entangled initial states.
Interestingly, the state |φ2〉 is found to be decoherence free
in both the Markov and non-Markov regimes and is also
robust against finite bath temperatures. There have been a
considerable number of articles in recent literature [28,29,44]
dealing with the squeezed reservoir. Also, there have been
proposals [30–33,35–37] for physical realizations of environ-
ments that mimic or generate a Markovian squeezed bath. One
can suggest in future experimental schemes to test and observe
various important issues related to non-Markovian dynamics
by physically engineering the environment. Hence, it will be
interesting to see if our prediction of the non-Markovian effects
can be verified in actual experiments.
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