Decompiling Java Bytecode:
Problems, Traps and Pitfalls

Jerome Miecznikowski and Laurie Hendren

Sable Research Group, School of Computer Science, McGill University
{jerome,hendren}@cs.mcgill.ca

Abstract. Java virtual machines execute Java bytecode instructions.
Since this bytecode is a higher level representation than traditional ob-
ject code, it is possible to decompile it back to Java source. Many such
decompilers have been developed and the conventional wisdom is that
decompiling Java bytecode is relatively simple. This may be true when
decompiling bytecode produced directly from a specific compiler, most
often Sun’s javac compiler. In this case it is really a matter of invert-
ing a known compilation strategy. However, there are many problems,
traps and pitfalls when decompiling arbitrary verifiable Java bytecode.
Such bytecode could be produced by other Java compilers, Java byte-
code optimizers or Java bytecode obfuscators. Java bytecode can also
be produced by compilers for other languages, including Haskell, Eif-
fel, ML, Ada and Fortran. These compilers often use very different code
generation strategies from javac.

This paper outlines the problems and solutions we have found in our
development of Dava, a decompiler for arbitrary Java bytecode. We first
outline the problems in assigning types to variables and literals, and
the problems due to expression evaluation on the Java stack. Then, we
look at finding structured control flow with a particular emphasis on
issues related to Java exceptions and synchronized blocks. Throughout
the paper we provide small examples which are not properly decompiled
by commonly used decompilers.

1 Introduction

Java bytecode is a stack-based program representation executed by Java virtual
machines. It was originally designed as the target platform for Java compil-
ers. Java bytecode is a much richer and higher-level representation than tradi-
tional low-level object code. For example, it contains complete type signatures
for methods and method invocations. The high-level nature of bytecode makes it
reasonable to expect that it can be decompiled back to Java; all of the necessary
information is contained in the bytecode. The design of such a decompiler is
made easier if it only decompiles bytecode produced by specific compilers, for
example the popular javac available with Sun’s JDKs. In this case the prob-
lem is mostly one of inverting a known compilation strategy. The design of a
decompiler is also simplified if it does not need to determine the exact types of

R. N. Horspool (Ed.): CC 2002, LNCS 2304, pp. 111-127, 2002.
© Springer-Verlag Berlin Heidelberg 2002

112 Jerome Miecznikowski and Laurie Hendren

all variables, but instead inserts spurious type casts to “fix up” code that has
unknown type.

We solve a more difficult problem, that of decompiling arbitrary, verifiable
bytecode. In addition to handling arbitrary bytecode, we also try to ensure that
the decompiled code can be compiled by a Java compiler and that the code
does not contain extraneous type casts or spurious control structures. Such a
decompiler can be used to decompile bytecode that comes from many sources
including: (1) bytecode from javac; (2) bytecode that has been produced by
compilers for other languages, including Ada, ML, Eiffel and Scheme; or (3)
bytecode that has been produced by bytecode optimizers. Code from these last
two categories many cause decompilers to fail because they were designed to
work specifically with bytecode produced by javac and cannot handle bytecode
that does not fit specific patterns.

To achieve our goal, we are developing a decompiler called Dava, based on
the Soot bytecode optimization framework. In this paper we outline the major
problems that we faced while developing the decompiler. We present many of the
major difficulties, discuss what makes the problems difficult, and demonstrate
that other commonly used decompilers fail to handle these problems properly.

Section 2 of this paper describes the problems in decompiling variables, types,
literals, expressions and simple statements. Section 3 introduces the problem of
converting arbitrary control flow found in bytecode to the control flow constructs
available in Java. Section 4 discusses the basic control flow constructions, while
the specific problems due to exceptions and synchronized blocks are examined
in more detail in Section 5. Related work and conclusions are given in Section 6.

2 Variables, Types, Literals, Expressions and Simple
Statements

In order to illustrate the basic challenges in decompiling variables and their types,
consider the simple Java program in Figure 1(a), page 114. Classes Circle and
Rectangle define circle and rectangle objects. Both of these classes implement
the Drawable interface, which specifies that any class implementing it must
include a draw method.

To illustrate the similarities and differences between the Java representation
and the bytecode representation, focus on method f in class Main. Figure 1(b)
gives the bytecode generated by javac for this method.

2.1 Variables, Literals and Types

First consider the names and signatures of methods. All of the key information
for methods originally from Java source is completely encoded in the bytecode.
Both the method names and the type signatures are available for the method
declarations and all method invocations. However, the situation for variables is
quite different.

Decompiling Java Bytecode: Problems, Traps and Pitfalls 113

In the Java source each variable has a name and a static type which is valid for
all uses and definitions of that variable. In the bytecode there are only untyped
locations — in method f there are 4 stack locations and 5 local locations. The
stack locations are used for the expression stack, while the local locations are used
to store parameters and local variables. In this particular example, the javac
compiler has mapped the parameter i to local 0, and the four local variables c,
r, d and is_fat are mapped to locals 1, 2, 3 and 4 respectively. The mapping
of offsets to variable names and the types of variables must be inferred by the
decompiler.

Another complicating factor in decompiling bytecode is that while Java sup-
ports several integral data types, including boolean, char, short and int, at the
bytecode level the distinction between these types is only made in the signatures
for methods and fields. Otherwise, bytecode instructions consider these types as
integers. For example, at Label2 in Figure 1(b) the instruction iload 4 loads
an integer value for is_fat from line 16 in Figure 1(a), which is a boolean value
in the Java program. This mismatch between many integral types in Java and
the single integer type in bytecode provides several challenges for decompiling.

These difficulties are illustrated by the result of applying several commonly
used decompilers. Figure 2 shows the output from three popular decompil-
ers, plus the output from our decompiler, Dava. Jasmine (also known as the
SourceTec Java Decompiler) is an improved version of Mocha, probably the
first publicly available decompiler[10,7]. Jad is a decompiler that is free for
non-commercial use whose decompilation module has been integrated into sev-
eral graphical user interfaces including FrontEnd Plus, Decafe Pro, DJ Java
Decompiler and Cavaj[6]. Wingdis is a commercial product sold by Wing-
Soft [16]. In our later examples we also include results from SourceAgain, a
commercial product that has a web-based demo version[14].! Our tests used the
most current releases of the software available at the time of writing this pa-
per, namely Jasmine version 1.10, Jad version 1.5.8, Wingdis version 2.16, and
SourceAgain version 1.1.

Each of the results illustrate different approaches to typing local variables. In
all cases the variables with types boolean, Circle and Rectangle are correct.
The major difficulty is in inferring the type for variable d in the original program,
which should have type Drawable. The basic problem is that on one control path
d is assigned an object of type Circle, whereas on the other, d is assigned an
object of type Rectangle. The decompiler must find a type that is consistent
with both assignments, and with the use of d in the statement d.draw() ;. The
simplest approach is to always chose the type Object in the case of different
constraints. Figure 2(a) shows that Jasmine uses this approach. This produces
incorrect Java in the final line where the variable object needs to be cast to
a Drawable. Jad correctly inserted this cast in Figure 2(c). Wingdis exhibits a
bug on this example, producing no a variable for the original d, and incorrectly
emitting a static call Drawable.draw() ;.

! The demo version does not support typing across several class files, so it is not
included in our first figure.

114 Jerome Miecznikowski and Laurie Hendren

public class Circle
implements Drawable {
public int radius;
public Circle(int r)
{ radius = r; }
public boolean isFat()
{ return(false); }
public void draw()
{ // code to draw ... }

public class Rectangle
implements Drawable {
public short height,width;

.method public static £(S)V
.limit stack 4
.1limit locals 5

.line 6
iload_0
bipush 10
if_icmple Labell

.line 7
new Rectangle
dup
iload_O
iload_0

invokenonvirtual Rectangle/<init>(SS)V

public Rectangle(short h, short w) astore_2
{ height=h; width=w; } -lmi Sd 5
5 ; aload_
Pu?l;:tz;ﬁ%:?gt;sia;;ight)_) invokevirtual Rectangle/isFat()Z
’ istore 4
public void draw() .line 9
{ // code to draw ... } aload_2
astore_3
oto Label2
public interface Drawable { .li%e 12
public void draw(); Labell:
¥ new Circle
du;
public class Main { iload_0

public static void f(short i) invokenonvirtual Circle/<init>(I)V

{ Circle c; Rectangle r; Drawable d; _astore_l
H N .line 13
boolean is_fat; aload_1
if (1>10) /] 6 12¥g¥:virtual Circle/isFat()Z
{ r = new Rectangle(i, i); // 7 line 14
is_fat = r.isFat(); // 8 "Taload_1
d=r; //9 astore_3
o1se .line 16
Label2:
{ ¢ = new Circle(i); // 12 . iload 4
is_fat = c.isFat(); // 13 ifne Label3
. ¢ // 14 aload_3
i keinterf D ble/d Vi
i1 (1is_fat) d.drav0; /) 16 .li;:vg7e1n erface Drawable/draw()
} /717 Label3:
t
public static void main(String args[]) .engemgiﬁod

{ f((short) 11); }

(a) Original Java Source (b) bytecode for method £

Fig. 1. Example program source and bytecode generated by javac

As shown in Figure 2(d), our decompiler correctly types all the variables and
does not require a spurious cast to Drawable. The complete typing algorithm
is presented in our paper entitled “Efficient Inference of Static Types for Java
Bytecode”[5]. The basic idea is to construct a graph encoding type constraints.
The graph contains hard nodes representing the types of classes, interfaces, and
the base types; and soft nodes representing the variables. Edges in the graph are
inserted for all constraints that must be satisfied by a legal typing. For example,
the statement d.draw() ; would insert an edge from the soft node for d to the
hard node for Drawable. Once the graph has been created, typing is performed
by collapsing nodes in the graph until all soft nodes have been associated with
hard nodes. In this case the soft node for d would be collapsed into the hard
node for Drawable. There do exist bytecode programs that cannot be statically
typed, and for those programs we resort to assigning types that are too general
and inserting down casts where necessary. However, we have found very few cases

Decompiling Java Bytecode: Problems, Traps and Pitfalls 115

public static void f(short s)
{ Object object;
boolean flag;
if (s > 10)
{ Rectangle rectangle =
new Rectangle(s, s);
flag = rectangle.isFat();
object = rectangle;

else
{ Circle circle =
new Circle(s);
flag = circle.isFat();
object = circle;

}
if (1flag)
object.draw();

(a) Jasmine

public static void f(short wordO)
{ Object obj;
boolean flag;
if (word0 > 10)
{ Rectangle rectangle =
new Rectangle(word0, wordO);
flag = rectangle.isFat();
obj = rectangle;
}
else
{ Circle circle =
new Circle(word0);
flag = circle.isFat();
obj = circle;

}
if (1flag)
((Drawable) (obj)).draw();

(c) Jad

public static void f(short short0)
{ boolean boolead;
if (((byte)short0) <= 10)
{ Circle circlel=
new Circle(short0);
boolead= circlel.isFat();

else
{ Rectangle rectan2=
new Rectangle(((short)short0),

((short)short0));
boolead= rectan2.isFat();

if (boolea4 == 0)
Drawable.draw() ;

(b) Wingdis

public static void f(short s0)
{ boolean z0;

Rectangle r0;

Drawable ri;

Circle r2;
if (s0 <= 10)
{ r2 = new Circle(s0);
z0 = r2.isFat();
rl = r2;
}
else
{ r0 = new Rectangle(sO, s0);
z0 = r0.isFat();
rl = r0;
¥
if (20 == false)
ri.draw();
return;

(d) Dava

Fig. 2. Decompiled code for method £

where such casts need to be inserted, and in general our approach leads to many
fewer casts than simpler typing algorithms.

The decompiled code produced by Wingdis, Figure 2(b), demonstrates the
difficulties produced by different integral types. This decompiler inserts spurious
typecasts for all uses of the variable short. Furthermore, constants as well as
variables must be assigned the correct integral type. For example, a call to
method £ with a constant value must be made as f((short) 10); in order to
avoid a type conflict between the type of the argument (int) and the type of the
parameter (short).

2.2 Expressions and Simple Statements

From our example we can also see that javac uses a very simple code genera-
tion strategy. Basically each simple statement in Java is compiled to a series of
bytecode instructions, where the assumption is that the Java evaluation stack
is empty before the statement executes and is empty after the statement exe-
cutes. For example, consider the bytecode generated for statement 8 (see the
line with // 8 in Figure 1(a) and the bytecode generated at the directive .line
8 in Figure 1(b)). In this case the object reference stored in local 2 is pushed

116 Jerome Miecznikowski and Laurie Hendren

on the stack, the isFat method is invoked, which pops the object reference and
pushes isFat’s return value, and finally the return value is popped from the
stack and stored in local 4. The expression stack had height 0 at the beginning
of the statement and height 0 at the end of the statement.

This straight forward code generation strategy makes it fairly simple for a
decompiler to rebuild the statement. However, many other bytecode sequences
could express the same computations. Consider the example in Figure 3. Fig-
ure 3(a) gives the original bytecode as produced by javac, whereas Figure 3(b)
gives an optimized version of the bytecode. The optimized version uses 5 fewer
instructions and 3 fewer locals.? An example of a simple optimization is found
at line 7. At this point the second iload 0 instruction has been replaced with a
dup instruction. A more complex optimization makes use of the expression stack
to save the values. For example, rather than storing the result of line 7 and then
reloading it at line 8, the value is just left on the stack. Furthermore, since this
same value is needed later, its value is duplicated (third dup at line 7). Line 8
demonstrates that the return value from the call to isFat can just be left on the
stack. The swap instruction at line 8 exchanges the boolean value on top of the
stack with the object reference just below it. Line 9 stores the object reference
from the top of the stack and Line 12 uses the boolean value that is now on top
of stack for the infne test.

When the optimized code from Figure 3(b) is given to the other decompilers,
they all fail because the bytecode does not correspond to patterns they expect
(see Figure 4, page 118). Jasmine and Jad emit error messages saying that the
control flow analysis fails and emit code that is clearly not Java. Wingdis emits
code that resembles Java but is clearly not correct as the calls to the method
isFat have been completely missed, and the type for the left operand of == is an
object rather than a boolean. SourceAgain also produces something that looks
like Java, but it is also incorrect since it allocates too many objects and has lost
the boolean variable.

Our Dava decompiler produces exactly the same Java code as for the unopti-
mized class file, except for the names of the local variables. Figure 2(d) contains
no variables starting with $, whereas in Figure 4(e) three variables do start
with $. In our generated code we prefix variables with $ to indicate variables
corresponding to stack locations in the bytecode.

Dava is insensitive to the input bytecode because it is built on top of the Soot
framework which transforms the bytecode into an intermediate representation
called Grimp[13,15]. Soot begins by reading bytecode and converting it to simple
three address statements (this intermediate form is called Jimple). When gen-
erating Jimple the stack locations become specially named variables. Soot then
uses U-D webs to separate different variables that may share the same local offset
in bytecode, and finally performs simple code cleanup and the typing algorithm.

2 Tt should be noted that this is not a contrived example; it merely illustrates the
problems we encountered when applying other decompilers to bytecode produced by
Java bytecode optimizers (even very simple peephole optimizers) and to bytecode
produced by compilers for other languages.

Decompiling Java Bytecode:

.method public static £(S)V
.limit stack 4
.limit locals 5

Problems, Traps and Pitfalls 117

.method public static f(S)V
.limit stack 4
.1limit locals 2

.line 6 .line 6
iload_0 iload_0
bipush 10 bipush 10
if_icmple Labell if_icmple Labell
.line 7 .line 7
new Rectangle new Rectangle
du dup
iload_0 iload_0
iload_0 dup
invokenonvirtual Rectangle/<init>(SS)V invokenonvirtual Rectangle/<init>(SS)V
astore_2 dup
.line 8 .line 8
aload_2 invokevirtual Rectangle/isFat()Z
invokevirtual Rectangle/isFat()Z swap
istore 4
.line 9 .line 9
aload_2 astore_1
astore_3 goto Label2
goto Label2
.line 12 .line 12
Labell: Labell:
new Circle new Circle
dup dup
iload_O iload_O
invokenonvirtual Circle/<init>(I)V invokenonvirtual Circle/<init>(I)V
astore_1 up
.line 13 .line 13
aload_1 invokevirtual Circle/isFat()Z
invokevirtual Circle/isFat()Z swap
istore 4
.line 14 .line 14
aload_1 astore_1
astore_3
.line 16 .line 16
Label2: Label2:
iload 4 ifne Label3
ifne Label3 aload_1
aload_3 invokeinterface Drawable/draw()V 1

invokeinterface Drawable/draw()V 1

.line 17 .line 17

Label3: Label3:
return return

.end method .end method

(a) original bytecode

(b) optimized bytecode

Fig. 3. Original bytecode as generated by javac and optimized bytecode

Given the typed Jimple, an aggregation step rebuilds expressions and produces
Grimp. Grimp is the starting point for our restructuring algorithms described in
the next section.

3 Control Flow Overview

The last major phase of our decompiler recovers a structured representation for
a method’s control flow. There may be more than one structured representation
for any given control flow graph (CFG), so in Dava, we focused on producing
a correct restructuring that would be easy to understand. Other goals, such as
fast restructuring or representing control flow with a restricted set of control
flow statements, are possible but not explored in Dava.

For correctness, we use a graph theoretic approach and focused on the capa-
bilities of the Java grammar. For us, the key question was: “For any given set
of control flow features in the CFG, can we represent it with pure Java?” When
answering this question we must consider the following:

118 Jerome Miecznikowski and Laurie Hendren

public static void f(short s)
{ Object object;
if (s <= 10) goto 24 else 6;
expression new Rectangle
dup 1 over O
expression s
dup 1 over O
invoke Rectangle.<init>
dup 1 over O
invoke isFat
swap
pop object
expression new Circle(s)
dup 1 over O
invoke isFat
swap
pop object
if != goto 47
object.draw();

(a) Jasmine

public static void f(short word0)
{ Rectangle rectangle;
if (word0 <= 10)
break MISSING_BLOCK_LABEL_24;
rectangle =
new Rectangle(word0, wordO) ;
rectangle.isFat();
Object obj;
obj = rectangle;
break MISSING_BLOCK_LABEL_38;
Circle circle =
new Circle(wordO);
circle.isFat();
obj = circle;
JVM INSTR ifne 47;
goto _L1 _L2
_L1:
break MISSING_BLOCK_LABEL_41;

_L2:
break MISSING_BLOCK_LABEL_47;
((Drawable) (obj)).draw();

}
(c) Jad

public static void f(short s0)
{ boolean $z0;

Drawable rO;

Rectangle $ri;

Circle $r2;

if (s0 <= 10)
{

$r2 = new Circle(s0);
$z0 = $r2.isFat();
r0 = $r2;
else
{ $r1 = new Rectangle(sO, s0);
$z0 = $r1.isFat();
r0 = $r1;
if ($z0 == false)
r0.draw();
return;

(e) Dava

public static void f(short short0)
{ if ((((byte)short0) <= 10)7?

(Circle circlel= new Circle(short0)):

(Rectangle rectanl=
new Rectangle(

((short)short0), ((short)short0)))

== false)
{ Drawable.draw();
}

(b) Wingdis

public static void f(short si)
{ Object obj;

Object tobj;

Object tobji;

if(si > 10)
{ Object tobj2;
tobj = new Rectangle(si, si);

tobj2 = ((Rectangle) tobj).isFat();

obj = new Rectangle(si, si);

else
{ tobj = new Circle(si);
tobjl = ((Circle) tobj).isFat();
obj = new Circle(si);

}
if(tobjl == 0)
((Drawable) obj).draw();

(d) SourceAgain

Fig. 4. Decompiled code for optimized method £

1. Every control flow statement in Java has exactly one entry point, and one
or more exit points.

2. Java provides labeled blocks, labeled control flow statements, and labeled
breaks and continues. With these, it is possible to represent any CFG that
forms a directed acyclic graph (DAG) in pure Java. Consider the following.

Decompiling Java Bytecode: Problems, Traps and Pitfalls 119

We can topologically sort the statements from the bytecode representation
of such a DAG and place a labeled block around the first node. We now
represent any control flow from the first node to the second as a labeled
break out of our newly created labeled block. Next, we place a labeled block
around the first two statements, and represent any control flow going to the
third statement as labeled breaks out of the second block. Similarly, we can
place a labeled block around the first three statements, and so on. Although
this will produce an ugly restructuring, it illustrates that it is possible to
restructure any control flow DAG.

3. The representation of a strongly connected component in the CFG must
include at least one Java language loop. There is no direct representation,
then, for strongly connected components with two or more entry points, since
there is no control flow statement in the grammar that supports more than
one entry point. If such a strongly connected component is found, it must
somehow be transformed to a semantically equivalent strongly connected
component with only a single entry point.

4. The Java language provides exception handling with try, catch, and
finally statements. Unfortunately, the Java bytecode exception handling
mechanism is more flexible than these statements, and may produce control
flow that is not directly expressible in the Java language.

5. The Java language provides object locking with synchronized statements.
As with exception handling, the object locking mechanism in the Java byte-
code specification is more flexible than the specification of the synchronized
statement, and may produce lockings in the bytecode that are not directly
expressible in the Java language.

For readability, we felt that a terse representation of control flow should be
easier to understand than a diffuse one. In Dava, we attempt this secondary goal
by building Java language statements that each represent as many of the CFG
features as possible with the intention of minimizing the number of statements
produced altogether. Although not necessarily an optimal solution, it has, in
practice, yielded excellent results.

3.1 A Brief Introduction to SET Restructuring

The restructuring phase of Dava uses three intermediate representations to per-
form its function: 1) Grimp, a list of typed, unstructured program statements,
which loosely corresponds to the method’s bytecode instruction stream, 2) a CFG
representing the control flow from the Grimp representation, and 3) a Structure
Encapsulation Tree (SET)[9]. The Grimp representation is fed to the restruc-
turer, which produces the CFG and the SET. The finished SET is very similar
to an abstract syntax tree, and the final Java language output is obtained simply
by traversing it.

The CFG is built by finding all the potential successors to each Grimp state-
ment. All branches in Java bytecode are direct, so this is a straightforward task.

120 Jerome Miecznikowski and Laurie Hendren

The only novel feature of this CFG is that is distinguish edges representing
normal control flow from those representing the throwing of an exception.

The SET is built in 6 phases. A more complete description can be found in
our paper entitled “Decompiling Java Using Staged Encapsulation” [9]; here we
provide a brief overview. Each phase searches for a specific type of feature in the
CFG and produces structured Java language statements that can represent that
feature. The Java statement is then bundled with the set of nodes (wrapped
Grimp statements) from the CFG that would correspond to its body. Since
every structured Java statement has only one entry point, we can usually use
dominance to determine the body. For example, a while statement would consist
of the appropriate condition expression plus those statements from the CFG that
the condition dominates, minus those statements reachable by the control flow
from the condition that escapes the loop. The structured bundle is then nested
in the SET such that the set of statements in the bundle is a subset of those
in its parent node and a superset of those in its children nodes. In this way
the SET can be built up in any arbitrary order of node insertion. Note also
that the properties searched for in the CFG (ie. dominance and reachability) are
transitive, which guarantees us that the superset/subset relations between SET
bundles and their children will always hold.

4 Basic Control Flow Constructs

A decompiler must be able to find if, switch, while, and do-while statements,
labeled blocks, and labeled breaks and continues.

Many decompilers use reduction based restructuring. These work by search-
ing the CFG for local patterns that directly correspond to those produced by
Java grammar productions. When a pattern is found it is reduced to a single
node in the CFG and the search is repeated. This process is iterated until no
more reductions can be found. In general this approach is difficult because the
library of patterns that are matched against does not cover all possible patterns
in the CFG. At some point, one may not find any more reductions, but still have
not reduced the program to a single structured statement.

In contrast, Dava searches for features in the control flow graph in order
of how flexibly they can treated. For example, strongly connected components
must be represented by loops, which is an inflexible requirement. Accordingly,
the conditions of loops are to be found before the conditions of if statements.

4.1 Loops

The most general way to characterize cyclic behavior in the CFG is to begin by
searching for the strongly connected components (SCC). For each SCC, we build
a Java loop. By examining the properties of the entry and exit points in the SCC
we can determine which type of Java loop (while, do-while or while(true))
is suitable for the structured representation. Once we know the type of loop, we

Decompiling Java Bytecode: Problems, Traps and Pitfalls 121

know which statement in the CFG yields us the conditional expression (if any)
for the structured loop, and we can find the loop body.

We know that for every iteration of a Java loop, if the loop is conditional,
the condition expression must be evaluated, or if the loop is unconditional, the
entry point statement must be executed. To find nested loops, we simply remove
the condition statement, or the entry point statement, from the CFG and re-
evaluate to see if any SCCs remain. This process is iterated until no more SCCs
are found.

This process seems to be more robust than reduction based techniques. Con-
sider the small, if somewhat contrived, example in figure 5, page 122. Method
foo() has no real purpose other than to illustrate the performance of a restruc-
turer on difficult, loop based control flow. The original Java source was compiled
with javac and the resulting bytecode class was not modified in any way. This
example has two interesting components, (1) the outer loop only executes if an
exception is thrown, and (2) if the inner loop exits normally, the next statement
that affects program state is the return.

We can see that only Dava produces correct, recompilable code, though it
does not greatly resemble the original program. Jad alone produces code that is
reminiscent of the original, but unfortunately it is neither correct nor recompil-
able.

We may encounter multi-entry point SCCs. Here the input does not directly
correspond to a Java structured program, so all decompilers will output ugly
Java code. There are several solutions, but all involve transforming the CFG.
Our solution converts the multi-entry point SCC to a single entry point SCC
by breaking the control flow to the original entry points and rerouting it to
a dispatch statement. This dispatch then acts as the single entry point and
redirects control to the appropriate destination.

4.2 Labeled Statements, Blocks, and break and continue Statements

As shown in section 3, page 117, labeled blocks can resolve any difficulties in
restructuring control flow DAGs. In Dava, once we have found all the nodes for
the SET from the CFG, we then determine if any of the control flow necessitates
the introduction of labeled statements, labeled blocks, breaks or continues.
Once this phase is done, we have fully restructured our target program.

One might expect control flow necessitating the use of these statements to
present difficulties to pattern-based decompilers since (1) the code produced
by these statements is not fully structured, and (2) human programmers rarely
exercise these features. It seems, however, that much work has been done on this
problem as several other decompilers, notably Jad and SourceAgain, deal well
with producing labeled statements, blocks, breaks, and continues.

122 Jerome Miecznikowski and Laurie Hendren

public int foo(int i, int j)

while (true) public int foo(int i, int j)
{

try .
. . . while (true)
{ while El'< b)) try
i= j++/i; { while(i < j)
3 ; i= g++ / i
za'“}_‘ (R‘llgtmeExcePtm“ re) break MISSING_BLOCK_LABEL_25;
i = 10;
continue; catch(RuntimeException runtimeexception)
break; § i=10;
’ . return j;
return j; }
}
(a) Original Java Source (b) Jad
public int foo(int i, int j) public int foo(int i, int j)
RuntimeException e; while(i < j)
for (i = j++ / i; 1 < j; i = j++ / 1) i= g+ /i
/* null body */ ; return j;
return j; }
pop e
i = 10;
} B .
(¢) Jasmine (d) SourceAgain

public int foo(int intl, int int2)

// WingDis cannot analyze control flow public int foo(int i0, int i1)

// of this method fully

int $i2;
50 goto B3; Vghile (true)
B1: try
try { { if (i0 < i1)
goto B3; { $i2 = i1;
B2: @1 = i? + 1;
intl= int2++ / intl; i0 = $i2 / i0;
B3: continue;
if (intl < int2)goto B2; ¥
B4: ¥ catch (RuntimeException $r2)
goto BS8; { 10 = 10;
B5: continue;
catch (RuntimeException null) .
{ return il;
B6: }
intl= 10;
B7:
goto B3;
}
(e) Wingdis (f) Dava

Fig. 5. Decompiled code for method foo()

5 Exceptions and Synchronized Blocks

Java bytecode and the Java language treat exception handling in very different
ways. Bytecode is simply a numbered sequence of virtual machine instructions.
Here, exception handling is specified by a table, where each entry holds a starting
instruction number, a finishing instruction number, a reference to an exception
class, and a pointer to a handler instruction. If an exception is thrown, the
virtual machine runs through the table checking to see if the current instruction
is in the instruction range given by any of the table entries. If it is in range, and

Decompiling Java Bytecode: Problems, Traps and Pitfalls 123

the thrown exception matches the table entry’s exception class, then control is
transferred to that entry’s handler instruction.

In bytecode, regular control flow imposes few restrictions on exception han-
dling. Control flow may enter or exit at any instruction within a table entry’s
area of protection, and does not have to remain constantly within that area once
it enters. Multiple control flow paths may enter a single area of protection at
different points, and different areas of protection may overlap arbitrarily. The
handler instruction may be anywhere within the class file, limited by the con-
straints of bytecode verification, including within the table entry’s own area of
protection. Finally, more than one exception table entry may share the same
exception handler. In short, exception handling in Java bytecode is mostly un-
structured.

By contrast, exception handling in the Java language uses the try, catch and
finally grammar productions and is highly structured. There is only one entry
point to a try statement, control flow within it is contiguous, and each of these
Java statements nests properly. There is no way to make try statements partially
overlap each other. Also, each try must be immediately followed by a catch
and/or a finally statement. There may be any number of catch statements
but no more than one finally.

If an exception is thrown and is not caught in a catch statement, then the
method in which this occurs must declare that it throws that exception. Method
declarations must agree between subclasses and superclasses. Therefore, if some
method m; declares a throws and overrides or is overridden by another method
ma, then mo must also declare the throws.

There is a complication to the throws declaration rule. Object locking is pro-
vided in Java with the synchronized () statement. If a thrown exception causes
control to leave a synchronized() statement, the Java language specification
requires that the object lock be released. This is accomplished in the bytecode
by catching the exception, releasing the lock in the exception handler and finally
rethrowing the exception. This exception handling should not be translated into
try catch statements, but remains masked by the synchronized () statement.
Consequently, throws that are to be implied by a synchronized() statement’s
exception handling are not explicitly put in the Java language representation,
and therefore are also ignored in the method declaration.

There are numerous consequences from this “semantic gap” in exception
handling. An area of protection must be represented by a try statement, and
handlers by a catch or finally. However, a try statement has only one entry
point. So, an area of protection with more than one entry point must be split into
as many parts as there are entry points. Each of these new areas of protection
share the same handler, but a catch statement can only be immediately preceded
by a single try. To reconcile this, the handler statement (at least) must be
duplicated for each area of protection. If two areas of protection overlap but
neither fully encapsulates the other, we must break up at least one of the areas
to allow the resulting try statements to either be disjoint or nest each other

properly.

124 Jerome Miecznikowski and Laurie Hendren

public void foo()
{

System.out.println("a");
a label_O:
{ try

{ System.out.println("b");

catch (RuntimeException $r9)

b { System.out.println("g");
-7 break label_0;
Vs
try
{ System.out.println("c");
ASS ~ N y P
\ {c} > catch (RuntimeException $r9)
i { System.out.println("g");

break label_O;

}

catch (Exception $r5)

{ System.out.println("e");
break label_O;

try

Of
{ System.out.println("d");
}

@ catch (Exception $r5)
{

System.out.println("e");

> break label_O;
> oo ¥
normal control flow exceptional control flow
System.out.println("f");
return;
(a) Original control flow graph (b) Dava
public void foo()
{ . .
System.out.println("a"); public void foo()
System.out.println("b"); .
try System.out.println("a");
{ System.out.println("c"); System.out.println("b");
System.out.println("d"); System.out.println("c");
3} System.out.println("d");
// Misplaced declaration of pop this .
// an exception variable System.out.println("e");
catch(D this) System.out.println("f");
System.out.println("e"); return;
¥ pop this
System.out.println("g"); System.out.println("g");
return; }
this;
System.out.println("f");
return;
}
(c) Jad (d) Jasmine
. . public void foo()
public void foo() { System.out.println("a");
{) label_9:
System.out.println("a"); { try
try . System.out.println("b");
{ System.out.println("b"); try
try . { System.out.println("c");
{ System.out.println("c"); break label_9;
System.out.println("d");
catch(Exception exceptionl)
catch (Exception e0) { System.out.println("e");
{ System.out.println("e"); ¥
}
catch(RuntimeException runtimeexceptionl)
catch (RuntimeException e0) { System.out.println("g");
{ System.out.println("g");
} System.out.println("f");
} return;

System.out.println("d");

(e) Wingdis (f) SourceAgain

Fig. 6. Decompiled code for method foo()

Decompiling Java Bytecode: Problems, Traps and Pitfalls 125

Although these problems do not normally appear in bytecode generated by
javac, they still may arise in perfectly valid Java bytecode. Consider the example
control flow graph in figure 6(a), page 124. Here, we created a class file by hand
that has a straight line of statements a b ¢ d f with two areas of protection.
If a RuntimeException is thrown in area of protection [b c|, control flow is
directed to g. If, however, an Exception is thrown in area of protection [c d],
control flow is directed to e.

We cannot simply represent the two areas as two try statements because
they will not be able to nest each other properly. The correct solution to this
problem is to break the two areas of protection into three try statements, and to
split and aggregate their handlers into appropriate catch statements, as shown
in the output from Dava in figure 6(b). Again, other decompilers seem to rely
on the bytecode reflecting an already structured program, and produce incorrect
output.

For example, Wingdis’ output in 6(e) looks close to a correct solution. How-
ever, besides omitting statement f, the chief problem is that statement d has
been placed in two areas of protection, which violates the semantics of the orig-
inal control flow graph. The output program does operate correctly, but only
because the illegal RuntimeException exception handler is masked off by the
correct Exception exception handler. Since this masking only occurs because
RuntimeException happens to be a subclass of Exception, it is not likely part
of a correct general approach.

Object locking with synchronized() statements poses even greater prob-
lems. Java bytecode provides locking with monitorenter and monitorexit in-
structions. The Java virtual machine specification only states that for any control
flow path within a method, the number of monitorexits performed on some ob-
ject should equal the number of monitorenters. The precise conditions for rep-
resenting the locked object’s “critical section” with synchronized() statements
may not exist within the target program, or equally likely, multiple “critical
sections” may intersect without either nesting the other.

These problems cannot be represented with synchronized() statements.
Luckily, it is possible to build an implementation of monitors in pure Java and to
replace the monitor instructions with static method calls to this implementation.

As well as providing a solution for “unrepresentable” situations, this fallback
mechanism gives the decompiler writer a choice about how aggressively to try to
build synchronized() statements. At the most aggressive extreme, one might
try to transform the control flow graph so as to maximize the representation
of object locking with synchronized() statements, using the fallback mecha-
nism only where provable necessary. At the other extreme, one might always use
fallback mechanism.

We began in Dava by trying to make the most aggressive synchronized()
statement restructurer possible. Through testing, however, we found that
the most important issue for synchronized() restructuring is good excep-
tion handling. Since the set of features necessary in the bytecode to produce

126 Jerome Miecznikowski and Laurie Hendren

synchronized () blocks is both complex and specific, it turns out that the occur-
rence of the proper feature set is almost always the result of a synchronized ()
block in the bytecode’s source. As such, it is already in a form that is easily re-
structured and an aggressive approach provides little improvement over simple
pattern matching.

6 Related Work and Conclusions

To our knowledge there are few papers on the complete problem of decompiling
arbitrary bytecode to Java. There are many tools including the decompilers we
tested in this paper, however there is very little written about the design and
implementation of those tools.

The implementation of the Krakatoa decompiler has been described in the
research literature[1 1], however, we were unable to test this decompiler because
it is not publically available. Krakatoa uses an extended version of Ramshaw’s
goto-elimination technique [12], which produces legal, though somewhat convo-
luted, Java structures by introducing loops and multi-level breaks. Krakatoa then
applies a series of rewrite rules to this structured representation where each rule
attempts to replace a program substructure with a more “natural” one. Such a
relatively strong restructurer may be able to handle complicated loops. While
it is not clear from the paper how the typing and expression building works,
Krakatoa appears to use the same approach as the decompilers we tested. All
program examples come from bytecode generated from javac. This approach
does not address the problems with exceptions and synchronization.

There has been related work on restructuring Java and other high-level lan-
guages. Research on restructuring can usually be divided into restructuring
with gotos, versus eliminating gotos. The independent works of Baker[2] and
Cifuentes|[3] are prominent examples of the first category while Erosa[4] and Z.
Ammarguellat[1] are good examples of the second. These are general approaches
and would require modifications to deal with the special requirements of Java,
such as dealing with synchronization and exceptions.

Knoblock and Rehof[3]. have worked on finding static types for Java pro-
grams. Their approach differs from ours in that it works on an SSA intermediate
representation and may change the type hierarchy when types conflict due to
interfaces.

This paper has presented some of the problems, traps and pitfalls encoun-
tered when decompiling arbitrary, verifiable Java bytecode. We demonstrated
the problems in dealing with variables, literals and types, and showed how ex-
isting decompilers deal with the typing problem by inserting spurious type casts
(or by producing incorrect code). We showed that bytecode that has been opti-
mized is not correctly decompiled by any of the four decompilers we tested. This
demonstrates that such decompilers target bytecode that has been produced by
a known compilation strategy, such as that used by javac. We discussed the
overall problem of control flow structuring and showed that even control flow
produced by javac can be difficult to handle. Finally, we demonstrated byte-

Decompiling Java Bytecode: Problems, Traps and Pitfalls 127

code allows for more general use of exceptions and synchronizations than what
is produced from Java. In all cases our Dava compiler was able to produce a
correct Java program.

Now that we have a robust decompiler, we will begin to concentrate on a
postprocessor that converts control flow constructs into idioms likely to be used
by a programmer, and on mechanisms for choosing readable variable names for
parameters and local variables. We will also continue to stress test the decom-
piler by decompiling class files from a variety of sources. The decompiler will be
released as part of the Soot framework, and will be publically available. Cur-
rently, interested parties can contact the first author for a “preview version” of
the software.

References

1. Z. Ammarguellat. A control-flow normalization algorithm and its complexity. [EEFE
Transactions on Software Engineering, 18(3):237-250, March 1992. 126
2. B. S. Baker. An algorithm for structuring flowgraphs. Journal of the Association
for Computing Machinery, pages 98-120, January 1977. 126
3. C. Cifuentes. Reverse Compilation Techniques. PhD thesis, Queensland University
of Technology, July 1994. 126
4. A. M. Erosa and L. J. Hendren. Taming control flow: A structured approach to
eliminating goto statements. In Proceedings of the 1994 International Conference
on Computer Languages, pages 229-240, May 1994. 126
5. E. M. Gagnon, L. J. Hendren, and G. Marceau. Efficient inference of static types
for Java bytecode. In Static Analysis Symposium 2000, Lecture Notes in Computer
Science, pages 199-219, Santa Barbara, June 2000. 114
6. Jad - the fast JAva Decompiler. http://www.geocities.com/SiliconValley/-
Bridge/8617/jad.html. 113
SourceTec Java Decompiler. http://www.srctec.com/decompiler/. 113
8. T. Knoblock and J. Rehof. Type elaboration and subtype completion for java
bytecode. In Proceedings 27th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages., 2000. 126
9. J. Miecznikowski and L. Hendren. Decompiling Java using staged encapsulation.
In Proceedings of the Working Conference on Reverse Engineering, pages 368-374,
October 2001. 119, 120
10. Mocha, the Java Decompiler. http://www.brouhaha.com/~eric/computers/-
mocha.html. 113
11. T. A. Proebsting and S. A. Watterson. Krakatoa: Decompilation in Java (Does
bytecode reveal source?). In 8rd USENIX Conference on Object-Oriented Tech-
nologies and Systems (COOTS’97), pages 185-197, June 1997. 126
12. L. Ramshaw. Eliminating go to’s while preserving program structure. Journal of
the Association for Computing Machinery, 35(4):893-920, October 1988. 126
13. Soot - a Java Optimization Framework. http://www.sable.mcgill.ca/soot/. 116
14. Source Again - A Java Decompiler. http://www.ahpah.com/. 113
15. R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and V. Sundaresan.
Optimizing Java bytecode using the Soot framework: Is it feasible? In D. A.
Watt, editor, Compiler Construction, 9th International Conference, volume 1781
of Lecture Notes in Computer Science, pages 18-34, Berlin, Germany, March 2000.
Springer. 116
16. WingDis - A Java Decompiler. http:/www.wingsoft.com/wingdis.html. 113

=

	Decompiling Java Bytecode: Problems, Traps and Pitfalls
	Introduction
	Variables, Types, Literals, Expressions and Simple Statements
	Variables, Literals and Types
	Expressions and Simple Statements

	Control Flow Overview
	A Brief Introduction to SET Restructuring

	Basic Control Flow Constructs
	Loops
	Labeled Statements, Blocks, and break and continue Statements

	Exceptions and Synchronized Blocks
	Related Work and Conclusions
	References

