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Abstract. It is proved that a commutative ring with 1 has

the property that every finitely presented module is a summand

of a direct sum of cyclic modules if and only if it is locally a gen-

eralized valuation ring. A Noetherian ring has this property if and

only if it is a direct product of a finite number of Dedekind do-

mains and an Artinian principal ideal ring. Any commutative

local ring which is not a generalized valuation ring has finitely

presented indecomposable modules requiring arbitrarily large

numbers of generators.

All rings in this paper are commutative, associative and have an

identity. A commutative ring R is a generalized valuation ring if it

satisfies one of the following three equivalent conditions:

(i) for any two elements a and b, either a divides b or b divides a;

(ii) the ideals of R are linearly ordered by inclusion;

(iii) R is a local ring (i.e. it has only one maximal ideal) and every

finitely generated ideal is principal.

A valuation ring in the usual sense is just a generalized valuation ring

which is a domain. The rings which are locally generalized valuation

rings might be thought of as extremely generalized Dedekind rings.

The work reported here is a continuation of [6, §2].

1. Modules over generalized valuation rings. A submodule A of

an .R-module B is relatively divisible il lor all rER, rA=AC\rB. A

module P is KD-projective il lor every short exact sequence 0—*A—>B

—*C—>0 with A relatively divisible in B, the natural map Hom(P, B)

—»Hom(P, C) is surjective. By [6, Proposition 2], an P-module (over

an arbitrary ring) is RD-projective if and only if it is a summand of a

direct sum of cyclic modules of the form R/Rr, rER- (Such cyclic

modules are called cyclically presented or CP modules.) Relatively

divisible submodules are sometimes called pure submodules, and the

RD-projectives "pure-projective," but the terminology is not uni-

form.

A module M is said to be finitely presented if for some finitely gen-

erated free module F and finitely generated submodule K of F,

M=F/K. An important result about these modules is that if M is
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finitely presented and M= F/G, where P is a finitely generated free

module, then G is also finitely generated (Bourbaki, Algebre com-

mutative, Chapter I, p. 37). The special case of this which we will

use below is that a finitely presented cyclic module over a generalized

valuation ring is cyclically presented.

Theorem 1. If M is a finitely presented module over a generalized

valuation ring then M is a direct sum of CP modules.

Remark. This proof corrects what we believe to be a flaw in the

proofs of [6, Theorem l] and [3, Theorem 14], since in both of these

papers it is taken as obvious that if an element is chosen with minimal

order ideal then it generates a relatively divisible submodule.

Proof. Let m be the maximal ideal of R and yx, • • • , y„ a basis for

the P/m-vector space M/mM. If Xi, • • • , x„ are elements of M with

Xi+mM = yi, then the Xi generate M. We remark first that one of the

basis elements yx, • • ■ , y„ (say yx) has the property that any element

xin Mwithx + mAf = yi has order ideal equal to the annihilator ideal

of M. (If this were not the case, we could choose a set of generators

Xi, • • • , x„ as above such that the order ideals of the x,- were all

greater than the annihilator ideal of M. Since the ideals of R are

linearly ordered, and the annihilator ideal of M is the intersection of

the order ideals of the x,-, this is impossible.) If yx is chosen in this way

and Xi is chosen so that xx + mM = yx, then the submodule (xx) gen-

erated by Xi is relatively divisible. (To see this, suppose rxi = 5s,

where zEM and 5 does not divide r. Then s = rt for some /Gtn. If,

then, x* =xx — tz, then x*+mM = yx and rx*=0, so (by our condition

on yf) rxx = 0. Hence rxi is divisible by s, which shows that (xi) is a

relatively divisible submodule.)

We now look at the sequence 0—*(xx)—*M—*M/(xx)—*0. By induc-

tion, M/(xx) is a direct sum of CP modules, and is therefore RD-pro-

jective. Hence M=(xx) ® M/ (xf), from which it follows that (xi) is

also finitely presented and therefore a CP module, so Theorem 1 is

proved.

Theorem 2. Let Rbe a local ring which is not a generalized valuation

ring. Then for any n > 0, there are finitely presented modules which are

indecomposable and which cannot be generated by fewer than n elements.

Remark. The technique used here was motivated by D. Higman's

construction of indecomposable group representations [2J.

Proof. Let a and b be elements of R, neither dividing the other.

By taking a suitable quotient ring, we may assume (a)C\(b) =0, and

m(a)=m(b)=0 (where m is the maximal ideal). Let P be a free
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module with generators Xi, • • • , x„, let K be the submodule gener-

ated by axi — bxi, ■ ■ ■ , aXn-i — bxn, and let M= F/K. Clearly M/mM

^F/mF, so If cannot be generated by fewer than re elements. We will

show that M is indecomposable.

Let yi and z,- be the images of x< in M and M/mM respectively.

Let S = aM+bM. We observe that aF+bF is an P/m-vector space

with the elements axi, • • • , ax„, bxx, - ■ ■ , bx„ as a basis. K is a sub-

space of aF+bF ol dimension re —1, and 5 is the corresponding quo-

tient space, with dimension n + l. A sample basis for 5 is byi, ayu

• • • , ay„, from which it follows that aM is a subspace of S of codi-

mension 1, as is bM. There are natural homomorphisms a, B taking

M/mM into S given by multiplication by a and b respectively, (so

aiz/)=ayi) and these are injective (by dimension count). Now sup-

pose M = A@B. Clearly aM = aA@aB, and S=iaA+bA)®iaB

+bB). Since aM has codimension one in S, one of these summands of

S is in aM, so we may suppose bB^aB. Choose w = ciZi+ ■ ■ ■ +c„z„

in B/mB so as to minimize the index of the first nonzero coefficient.

(Note that B/mB^O by Nakayama's lemma.) Note that Ci = 0, since

otherwise /3(w)Gaikf (since a basis of S is byu ay\, • • ■ , ayn and the

last re elements generate aM) and we know, in fact, that Biw)EaB.

If w = c&i+ ■ ■ ■ +c„zn, then /3(w) =aic&i+ ■ ■ ■ +cnzn-i), so C2Z1

+ • • • +c„z„_i is in B/mB, contradicting the choice of w (since a is

injective). This contradiction shows that M is indecomposable.

Corollary 2.1. If R is a local ring and every finitely presented

module is a summand of a direct sum of cyclic modules, then Ris a gen-

eralized valuation ring.

Proof. Any indecomposable summand of a direct sum of cyclic

modules over a commutative local ring is again a cyclic module by

Azumaya's theorem [l], so this follows from Theorem 2.

2. Global results.

Theorem 3. A commutative ring R has the property that every finitely

presented module is a summand of a direct sum of cyclic modules if and

only if Rm is a generalized valuation ring for each maximal ideal m in R.

Proof. If R is such a ring so is Rm, since any finitely presented

Pm-module is of the form Mm for some finitely presented P-module

M. Hence the condition is necessary by the above corollary. Con-

versely, by [6, Proposition 4] a finitely generated P-module Mis RD-

projective if and only if M is finitely presented and Mm is RD-pro-

jective for each maximal ideal m, from which the result follows.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



170 R. B. WARFIELD, JR. [May

We note two simple applications of these results. A submodule A

oi an P-module P is called pure (sometimes "strongly pure") if for

any P-module P, the natural map F®A—*F®B is injective. It is

easy to see [6] that this notion of purity coincides with the relative

divisibility of §1 if and only if every finitely presented P-module is a

summand of a direct sum of CP modules, so we have characterized in

Theorem 3 the commutative rings for which these two notions coin-

cide.

Our second remark concerns the existence of indecomposable fi-

nitely presented modules. It is not clear that if R is a ring such that for

some maximal ideal m, Rm is not a generalized valuation ring, then

large finitely presented indecomposable modules exist. All one can

say immediately is that for any integer «>0 there is a finitely pre-

sented module M such that in any direct sum decomposition of M

at least one of the summands cannot be generated by fewer than n

elements.

3. Noetherian rings. We follow Zariski-Samuel [7] in calling a ring

a special PIR if it is a commutative local ring with identity whose

maximal ideal m is principal and nilpotent. It is easily checked that

the following properties of a commutative local Noetherian ring are

equivalent:

(a) m/m2 has P/m-dimension one (where m is the maximal ideal);

(b) R is a discrete valuation ring or a special PIR; and

(c) R is a generalized valuation ring.

We will also need the fact that an integral domain P is Dedekind if

and only if for each maximal ideal m, Rm is a discrete valuation ring.

Theorem 4. The following conditions on a commutative Noetherian

ring are equivalent.

(i)  For every maximal ideal m, m/m2 has R/m-dimension one.

(ii) P is a (finite) product of Dedekind domains and special PIR'5.

(iii) For every maximal ideal xn, Rm is a discrete valuation ring or a

special PIR.

(iv) Every finitely generated R-module is a summand of a direct sum

of cyclic modules.

Proof. We recall that for any maximal ideal m, there is a natural

isomorphism between P/m2 and Pm/m2Pm, so that (i) and (iii) are

equivalent. Theorem 3 implies that (iii) and (iv) are equivalent.

Clearly (ii) implies (iii), so it remains to show that (iii) implies (ii).

We assume that R is indecomposable and show that it is a special

PIR or an integral domain (necessarily Dedekind). R has only a
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finite number of minimal prime ideals [7, pp. 208-211]. By [7, p. 224,

Corollary l] if m is a maximal ideal, there is a one-to-one correspon-

dence between the prime ideals of Rm and the prime ideals of R con-

tained in m. In particular, if Rm is a special PIR, m is a minimal prime

ideal, while any other maximal ideal contains exactly one minimal

prime ideal. It follows that the minimal prime ideals are pairwise

comaximal and that any set consisting of powers of distinct minimal

prime ideals is pairwise comaximal [7, pp. 176-177]. Let 5 be the set

consisting of

(a) those minimal prime ideals which are not maximal, and

(b) for every maximal ideal m such that Rm is a special PIR, the

ideal m*, where k is some positive integer such that m*Pm = 0.

The intersection of the ideals in S is zero since its image in each Pm is

zero. Hence R is the product of the rings R/q, qES. Since R was as-

sumed indecomposable, it follows that 5 has only one element, so that

either R is a special PIR or the unique minimal prime ideal is zero, so

R is an integral domain.

Corollary 4.1. If R is a commutative Noetherian ring then either

for every positive integer re, there are finitely generated indecomposable

R-modules which cannot be generated by fewer than n elements, or R satis-

fies the conditions of Theorem 4, in which case any finitely generated in-

decomposable R-module can be generated by two elements.

Proof. If for some tn, Pm is not a generalized valuation ring, then

R/m2 is a local ring which is not a generalized valuation ring, so the

result follows from Theorem 2. Conversely, if R satisfies the condi-

tions of Theorem 4, then any indecomposable P-module is essentially

a module over one of the indecomposable summands of R, and hence

is either cyclic or isomorphic to an ideal in one of the Dedekind do-

mains. This proves the result, since any ideal in a Dedekind domain

can be generated by two elements.

We close by noting two corollaries of Theorem 4 which were pre-

viously known. Theorem 4 is a generalization of the theorem of Krull

([4] or [7, p. 245, Theorem 3]) that a Noetherian ring is a principal

ideal ring if and only if it is the product of an Artinian principal ideal

ring and a finite number of principal ideal domains. Theorem 4 also

contains the result of Uzkov [5] that a commutative Noetherian ring

has the property that every finitely generated module is a direct sum

of cyclic modules if and only if it is a principal ideal ring. The ques-

tion of what rings have the property that every finitely presented

module is a direct sum of cyclic modules is still unsolved, even for do-

mains.
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