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Abstract

As compared to the conventional RGB or gray-scale im-

ages, multispectral images (MSI) can deliver more faith-

ful representation for real scenes, and enhance the perfor-

mance of many computer vision tasks. In practice, however,

an MSI is always corrupted by various noises. In this paper

we propose an effective MSI denoising approach by combi-

natorially considering two intrinsic characteristics under-

lying an MSI: the nonlocal similarity over space and the

global correlation across spectrum. In specific, by explic-

itly considering spatial self-similarity of an MSI we con-

struct a nonlocal tensor dictionary learning model with a

group-block-sparsity constraint, which makes similar full-

band patches (FBP) share the same atoms from the spa-

tial and spectral dictionaries. Furthermore, through ex-

ploiting spectral correlation of an MSI and assuming over-

redundancy of dictionaries, the constrained nonlocal MSI

dictionary learning model can be decomposed into a series

of unconstrained low-rank tensor approximation problem-

s, which can be readily solved by off-the-shelf higher order

statistics. Experimental results show that our method out-

performs all state-of-the-art MSI denoising methods under

comprehensive quantitative performance measures.

1. Introduction

The radiance of a real scene is distributed across a wide

range of spectral bands. A multispectral image (MSI) con-

sists of multiple intensities that represent the integrals of the

radiance captured by sensors over various discrete bands.

For example, conventional RGB images are achieved by in-

tegrating the product of the intensity at three typical band

intervals. As compared with the traditional image system,

MSI helps to deliver more faithful representation for real

scenes, and has been shown to greatly enhance the perfor-

mance of various computer vision tasks, such as inpainting

[8], superresolution [12] and tracking [21].

(b) Spectral Glocal Correlation(a) Spatial Nonlocal Similarity Multispectral Image

Figure 1. (a) A collection of similar local patches over the spatial

dimensions of the multispectral image (middle). (b) The highly

correlated images obtained across the entire spectral dimension of

this multispectral image.

In real cases, however, an MSI is always corrupted by

some noises that are generally conducted by equipment lim-

itations like sensor sensitivity, photon effects and calibra-

tion error [13, 2]. Besides, since the radiance energy is lim-

ited and sometimes the band width is fairly narrow, the en-

ergy captured by each sensor might be low. The shot noise

and thermal noise then happen inevitably. The denoising

problem for MSI is thus still of acute and growing impor-

tance [14, 23, 10].

In this paper, we propose a novel tensor dictionary learn-

ing model for the task of MSI denoising by combination-

ally considering two characteristics of MSI into a single

framework: nonlocal similarity in space and global corre-

lation in spectrum. On one hand, a typical natural scene

contains a collection of similar local patches all over the

space, composing of homologous aggregation of micro-

structures. By averaging among these nonlocally similar

patches, the spatial noise is expected to be prominently al-

leviated [22, 18, 15]. On the other hand, an MSI contains a

large amount of spectral redundancy [23]. That is, images

obtained over different bands are always highly correlated.

Through extracting the major components from these glob-

ally correlated spectrum information, the spectral MSI noise

(the minor components) is expected to be eliminated. Both

characteristics can be easily understood by seeing Fig. 1. In

our model, we employ a grouped sparsity regularizer to im-

pose similar MSI patches to share the same dictionary atoms

in their sparse decomposition to implicitly average out the
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noise among these patches. Furthermore, by assuming re-

dundant dictionaries over both the space and spectrum, the

proposed tensor dictionary learning model can be readily

decomposed into a series of low-rank tensor approximation

problems. Each of these problems corresponds to a spectral

dimensionality reduction model conducted by the spectral

correlation property of MSIs, and can be easily solved by

some off-the-shelf higher order statistics. The spectral re-

dundancy problem can thus be alleviated.

Throughout the paper, we denote scalars, vectors, ma-

trices and tensors by the non-bold letters, bold lower case

letters, bold upper case letters and calligraphic upper case

letters, respectively.

2. Notions and Preliminaries

We first introduce some necessary notions and prelimi-

naries as follows.

A tensor of order N , which corresponds to an N -

dimensional data array, is denoted as A ∈ R
I1×···×In×···IN .

Elements of A are denoted as ai1···in···iN , where 1 ≤ in ≤
In. The mode-n vectors of an N th order tensor A are

the In dimensional vectors obtained from A by varying in-

dex in while keeping the other indices fixed. The matrix

A(n) ∈ R
In×(I1···In−1In+1···IN ) is composed by taking the

mode-n vectors of A as its columns. This matrix can also be

naturally seen as the mode-n flattening of the tensor A. The

n-rank of A, denoted as rn, is the dimension of the vector

space spanned by the mode-n vectors of A.

The product of two matrices can be generalized to the

product of a tensor and a matrix. The mode-n product of

a tensor A ∈ R
I1×···×In×···IN by a matrix B ∈ R

Jn×In ,

denoted by A ×n B, is also an N th order tensor C ∈
R

I1×···×Jn×···IN , whose entries are computed by

ci1···in−1jnin+1···iN =
∑

in
ai1···in−1inin+1···iN bjnin .

The mode-n product C = A ×n B can also be calcu-

lated by the matrix multiplication C(n) = BA(n), fol-

lowed by a re-tensorization of undoing the mode-n flat-

tening. The Frobenius norm of a tensor A is defined as:

‖A‖F =
(∑

i1,··· ,iN
|ai1···iN |2

)1/2

. In the following, we

shortly write ‖A‖F as ‖A‖.

3. Related Work

There are mainly two approaches for MSI denoising, in-

cluding the 2D extended approach and the tensor-based ap-

proach.

2D extended approach: As one of the classical prob-

lems in computer vision, 2D image denoising has been

addressed for more than 50 years and a large amount of

researches have been proposed on this problem, such as

NLM [4], K-SVD [20] and BM3D [9]. These methods can

be directly applied to MSI denoising by treating the im-

ages located at different bands separately. This extension,

however, neglects the intrinsic properties of MSIs and gen-

erally cannot attain good performance in real applications.

Another more reasonable extension is specifically designed

for the patch-based image denoising methods, which takes

the small local patches of the image into consideration. By

building small 3D cubes of an MSI instead of 2D patches of

a traditional image, the corresponding 3D-cube-based MSI

denoising algorithm can then be constructed [22]. The state-

of-the-art of 3D-cube-based approach is represented by the

BM4D method [15, 16], which exploits the 3D non-local

similarity of MSI to remove noise in similar MSI 3D cubes

collaborately. These methods, however, have not taken into

account the high correlation across MSI spectrum, and thus

still have much room for improvement.

Tensor-based approach: An MSI is composed by a s-

tack of 2D images, which can be naturally regarded as a 3rd-

order tensor. The tensor-based approach implements the M-

SI denoising by applying the tensor factorization techniques

to the MSI tensor. As a special case of multiway filtering,

tensor factorization can be seen as an extension of the tra-

ditional singular value decomposition (SVD). The state-of-

the-art along this line of research is represented by two ap-

proaches. Renard et al. [23] presented a low-rank tensor ap-

proximation (LRTA) method by employing the Tucker fac-

torization [24] method to obtain the low-rank approxima-

tion of the input MSI. Very recently, Liu et al. [14] designed

the PARAFAC method by utilizing the parallel factor analy-

sis [7]. The advantage of both methods is that they took the

correlation between MSI images over different bands into

consideration, and tried to eliminate the spectral redundan-

cy of MSIs. However, they have not utilized the nonlocal

similarity property of MSI, and their performance may be

sensitive to noise extents and types.

4. Decomposable Nonlocal MSI Dictionary

Learning

In this section, we first introduce the tensor dictionary

learning (DL) model, and then present the main idea of our

decomposable nonlocal MSI DL model and the related al-

gorithm. The parameter setting problems are also discussed

thereafter.

4.1. From Image DL to MSI DL

We first briefly introduce the traditional DL model for

image restoration. For a set of image patches (ordered lex-

icographically as column vectors) {xi}
n
i=1 ⊂ R

d, where d
is the dimensionality and n is the number of image patches,

DL aims to calculate the dictionary D = [d1, · · · , dm] ∈
R

d×m, composed by a collection of atoms di (m > d, im-

plying that the dictionary is redundant), and the coefficient



matrix Z = [z1, · · · , zn] ∈ R
m×n, composed by the repre-

sentation coefficients zi of xi, by the following optimization

model [1]:

min
D,z1,··· ,zn

∑n

i=1
‖xi − Dzi‖ s.t. P(zi) ≤ k, (1)

where P(·) denotes certain sparsity controlling operator

such as the l0 or l1 norm.

The similar dictionary learning model can be easily ex-

tended to MSI cases. First we construct MSI patches like

the image case as follows. An MSI with dW × dH spa-

tial resolution (dW , dH denote the spatial width and height

of the MSI, respectively) and dS spectral bands can be ex-

pressed as a 3rd order tensor H ∈ R
dW×dH×dS with two s-

patial modes and one spectral mode. By sweeping all across

the MSI with overlaps, we can build a group of 3D full-

band patches (FBP) {Pi,j}1≤i≤dW−dw+1,1≤j≤dH−dh+1 ⊂
R

dw×dh×dS (dw < dW , dh < dH ) from the MSI. For sim-

plicity, we reformulate all FBPs as a group of 3D patches

{Xi}
n
i=1, where n = (dW − dw +1)(dH − dh +1) denotes

the patch number. Each FBP so constructed contains local

spatial while global spectral dimensionality, which can eas-

ily help us to consider the two important properties underly-

ing an MSI: the nonlocal similarity between spatial patches

and the global correlation across all bands.

Based on this FBP set {Xi}
n
i=1, the MSI DL model

can then be constructed to calculate the spatial and spec-

tral dictionaries {DW ∈ R
dw×mW ,DH ∈ R

dh×mH ,DS ∈
R

dS×mS} with mW > dw, mH > dh and mS > dS , im-

plying the redundancy of these dictionaries, as follows:

min
DW ,DH ,DS,Zi

n∑
i=1

∥∥Xi −Zi ×1 D
W ×2 D

H ×3 D
S
∥∥

s.t., P(Zi) ≤ k , (2)

where Zi ∈ R
mW×mH×mS corresponds to the coefficient

tensor for Xi which governs the affiliated interaction be-

tween the dictionaries, and P(·) denotes the sparsity regu-

larization term like l0 or l1 operator [31].

4.2. From Image GroupSparsity to MSI Group
BlockSparsity

DL has been effectively applied to image denoising by

considering the nonlocal similarity property of images [17].

The basic idea is to firstly group the similar patches into

clusters X(k) = {xik
j
}nk

j=1, k = 1, 2, · · · ,K , where K is the

cluster number,nk is the patch number in the kth cluster and

ikj denotes the index of the jth patch in the kth cluster, and

then to encourage each cluster share similar atoms in the

dictionary. Let’s denote the coefficient matrix correspond-

ing to the kth cluster X(k) as Z(k) = [zik1 , zik2
, · · · , ziknk

] ∈

R
m×nk , and this simultaneous-sparse-coding aim can then

be achieved by applying to (1) the following group-sparsity

regularizer on each Z(k) [17]:

‖Z(k)‖p,q =
∑m

i=1
‖ẑ

k
i ‖

p
q , (3)

where ẑ
k
i denotes the ith row vector of Z(k). The pair (p, q)

is usually set as (1, 2) or (0,∞). Such group-sparsity reg-

ularizer helps to impose some all-zero rows of Z(k), as de-

picted in Fig. 2.

This nonlocal method can be easily extended to MSI cas-

es as follows. First, we group the similar FBPs into clusters

denoted by {Xik
j
}nk

j=1 (k = 1, 2, · · · ,K), where K is the

cluster number, nk is the FBP number in the kth cluster and

ikj denotes the index of the jth patch in the kth cluster. And

then we attempt to enforce each cluster share the similar

atoms in each of the spatial dictionaries DW , DH and spec-

tral dictionary DS . For convenience we combine the FBP

samples in the kth cluster together to formulate a 4th order

tensor: X (k) ∈ R
dw×dh×dS×nk , whose supplemental 4th

mode corresponds to the FBPs located at different spatial

positions of the MSI. Analogously, we align all coefficien-

t tensors {Zik
j
}nk

j=1 corresponding to the kth FBP cluster

to form Z(k) ∈ R
mW×mH×mS×nk . Then the aim of the

nonlocal MSI tensor DL can be attained by the following

group-block-sparsity regularizer.

Definition 1 (Group-block-sparsity) For a coefficient ten-

sor Z ∈ R
mW×mH×mS×n, its group-block-sparsity with

respect to the spatial and spectral modes is ‖Z‖B =
(rW , rH , rS) if and only if the smallest index subsets

IW , IH , IS satisfying zi1i2i3i4 = 0 for all (i1, i2, i3) /∈
IW × IH × IS contain rW , rH , rS elements, respectively.

Sub(Z) ∈ R
rW×rH×rS×n denotes the intrinsic sub-tensor

of Z extracted from the entries of the three dimensions of Z
specified by the index sets IW , IH , IS , respectively.

The above definition can be easily understood by seeing

Fig. 2. Note that the group-sparsity [17] can be seen as

the degenerated case of the group-block-sparsity in 2D im-

ages. Furthermore, when we set n = 1 (meaning only one

FBP in a cluster), the group-block-sparsity so defined ex-

actly corresponds to the concept of block sparsity proposed

in [6], which has been substantiated to be capable of en-

hancing better recovery of the original high order signals s-

ince it implicitly incorporates valuable prior information on

real signals and facilitates making full use of the dictionary

atoms of each mode in signal representation.
Then we can construct the following nonlocal MSI DL

model:

min
DW ,DH ,DS ,Z(k)

K
∑

k=1

∥

∥

∥
X (k) − Z(k) ×1 D

W ×2 D
H ×3 D

S
∥

∥

∥

s.t., ‖Z(k)‖B � (rWk , rHk , rSk ) , (4)
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Figure 2. Upper: The image group-sparsity model. In each group the coefficient vectors Z(k) (k = 1, · · · ,K) share the same atoms of the

dictionary D. Lower: The MSI group-block-sparsity model. In each group the coefficient tensors Z(k) (k = 1, · · · ,K) share the same

atoms of the spatial dictionaries DW , DH and spectral dictionary D
S .

where v1 � v2 denotes that each entry of v1 is no more than

the corresponding entry of v2. The group-block-sparsity of

Z(k) guarantees that each cluster X (k) shares rWk , rHk , rSk
atoms of the dictionaries D

W ,DH ,DS , respectively, and

thus the nonlocal similarity among these cluster samples

can then be implied.

There are two remaining problems in the construction

of the nonlocal MSI DL model (4): how to generate the

clusters for FBPs and how to set the group-block-sparsity

threshold rWk , rHk , rSk . For the first problem, we just employ

the very efficient k-means++ [3] (with automatically and

carefully chosen initial seeds) to obtain clusters of all FBPs.

The second problem is to be discussed in the next section.

4.3. Decomposable Nonlocal MSI DL Model

The nonlocal MSI DL problem can be further simplified
by assuming that the dictionaries DW ,DH ,DS are redun-
dant enough such that the dictionary atoms utilized in dif-
ferent clusters have no overlap. That is, We assume that
the spatial and spectral dictionaries can be reformulated as
D

W = [DW
1 , · · · ,DW

K ], DH = [DH
1 , · · · ,DH

K ] and D
S =

[DS
1 , · · · ,D

S
K ], where D

W
k ∈ R

dw×rWk , DH
k ∈ R

dh×rHk

and D
S
k ∈ R

dS×rSk with
∑K

k=1 r
W
k = mW ,

∑K
k=1 r

H
k =

mH and
∑K

k=1 r
S
k = mS , respectively, such that each M-

SI cluster X (k) is only related to the sub-dictionaries: DW
k ,

D
H
k and D

S
k . The rationality of this assumption lies on the

redundancy setting of the spatial and spectral dictionaries,
and even when we suppose that two clusters share an atom
of a dictionary, this assumption still holds by easily dupli-
cating this atom in the dictionary. Under this assumption,
each element in the sum of Eq. (4) can be equivalently re-
formulated as:

∥

∥

∥
X (k) − Z(k) ×1 D

W ×2 D
H ×3 D

S
∥

∥

∥

=
∥

∥

∥
X (k) − Sub(Z(k))×1 D

W
k ×2 D

H
k ×3 D

S
k

∥

∥

∥
, (5)

where Sub(Z(k)) ∈ R
rWk ×rHk ×rSk×nk denotes the intrinsic

sub-tensor of Z(k), and the original nonlocal MSI DL prob-

lem can then be decomposed into a series of problems im-

posed on all FBP clusters (k = 1, · · · ,K):

min
DW

k
,DH

k
,DS

k
,Y

∥∥∥X (k) − Y ×1 D
W
k ×2 D

H
k ×3 D

S
k

∥∥∥ . (6)

Note that after such transformation, the original problem (4)

with constraints is now reformulated into a series of small-

er problems without constraints. This makes the problem

much easier to solve.

Then the problems are how to solve Eq. (6) and how

to set the group-block-sparsity parameters rWk , rHk , rSk . It

should be noted that each MSI cluster tensor X (k) is of a

dimensionality redundancy in its 3-rd spectral mode due to

one of its important intrinsic properties: global correlation

across spectrum. This implies that X (k) can be approximat-

ed by a low-rank tensor obtained by:

min
U1,U2,U3,U4,G

‖X (k) − G ×1 U1 ×2 U2 ×3 U3 ×4 U4‖, (7)

where U1 ∈ R
dW
k ×rWk , U2 ∈ R

dH
k ×rHk , U3 ∈ R

dS
k×rSk ,

U4 ∈ R
dN
k ×rNk correspond the basis vectors in the four

modes of X (k) with dWk ≥ rWk , dHk ≥ rHk , dSk > rSk and

dNk ≥ rNk . Here G ∈ R
rWk ×rHk ×rSk×rNk is the so-called core

tensor [24] and rSk < dSk leads to the dimensionality reduc-

tion in the spectral mode of X (k). Eq. (7) can be readi-

ly solved by the Tucker decomposition technique [24], and

the solution of Eq. (6) can then be easily obtained by letting

D
W
k = U1, DH

k = U2, DS
k = U3 and Y = G ×4 U4.

As for the selection of the rank parameters (i.e., the

group-block-sparsity thresholds) rWk , rHk , rSk and rNk in

Eq. (7), we can easily adopt the well known AIC/MDL

method [27] on the mode-i (i = 1, 2, 3, 4) flattening X
(k)
(i)

of each cluster tensor X (k). Such a simple method is sub-

stantiated to be effective throughout all our experiments.

4.4. Decomposable Nonlocal MSI DL Algorithm

Based on the aforementioned process, the decomposable

nonlocal MSI DL algorithm can be summarized as Algo-



Figure 3. Simulated RGB images using Columbia Multispectral

Image Database.

rithm 1. We can then utilize Z(k), DW , DH , DS outputted

from the proposed algorithm to recover all overlapping F-

BPs and average the results to obtain the denoised MSI. It

should be noted that all of the utilized k-means++ [3] (step

2), AIC/DIC [27] (step 3) and Tucker factorization [24](step

4) techniques can be fastly implemented, which guarantees

the efficiency of our algorithm in practice.

Algorithm 1: Decomposable Nonlocal MSI DL

Input: Input MSI H ∈ R
dW×dH×dS

Output: Spatial dictionaries DW = [DW
1 , · · · ,DW

K ],
D

H = [DH
1 , · · · ,DH

K ], spectral dictionary

D
S = [DS

1 , · · · ,D
S
K ] and coefficient tensors

Z(k), k = 1, · · · ,K
1 Construct the entire FBP set of H (Section 4.1).

2 Group all FBPs into cluster tensors

X (k) ∈ R
dw×dh×dS×nk , k = 1, · · · ,K by k-means++

(Section 4.2).

3 Calculate the rank parameters rWk , rHk , rSk and rNk by

applying the AIC/MDL method to X
(k)
(1) ,X

(k)
(2) , X

(k)
(3)

and X
(k)
(4) , respectively (Section 4.3).

4 Implement the Tensor factorization technique on X (k)

by Eq. (7) to obtain U1, U2, U3, U4 and G, and let

D
W
k = U1, DH

k = U2, DS
k = U3 and

Sub(Z(k)) = G ×4 U4. Reformulate the sub-tensor

Sub(Z(k)) to obtain Z(k).

5. Experimental Results

Columbia Datasets: We utilized the Columbia Multi-

spectral Image Database [28]1 to test the proposed method.

This dataset contains 32 real-world scenes, each with spa-

tial resolution 512 × 512 and spectral resolution 31 which

includes full spectral resolution reflectance data collected

from 400nm to 700nm in 10nm steps. This MSI dataset

is of a wide variety of real-world materials and objects, see

Fig. 3. Each of these MSIs are scaled into the interval [0, 1]
in our experiments.

Noise models: In the experiments we used two types

1http://www1.cs.columbia.edu/CAVE/databases/multispectral

of noises commonly existed in real MSIs. One is the ad-

ditive white Gaussian noise (AWGN), which comes from

many natural sources, such as the spontaneous thermal gen-

eration of electrons. And the other is the Poisson noise

(also known as shot noise) which is originating from the

mechanism of quantized photons and uniform exposure [5].

We parameterized AWGN by its standard deviation σ and

Poisson noise by the variance H/2κ where H is the noise-

free signal. We designed two series of experiments. In the

first group, we perturbed each of the 32 Columbia MSI with

Gaussian noises of different σ (up to 0.3) and Poisson noise

with fixed κ = 5 . In the second case, we used κ from 2 to

6 and fixed σ = 0.1.

To remove the dependency of the noise variance on the

underlying signal before the denoising and compensate the

effects of the bias in the produced filtered estimate, in all

experiments, the noisy MSI was firstly reformulated by a

variance-stabilizing transformation (VST) [19] before im-

plementing a denoising method, and after denoising, a cor-

responding inverse transformation was used to obtain the

final MSI reconstruction.

Implementing details: Like most of the denoising

methods based on non-local similarity such as BM3D and

BM4D, we employ a preprocessing before the clustering

step of our algorithm (Step 2). Our experiments show that

a simple band-wise low-pass filtering is capable of greatly

improving the accuracy of matching and facilitating the ef-

fectiveness of the following steps of our proposed denoising

framework. It should be noted that the FBP width dw and

height dh are the only two parameters needed to be set in

our algorithm (all of the other parameters including K , rWk ,

rHk , rSk and rNk can be automatically selected). In all our

experiments, we just simply set them as dw = dh = 8.

Comparison methods: The comparison methods in-

clude: band-wise K-SVD [1]2 and band-wise BM3D [9]3,

state-of-the-art for the 2D extended band-wise approach;

3D-cube K-SVD [1]2 , ANLM3D [18]4 and BM4D [16]3,

state-of-the-art for the 2D extended 3D-cube-based ap-

proach; LRTA [23] and PARAFAC [14], state-of-the-art for

the tensor-based approach5. All parameters involved in the

competing algorithms were optimally assigned or automat-

ically chosen as described in the reference papers.

Evaluation measures: To comprehensively assess the

performance of all competing algorithms, we employ

five quantitative picture quality indices (PQI) for per-

formance evaluation, including peak signal-to-noise ra-

tio (PSNR), structure similarity (SSIM [26]), feature sim-

ilarity (FSIM [30]), erreur relative globale adimension-

nelle de synthèse (ERGAS [25]) and spectral angle map-

2http://www.cs.technion.ac.il/˜elad/software
3http://www.cs.tut.fi/ foi/GCF-BM3D
4http://personales.upv.es/jmanjon/denoising/arnlm.html
5http://www.sandia.gov/ tgkolda/TensorToolbox/index-2.5.html



(a) Clean image (b) Noisy image (c) BwK-SVD [1] (d) BwBM3D [9] (e) 3DK-SVD [1]

(f) ANLM3D [18] (g) BM4D [16] (h) LRTA [23] (i) PARAFAC [14] (j) Ours

Figure 4. (a) The images at two bands (400nm and 700nm) of chart and stuffed toy; (b) The corresponding images corrupted by the mixture

of σ = 0.2 Gaussian noise and κ = 5 Poisson noise; (c)-(j) The restored images obtained by the 8 utilized MSI denoising methods. Two

demarcated areas in each image are amplified at a 4 times larger scale for easy observation of details.

per (SAM [29]). PSNR and SSIM are two conventional

PQIs in image processing and computer vision. They evalu-

ate the similarity between the target image and the reference

image based on MSE and structural consistency, respective-

ly. FSIM emphasizes the perceptual consistency with the

reference image. The larger these three measures are, the

closer the target MSI is to the reference one. ERGAS and

SAM are usually appear corporately in the literature since

they extract complementary information from an MSI. ER-

GAS measures fidelity of the restored image based on the

weighted sum of MSE in each band and SAM calculates

the average angle between spectrum vectors of the target

MSI and the reference one across all spatial positions. D-

ifferent from the former three measures, the smaller these

two measures are, the better does the target MSI estimate

the reference one. Note that SAM fully reflects the fidelity

of the spectral reflectance of the target MSI.

Performance evaluation: For each noise setting, all

of the five PQI values for each competing MSI denoising

methods on all 32 scenes have been calculated and recorded.

Table 1 lists the average performance (over different scenes

and noise settings) of all methods in Poisson/Gaussian mix-

ture noise case. More details are listed in our supplemen-

tary material. It can be easily observed that the proposed

method outperforms all other competing methods. As a

detailed comparison, our method performs unsubstantially

worse than BM4D with respect to only two PQI measures

(PSNR and ERGAS) at a part of noise levels (say σ ≤ 0.2
with fixed κ and κ ≥ 5 with fixed σ. Please see supplemen-

tary material). And in average, our method performs best

with respect to all PQIs.

To further depict the denoising performance of our

method, we depict in Fig. 4 two bands in chart and stuffed

toy that centered at 400nm (the darker one) and 700nm (the

brighter one), respectively. Two demarcated areas in the

scene have been amplified in the figure at a 4 times larger

scale for easy observation of details. It is easy to observe

that our method obtains a better recovery for both small-

scale textures and large-scale structures, especially when

the band energy is low (see the dark channel).

Based on the SAM measures in Table 1, our method

is substantiated to be able to best recover the spectral re-

flectance of the MSIs as compared to other competing meth-

ods. To further clarify this point, we demonstrate in Fig. 5



σ = 0.1, 0.15, 0.2, 0.25, 0.3, κ = 5

PSNR SSIM FSIM ERGAS SAM

Noisy image 14.52± 0.04 0.060± 0.032 0.469± 0.111 1156.9± 327.0 1.133± 0.194

BwK-SVD [1] 25.77± 1.12 0.370± 0.027 0.792± 0.038 296.5± 58.4 0.614± 0.163

BwBM3D [9] 33.45± 2.58 0.828± 0.048 0.910± 0.015 124.4± 34.0 0.340± 0.128

3DK-SVD [1] 28.07± 1.29 0.497± 0.024 0.859± 0.025 232.5± 42.5 0.581± 0.170

ANLM3D [18] 33.61± 2.24 0.836± 0.036 0.916± 0.020 121.1± 27.2 0.365± 0.142

BM4D [16] 36.25± 2.16 0.885± 0.027 0.938± 0.013 90.0 ± 19.0 0.314± 0.131

LRTA [23] 33.90± 2.74 0.850± 0.064 0.925± 0.017 118.4± 35.8 0.234± 0.082

PARAFAC [14] 27.66± 2.93 0.747± 0.100 0.862± 0.053 243.3± 70.3 0.388± 0.117

Ours 36.25± 2.56 0.914± 0.031 0.952± 0.008 88.9± 21.6 0.182± 0.070

σ = 0.1, κ = 2, 3, 4, 5, 6

PSNR SSIM FSIM ERGAS SAM

Noisy image 17.45± 1.02 0.088± 0.035 0.573± 0.094 756.3 ± 129.4 1.055± 0.194

BwK-SVD 27.81± 1.85 0.528± 0.051 0.849± 0.031 224.4± 32.9 0.514± 0.145

BwBM3D 34.14± 2.80 0.864± 0.046 0.926± 0.014 113.5± 32.4 0.267± 0.098

3DK-SVD 29.95± 1.94 0.662± 0.048 0.901± 0.021 180.3± 28.7 0.486± 0.151

ANLM3D 31.53± 1.53 0.686± 0.030 0.874± 0.035 155.8± 23.5 0.439± 0.145

BM4D 36.93± 2.36 0.910± 0.025 0.951± 0.011 81.7 ± 17.1 0.259± 0.108

LRTA 33.31± 3.20 0.812± 0.075 0.916± 0.022 140.7± 49.6 0.271± 0.100

PARAFAC 30.27± 3.13 0.802± 0.084 0.896± 0.038 177.9± 60.9 0.323± 0.113

Ours 36.94± 2.75 0.930± 0.029 0.963± 0.007 81.5± 20.5 0.150± 0.052

Table 1. Average performance comparison of 8 competing methods with respect to 5 PQIs mixture noise experiments. For both settings,

the results are obtained by averaging through the 32 scenes and the varied parameters.
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Figure 5. (a) Simulated RGB image of sponges. (b)-(g) Spectral reflectance difference curves of 8 competing methods at 6 locations of

sponges. The noise-free image is corrupted by the mixture of σ = 0.2 Gaussian noise and κ = 5 Poisson noise.

the spectral reflectance difference curves of all competing

methods at 6 locations in sponges. A spectral reflectance d-

ifference curve of a MSI denoising method at a spatial loca-

tion is attained by sequentially interpolating the 31 elements

of the deviation between the restored and the clean MSI a-

long their spectral mode. It is easy to see that our method

obtains the best approximation of the intrinsic spectral pat-

terns of the original MSI, which fully complies with our

quantitative evaluation.

MSI Denoising performance on natural scenes: We

also used some MSIs from real-world scenes [11]6 to test

our denoising method. This dataset comprises 15 rural

scenes (containing rocks, trees, leaves, grass, earth, etc.)

and 15 urban scenes (containing walls, roofs, windows,

plants, indoor, etc.). All of them are illuminated by the di-

rect sunlight between mid-morning to mid-afternoon. As

the images are taken from a fairly far distance and the en-

6http://personalpages.manchester.ac.uk/staff/david.foster/Hyperspectral

images of natural scenes 02

ergy is spread over all bands, these MSIs contain certain

degree of noises. We employed the similar implementation

strategies and parameter settings for our method and com-

pared the similar competing methods as the first series of

experiments.

Our experimental results show that our method can gen-

erally ameliorate the image quality contained in these MSIs.

For easy observation we illustrates an example image locat-

ed at a band of a rural MSI in Fig. 6. An area of interest is

amplified in the restored image obtained by all competing

methods. It can be easily observed that the image restored

by our method properly removes the noise while finely pre-

serves the structure underlying the image, while the results

obtained by most of other competing methods contain evi-

dent significant blurry area as compared to the original im-

age. Among these methods, ANLM3D and LRTA perform

comparatively better in structure preserving. However, the

images recovered by them remain more unexpected sharp

noises than that obtained by our method.



(a) Natural image (b) BwK-SVD [1] (c) BwBM3D [9] (d) 3DK-SVD [1]

(e) ANLM3D [18] (f) BM4D [16] (g) LRTA [23] (h) PARAFAC [14] (i) Ours

Figure 6. (a) The image located at the 12th band in scene 2 of the natural scene dataset. (b)-(i) The restored images obtained by the 8

utilized MSI denoising methods. The demarcated area in each image is amplified for easy observation of details. The figure is better seen

by zooming on a computer screen.
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