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Abstract

High-level, or holistic, scene understanding involves

reasoning about objects, regions, and the 3D relationships

between them. This requires a representation above the

level of pixels that can be endowed with high-level at-

tributes such as class of object/region, its orientation, and

(rough 3D) location within the scene. Towards this goal, we

propose a region-based model which combines appearance

and scene geometry to automatically decompose a scene

into semantically meaningful regions. Our model is defined

in terms of a unified energy function over scene appearance

and structure. We show how this energy function can be

learned from data and present an efficient inference tech-

nique that makes use of multiple over-segmentations of the

image to propose moves in the energy-space. We show, ex-

perimentally, that our method achieves state-of-the-art per-

formance on the tasks of both multi-class image segmen-

tation and geometric reasoning. Finally, by understanding

region classes and geometry, we show how our model can

be used as the basis for 3D reconstruction of the scene.

1. Introduction

With recent success on many vision subtasks—object de-

tection [21, 18, 3], multi-class image segmentation [17, 7,

13], and 3D reconstruction [10, 16]—holistic scene under-

standing has emerged as one of the next great challenges

for computer vision [11, 9, 19]. Here the aim is to reason

jointly about objects, regions and geometry of a scene with

the hope of avoiding the many errors induced by modeling

these tasks in isolation.

An important step towards the goal of holistic scene un-

derstanding is to decompose the scene into regions that are

semantically labeled and placed relative to each other within

a coherent scene geometry. Such an analysis gives a high-

level understanding of the overall structure of the scene, al-

lowing us to derive a notion of relative object scale, height

above ground, and placement relative to important semantic

categories such as road, grass, water, buildings or sky. We

provide a novel method that addresses this goal.

Our method is based on a unified model where each pixel

in the image is assigned to a single region. Regions are

labeled both with a semantic category (such as grass, sky,

foreground, and so on) and a geometric label (currently ver-

tical, horizontal, or sky). Unlike methods that deal only

with multi-class segmentation [17] or only with geometric

reconstruction [10], our approach reasons jointly about both

aspects of the scene, allowing us to avoid inconsistencies

(such as vertical roads) and to utilize the context to reduce

false positives (such as unsupported objects).

A key aspect of our approach is the use of large,

dynamically-defined regions as the basic semantic unit.

Most previous methods for doing this type of image de-

composition use either individual pixels [17] or predefined

superpixels [24, 5]. Each of these approaches has its trade-

offs. The use of individual pixels makes it difficult to utilize

more global cues, including both robust statistics about the

appearance of larger regions, which can help average out the

random variations of individual pixels, and relationships be-

tween regions, which are hard to “transmit” by using local

interactions at the pixel level. The use of superpixels par-

tially addresses some of these concerns, but as superpixels

are constructed in advance using simple procedures based

on local appearance alone, their boundaries are often incon-

sistent with the true segment boundaries, making an accu-

rate decomposition of the image impossible. Our approach

dynamically associates pixels to regions, allowing region

boundaries to adjust so as to accurately capture the true ob-

ject boundaries. Moreover, our regions are also much larger

than superpixels, allowing us to derive global appearance

properties for each region, including not only color and tex-

ture, but even larger properties such as its general shape,

aspect ratio, and characteristics of its boundary. These fea-

tures can help capture subtle yet important cues about re-

gions that improve classification accuracy. As we will see,

this provides a decomposition of the scenes into objects or

appearance-coherent parts of objects (such as person’s head,

or a window in a building).

Reasoning in our model requires that we infer both the

pixel-to-region association and the semantic and geometric
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labels for the regions. We address this challenge using a hy-

brid approach. For the pixel-association task, we propose

a novel multiple-segmentation approach, in which different

precomputed segmentations are used to propose changes to

the pixel-region associations. These proposed moves take

large steps in the space and hence help avoid local min-

ima; however, they are evaluated relative to our global en-

ergy function, ensuring that each step improves the energy.

The region-labeling task is addressed using global energy-

minimization methods over the region space. This step is

not too expensive, since the number of regions is signif-

icantly lower than the number of pixels. By performing

the inference at this level, we also improve labeling accu-

racy because the adjacency structure between these larger

regions allows us to directly exploit correlations between

them (such as the fact that ground is below sky).

The parameters of our model are entirely learned from

data. In this model, we are learning to label entire segments,

allowing us to exploit global, region-level characteristics.

We obtain positive examples for region labels from a large

training set, which we constructed using Amazon Mechan-

ical Turk (AMT), at a total cost of less than $250. Negative

examples are a bit trickier to acquire, as there are exponen-

tially many “non-regions,” most of which are obviously bad

choices. We therefore propose a novel closed-loop train-

ing regime, where the algorithm runs inference on the train-

ing images given its current model, and then uses mistakes

made in the process as negative examples to retrain.

We apply our method to a challenging data set consist-

ing of 715 images, most of which have fairly low resolu-

tion and multiple small objects at varying scales. We show

that our approach produces multi-class segmentation and

surface orientation results that outperform state-of-the-art

methods. In addition, we show how our output can be used

as the basis for 3D scene reconstruction.

2. Background and Related Work

Our work touches on many facets of computer vision

that have, in recent years, been treated as separate prob-

lems. The problem of multi-class image segmentation (or

labeling) has been successfully addressed by a number of

works [7, 22, 17, 23, 24, 5]. The goal here is to label every

pixel in the image with a single class label. Typically these

algorithms construct CRFs over the pixels (or small coher-

ent regions called superpixels) with local class-predictors

based on pixel appearance and a pairwise smoothness term

to encourage neighboring pixels to take the same label.

Some novel works introduce 2D layout consistency be-

tween objects [23], object shape [22], or relative location

between regions [7, 5]. However, none of these works take

into account 3D context and do not learn or enforce global

consistency, such as that “sky” needs to be above “ground”.

As an alternative to segmenting into semantic classes,

Hoiem et al. [12] propose segmenting free-standing objects

by estimating occlusion boundaries in an image. Other

works attempt to reconstruct 3D depth [16] or surface ge-

ometry [10] directly from monocular images without first

reasoning about occlusions. These use local color and tex-

ture cues together with pairwise interactions to infer scene

structure. None of these works attempt to understand the

semantic content of the scene and they tend to produce poor

3D reconstructions when foreground objects are present.

The use of multiple over-segmented images is not new to

computer vision. Russell et al. [14], for example, use mul-

tiple over-segmentations for finding objects in images, and

many of the depth reconstruction methods described above

(e.g., [10]) make use of over-segmentations for comput-

ing feature statistics. In the context of multi-class image

segmentation, Kohli et al. [13] specify a global objective

which rewards solutions in which an entire segment is la-

beled consistently. However, their energy function is very

restricted and does not, for example, capture the interac-

tion between region appearance and class label nor does

their energy function allow for label-dependent pairwise

preferences, such as foreground objects above road. Un-

like all of these methods, our method uses multiple over-

segmentations to build a dictionary of proposal moves for

optimizing a global energy function—the segments them-

selves are not used for computing features nor do they ap-

pear explicitly in our objective.

The importance of holistic scene interpretation has been

highlighted in a number of recent works [11, 9]. These

methods combine tasks by passing the output of one model

to the input of another. Unlike these approaches, which op-

timize variables for each task separately, our method con-

siders semantic and geometric tasks simultaneously and

performs joint optimization on a unified objective over the

variables, providing a coherent decomposition of the scene.

Perhaps most relevant is the work of Tu et al. [20], which

decomposes a scene into regions, text and faces using an

innovative data driven MCMC approach on a generative

model of the scene. However, their work is primarily fo-

cussed on identifying text and faces, and does not attempt

to label “generic” regions with semantic classes, nor do they

model the geometric relationship between regions.

3. Region-based Scene Decomposition

Our goal is to decompose an image I into an unknown

number (K) of geometrically and semantically consistent

regions by iteratively optimizing an energy function that

measures the quality of the solution at hand. We begin by

describing the various entities in our model. Inference and

learning are described in Section 4.

Our model reasons about both pixels and regions. Each

pixel in the image p ∈ I belongs to exactly one region,

which is identified by the pixel’s region-correspondence



variable Rp ∈ {1, . . . ,K}. Let the set of pixels in region r

be denoted by Pr = {p : Rp = r}. The size of the region

(number of pixels) is then Nr = |Pr| =
∑

p 1{Rp = r}.

Each pixel has a local appearance feature vector αp ∈ R
n

(described in Section 3.1 below). Associated with each re-

gion are: a semantic class label Sr, currently grass, moun-

tain, water, sky, road, tree, building and foreground; a ge-

ometry Gr, currently horizontal, vertical, and sky; and an

appearance Ar that summarizes the appearance of the re-

gion as a whole. The final component in our model is the

horizon. We assume that the image was taken by a camera

with horizontal axis parallel to the ground. We therefore

model the location of the horizon as the row in the image

corresponding to the horizon vhz ∈ {1, . . . , height(I)}.

Given an image I and model parameters θ, our uni-

fied energy function scores the entire description of the

scene: the pixel-to-region associations R; the region se-

mantic class labels S, geometries G, and appearances A;

and the location of the horizon vhz:

E(R,S,G,A, vhz,K | I,θ) =

+ θhorizonψhorizon(vhz) (1)

+ θregion
∑

r ψ
region
r (Sr, Gr, v

hz;Ar,Pr) (2)

+ θpair
∑

rs ψ
pair
rs (Sr, Gr, Ss, Gs;Ar,Pr, As,Ps) (3)

+ θboundary
∑

pq ψ
boundary
pq (Rp, Rq;αp, αq). (4)

We now describe each of the components of our model.

3.1. Characterizing Individual Region Appearance

For each pixel p in the image, we construct a local ap-

pearance descriptor vector αp comprised of raw image fea-

tures and discriminitively learned boosted features. Our raw

image features, which are computed in a small neighbor-

hood of the pixel, are identical to the 17-dimensional color

and texture features described in [17]. We augment these

raw features with more processed summaries that represent

the “match” between the pixel’s local neighborhood and

each of the region labels. In particular, for each (individual)

semantic and geometric label we learn a one-vs-all boosted

classifier to predict the label given the raw image features

in a small neighborhood around the pixel.1 We then append

the score (log-odds ratio) from each boosted classifier to our

pixel appearance feature vector αp.

In our experiments, we set the region appearance Ar to

be the maximum-likelihood Gaussian parameters over the

appearance of pixels within the region: Ar =
(

µA
r ,Σ

A
r

)

where µA
r ∈ R

n and ΣA
r ∈ R

n×n are the mean and co-

variance matrix for the appearance vectors αp of pixels in

1In our experiments we append to the pixel’s 17 features, the average

and variance for each feature over a 5×5-pixel window in 9 grid locations

around the pixel and the image row to give a total of 324 features. We use

the GentleBoost algorithm with 2-split decision stumps and train for 500

rounds. Our results appeared robust to the choice of parameters.

the r-th region. These summary statistics give us a more

robust estimator of the appearance of the region than would

be obtained by considering only small neighborhoods of the

individual pixels.

3.2. Individual Region Potentials

To define the potentials that help infer the label of indi-

vidual regions, we extract features φr(Ar,Pr) ∈ R
n de-

scribing the region appearance and basic shape. Our ap-

pearance features include the mean and covariance µA
r ,Σ

A
r ,

the log-determinant of ΣA
r , and the average contrast at the

region boundary and region interior. In addition to relating

to semantic class—grass is green—the appearance features

provide a measure for the quality of a region—well-formed

regions will tend to have strong boundary contrast and (de-

pending on the class) little variation of interior appearance.

We also want to capture more global characteristics of

our larger regions. For example, we would like to capture

the fact that buildings tend to be vertical with many straight

lines, trees tend to be green and textured, and grass tends

to be green and horizontal. Thus, we incorporate shape fea-

tures that include normalized region area, perimeter, first

and second x- and y-moments, and residual to a robust line

fit along the top and bottom boundary of the region. The

latter features capture the fact that buildings tend to have

straight boundaries while trees tend to be rough.

We also include the horizon variable in the region-

specific potential, allowing us to include features that mea-

sure the ratio of pixels in the region above and below the

horizon. These features give us a sense of the scale of the

object and its global position in the scene. For example,

buildings are tall and tend to have more mass above the hori-

zon than below it; foreground objects are often close and

will have most of their mass below the horizon. Conversely,

these potentials also allow us to capture the strong posi-

tional correlation between the horizon and semantic classes

such as sky or ground, allowing us to use the same potential

to place the horizon within the image.

To put all of these features together, we learn a multi-

class logistic classifier for Sr ×Gr with a quadratic kernel

over φr (see Section 4.2). The score for any assignment to

the region variables is then: ψ
region
r (Sr, Gr, v

hz;Ar,Pr) =
−Nr log σ

(

Sr ×Gr | φr(Ar,Pr), v
hz

)

, where σ(·) is the

multi-class logistic function with learned parameters. We

scale the potential by the region size Nr so that our score

gives more weight to larger regions and is independent of

the number of regions in the image.

3.3. Inter­Region Potentials

Our model contains two types of inter-region poten-

tials. The first of these is ψ
boundary
pq (Rp, Rq;αp, αq), which

is the standard contrast-dependent pairwise boundary po-

tential [17]. For two adjacent pixels p and q, we de-



fine ψ
boundary
pq (Rp, Rq;αp, αq) = exp{−β−1‖αp − αq‖

2}
if Rp 6= Rq and zero otherwise where β is half the aver-

age contrast between all adjacent pixels in the image. This

term penalizes adjacent regions that do not have an edge

between them; it has the effect of trying to merge adjacent

regions that are not clearly demarcated. We note that, since

the penalty is accumulated over pairs of adjacent pixels, the

region-level penalty is proportional to the pixel-length of

the boundary between the regions.

Our second inter-region potential, ψpair, models the affin-

ity of two classes to appear adjacent to each other. Sim-

ilar to the within-region potentials, we extract features

φrs(Ar,Pr, As,Ps) ∈ R
m for every pair of adjacent re-

gions r and s. We then learn independent multi-class logis-

tic classifiers for Sr ×Ss and Gr ×Gs given these features.

Note that these potentials are asymmetric (exchanging re-

gions r and s gives a different preference). The features

φrs are intended to model contextual properties between re-

gions, for example, the boundary between building and sky

tends to be straight and building is more likely to appear

above a foreground object than below it. To capture these

properties, our features include the difference between cen-

troids of the two regions, the proportion of pixels along the

boundary in which region r is above region s, the length and

orientation of the boundary, and residual in fitting a straight

line to the boundary. In addition to these layout-based fea-

tures, we include appearance difference between the regions

normalized by the total appearance variance within each re-

gion. This captures signals such as foreground objects tend

to contrast highly with other regions, whereas background

regions are more similar in appearance, such as adjacent

buildings in a city.

We normalize each pairwise potential by the sum of

the number of pixels in each region divided by the num-

ber of neighbors for the region: η =
(

Nr

|nbrs(r)| +
Ns

|nbrs(s)|

)

.

This makes the total influence on a region independent of

its number of neighbors while still giving larger regions

more weight. The final form of our second inter-region

potential is then ψ
pair
rs (Sr, Gr, Ss, Gs;Ar,Pr, As,Ps) =

−η log σ (Sr × Ss | φrs)−η log σ (Gr ×Gs | φrs), where,

as above, σ(·) is the multi-class logistic function.

4. Inference and Learning

4.1. Inference Algorithm

Exact inference in our model is clearly intractable. We

adopt a two-stage hill climbing approach to minimize the

energy. In the first stage, we modify the pixel-region asso-

ciation variables by allowing a set of pixels to change the

region to which they are assigned. Given the new pixel as-

signments, we then optimize the region and horizon vari-

ables in the second stage. The global energy of the resulting

configuration is then evaluated, and the move is accepted

Procedure InferSceneDecomposition

Generate over-segmentation dictionary Ω
Initialize Rp using one of the over-segmentations
Repeat until convergence

Propose a move {Rp : p ∈ ω} ← r
Update region appearance A and features φ

Run inference over regions (S, G) and horizon vhz

Compute total total energy E

If (E < Emin) then

Accept move and set Emin = E
Else reject move

(a) (b)

Figure 1. (a) Scene decomposition inference algorithm; (b) Over-

segmentation dictionary, Ω, generated by running mean-shift [1]

with three different parameter settings. See text for details.

only if this energy improves, ensuring that our inference is

continuously improving a coherent global objective.

The proposal moves for region associations are drawn

from a pre-computed, image-specific dictionary of image

segments Ω (Figure 1(b)). To build a “good” set of segments

we start with a number of different over-segmentations of

the image. Here, we use the mean-shift algorithm [1] us-

ing publicly available code.2 We generate different over-

segmentations by varying the spatial and range bandwidth

parameters. To allow coarse granularity moves, we also

perform hierarchical agglomerative clustering (up to a fixed

depth) on each over-segmentation by merging adjacent seg-

ments that have similar appearance. We then add all subsets

constructed by this process (including the initial segments)

to the dictionary. This procedure produces a rich set of pro-

posal moves. We sort the dictionary by the entropy of pixel

appearance within each segment so that more uniform seg-

ments are proposed first.

In addition to moves proposed by the dictionary, we also

allow moves in which two adjacent regions are merged to-

gether. The set of allowed pixel-to-region correspondence

proposal moves is thus: (i) pick a segment ω ∈ Ω and as-

sign all Rp for p ∈ ω to a new region; (ii) pick a segment

ω ∈ Ω and assign all Rp for p ∈ ω to one of the regions

in its neighborhood; or (iii) pick two neighboring regions r

and s and merge them, that is, ∀Rp = s set Rp = r.

Our overall inference algorithm is summarized in Fig-

ure 1(a): Briefly, we initialize our pixel-to-region associa-

tions R using one of the over-segmentations used to pro-

duce our dictionary. Given our current association R, we

select a proposal move and reassign pixels to form new re-

gions. We then update the appearance model Ar and fea-

tures of any region that was affected by the move. We

maintain sufficient statistics over pixel appearance, making

this step very fast. Keeping the pixel-to-region correspon-

dence variables and horizon fixed, we run max-product be-

lief propagation on the region class and geometry variables.

2http://www.caip.rutgers.edu/riul/research/
code/EDISON/index.html



We then update the horizon vhz using Iterated Conditional

Modes (ICM).3 The new configuration is evaluated relative

to our global energy function, and kept if it provides an im-

provement. The algorithm iterates until convergence. In our

experiments (Section 5) inference took between 30 seconds

and 10 minutes to converge depending on image complexity

(i.e., number of segments in Ω).

4.2. Learning Algorithm

We train our model using a labeled dataset where each

image is segmented into regions that are semantically and

geometrically coherent. Thus, our ground truth specifies

both the region association for each pixel and the labels for

each region.

We learn each term ψhorizon, ψregion and ψpair in our en-

ergy function separately, using our labeled training data. We

then cross-validate the weights between the terms using a

subset of our training data. Since only the relative weight-

ing between terms matter, we fixed θregion to one.

For the horizon singleton term, we learn a Gaussian

over the location of the horizon in training images and set

ψhorizon(vhz) to be the log-likelihood of vhz given this model.

We normalize ψhorizon(vhz) by the image height to make

this model resolution invariant. Our learned Gaussian has

a mean of approximately 0.5 and standard deviation of 0.15

(varying slightly across experiment folds). This suggests

that the horizon in our dataset is quite well spread around

the center of the image.

The within-region term, ψregion, and the between-region

term, ψpair, are learned using multi-class logistic regression.

However, the training of the within-region term involves an

important subtlety. One of the main roles of this term is to

help recognize when a given collection of pixels is actually

a coherent region—one corresponding to a single semantic

class and a single geometry. Although all of the regions in

our training set are coherent, many of the moves proposed

during the course of inference are not. For example, our

algorithm may propose a move that merges together pixels

containing (horizontal) grass and pixels containing (verti-

cal) trees. We want to train our classifier to recognize in-

valid moves and penalize them. To penalize such moves,

we train our multi-class logistic regression classifier with

an additional “invalid” label. This label cannot be assigned

to a candidate region during inference, and so if the pro-

posed region r appears incoherent, the “invalid” label will

get high probability, reducing the probability for all (valid)

labels in Sr × Gr. This induces a high energy for the new

proposed assignment, making it likely to be rejected.

To train a discriminative classifier that distinguishes be-

3We experimented with including v
hz in the belief propagation infer-

ence but found that it changed very little from one iteration to the next and

was therefore more efficient to infer conditionally (using ICM) once the

other variables were assigned.

tween coherent and incoherent regions, we need to provide

it with negative (incoherent) training instances. Here, we

cannot simply collect arbitrary subsets of adjacent pixels

that do not correspond to coherent regions: Most arbitrary

subsets of pixels are easily seen to be incoherent, so that a

discriminative model trained with such subsets as negative

examples is unlikely to learn a meaningful decision bound-

ary. Therefore, we use a novel “closed-loop” learning pro-

cedure, where the algorithm trains on its own mistakes. We

begin by training our classifier where the negative exam-

ples are defined by merging pairs of adjacent ground truth

regions (which are not consistent with each other). We then

perform inference (on our training set) using this model.

During each proposal move we evaluate the outcome of in-

ference with the ground truth annotations. We append to

our training set moves that were incorrectly accepted or re-

jected, or moves that were accepted (resulted in lower en-

ergy) but produced an incorrect labeling of the region vari-

ables. In this way, we can target the training of our decision

boundary on the more troublesome examples.

5. Experimental Results

We conduct experiments on a set of 715 images of ur-

ban and rural scenes assembled from a collection of public

image datasets: LabelMe [15], MSRC [2], PASCAL [4],

and Geometric Context (GC) [10]. Our selection criteria

were for the images to have approximately 320 × 240 pix-

els, contain at least one foreground object and have the hori-

zon positioned within the image (it need not be visible). We

perform 5-fold cross-validation with the dataset randomly

split into 572 training images and 143 test images for each

fold. The quality of our annotations (obtained from Ama-

zon Mechanical Turk) is extremely good and in many cases

superior to those provided by the original datasets. Images

and labels are available for download from the first author’s

website.

Baselines. To validate our method and provide strong

baselines for comparison, we performed experiments on

independent multi-class image segmentation and geometry

prediction using standard pixelwise CRF models. Here the

pixel class Sp (or surface geometry Gp) is predicted sepa-

rately for each pixel p ∈ I given the pixel’s appearance αp

(see Section 3.1). A contrast-dependent pairwise smooth-

ness term is added to encourage adjacent pixels to take the

same value. The models have the form

E(S | I) =
∑

p

ψp(Sp;αp) + θ
∑

pq

ψpq(Sp, Sq;αp, αq)

and similarly forE(G | I). In this model, each pixel can be

thought of as belonging to its own region. The parameters

are learned as described above with ψp a multi-class logis-

tic over boosted appearance features and ψpq the boundary

penalty. The baseline results are shown in Table 1.



Figure 2. Examples of typical scene decompositions produced by

our method. Show for each image are regions (top right), seman-

tic class overlay (bottom left), and surface geometry with horizon

(bottom right). Best viewed in color.

Region-based Approach. Multi-class image segmenta-

tion and surface orientation results from our region-based

approach are shown below the baseline results in Table 1.

Our improvement of 2.1% over baseline for multi-class seg-

mentation and 1.9% for surface orientation is significant.

In particular, we observed an improvement in each of our

five folds. Our horizon prediction was within an average of

6.9% (relative to image height) of the true horizon.

In order to evaluate the quality of our decomposition, we

computed the overlap score between our boundary predic-

tions and our hand annotated boundaries. To make this met-

ric robust we first dilate both the predicted and ground truth

boundaries by five pixels. We then compute the overlap

score by dividing the total number of overlapping pixels by

half the total number of (dilated) boundary pixels (ground

truth and predicted). A score of one indicates perfect over-

lap. We averaged 0.499 across the five folds indicating that

on average we get about half of the semantic boundaries

correct. For comparison, using the baseline class predic-

tions gives a boundary overlap score of 0.454.

The boundary score result reflects our algorithm’s ten-

dency to break regions into multiple segments. For exam-

ple, it tends to leave windows separated from buildings and

people’s torsos separated from their legs (as can be seen in

Figure 2). This is not surprising given the strong appearance

difference between these different parts. We hope to extend

our model in the future with object specific appearance and

shape models so that we can avoid these types of errors.

Figures 3 and 4 show some good and bad examples, re-

spectively. Notice the high quality of the class and geome-

try predictions particularly at the boundary between classes

and how our algorithm deals well with both near and far ob-

jects. There are still many mistakes that we would like to

CLASS GEOMETRY

Pixel CRF (baseline) 74.3 (0.80) 89.1 (0.73)

Region-based energy 76.4 (1.22) 91.0 (0.56)

Table 1. Multi-class image segmentation and surface orientation

(geometry) accuracy. Standard deviation shown in parentheses.

MSRC GC

TextonBoost [17] 72.2 Hoiem et al. [10]:

Yang et al. [24] 75.1 • pixel model 82.1

Gould et al. [5] 76.5 • full model 88.1

Pixel CRF 75.3 Pixel CRF 86.5

Region-based 76.4 Region-based 86.9

Table 2. Comparison with state-of-the-art MSRC and GC results

against our restricted model. Table shows mean pixel accuracy.

address in future work. For example, our algorithm is often

confused by strong shadows and reflections in water as can

be seen in some of the examples in Figure 4. We hope that

with stronger geometric reasoning we can avoid this prob-

lem. Also, without knowledge of foreground subclasses,

our algorithm sometimes merges a person with a building

or confuses boat masts with buildings.

Comparison with Other Methods. We also compared

our method with state-of-the-art techniques on the 21-class

MSRC [2] and 3-class GC [10] datasets. To make our

results directly comparable with published works, we re-

moved components from our model not available in the

ground-truth labels for the respective datasets. That is,

for MSRC we only use semantic class labels and for GC

we only use (main) geometry labels. Neither model used

horizon information. Despite these restrictions, our region-

based energy approach is still competitive with state-of-the-

art. Results are shown in Table 2.

6. Application to 3D Reconstruction

The output of our model can be used to generate novel

3D views of the scene. Our approach is very simple and ob-

tains its power from our region-based decomposition rather

than sophisticated features tuned for the task. Nevertheless,

the results from our approach are surprisingly good com-

pared to the state-of-the-art (see Figure 5 for some exam-

ples). Since our model does not provide true depth estimates

our goal here is to produce planar geometric reconstructions

of each region with accurate relative distances rather than

absolute distance. Given an estimate of the distance be-

tween any two points in the scene, our 3D reconstruction

can then be scaled to the appropriate size.

Our rules for reconstruction are simple. Briefly, we as-

sume an ideal camera model with horizontal (x) axis paral-

lel to the ground. We fix the camera origin at 1.8m above

the ground (i.e., y = 1.8). We then estimate the yz-rotation

of the camera from the location of the horizon (assumed to

be at depth ∞) as θ = tan−1( 1
f
(vhz − v0)) where v0 is half



Figure 3. Representative results when our model does well. Each cell shows original image (left), overlay of semantic class label (center),

and surface geometry (right) for each image. Predicted location of horizon is shown on the geometry image. Best viewed in color.

Figure 4. Examples of where our algorithm makes mistakes, such as mislabeling of road as water (top left), or confusing boat masts as

buildings (bottom right). We also have difficulty with shadows and reflections. Best viewed in color.

the image height and f is the focal length of the camera.

Now the 3D location of every pixel p = (u, v) lies along

the ray rp = R(θ)−1
K
−1 [u v 1]

T
, where R(θ) is the ro-

tation matrix and K is the camera model [6]. It remains to

scale this ray appropriately.

We process each region in the image depending on its se-

mantic class. For ground plane regions (road, grass and wa-

ter) we scale the ray to make the height zero. We model each

vertical region (tree, building, mountain and foreground) as

a planar surface whose orientation and depth with respect

to the camera are estimated by fitting a robust line over

the pixels along its boundary with the ground plane. This

produced good results despite the fact that not all of these

pixels are actually adjacent to the ground in 3D (such as

the belly of the cow in Figure 5). When a region does not

touch the ground (that is, it is occluded by another object),

we estimate its orientation using pixels on its bottom-most

boundary. We then place the region half way between the

depth of the occluding object and maximum possible depth

(either the horizon or the point at which the ground plane

would become visible beyond the occluding object). The

3D location of each pixel p in the region is determined by

the intersection of this plane and the ray rp. Finally, sky

regions are placed behind the last vertical region.4

7. Discussion and Future Work

In this work, we addressed the problem of decompos-

ing a scene into geometrically and semantically coherent

regions. Our method combines reasoning over both pixels

and regions through a unified energy function. We proposed

4Technically, sky regions should be placed at the horizon, but since the

horizon has infinite depth, we choose to render sky regions closer, so as to

make them visible in our viewer.



Figure 5. Novel views of a scene with foreground objects gener-

ated by geometric reconstruction.

an effective inference technique for optimizing this energy

function and showed how it could be learned from data. Our

results compete with state-of-the-art multi-class image seg-

mentation and geometric reasoning techniques. In addition,

we showed how a region-based approach can be applied to

the task of 3D reconstruction, with promising results.

Our framework provides a basis on which many valu-

able extensions can be layered. With respect to 3D recon-

struction, our method achieves surprising success given that

it uses only simple geometric reasoning derived from the

scene decomposition and location of the horizon. These

results could undoubtedly be improved further by integrat-

ing our method with state-of-the-art approaches that reason

more explicitly about depth [16] or occlusion [12].

An important and natural extension to our method can be

provided by incorporating object-based reasoning directly

into our model. Here, we can simply refine our foreground

class into subclasses representing object categories (person,

car, cow, boat, etc.). Such models would allow us to incor-

porate information regarding the relative location of differ-

ent classes (cars are found on roads), which are very natu-

rally expressed in a framework that explicitly models large

regions and their (rough) relative location in 3D. By reason-

ing about different object classes, we can also incorporate

state-of-the-art models regarding object shape [8] and ap-

pearance features [3]. We believe that this extension would

allow us to address one of the important error modes of our

algorithm, whereby foreground objects are often broken up

into subregions that have different local appearance (a per-

son’s head, torso, and legs). Thus, this approach might al-

low us to decompose the foreground class into regions that

correspond to semantically coherent objects (such as indi-

vidual people or cars).

Finally, an important limitation of our current approach

is its reliance on a large amount of hand-labeled training

data. We hope to extend our framework to make use of

large corpora of partially labeled data, or perhaps by using

motion cues in videos to derive segmentation labels.
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