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Decomposing biological motion: A framework for 
analysis and synthesis of human gait patterns 

Nikolaus F. Troje Ruhr-Universität, Bochum, Germany  

Biological motion contains information about the identity of an agent as well as about his or her actions, intentions, and 
emotions. The human visual system is highly sensitive to biological motion and capable of extracting socially relevant 
information from it. Here we investigate the question of how such information is encoded in biological motion patterns and 
how such information can be retrieved. A framework is developed that transforms biological motion into a representation 
allowing for analysis using linear methods from statistics and pattern recognition. Using gender classification as an 
example, simple classifiers are constructed and compared to psychophysical data from human observers. The analysis 
reveals that the dynamic part of the motion contains more information about gender than motion-mediated structural cues. 
The proposed framework can be used not only for analysis of biological motion but also to synthesize new motion 
patterns. A simple motion modeler is presented that can be used to visualize and exaggerate the differences in male and 
female walking patterns. 
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Introduction A large number of studies have since used 
Johansson’s point-light displays. It has been demonstrated 
that biological motion perception goes far beyond the 
ability to recognize a set of moving dots as a human 
walker. Point-light displays contain enough information 
to recognize other actions as well (Dittrich, 1993), to 
determine the gender of a person (Barclay, Cutting, & 
Kozlowski, 1978; Hill & Johnston, 2001; Kozlowski & 
Cutting, 1977; Mather & Murdoch, 1994, Runeson, 
1994), to recognize emotions (Dittrich, Troscianko, Lea, 
& Morgan, 1996; Pollick, Paterson, Bruderlin, & 
Sanford, 2001), to identify individual persons (Cutting & 
Kozlowski, 1977; Hill & Pollick, 2000), and even one’s 
own walking pattern (Beardsworth & Buckner, 1981). 
However, whereas many studies exist that demonstrate 
the capability of the human visual system to detect, 
recognize, and interpret biological motion, there have 
been virtually no attempts to solve the question of how 
information about the moving person is encoded in the 
motion patterns. Only for gender recognition are there a 
few investigations addressing the nature of the 
informational content mediating this ability. In this 
study, we will also use gender classification of walking 
patterns as an example. However, the proposed 
framework can be generalized to solve other pattern 
classification problems based on biological motion. 

The human visual system is extremely sensitive to 
animate motion patterns. We quickly and efficiently 
detect another living being in a visual scene, and we can 
recognize many aspects of biological, psychological, and 
social significance. Human motion, for instance, contains 
a wealth of information about the actions, intentions, 
emotions, and personality traits of a person. What our 
visual system seems to solve so effortlessly is still a riddle 
in vision research and an unsolved problem in computer 
vision. Little is known about exactly how biologically and 
psychologically relevant information is encoded in visual 
motion patterns. This study aims to provide a general 
framework that can be used to address this question. The 
approach is based on transforming biological motion data 
into a representation that subsequently allows for analysis 
using linear statistics and pattern recognition. To 
demonstrate the potential of this framework, we construct 
a sex classifier and compare its performance with the 
performance of human observers that classify the same 
stimuli. 

Some 30 years ago, Gunnar Johansson (1973, 1976) 
introduced to experimental psychology a visual stimulus 
display designed to separate biological motion 
information from other sources of information that are 
normally intermingled with motion information. 
Johansson attached small point lights to the main joints 
of a person’s body and filmed the scene so that only the 
lights were visible in front of an otherwise homogeneously 
dark background. Using these displays, he demonstrated 
the compelling power of perceptual organization from 
biological motion of just a few light points. 

One way to approach the question of where 
diagnostic information is hidden in a sensory stimulus is 
through psychophysical experiments. In such studies, the 
stimulus is manipulated along different dimensions in 
order to measure the effect of such manipulations on 
recognition performance. The first study on gender 
recognition from biological motion was conducted by 
Kozlowski and Cutting (1977). They demonstrated that 
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observers are able to classify point-light walkers shown in 
saggital view with a performance of 63% correct 
recognition. Additionally, they introduced a number of 
manipulations: increased or reduced arm swing 
amplitudes, unnaturally fast or slow walking speeds, and 
occlusion of either the lower or the upper part of the 
body. All manipulations considerably reduced recognition 
performance. With unnatural arm swings, performance 
dropped almost to chance level. Showing only the lower 
body impaired recognition to a larger extent than 
showing only the upper body. None of the manipulations 
caused a shift in perception into a defined direction, 
making the percept either more male or more female. 
Only for the speed manipulation did there seem to be a 
trend to perceive fast walkers more female, which, 
however, did not reach a statistically significant level. 

Barclay et al. (1978) conducted a similar study 
investigating the influence of four different parameters. 
The initial experiment focused on the influence of 
exposure duration. The results show that two complete 
gait cycles are required to determine gender from 
biological motion. Shorter exposure times result in 
reduced performance. In a second experiment, speed was 
altered, but rather than recording different walking 
speeds from the model walkers as in Kozlowski and Cut-
ting’s (1977) study, they used just one recording showing 
a walker at his most comfortable walking speed and 
presented this stimulus with different play-back speeds to 
the observers. This manipulation had a strong effect and 
gender recognition was almost at chance level. The third 
manipulation consisted of blurring the discrete dots of 
the point-light walker to such an extent that the walker 
appeared as a single blob that changed shape during 
walking. This caused gender recognition performance to 
decrease also to chance level. Finally, the authors tested 
gender recognition with walkers that were presented 
upside-down. Interestingly, in this case, recognition 
performance dropped significantly below chance. If a 
female walker was turned upside down, the display 
tended to be perceived as a man and an inverted man 
tended to be perceived as a woman. Whereas all other 
manipulations only resulted in a general decrease in 
recognition performance, inversion of a point-light walker 
clearly induced defined shifts in perceived gender. 

Barclay et al. (1978) proposed that their finding was 
due to the fact that the ratio of shoulder width and pelvis 
width differ between men and women. Men tend to have 
wider shoulders than hips, whereas this ratio is reversed 
in women. If, upon inversion, the walker’s shoulders are 
seen as if they were hips and the hips are seen as if they 
were shoulders, then observers’ responses would reverse 
with respect to the true gender of the walker. Given this 
scenario, the question remains how shoulder and hip 
width could be measured. Because the walker was 
presented in a side view, neither shoulder nor hip width 
could be determined directly from the stimulus. However, 
due to a torsional twist of the upper body, both shoulder 

and hip perform elliptical motions in the saggital plain. 
The amplitude of those ellipses depends on the widths of 
shoulder and pelvis, and, therefore, may have provided a 
diagnostic cue. 

If the extent of movement at the shoulder and the 
hip is an important cue for gender recognition, artificial 
walkers that differ only in those attributes should be 
classified accordingly. Cutting (1978a, 1978b, 1978c) 
developed a generative model of human gait and showed 
that this is indeed the case. The isolated cue apparently 
provided diagnostic information about a walker’s gender. 

However, biological motion contains more 
information that can serve for gender classification. In 
principle, biological motion can provide two sources of 
information. One is motion-mediated structural 
information, and the second is truly dynamic 
information. In contrast to a static frame of a point-light 
walker, motion reveals the articulation of the body. 
Setting a point-light walker into motion immediately 
uncovers information about which segments are rigid, 
where the joints are located, and, therefore, about the 
lengths of the connecting segments. The resulting 
information is structural, static information about the 
geometry of the body. Motion is only needed as a 
medium to obtain this information and could be replaced 
by other cues. A static view of a point-light walker in 
which the connections are explicitly drawn (stick figure) 
combined with information to disambiguate the 2D 
projection (e.g., using stereo displays) would, in principle, 
provide the same information. 

In addition to motion-mediated structural 
information, biological motion also contains truly dy-
namic information. The amplitude and velocity of the 
arm swing or the torsion of the trunk are simple examples 
for information that is clearly different from structural 
information. It should be noted, however, that although 
representing two different sources of information, 
structural and dynamic information might not be 
independent. The amplitude of the elliptical motion of 
shoulders and hips as a function of the respective widths, 
as discussed above, provides an illustrative example of this 
fact. 

The role of motion-mediated structural information 
and dynamic cues for gender recognition from biological 
motion was explicitly addressed in a series of experiments 
conducted by Mather and Murdoch (1994). The static cue 
they concentrated on was the ratio of the width of the hip 
and the width of the shoulder. The dynamic cue that was 
manipulated differed from the one used by Cutting 
(1978b). Whereas Cutting emphasized differences in 
motion of hips and shoulders in the saggital plane, 
Mather and Murdoch focused on differences in lateral 
body sway. Men show a larger extent of lateral sway of the 
upper body than women do (Murray, Kory, & Sepic, 
1970). Mather and Murdoch (1994) generated stimuli 
that showed artificial point-light walkers with well-defined 
structural measures (shoulder and hip width) and well-
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defined dynamic cues (lateral sway of shoulder and hip). 
The walkers were shown from different viewing angles 
and subjects had to indicate the perceived gender. Setting 
structural and dynamic cues into conflict, the authors 
could show that the dynamic cue clearly dominated the 
structural cue. 

In summary, the different studies on gender 
recognition from biological motion show that in-
formation about a walker’s gender is not a matter of a 
single feature. Barcley et al. (1978), as well as Cutting 
(1978a), have identified the elliptical motion of shoulder 
and hip in the saggital plain to be an important cue to 
gender. Mather and Murdoch (1994) focused on the 
extent of lateral body sway. Kozlowski and Cutting (1977) 
showed that seeing only parts of the body could provide 
enough information about the gender of its owner to 
yield classification performances above chance. Gender 
recognition appears to be a complex process with a 
holistic character that takes into consideration hints and 
cues that are distributed over the whole display and that 
are carried both by motion-mediated structural 
information and by pure dynamics. Other studies 
employing different tasks confirm the holistic nature of 
biological motion perception (Bertenthal & Pinto, 1994; 
Lappe & Beintema, 2002). 

Most of the studies summarized above aimed to 
investigate particular properties of the stimulus that were 
suspected to be promising candidates to carry information 
for gender discrimination. The role of such stimulus 
properties for gender recognition was, in turn, scrutinized 
by means of psychophysical experiments. In this study, we 
chose a different approach to the question of how 
information is encoded in biological motion patterns. 
Here we want to treat the problem as a pattern-
recognition problem. With no a priori assumptions about 
possible candidate cues, we attempted to construct a 
linear classifier that can discriminate male from female 
walking patterns. We can then, in turn, scrutinize the 
classifier to determine which cues have been used. The 
cues may be simple features or complex holistic cues that 
are described in terms of correlation patterns between 
different parts and motions of the body. Any attribute or 
combination of attributes that changes when moving 
along an axis perpendicular to the separation plane 
defining the classifier is diagnostic for gender 
classification. Attributes that change while moving within 
the separation plane do not contribute any information 
to the gender classification problem. 

A prerequisite to generate a linear classifier for 
gender discrimination or other stimulus features from 
human motion is a data structure within which linear 
operations are effectively applicable. The problem is 
similar to attempts to construct linear models of classes of 
images. In the domain of object recognition and human 
face recognition, such representations have been termed 
“linear object classes” (Vetter, 1998; Vetter & Poggio, 
1997) or “morphable models” (Giese & Poggio, 2000; 

Jones & Poggio, 1999; Shelton, 2000). The latter term 
expresses the fact that the linear transition from one item 
to another represents a well-defined smooth 
metamorphosis between the items. Another term that has 
been used for the same class of models in the context of 
human face recognition is “correspondence based 
representations” (Troje & Vetter, 1998; Vetter & Troje, 
1997). This term focuses on morphable models’ reliance 
on establishing correspondence between features across 
the data set, resulting in a separation of the overall in-
formation into range-specific information on the one 
hand and domain specific information on the other hand 
(Ramsay & Silverman, 1997). 

The use of linear techniques to describe human 
motion data has been employed in a number of studies, 
both in computer vision and in animation. Some of these 
techniques focus on recognition of actions and blending 
between actions. Others concentrate on the recognition 
and generation of emotion and other stylistic features 
within a set of instances of an action. In the context of 
this study, we want to define an action as a set of motion 
instances that are structurally similar. Extrapolating 
Alexander’s (1989) definition of a gait, we define an 
action as a pattern of motion characteristics described by 
quantities of which one or more change discontinuously 
at transitions to other actions. Instances of the same 
action can be smoothly transformed into each other, with 
all transitions being valuable representations of the 
particular action. The definition implies structural 
similarity between instances of the same action, and, 
therefore, a means to define correspondence in space and 
time between two or more instances in a canonical and 
unambiguous way. Systematic differences between motion 
instances of an action are referred to as styles. Styles can 
correspond to emotions, personality or biological 
features, such as age or gender. According to the above 
definitions, the stylistic state space of an action is 
expected to be continuous and therefore defines smooth 
transitions between all instances of an action. Warping 
between actions, in contrast, requires the definition of 
additional constraints in order to achieve unambiguous 
correspondence. 

Most of the existing systems for recognition, 
classification, synthesis, and editing of biological motion 
are based on data representations with a continuous 
smooth behaviour. A number of different techniques 
have been used to achieve this behaviour. Brand and 
Hertzmann’s (2000) “style machines” are based on a 
hidden Markov model, that is, a probabilistic finite-state 
machine consisting of a set of discrete states, state-to-state 
transition probabilities, and state-to-signal emission 
probabilities (see also Wilson & Bobick, 1995). Rose, 
Bodenheimer, and Cohen (1998) presented a model 
using radial basis functions and low-order polynomials 
that both provide blending between actions and inter-
polation within stylistic state spaces. A number of models 
are based on frequency domain manipulations. Fourier 
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Although linear motion models have become 
common within the animation and computer vision 
community, there exist only few studies that use such 
models for psychological studies on motion perception. 
An exception is the work by Hill, Pollick, and colleagues 
(Hill & Pollick, 2000; Pollick, Fidopiastis, & Braden, 
2001). Both studies show that extrapolations in linear 
motion spaces are perceived as caricatured instances that 
are recognized even better than the original sequences. 
The results imply that the topology of perceptual spaces 
used for biological motion recognition is similar to the 
one implicit in artificial linear motion spaces that are 
based on a distinction between range-specific information 
on the one hand and domain-specific information on the 
other hand. 

techniques (Davis, Bobick, & Richards, 2000; Davis, 
2001; Unuma, Anjyo, & Takeuchi, 1995; Unuma & 
Takeuchi, 1993) are suitable for periodic motions, such as 
locomotion patterns. Multiresolution filtering (Bruderlin 
& Williams, 1995) applies to a wider spectrum of 
movements but is restricted to modify and edit existing 
motion, rather than creating new motions through 
interpolation between existing motions. If the latter is 
required, multiresolution filtering has to be combined 
with time-warping techniques (Witkin & Popovic, 1995). 
Time warps are required to align corresponding signal 
features in time. Depending on the complexity of the 
action, time warps are parameterized in terms of simple 
uniform scaling and translation (e.g., Wiley & Hahn, 
1997; Yacoob & Black, 1997) by using nonlinear models, 
such as B-splines (Ramsay & Li, 1989; Ramsay & 
Silverman, 1997), or by fitting nonparametric models by 
means of dynamic programming (Bruderlin & Williams, 
1995; Giese & Poggio, 1999; 2000). 

Our approach to linearize human walking data 
employs many of the techniques summarized above. 
Starting with motion capture data from a number of 
human subjects, we first reduce the dimensionality of 
each subject’s set of postures using PCA in a way similar 
to that described by Rosales and Scarloff (2000). This 
results in a low-dimensional space spanned by the first 
few eigenpostures. As postures change during walking, the 
corresponding coefficients change sinusoidally. The 
temporal behaviour of the sequence is well described by 
simple sine functions, and the decomposition becomes 
very similar to previous work on Fourier decomposition 
of walking data (Unuma et al., 1995). The eigenposture 
approach, however, is more general because it is not 
based in the frequency domain and thus can be used for 
nonperiodic motions as well. The main difference is that 
time warping, which reduces to simple uniform scaling in 
the case of our walking data, has to be parameterized 
using a more complex model. 

The dimensionality of the resulting linear spaces are 
not necessarily reflecting the number of degrees of 
freedom within the set of represented data. Some of the 
above cited techniques therefore use principal 
components analysis (PCA) to reduce the dimensionality 
to a degree that stands in a reasonable relation to the 
size of the available data set. PCA can be used on 
different levels. For instance, Yacoob and Black (1997) 
apply PCA to a set of “atomic activities,” which are 
registered in time and then represented by 
concatenating all measurements (joint angles) of all 
frames of the sequence. Ormoneit, Sidenbladh, Black, 
and Hastie (2000) use a similar approach (see also 
Bobick, 1997; Ju, Black, & Yacoob, 1996; Li, Dettmer, 
& Shah, 1997). Rosales and Scarloff (2000) apply PCA 
to a set of postures, each posture being represented only 
by measurements of a single frame. 

Based on the outlined linearization of biological 
motion data, we are primarily interested to recognize and 
characterize stylistic features within an action. The action 
we are using is human walking. The stylistic variations we 
are investigating are the differences relating to the 
walker’s gender. The aim of this study is twofold. First, we 
want to quantitatively characterize the differences in 
walking style between men and women. We test the 
success of our approach in terms of a linear classifier 
operating on the proposed linear representation of a set 
of human walking data. Second, we compare the 
performance of the linear classifier to the performance of 
human observers in a gender classification task. By 
depriving both the linear classifier as well as our human 
observers from parts of the information contained in the 
walking patterns, we want to find out which aspects of the 
stimulus are diagnostic and relevant for solving the 
gender classification task. 

Linear motion models have been applied to a number 
of different problems, such as motion editing (Brand & 
Hertzmann, 2000; Bruderlin & Williams, 1995; Gleicher, 
1998; Guo & Roberge, 1996; Wiley & Hahn, 1997), 
retargeting motion from one character to another 
(Gleicher, 1998), tracking a human figure from video data 
(Ju et al., 1996; Ormoneit et al., 2000; Rosales & Scarloff, 
2000), recognizing activities (Yacoob & Black, 1997), 
speech (Li et al., 1997) or gait patterns (Giese & Poggio, 
2000). Giese and Poggio’s model, which is in many 
respects similar to ours, is able to discriminate between 
different gaits (running and walking), but also to discrim-
inate limping from walking. Whereas running and 
walking have to be considered two different actions 
according to the above definition, limping and walking 
are two styles of the same action. Other than this work, 
Davis’ (2001) work on visual categorization of children 
and adult walking styles is the only one that we are aware 
of that applies linear motion modelling to the recognition 
of stylistic aspects within an action. 
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Walking Data From the trajectories of the 38 original markers, we 
computed the location of “virtual” markers positioned at 
major joints of the body. The 15 virtual markers used for 
all the subsequent computations were located at the joints 
of the ankles, the knees, the hips, the wrists, the elbows, 
the shoulders, at the center of the pelvis, on the sternum, 
and in the center of the head (Figure 1). Commercially 
available software (BODYBUILDER, Oxford Metrics) for 
biomechanical modeling was used to achieve the 
respective computations. 

Twenty men and 20 women, most of them students 
and staff of the psychology department at the Ruhr-
University, served as models to acquire motion data. 
Their ages ranged from 20 to 38 years (average age, 26 
years). A set of 38 retroreflective markers was attached to 
their body. Participants wore swimming suits and most of 
the markers were attached directly onto the skin. Others, 
such as the ones for the head, the ankles, and the wrists, 
were attached to elastic bands, and the ones on the feet 
were taped onto the subjects’ shoes. The Algorithm 

Participants were then requested to walk on a 
treadmill. They could adjust the speed of the belt so that 
they felt most comfortable. To ensure that they did not 
feel too much under observation and that they did not 
“perform” in an unnatural manner, we let them walk for 
at least 5 min before we started to record 20 steps (i.e., 10 
full-gait cycles) from each of them. Participants were not 
notified when recording started. 

The walk of an individual subject can be regarded as a 
time series of postures. Each posture can be specified in 
terms of the positions of the 15 markers. Because three 
coordinates are needed for each marker’s position, the 
representation of a posture is a 45-dimensional vector 
p=(m1x, m1y, m1z, m2x ... m15z)T (we take the transpose 
because we regard p to be a column vector). 

A walker needs about 12 s to perform 20 steps, thus 
providing about 1,400 single postures. Of course, this set 
of postures is highly redundant. For instance, if the left 
wrist is in front of the torso, it is very likely that the right 
foot is also in front of the torso, whereas the right wrist 
and the left foot are both behind it.  

 

One way to capture redundancy within a data set is 
principal components analysis. PCA is a linear basis 
transformation that basically decomposes the original 
data so that any number of components accounts for as 
much as possible of the data’s variance. Mathematically, 
the principal components are the eigenvectors of the 
covariance matrix of the original data set. The cor-
responding eigenvalues express the variance covered by 
the individual components. Redundancy in a data set 
means that the data occupy only a part of the space. PCA 
can capture the redundancy only in cases in which the 
data lie within a low-dimensional linear subspace of the 
original space. If they are occupying a low-dimensional 
but still nonlinear manifold, PCA will not be able to 
recover all of the redundancy within the data set. 

For the moment, let us consider only a single walker. 
The data of a particular walker consist of about 1,400 
postures sampled while the walker performed 10 gait 
cycles. We applied PCA separately to the postures of each 
walker. On average, across all 40 walkers, the first 
principal component already covers 84% of the overall 
variance. The first four principal components taken 
together account for more than 98% of the overall 
variance (Figure 2). Apparently, PCA is very successful in 
capturing the redundancy in the data. Each posture p can 
be described as a linear combination of the average 
posture p0 plus a weighted sum of the first four PCs 

Figure 1. The movie illustrates the 15 marker positions used in 
the computations. The markers are located at the major joints 
of the body (shoulders, elbows, wrists, hips, knees, ankles), 
the sternum, the center of the pelvis, and the center of head. 

Data were recorded using a motion capture system 
(Vicon; Oxford Metrics, Oxford, UK) equipped with 9 
CCD high-speed cameras. The system tracks the three-
dimensional trajectories of the markers with spatial 
accuracy in the range of 1 mm and a temporal resolution 
of 120 Hz. 

0= + ∑p p pi i
i

c  (1) 

with pi denoting the ith principal component and  
denoting the respective score. 

ic
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Figure 2. The variance covered by the first few eigenpostures. 
The bars represent the mean (with standard deviations shown) 
across all 40 walkers. 

Figure 3. The upper panel shows the coefficients of the first 
four eigenpostures changing over time for 600 frames of a 
single walker. The lower panel is the corresponding fit using 
sine functions. The coefficients of determination of the fits for 
this particular walker are 0.99, 0.95, 0.94, and 0.94 for the first 
four eigenpostures, respectively. 

In order to distinguish the outcome of this analysis 
from a second PCA that is introduced later in this study, 
we call the principal components as derived from an 
analysis across postures the “eigenpostures” of a particular 
walker. Given the mean posture and the first four 
eigenpostures, each posture can now be described simply 
by the four weights. Note that the eigenpostures are 
specific for each walker. 

This description is specific for each walker, and, 
therefore, should also contain an index for the particular 
walker j: 

( ) ( ) ( )
( ) (

,0 ,1 ,2 ,2

,3 ,3 ,4 ,4

sin sin

sin 2 sin 2 .

= + + +

+ + + +

p p p p

p p

j j j j j j j

j j j j j j

t t t

t t

ω ω ϕ

ω ϕ ω ϕ )
 (3) Walking is a time series of postures. If we can model 

the temporal behavior of the first four components, we 
have modeled the walk. In fact, the temporal behavior of 
the components is very simple and can be nicely modeled 
with pure sine functions (Figure 3). On average, across all 
walkers, the quality of a simple sinusoidal fit as given by 
the coefficients of determination is 0.99, 0.95, 0.94, and 
0.90 for the first four eigenpostures, respectively. Each 
sine function is characterized by its frequency, its 
amplitude, and its phase. The frequency of the first two 
PCs always equates the fundamental frequency of the 
walking and the frequency of the third and fourth PC is 
the second harmonic. The amplitudes are just scaling 
factors that can be multiplied with the PCs. What remain 
are the phases. Because we are interested only in the 
relative phases of the PCs, we set the phase of the first PC 
to be zero and change the phases of the other 
components accordingly. 

Because the average posture and all the eigenpostures 
are 45-dimensional vectors, the overall number of 
parameters is 5*45 + 4 = 229. Therefore, a 229-
dimensional vector wj encoding all the parameters 
provides a full representation of an individual’s walking 
pattern pj(t). 

The nice property of this representation is that it is 
morphable. If compared across different walkers, both the 
average posture and the eigenpostures are very similar. 
They show walker-specific variations but they also contain 
similar structure. This becomes evident when looking at 
the covariance matrices. The average correlation across all 
possible 40*39/2 pairs of average postures pi,0 and pj,0 is 
0.998. The corresponding numbers for the first four 
principal components are 0.95, 0.88, 0.85, and 0.73, 
respectively. This high correlation shows that the compo-
nents principally encode similar aspects of the walk while 
still representing the individual differences between 
walkers. 

To fully describe the walk of a single walker, we now 
need the average posture p0, the first four eigenpostures 
p1, p2, p3, p4, the fundamental frequency ω, and the 
phases of the second, third, and fourth PC with respect to 
the first component, ϕ2, ϕ3, and ϕ4: 

( ) ( ) ( )

( ) (

0 1 2 2

3 3 4

sin sin

sin 2 sin 2 .

= + + +

+ + + +

p p p p

p p

t t t

t t

ω ω ϕ

ω ϕ ω ϕ )4

 (2) 

This result justifies treating the 229-dimensional 
vector describing the walk wj of a walker j as a point in a 
linear space of the same dimension and, thus, the 
application of linear methods. Even though the 
dimensionality of this description is tremendously 
reduced compared to the original motion capture data, 
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0 .= −VK W W  (8) 229 is still a large number of variables for a concise and 
compact model. In particular for the purpose of 
constructing linear classifiers with the ability to 
reasonably generalize to new walking samples, we have to 
reduce the dimensionality to a degree that is considerably 
smaller than the number of items in the data set. In an 
attempt to reduce redundancy within the set of 40 
walkers that make up our database, we computed a PCA 
across the walkers. In contrast to the similar computation 
on the level of the postures of a single walker, the 
problem arises that the entries of a walk vector wj are not 
homogenous. Whereas most of the entries encode 
positions (e.g., in millimeters), there is one entry that 
encodes the fundamental frequency (e.g., in Hz) and three 
more that account for the phases of the PCs (e.g., in 
degrees). PCA is very sensitive to relative scaling. For 
instance, its outcome would be very different depending 
on whether the phase would be given in radiants or in 
degrees or whether the positional measures would be in 
millimeters or centimeters. We therefore whitened the 
data by dividing each entry by the standard deviation 
based on the 40 corresponding entries before subjecting 
the data to a PCA: 

Each walker j can now be represented in a space 
spanned by the first n eigenwalkers Vn = (v1, v2, ... vn) in 
terms of the respective score vector kj = (k1,j, k2,j, ... kn,j)T. 
The dimensionality of this representation (i.e., the 
number of eigenwalkers used) can be treated flexibly 
depending on the particular requirements of the 
application. With increasing dimensionality, the 
representation becomes more accurate in terms of its 
reconstruction quality. On the other hand, a large ratio 
between the dimensionality and the number of items 
available for learning invariants becomes unfavourable for 
classification purposes. 

Linear Gender Classification 

( )diag 1 .′ =W u W

i j i

V

 (4) 

W is a 229 x 40 matrix containing all the walker data 
with one walker per column: W = (w1, w2, ..., w40). u is a 
vector containing the 229 standard deviations computed 
from the rows of W. W’ is the resulting whitened data 
matrix. 

Computing a PCA on the whitened data W’ results 
in a decomposition of each walker wj into an average 
walker w0 and 39 weighted components that we call the 
eigenwalkers: 

0 ,= + ∑w w vj
i

k  (5) 

or in Matrix notation: 

0 .= +W W VK  (6) 

The representation derived above provides a linear 
framework for the analysis of the informational content 
of gait patterns and the extraction of diagnostic 
parameters. Our database is still comparatively small and 
many interesting psychological or biological attributes 
may not yet be fully represented. However, it contains 
exactly 20 men and 20 women. If the linearization is 
successful, we can hope to find the attributes that differ 
between walking men and women to be spread along a 
straight axis in the space spanned by the eigenwalkers. 
Using the redundancy inherent in the set of walkers, we 
can hope to derive a low-dimensional classifier that would 
correctly classify new walkers. Besides training a linear 
classifier on the full representation, classifiers can be 
constructed that use only different parts of the overall 
information. Their performances can be used to evaluate 
the role of those parts for gender classification. For 
instance, it is easy to separate structural information from 
dynamic information. The average posture p0 can be 
regarded to encode structural information comprising 
both information about the lengths of the body’s 
segments and their average positions. The eigenpostures, 
in contrast, encode dynamic information. Using different 
sorts of input information we tested (1) how the two 
classes separate and (2) how a linear classifier based on a 
linear discriminant function would generalize to new 
instances that have not been used for training.  W0 denotes a matrix with the average walker w0 in 

each of its 40 columns. The matrix V containing the 
eigenwalkers as column vectors vi is obtained by pre-
multiplying the matrix V’ containing the eigenvectors of 
the covariance matrix of W’ with diag(u), therefore 
multiplying each entry with the corresponding standard 
deviation of this element: 

( )diag .′=V u  (7) 

In the following xj denotes a column vector with the 
data of a particular walker used as input for classification. 
Accordingly, X = (x1, x2, ..., xm) is the matrix containing 
the data set of m=40 different walkers. xj can stand for 
the whole walker representation (xj=wj), or only for parts 
of it, for instance, only for the structural or only for the 
dynamic part of the representation. The row vector r 
contains the expected output of the classifier. It has m 
entries with rj = 1 if walker j is a man and rj = -1 if the 
walker is a woman. The matrix K containing the weights (or the scores) 

ki,j is obtained by solving the linear equation system: 
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Figure 4. Results of applying the classifier to different versions and parts of the walking data. The dashed blue curve depicts separation 
performance in terms of the number of misclassifications as a function of the number of components used. The solid red curve shows 
misclassifications in the generalization test. The following input data have been used: 

a: full 229 dimensional description of the walkers with their original size 
b: 229 dimensional description, size-normalized 
c: only the 45 entries of pj,0, size-normalized 
d: four eigenpostures, their phases and the fundamental frequency, size-normalized 
e: only first eigenposture, size-normalized 
f: only second eigenposture, size-normalized 
g: only third eigenposture, size-normalized 
h: only fourth eigenposture, size-normalized 
i: first, second, and third eigenposture, size-normalized 

 
To test for the ability to separate men’s and women’s 

walks in the space, we first ran a PCA by computing the 
eigenvectors of the covariance matrix of X. As described 
above in more detail, this results in a decomposition of X 
into: 

0 .= +X X VK  (9) 

X0 denotes a matrix with the average input data x0 in 
each column. The matrix V contains the principal 
components as column vectors vi and K denotes a matrix 
containing the scores similarly to the notation used above. 

A linear discriminant function c is now computed by 
solving the equation 

=cK r  (10) 

Next we reordered the PCs spanning the walking 
space by the weights with which they contribute to the 

discriminant function. For the following computations, 
component number i no longer is the ith principal 
component but is the component with the ith highest 
weight in the discriminant function c. We then evaluated 
the ability to separate male and female walks of 
discriminant functions of increasing dimension n. A 
walker j was considered to be classified correctly if 

( ),
1

sgn sgn .
=

 
=  

 
∑c
n

i i j j
i

k r  (11) 

Otherwise, the walker j was considered to be 
misclassified. The dotted lines in Figure 4 depict the 
percentage of misclassifications as a function of n. If n is 
large, separation is perfect due to the mismatch between 
the number of items to be classified and the 
dimensionality of the space. Depending on the 
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information provided for the classification, perfect 
separation is reached at dimensions between n = 4 and 
n = 14. 

More interesting than the ability to find a separating 
plane is the degree to which the corresponding classifier 
can generalize to new instances of walking patterns. 
Lacking a whole new set of data that we could use to test 
the linear classifier, we ran a single-elimination jack-knife 
procedure: One of the 40 walking patterns was taken out 
and a linear classifier was computed on the remaining 39 
walkers as described above. After having done so, the 
remaining walker was projected first onto the principal 
components derived from the other 39 walkers. The 
resulting score vector was then projected onto the 
discriminant function in the subspace spanned by the 
first n components. Classification was considered to be 
correct if the projection had the expected sign. The same 
procedure was repeated with all 40 walkers. The results 
are plotted as a function of n in Figure 4 (solid lines). 
Typically, in the generalization test, misclassification 
reaches a minimum if n has about the size needed to 
achieve perfect separation in the previous step. If the 
dimension of the classifier gets much higher, the error 
increases slightly due to overlearning. 

The procedure was applied to different sets of input 
data. First, we applied it to the full 229 dimensional 
description of the walker described in the previous 
section. The results are plotted in Figure 4a. Full 
separation is reached using only 5 components. 
Classification performance in terms of generalization to 
new walkers is very effective. The best classifier needs only 
4 components and produces only 3 misclassifications (out 
of 40 items), corresponding to an error rate of 7.5%. 

Visualizing the changes between male and female 
walkers on which the classifier picked up (see next section 
for details), we suspected that differences in overall size 
between men and women are strongly contributing to the 
good classification performance. To further investigate 
the role of size, we defined the relative size sj of each 
walker j by finding a least-square solution to the equation 

,0 ,0
1

= ∑p j j k
k

s
n

p  (12) 

with pj,0 being the average posture of walker j. Using just 
the sj as an input for linear classification, only 5 walkers 
are misclassified corresponding to an error rate of 12.5%. 

Although size might be a diagnostic feature for 
gender classification, we are more interested in other 
parameters and in particularly in motion-based cues. For 
further calculations, we normalized the walker data by 
their size. To achieve this, for each walker j the average 
posture pj,0 as well as the four eigenpostures pj,1, pj,2, pj,3, 
and pj,4 were divided by sj. 

Figure 4b illustrates the results of training and testing 
a classifier that uses the size-normalized version of the full 
229-dimensional representation. Complete separation is 

obtained with 7 components (dotted curve). 
Generalization is optimal with 6 components resulting in 
7 misclassifications (17.5%). 

The size-normalized full representation still contains 
both structural information in terms of the average 
posture pj,0 and dynamic information in terms of the 
principal components pj,1, pj,2, pj,3, and pj,4, their 
respective phases, and the fundamental frequency. In 
order to evaluate the roles of structural and dynamic 
information, we submitted only the respective parts of the 
full representation to the classifier. Figure 4c shows the 
results obtained from training and testing the classifier 
with data that contain, for each walker, only the 45 
entries of pj,0. Performance in this case is not very good. 
Twelve components are needed for complete separation 
and the best generalization performance with 11 
misclassifications (27.5%) requires 12 components. 

Better performance is obtained if only the dynamic 
information is used for classification. Figure 4d presents 
the results of a calculation with the four principal 
components, their phases and the fundamental frequency 
being used as input parameters. As before, full separation 
requires 12 components. Optimal generalization is 
obtained with only 4 components and reduces the error 
rate with 6 misclassification to only 15%. 

Except for size, the structural information encoded in 
the average posture does not appear to contribute much 
information to gender classification. Which parts of the 
dynamic information are the most relevant ones? 
Kozlowski and Cutting (1977) mentioned a trend in their 
data hinting to a possible role of walking frequency. We 
cannot confirm this. In our data, walking frequencies are 
virtually identical in men and women. On average, men 
walked with 0.836 Hz (standard deviation: 0.07 Hz), 
whereas women walked with 0.845 Hz (standard 
deviation: 0.09 Hz). Recall that the walkers were allowed 
to freely adjust the speed of the treadmill to a setting that 
would feel most comfortable. 

The relative phases of the eigenpostures do not make 
a significant contribution to gender classification either. 
If the values ϕ2, ϕ3 and ϕ4 are used as input for 
classification, best separation still produces 14 
misclassifications (35%) and best generalization is 
obtained with 2 components and 15 misclassifications 
(37.5%). 

The role of the four eigenpostures can also be 
examined separately. Figures 4e-4h show classification 
performance based on single eigenpostures. Using the 
first eigenposture alone results in a classification 
performance that is almost as good as the one obtained 
with all four eigenpostures (15% misclassifications, 9 
components). Using only the third eigenposture also 
yields good classification performance. The good 
performance of single eigenpostures implies that the 
advantage of dynamic information is not simply a matter 
of the larger number of variables (4 x 45 for dynamic 
information, 45 for structural information) accounting 
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for it. The best performance that we could obtain was 
achieved with a classifier based on the first three 
eigenpostures (Figure 4i). Using 24 components the 
classification error could be reduced to 4 
misclassifications (10%). Three of the four walkers that 
were misclassified in this case are the same that were also 
misclassified by the classifier trained with all information, 
including size information. Those three walkers were also 
among the misclassifications of all other classifiers. 

 

Synthesizing Walking Patterns 
We proposed a representation of human walking data 

that is suitable for linear analysis of the data with 
straightforward methods from linear statistics and pattern 
recognition. The proposed representation is, at least 
approximately, a complete representation. Virtually no 
information is lost when transforming the raw motion 
data into this representation. This has the consequence 
that the mapping of the raw data into our linearized 
representation is bijective and therefore invertible. Any 
point in the 229-dimensional walking space or any low-
dimensional eigenwalker-based derivation from it can be 
mapped back into an explicit description of a walking 
pattern. Our framework can therefore not only be used 
for data analysis but also for the synthesis of motion 
patterns. 

Demonstration 1. An interactive demonstration that allows the 
user to synthesize walkers for different classifiers and gender 
weightings. Click anywhere in the image to activate the 
demonstration. The rule to achieve this was actually already given 

above. A particular vector wj in the walking space has to 
be decomposed into its constituting components pj,0, pj,1, 
pj,2, pj,3, pj,4, ωj, ϕj,2, ϕj,3, and ϕj,4. The walk, explicitly 
described in terms of a time series of postures is then 
given by Equation 3. 

The invertibility of the representation can be used to 
visualize what is happening along the different classifiers 
that have been developed in the previous section. For a 
given classifier c, the differences that a walker undergoes 
along the discriminant function can be illustrated by 
displaying walkers wc,α corresponding to different points 
along this axis as point-light displays or stick figure 
animations. Demonstration 1 allows you to visualize and 
to interactively manipulate a walker display by changing 
the value of α: 

, 0 .= +cw w Vα cα  (13) 

It is interesting that by exaggerating the differences 
between male and female walks in these animations one 
discovers the existence of a behavioral pattern that is well 
established in many animal species. Male animals often 
try to make themselves bigger than they really are. 
Mechanisms to achieve this include ruffling fur or 
feathers, or adopting postures and movement patterns 
that would make them appear more voluminous. The 
same purpose seems to rule the differences between male 
and female walking patterns in humans. Men tend to 
hold their elbows further away from the body resulting in 
a posture that requires much more room than the average 
posture taken on by women. In the dynamic domain, 
men show a pronounced lateral sway of the upper body 
that also has the effect of occupying more room than 
women need. 

Gender Classification in Human 
Observers 

As above, w0 denotes the average walker. The matrix 
V contains the first few eigenwalkers,  one in each 
column. As α changes from negative to positive values, 
the appearance of the walker changes its gender. The 
dimensionality of the eigenwalker space used to compute 
the respective linear classifiers is n=10. The value of α is 
scaled in terms of standard deviations (z-scores). A walker 
resulting from setting α  = 6 or α  = -6 is therefore an 
extrapolation into a region of the walker space, which is 
far away from any real walker. Changing the value of α 
from negative to positive values evokes a clear percept of a 
change in the gender of the walker. 

In order to compare the performance of the artificial 
classifier with human gender classification performance, 
we visualized the motion data of the 40 walkers in terms 
of point-light displays. A number of observers were 
presented with these stimuli and were asked to indicate 
the gender of the walkers. 
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Participants 
Twenty-four students of the Department of 

Psychology of Ruhr-University participated in the exper-
iment. All had normal or corrected-to-normal vision. 
They received credit for the participation in the 
experiment. 

Stimuli 
For each of the 40 walkers, several versions of point-

light displays were generated. All of them were 
normalized with respect to their size (Equation 12). The 
duration of each walking sequence was 7 s. The 15 
markers were depicted as small white dots on a black 
background displayed on a computer screen. The full 
display subtended 5 deg (vertically) of visual angle. The 
renderings differed in the viewpoint from which the 
walker was seen and in the type of information provided. 
Three different viewpoints were used: frontal view (0 deg), 
3/4 view (30 deg or -30 deg), and profile view (90 deg or 
-90 deg). For each walker and each viewpoint, three 
different sequences were generated. The first one (“full 
info”) showed the original walking data. The second set of 
stimuli (“structure-only”) was generated by combining the 
individual average postures p j,0 with averaged motion 
data. This was obtained by computing averaged 
eigenpostures p1, p 2, p 3, and p 4 as well as average values 
for the phases ϕ2, ϕ3, and ϕ4 and for the fundamental 
frequency ω. The components were then combined with 
the individual average postures according to Equation 3. 
The stimuli are therefore normalized with respect to 
dynamic information and contain only structural 
information to be used for gender classification. Finally, a 
third set (“dynamic-only”) was generated by replacing each 
individual’s average posture pj,0 with the average across all 
walker’s postures, therefore normalizing for the structural 
information and providing only dynamic information: 

0 , .= ∑p p j
j

0   

Design and Procedure 
Twenty-four participants were divided into three 

groups of equal size. One group was presented with only 
0-deg walkers; the second group saw only 30-deg walkers, 
and the last group only 90-deg walkers. The experiment 
was run in two blocks, each consisting of 80 trials. The 
first block showed two instances of each walker’s veridical 
motion. The order was randomized for each observer. In 
the second block 40 structure-only and 40 dynamic-only 
trials were presented in randomized order. Observers had 
to indicate whether a walker appeared to be male or 
female by pressing one of two keys on the computer’s 
keyboard. Subjects were required to respond during the 7 
s while the stimulus was presented. The display was 

repeated if no response was made. An inter-trial interval 
of 3 s, during which the screen remained black, separated 
the trials. We measured error rates and evaluated them in 
terms of an ANOVA with the factors VIEW (0, 30, and 
90 deg) and INFO (full, dynamic-only, and structure-
only). 

Results 
Figure 5 shows the results. Both factors were highly 

significant (VIEW: F(2,21)=26.4, p<.001; INFO: 
F(2,42)=29.3, p<.001). Performance is best with error 
rates around 25% when a walker is seen in frontal view 
and declines gradually with increasing deviation from that 
viewing angle. The effects with respect to the information 
provided are such that depriving observers from di-
agnostic structural information hardly impairs 
performance whereas depriving observers from dynamic 
information results in a severe drop in performance. A 
Scheffé post-hoc test confirms that the difference between 
performance in the structure-only condition and the 
other two conditions is statistically reliable (p<.01). 
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Figure 5. Results of psychophysical classification of the 40 
walkers shown from three different viewpoints. The three lines 
depict results using stimuli showing the veridical walker (solid 
line), the dynamic-only (dashed line), or the structure-only 
versions of the walkers. 

The ANOVA also shows a significant interaction 
between the factors VIEW and INFO (F(4,42)=3.1, p<.05) 
indicating that deprivation of dynamic information has a 
much stronger effect if the walker is shown in profile view 
as compared to frontal view presentation. In the profile 
view condition, performance drops from an error rate of 
39% in the full-info condition all the way down to chance 
level (52% error rate) in the structure-only condition. In 
the frontal view condition, error rate increases from 24% 
in the full-info condition to 29% in the structure-only 
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condition. The relatively small difference between the 
performances obtained in full-info and structure-only 
conditions with frontal view stimuli is still statistically 
significant (paired t test: n=8, p<.05). 

Table 1. Correlation Coefficients Obtained From a Spearman 
Rank Correlation Between the Number of Misclassifications 
Received by the Individual Walkers in the Psychophysical 
Experiment and a Measure for the Confidence of the 
Classification by Five Different Linear Classifiers. 

Discussion  Psychophyics 

Linear Classifier 
 

Full-info 
Structure-

only 
Dynamic-

only 
Full-info plus size n=4 0.2820 -0.0379 0.4473 
Full-info n=6 0.5158 0.1970 0.6525 
Structure-only n=12 0.5114 0.4595 0.3760 
Dynamic-only n=4 0.3484 0.0250 0.5602 
First, second, and third 
eigenposture n=24 

0.3773 0.1008 0.5353 

The psychophysical results show a pattern similar to 
the results from the simulations presented in the previous 
section. Performance of both human observers and the 
artificial classifier is mainly carried by dynamic 
information. If this part of the overall information is not 
provided, performance declines significantly. Depriving 
the stimulus of diagnostic structural information, on the 
other hand, has only a comparatively weak effect on both 
human and artificial gender classification. 

An item analysis reveals additional parallels between 
the psychophysically derived results and the artificial 
classifier. We ordered the 40 walkers according to the 
number of misclassifications that they received in the 
psychophysical experiment. The rankings were computed 
separately for data resulting from full-info, structure-only, 
and dynamic-only presentations, collapsing data from all 
three VIEW groups. The three walkers that were 
consistently misclassified by all the artificial classifiers 
were at positions 1, 3, and 12 for the full-info data, at po-
sitions 1, 24, and 36 for the structure-only data, and at 
positions 1, 4, and 6 for the dynamic-only data. 

The number of misclassifications obtained in the 
psychophysical experiment and the confidence measure 
for the artificial classifications correlate to a high degree if 
the information provided to the human observers and to 
the artificial classifier is similar. The rankings obtained 
from providing full information and from the trials with 
dynamic-only information also show large correlations. 
The pattern of misclassifications obtained when providing 
human observers with only structural information 
correlates to the one obtained from a linear classifier 
provided with the same information but is very different 
from the one obtained by training the classifier with full-
info or dynamic-only information. To further compare the outcome of the 

psychophysical results with the various artificial classifiers, 
we sorted the 40 walkers by means of the value of the 
projection of this walker on the respective discriminant 
function multiplied with a value of 1 if the walker was a 
man and a value of -1 if the walker was a woman: 

,
1=

= ∑c
n

j j i i j
i

z r k .  (14) 

Whereas we provided the artificial classifier with the 
full three-dimensional information, the human observers 
were presented with two-dimensional projections of the 
walker. This might be one reason that the artificial 
classifiers performed considerably better than the human 
observers. The best performance that was reached by our 
observers was 76% correct responses in the case of frontal 
views of the veridical walkers. The artificial, linear 
classifier, in contrast, reached a performance of 90% 
correct classifications. zj is a measure for how well a walker j (represented in 

terms of the scores ki,j) with gender rj was classified by the 
linear classifier c. Table 1 lists the correlation coefficients 
of a rank correlation between the three ranks obtained 
from the psychophysical data, and the ranks obtained for 
classifiers corresponding to the data presented in Figures 
4a-4d and 4i. 

The results provided by the psychophysical data 
compare well with data from previous studies. Kozlowski 
and Cutting (1977), as well as Barclay et al. (1978), 
showed only saggital views of point light walkers to their 
observers and yielded correct gender classification rates 
between 63% and 65%. The performance that we 
measured in saggital view was 62% correct classification. 
We can also confirm parts of the results obtained by 
Mather and Murdoch (1994), who used artificial walker 
stimuli in a gender classification task and found that, 
first, frontal views result in much better performance and, 
second, that dynamic stimulus attributes are more im-
portant than structural stimulus attributes. In contrast to 
the findings of Mather and Murdoch, however, the 
different role of structural and dynamic information 
becomes much more evident in the saggital view and 
almost disappears in the frontal view. Mather and 

The psychophysically obtained rankings were 
computed separately for full-info trials, dynamic-only 
trials, and structure-only trials. The classifiers used 
correspond to the ones illustrated in Figures 4a-4d and 
Figure 4i, respectively. n indicates the number of 
eigenwalkers used to construct the classifier. n was always 
chosen such as to yield optimal generalization 
performance (see “Linear Gender Classification” for 
details). Correlation coefficients larger than 0.373 are 
significant (α = 0.01). 
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Murdoch had concentrated on lateral body sway as an 
example for a dynamic cue and the hip/shoulder ratio as 
an example for a structural cue. Due to the artificial 
nature of the stimuli, both cues were not detectable from 
a saggital view. It is therefore not surprising that the 
dominance of the dynamic cue over the structural cue was 
only apparent in frontal view but not in sagittal view.  

General Discussion 
Human locomotive motion is a complex spatio-

temporal pattern that is ruled by biomechanical as well as 
functional constraints. Many of these constraints are 
modified by individual characteristics and personality 
traits of the actor. The human visual system is capable of 
decoding information about the characteristics of a 
walker by visually analyzing the motion pattern. Here we 
provided a framework for transforming human walking 
data into a representation that allows us to treat the 
analysis of biological motion as a linear pattern 
recognition problem. To demonstrate its ability to extract 
perceptually relevant information, we constructed a linear 
classifier capable of discriminating between male and 
female walkers. Using different modifications or only 
parts of the overall information as input data for 
classification, we examined the respective roles of 
different aspects of the data for gender classification. 

Simply measuring the size of a walker results in a 
relatively reliable gender estimation. Measuring absolute 
size requires an absolute scale and although available in 
our motion capture data, this cue is generally not readily 
available for human vision or in computer vision. We 
therefore ignored this source of information and 
normalized the size of all walking data. Providing the 
classifier with either only structural information or only 
dynamic information showed that the dynamics contain 
more reliable diagnostic cues than the structure. Walking 
speed (stride frequency) did not provide a diagnostic cue. 
We found this result surprising. Considering animate 
locomotion to be articulated pendular motion, an inverse 
quadratic correlation between size and stride frequency is 
expected (Alexander, 1989; Troje & Jokisch, submitted). 
Because size is a diagnostic cue to gender classification in 
our data set, we would have expected that stride frequen-
cy would also be diagnostic. Although subjects were 
allowed to adjust the speed of the belt in order to walk as 
comfortable as possible, the lack of gender dependent 
frequency differences may have to do with the particular 
situation of walking on a treadmill rather than on solid 
ground. 

Scrutinizing on the role of the different eigenpostures 
shows that the first and the third component are 
providing more information than the second and the 
fourth. The advantage of the first component over the 
second is probably simply a consequence of the larger 
variance covered by the first component. The same reason 

may account for higher contribution of the third compo-
nent as compared to the fourth. Whereas the first two 
components account for the fundamental frequency, the 
third and fourth components represent the second 
harmonic. It seems that although having less power, the 
second harmonic carries as much information as the 
fundamental frequency. 

Comparing the classification behavior of the model 
with the performance of human observers yields several 
similarities. Human observers also seem to rely more on 
dynamic information than on structural information. 
However, this difference is much more pronounced when 
the walkers are shown in saggital view and almost 
disappears in frontal view. Whereas the predominance of 
dynamic information over structural cues is in accordance 
with earlier work by Mather and Murdoch (1994), the 
dependence on viewpoint seems to contradict their 
results. In Mather and Murdoch’s study, however, 
structural and dynamic cues were represented only by 
single features that were chosen so that they were not 
distinguishable in saggital view. Here, in contrast, we 
manipulated the walking pattern of real walkers by 
normalizing either for structural or for dynamic 
information, preserving not only a single feature in the 
complementary domain but the whole array of available 
information. On average, men and women do show clear 
differences in body structure. This has been shown by 
Barclay et al. (1978), and it is also clearly visible in the 
animations of the structure-only walkers (Demonstration 
1). However, the variance within the two classes is so large 
that they overlap to an extent that renders body structure 
a cue, which is less reliable than the dynamics of the 
walking pattern. 

Gender classification was used as an example to test 
how suitable the proposed linearization of motion data is 
for classification purposes. Other attributes of a walker 
such as age, weight, emotional state, or personality traits 
could be treated similarly. However, the database that we 
used would have to be extended to better represent such 
attributes. At this point, the sample of walkers is still 
quite homogenous and does not span a statistically 
representative range of age, weight, and other attributes. 
Given an extended database, it is straightforward and 
absolutely analogous to the gender classification problem 
to extract the diagnostic features conveying information 
about other attributes from walking patterns. 

In principle, the model can also be extended to other 
actions. Each action, however, requires its own 
formulation. For example, a model for running could be 
obtained in a similar manner as the walking model. 
However, at least within the framework outlined here, it 
would not make sense to try to describe both walking and 
running patterns within the same model. Dynamic 
models of gait production (Golubitsky, Stewart, Buono, 
& Collins, 1999; Golubitsky, Stewart, Buono, & Collins, 
1998) show that the transition between walking and 
running is characterized by a singularity, and, therefore, 
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represent two distinctively different actions. Empirical 
data supporting this view can be found in Alexander and 
Jayes (1980). The sensitivity of our model to small but 
meaningful variations in the style of an action depends to 
a large degree on the structural similarity of the items 
spanning the space, which, in turn, defines the 
correspondence between items. Each item in the space 
must match any other item in a canonical, unambiguous 
way. Of course, it is possible to smoothly blend between 
different actions, but the definition of the 
correspondence on which such a blend is based, remains 
somewhat arbitrary. In contrast, the correspondence 
between items that belong to the same action can be 
defined in a canonical and unambiguous way by means of 
the naturally occurring transitions between structurally 
similar items. A system that could be used both for action 
recognition as well as for the classification of stylistic 
features would ideally separate those two steps. A model 
describing different actions within the same motion space 
could be used for action recognition on a basic level 
(Rosch, 1988; Rosch, Mervis, Gray, Johnson, & Boyes-
Braem, 1976). Knowing which particular action the 
system is confronted with would then elicit a recognition 
module for stylistic features within an action-specific 
linear motion model on a subordinate level. 

Correspondence-based representations result in a 
separation of the overall information into range-specific 
information on the one hand and domain-specific 
information on the other hand. Applied to the current 
model, the range-specific information is the positional 
information contained in the average posture as well as in 
the eigenpostures. The domain-specific information is the 
information about when things are happening. This 
information is contained in the phases and frequencies 
corresponding to the eigenpostures. 

The domain-specific part of the walking data has a 
comparatively simple description that is possible only 
because the amplitudes of the eigenpostures change 
sinusoidally in time. The frequency of the first two 
eigenpostures is the fundamental walking frequency and 
the frequency of the third and fourth component equals 
the second harmonic of the fundamental frequency. If ϕ2 
(i.e., the phase difference between the sine functions 
describing the temporal behavior of the first and the 
second eigenposture) would be exactly 90 deg and if the 
same would be true for the difference between ϕ3 and ϕ4, 
then the four-dimensional PCA decomposition would be 
similar to a second-order Fourier decomposition. Both 
decompositions are based on the same model: 
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However, whereas PCA considers the pi to be the 
basis and constrains them to be orthogonal, Fourier 
analysis considers the sine functions to be an orthogonal 

basis and therefore requires ϕ2 and also ϕ4-ϕ3 to equal 90 
deg. Both can, in general, not be achieved at the same 
time. It is therefore interesting that the temporal behavior 
of the orthogonal basis constituted by the first four 
eigenpostures approximates a Fourier decomposition to a 
very high degree. In fact, both ϕ2 and ϕ4-ϕ3 assume values 
very close to 90 deg (ϕ2: mean 91, STD 5.3; ϕ4-ϕ3: mean 
91, STD 3.8). 

Hence, a decomposition of the walking data using 
Fourier analysis instead of PCA would yield similar 
results. The Unuma et al. (1995) “rescaled Fourier 
functional model” could have been used in a similar way 
to design linear classifiers for gender recognition and 
other similar tasks. However, applying PCA as a first step 
to reduce dimensionality in the description of postures is 
much more general and can be applied to nonperiodic 
motions in a similar way. The main addition that would 
be needed to derive a linear model for other motions lies 
in the parameterization of the temporal behavior of the 
scores. The only parameters needed to describe the 
domain-specific information in our case are the 
frequencies and phases of the components. Hence, time 
warping reduces to simple uniform scaling and 
translation in the case of our walking data. For a general 
parameterization that would also apply to nonperiodic 
actions, more complex models have to applied. A very 
flexible solution is, for instance, the use of B-spline 
functions (Ramsay, 1998; Ramsay & Silverman, 1997). 
Nonparametric solutions have been demonstrated by 
Giese and Poggio (2000). 

Another important point has yet to be discussed. 
Biological motion is articulated motion and has several 
commonalities with pendular motion (Aggarwal, Cai, & 
Sabata, 1998; Cutting, 1978a, 1981). The distal part of a 
limb’s bone moves on a spherical trajectory around the 
proximal end that is fixed at the joint’s position. For this 
reason, it seems reasonable to describe the movements of 
a body in terms of joint angles: The position of a given 
point on the body is not represented in terms of its 
allocentric Cartesian coordinates in 3-D space but rather 
in polar coordinates with respect to a coordinate system, 
which is fixed to the “parent” part, that is, the part which 
provides the more proximal articulation. Transforming 
positional data into joint angle data thus seems a 
reasonable step toward linearizing such data. 

However, this requires knowledge about the hierarchy 
of the articulation. In the context of many applications, 
this information will be available anyway. In other cases, 
this might be a problem. For video-based tracking 
purposes, for instance, it might be relatively easy to 
segment a walking figure from the steady background; 
however, it might not be as straightforward to identify 
particular parts of the body and recover its full hierarchy 
beforehand. 

Cartesian representations have many advantages as 
opposed to joint angle representations because they do 
not need information about the articulation of a body. 
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Joint angles can be relatively easily derived from motion 
capture data with markers placed close to joint positions. 
Nonetheless, even in this case, many constraining 
assumptions have to be made in order to define a 
biomechanical model which, when applied to the raw 
motion capture data, yields the exact joint locations. In 
cases, however, in which the motion information comes 
from feature points that cannot be precisely positioned in 
the course of a well-controlled motion capture session, 
joint angles might not be accessible directly. Cartesian 
representations, on the other hand, correspond to the raw 
data format that a motion capture system outputs anyway. 
Data from markers positioned on any part of the body 
can be used as well as data from markers positioned at or 
near joints. In particular for markerless, video-based 
motion tracking, a simple model that does not rely on 
information about the articulation of the body has many 
advantages. The same is true for any model of the human 
visual system. Off-joint point-light displays can easily be 
interpreted, and it seems unlikely that the human visual 
system relies on joint angle representations. 
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