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Abstract. The homology of binary 3–dimensional digital images (digi-
tal volumes) provides concise algebraic description of their topology in
terms of connected components, tunnels and cavities. Homology gener-
ators corresponding to these features are represented by nontrivial 0–
cycles, 1–cycles and 2–cycles, respectively. In the framework of cubical
representation of digital volumes with the topology that corresponds to
the 26–connectivity between voxels, we introduce a method for algorith-
mic computation of a coproduct operation that can be used to decom-
pose 2–cycles into products of 1–cycles (possibly trivial). This coproduct
provides means of classifying different kinds of cavities; in particular, it
allows to distinguish certain homotopically non-equivalent spaces that
have isomorphic homology. We define this coproduct at the level of a
cubical complex built directly upon voxels of the digital image, and we
construct it by means of the classical Alexander-Whitney map on a sim-
plicial subdivision of faces of the voxels.
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1 Introduction

Over the recent decades, considerable progress has been made in the development
of topological methods for the analysis of digital images. In particular, effective
algorithms and efficient software for the computation of homology groups and
their generators have been under heavy development; see [1,2,3,4,5,6,7,8,9,10]
for some of this work. These tools have already proved their usefulness in ap-
plications, e.g. [11,12,13,14,15], and their potential in multi-dimensional digital
image analysis is undeniable.

An n–dimensional binary digital image can be perceived as a union of closed
n–dimensional hypercubes in Rn with respect to a uniform rectangular lat-
tice with the topology induced from Rn, which corresponds to the topology
of (3n − 1)–connectivity between the n-dimensional pixels (26–connectivity in
the 3-dimensional case). The homology of such a set provides information on the
number of connected components and holes of various dimensions. Computing
homology generators allows to locate the connected components in the digital
image and enclose the various holes geometrically.

A homology generator of dimension 1 is represented at chain level by a non-
trivial 1–cycle and encloses some tunnel. A homology generator of dimension 2 is
represented by a nontrivial 2–cycle and encloses some cavity. In this paper we are
interested in decomposing 2–cycles into products of 1–cycles (which may turn
out to be trivial in some cases), in order to classify the different types of cavities
in digital volumes, and identify the related tunnels, if any (see Fig. 1). Such a
method will provide a means of more thorough analysis of the geometry of the
digital volumes, important e.g. for the purpose of structural pattern recognition.
It will also allow to distinguish certain substantially different (homotopically
non-equivalent) cases that give rise to isomorphic homology groups.

Fig. 1. Decomposing the cavity of a torus into cycles.

In order to address the problem in question, we consider the Alexander-
Whitney diagonal, a canonical associative coproduct that is defined on the chain
complex canonically associated to a simplicial complex K, and factorizes higher-
dimensional cycles into lower-dimensional ones. We adapt this theoretical ma-
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chinery into the context of digital imagery. We work directly at the level of the
cubical complexes inferred from the cubical voxels, their faces, edges and ver-
tices. However, our approach is different from the classical Serre diagonal [16].
In fact, we do not use here cocycles or cohomology notions, but we remain at
the easier level of cycles and homology.

Although the methods developed in this paper are dimension-independent
and are valid in a very generic context, for the sake of clarity of presentation we
restrict our attention to 3–dimensional binary digital images (also referred to as
digital volumes), and we consider coefficients in the ring F2.

Our approach to the computation of the cubical version of the Alexander-
Whitney diagonal for cavities in a digital volume can be summarized as follows.
First, given a digital volume K, we represent it by means of a cubical chain com-
plex, as described in Section 2. We compute its homology along with homology
generators and a homology gradient vector field [7]. The latter object captures
the deformation process for obtaining the minimal homological expression for
K, and allows to instantly determine the homology class of every cycle. We
describe this construction in Section 3. Then we specify a simplicial-valued diag-
onal for each cubical 2–cell using two basic techniques: simplicial subdivision of
the cartesian product of simplices and chain homotopy equivalence. We express
the simplicial result in terms of cubical 1–chains, and in this way we derive an
explicit formula for the cubical version of this diagonal in Section 4. Finally, we
apply the Alexander-Whitney diagonal to each representative nontrivial 2–cycle
(homology generator) by means of the natural linear extension of the diagonal
defined for the 2–cells. The overall method combining all these mechanisms is
described step by step in Section 5. Examples of the application of this algorithm
are discussed in Section 6.

2 Simplicial and Cubical Complexes

In this section we introduce cubical cell complexes which we use to represent bi-
nary digital images, and we also mention simplicial complexes which will be used
as an intermediate step in the construction of the Alexander-Whitney diagonal
for cubical complexes in Section 4.

Throughout the paper, we consider the finite field F2 = {0, 1} as the ground
ring of coefficients, which simplifies many formulas and makes the entire con-
struction reflect better the combinatorial aspect of this approach. Note that the
homology of geometric objects embedded in R3 is torsion free, so we do not lose
any information in this context by this choice of coefficients.

Let K be an n–dimensional cell complex. Denote the set of its q–dimensional
cells by K(q). The corresponding chain complex (Cq(K), ∂q)q∈Z consists of the
fields of q-chains Cq over F2, whose generators correspond to the cells in K(q),
and a family of homomorphisms ∂q:Cq → Cq−1 such that ∂q−1 ◦ ∂q = 0, which
correspond to geometric boundaries of cells. Each q–chain c ∈ Cq is then a formal
sum σ1 + · · · + σk of selected cells σi ∈ K(q). We denote σ ∈ c if σ ∈ K(q) is a
summand of c. Note that Cq(K) = 0 whenever q < 0 or q > n.
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The case of a simplicial complex is well established [17], and the bounda-
ry map ∂q on each q–simplex σ = 〈v0, . . . , vq〉 is defined as follows: ∂q(σ) =∑
〈v0, . . . , v̂i, . . . , vq〉, where the hat over vi means that vi is omitted (see Fig. 2

for an illustration of the boundary of a 2–simplex).

Fig. 2. The boundary of a 2–simplex S (left) and a 2–cube Q (right) over F2:
∂2S = XY + Y Z + XZ and ∂2Q = AB + BC + DC + AD. The boundary of
each edge consists of the two endpoints, e.g., ∂1AB = A + B. It is easy to see
that in both cases ∂1 ◦ ∂2 = 0.

The case of a cubical complex is less typical, so we recall some definitions in
order to avoid any ambiguity. The reader is referred to [5] for a comprehensive
introduction. An elementary interval is an interval of the form I = [k, k+1] (the
non-degenerate case) or a set I = {k} (the degenerate case), where k ∈ Z. An
elementary cube in Rn is the cartesian product of n elementary intervals, and
the number of non-degenerate intervals in this product is its dimension.

In order to define the boundary of a q-cube σ = I1×· · ·×In ∈ Kn
q (see Fig. 2

for an illustration of ∂2), denote by k1, . . . , kq those indices that correspond to
non-degenerate intervals Ikj = [aj , bj ] in σ. Define Akjσ := I1 × · · · × Ij−1 ×
{aj}× Ij+1× · · ·× In and Bkjσ := I1× · · ·× Ij−1×{bj}× Ij+1× · · ·× In. Then
∂q(σ) :=

∑q
i=1(Akiσ +Bkiσ).

We identify an n-dimensional binary digital image with the set K(n) of n-
dimensional elementary cubes in Rn corresponding to its black pixels (in 2D),
or voxels (in 3D), or n-dimensional picture elements (in general). We add all the
lower-dimensional cubes contained in the cubes in K(n) in order to obtain a cell
complex K that represents the digital image.

3 Homology of Cell Complexes

In this section we describe a homology computation procedure for finite cell
complexes, in which a chain contraction is constructed in addition to the ho-
mology module and homology generators. As it will be made clear in Section 5,
this construction is crucial for the successful method for the computation of the
Alexander-Whitney diagonal.

Denote a cell complex under consideration by (K, ∂), where ∂:C(K)→ C(K)
is its boundary map. A chain a ∈ Cq(K) is called a q–cycle if ∂q(a) = 0. If
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a = ∂q+1(a′) for some a′ ∈ Cq+1(K) then a is called a q–boundary. The q-
th homology group Hq(K) of (K, ∂) is the quotient group of q–cycles and q–
boundaries. The homology class of a chain a ∈ Cq(K) is denoted by [a]. If
C = {Cq, ∂q} and C′ = {C ′q, ∂′q} are chain complexes then a chain map f : C → C′
is a family of homomorphisms {fq:Cq → C′q}q≥0 such that ∂′qfq = fq−1∂q.

It is clear that the problem of computing homology of a cell complex (K, ∂)
can be reduced to solving the equation ∂x = 0 up to boundary. For the actual
algorithms, we shall follow a computational algebraic approach for computing
homology in terms of chain homotopy equivalences, developed first by Eilen-
berg and Mac Lane in the 1960s [18]. This approach was exhaustively used
later in algebraic-topological theories like effective homology [19] and homolog-
ical perturbation theory [20], as well as in discrete settings, like discrete Morse
theory [21] and the AT-model [4,22].

In order to describe our approach to homology computation and to the
construction of Alexander-Whitney diagonal, we are going to use the notion
of gradient vector fields. Let (K, ∂) be a finite cell complex. A linear map
φ:C∗(K)→ C∗+1(K) is called an algebraic gradient vector field (or an algebraic
gvf for short) over K if φφ = 0. An algebraic gvf over K is called a combinatorial
gradient vector field (or a combinatorial gvf for short) over K (see [21]) if for
any cell a ∈ K(q), either φ(a) = 0, or φ(a) = b for some b ∈ K(q+1) (see Fig. 3).
An algebraic gvf satisfying the condition φ∂φ = φ is called an algebraic integral
operator. An algebraic integral operator which is only non-null for a unique cell
a ∈ K(q) is called a (combinatorial) integral operator (see [3]). An algebraic in-
tegral operator satisfying the additional condition ∂φ∂ = ∂ is called a homology
gvf (see [22]).

It turns out that a homology gvf over K determines a strong algebraic rela-
tionship connecting C(K) and its homology vector space H(K). In order to show
this, we use the notion of a chain contraction (f, g, φ): (C, ∂)→ (C ′, ∂′) between
two chain complexes, which is a triple of linear maps f :C∗ → C ′∗, g:C ′∗ → C∗
and φ:C∗ → C∗+1 that satisfy the following conditions: (a) IdC − gf = ∂φ+φ∂;
(b) fg = IdC′ ; (c) fφ = 0; (d) φg = 0; (e) φφ = 0. This is a classical notion in
homological algebra and algebraic topology, but it is an exotic concept within
the digital imagery setting [3,23,4]. The following proposition can be derived in
a straightforward manner from [20], using the integral operator language.

Proposition 1. Let (K, ∂) be a finite cell complex. An algebraic integral opera-
tor φ:C∗(K)→ C∗+1(K) over K gives rise to a chain contraction (π, ι, φ) from
C(K) onto its chain subcomplex Imπ, where π is a projection and ι is the inclu-
sion map. Reciprocally, if (f, g, φ) is a chain contraction from C(K) to another
chain complex C ′, then φ is an algebraic integral operator.

Note that given an algebraic integral operator, the projection π can be in-
stantly determined by the formula π = IdC(K) − ∂φ− φ∂.

The following result is a refinement of Proposition 1 and justifies the correct-
ness of the homology computation algorithm that we use.
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Fig. 3. A sample algebraic gradient vector field (a), a sample combinatorial
gradient vector field (b), and the resultant image after applying φ(C) = CB
(c). The difference between (a) and (b) is that φ(C) = CB + AB in (a), while
φ(C) = BC in (b).

Proposition 2 (see [7]). Let (K, ∂) be a finite cell complex. A homology gvf
φ:C∗(K) → C∗+1(K) over K gives rise to a chain contraction (π, ι, φ) from
C(K) onto its chain subcomplex isomorphic to the homology of K, where π is
the projection π = IdC(K)−∂φ−φ∂, and ι is the inclusion map ι:H(K)→ C(K).
Reciprocally, if (f, g, φ) is a chain contraction from C(K) to its homology H(K),
then φ is a homology gvf.

We apply the homology computation process given in [7,22], in which the
incremental homology algorithm introduced in [1] was adapted for obtaining a
homology gvf. We assume that the input cell complex (K, ∂) is given together
with filter K for K, that is, an ordered set of cells K = Km = 〈c1, . . . , cm〉 such
that {c1, . . . , cm} =

⋃
q∈ZK

(q), and for each j = 1, . . . ,m, all the faces of cj are
contained in the subset {c1, . . . , cj−1}. For each i = 0, . . . ,m, we represent the
cell subcomplex Ki of K consisting of {c0, . . . , ci} by the filter Ki := 〈c0, . . . , ci〉,
and we denote its boundary map by ∂. In the algorithm, Hi is a set of generators
of a chain complex Hi isomorphic with the homology of Ki. Let us note that φ,
ι and π are described in Proposition 2.

Algorithm 1
Input:
K = 〈c1, . . . , cm〉 — a filter of a cell complex (K, ∂);
∂ — the boundary operator on K.

Pseudocode:
H0 := {c0}; φ0(c0) := 0; π0(c0) := c0;
for i := 1 to m do

φi(ci) := 0; πi(ci) := c̄i := ci + φi−1∂(ci);
if ∂c̄i = 0 then

for j := 0 to i− 1 do

φi(cj) := φi−1(cj);
Hi := Hi−1 ∪ {c̄i};

otherwise express ∂c̄i as a sum of elements of Hi−1:

∂c̄i =
∑ri

j=1 uj, where each uj ∈ Hi−1;
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choose any summand uk, where k ∈ {1, . . . , r};
for j := 0 to i− 1 do

ξij := cj + (φi−1∂ + ∂φi−1)(cj);
express ξij as a sum of elements of Hi−1:

ξij =
∑tij

l=1 vl, where each vl ∈ Hi−1;

if uk = vl for some l ∈ {1, . . . , tij} then

φi(cj) := φi−1(cj) + c̄i;
else φi(cj) := (φi−1(cj);
πi(cj) := cj + (φi∂ + ∂φi)(cj);

Hi := Hi−1 \ {uk}.
Output:
Hm — a set of homology generators of K;
(πm, ι, φm) — a chain contraction in which φm is a homology gvf over K.

The complexity of this algorithm is O(m3). Note that expressing ∂c̄i and ξij
as a sum of elements of Hi−1 is straightforward, because π is compatible with
the boundary operator. Therefore, solving the corresponding system of linear
equations is trivial, and does not increase the complexity of the algorithm.

The application of the algorithm to a simple cubical set is shown in the
Appendix.

4 Alexander-Whitney Diagonal of a Cubical 2–Cell

In this section we specify the cubical version of the Alexander-Whithey diagonal
for an elementary 2–cube. For that purpose, we use the basic techniques of
simplicial cartesian product subdivision and chain homotopy equivalence.

Fig. 4. Simplicial complex of a 2–cube (square): two 2–simplices (triangles),
five 1–simplices (edges), and four 0–simplices (vertices).

Let Q be the cubical complex of an elementary 2–cube and let S be one
simplicial subdivision, as illustrated in Fig. 4. Consider the combinatorial integral
operator φ:C∗(S)→ C∗+1(S) such that φ(ac) = acd. By Proposition 1, φ gives
rise to a chain contraction (π, ι, φ) from C(S) to its chain subcomplex Im(π). In
this example π(ac) = ab+ cb, π(abc) = 0, π(acd) = acd+ abc and π(σ) = σ for
the rest of elements.

We now use the chain contraction (π, ι, φ) to transfer the simplicial Alexander-
Whitney diagonal into the cubical setting (from C∗(S) to C∗(Q)). Recall from
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[17] that if (w1, w2, w3) is a 2–simplex (a triangle) then

AW
(
(w1, w2, w3)

)
= (w1)⊗ (w1, w2, w3) +

+(w1, w2)⊗ (w2, w3) + (w1, w2, w3)⊗ (w3)

where AW :C∗(S)→ C∗(S)⊗ C∗(S).
From the homological point of view, the only nontrivial term in this decom-

position is the second one, so one can consider the Alexander-Whitney diagonal
to decompose the 2–simplex (w1, w2, w3) into the product of two 1–simplices
(w1, w2)⊗ (w2, w3), as illustrated in Fig. 5.

Fig. 5. Decomposition of a 2–simplex (a triangle) into 1–simplices (segments)
via the Alexander-Whitney diagonal.

A formula for the cubical Alexander-Whitney diagonal on the 2-cube abcd
(see Fig. 4) transferred from the simplicial version of the Alexander-Whitney

diagonal by means of the formula AWc(abcd) = π ⊗ π
(
AW

(
ι(abcd)

))
is as

follows:

AWc(abcd) = b⊗ abcd+ abcd⊗ a+ bc⊗ cd+ bc⊗ ad+ cd⊗ ad+ ad⊗ ad. (1)

where AWc:C∗(Q)→ C∗(Q)⊗ C∗(Q).
Note that ι(abcd) = abc + acd. In particular, the result is a combination

in which the first two summands are trivial (as the product of the 2–cube and
a vertex), and the next four summands are products of elementary cubes of
dimension 1 (see Fig. 6).

We shall show in the next section how to extend this formula from a single
2–cube to entire 2–chains that enclose cavities in a cubical object.

5 Computing the Alexander-Whitney Diagonal for
Cavities in a Digital Volume

In this section, we combine the results of the previous sections into an algorithmic
method for determining 2–cycles (cavities) in a digital volume and decomposing
them into products of 1–cycles.

Let (K, ∂) be a cubical complex of a binary digital volume, as described
in Section 2. Let K be a filter for K. A straightforward filter for K can be
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Fig. 6. Decomposition of a cubical 2–cell into a product of 1–cells via the cubical
version of the Alexander-Whitney diagonal.

constructed by first considering all the 0–cells in a certain order, then all the
1–cells, and so on.

Let H = {c̄1, . . . , c̄r} and (π, ι, φ) be the output of Algorithm 1 applied to K
and ∂. Let {c̄s1 , . . . , c̄st} be the 2–dimensional elements of H. If this set is empty
then there are no cavities to decompose. Otherwise, the set {c̄s1 , . . . , c̄st} =
H ∩ C2(K), where t ∈ {1, . . . , r}, consists of representative 2–cycles in K that
correspond to the generators of H2(K). In particular, each c̄si =

∑ti
j=1 cij is a

sum of elementary 2–cubes enclosing at least one cavity in K.
We apply the formula (1) derived in Section 4 for the Alexander-Whitney

diagonal to each cij , i = 1, . . . , t, j = 1, . . . , ti, and we obtain a sum of ten-
sor products AWc(c̄si) =

∑ri
j=1 aij ⊗ bij , where each aij and bij is a 1–cube.

Finally, we apply the map π to these pairs of chains, and in this way we
obtain a description of the Alexander-Whitney diagonal in cubical homology:
AWc:H2(K)→ H1(K)⊗H1(K).

6 Examples and Conclusions

In this paper, we introduced an algorithmic method for decomposing cavities in
digital volumes into products of cycles. In this section, we show some specific
examples that illustrate the usefulness of the Alexander-Whitney diagonal for
the analysis of binary digital volumes.

Let us consider the examples illustrated in Fig. 7. As shown in Table 1, the
digital volumes (a) and (b) have the same homological information in terms of
Betti numbers (number of connected components (β0), number of 1-cycles (β1)
and number of cavities (β2)). But computing the Alexander-Whitney diagonal,
however, we can easily distinguish them.

The null result of the Alexander-Whitney diagonal in (b) is due to the fact
that the cavity described by the sphere does not present non-trivial 1-cycles.

Similar situation occurs with examples (c) and (d). They have identic Betti
numbers, but in order to distinghish them, we have to solve the problem of
distinguishing the decompositions in terms of homology generators. This problem
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can be reduced to the problem of an isomorphism of groups in algebra, which is
a problem of high computational complexity in general. We do not focus on this
problem in this paper, which will be our aim in future work. Let us restrict to
say that we can differenciate the respecting decomposition in (c) and (d) using
matrix arguments.

Fig. 7. Sample digital volumes with cavities: (a) a topological torus, (b) a
topological sphere with two handles, (c) a configuration with three tori, (d)
another configuration with three tori. 1–cycles are indicated in each example.

Table 1. Betti numbers and the Alexander-Whitney diagonal computed for the
examples shown in Fig. 7. Generators of H1 are labeled αi, generators of H2 —
γj .

Example β0 β1 β2 AWc

(a) 1 2 1 γ1 = α1 ⊗ α2

(b) 1 2 1 0
(c) 1 4 3 γ1 = α1 ⊗ α3, γ2 = α2 ⊗ α3, γ3 = α4 ⊗ α3

(d) 1 4 3 γ1 = α1 ⊗ α2, γ2 = α2 ⊗ α3, γ3 = α2 ⊗ α4
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Appendix. Example for Algorithm 1

Sample application of the homology computation algorithm to a simple cell
complex illustrated in Fig. 8 has been shown in Table 2.
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Fig. 8. A sample cell complex and a homology gvf for it expressed in a pictorial
way.

i 0 1 2 3 4 5 6 7

σ 〈1〉 〈2〉 〈3〉 〈4〉 〈1, 2〉 〈1, 3〉 〈2, 4〉 〈3, 4〉

π 〈1〉
φ 0

π 〈1〉 〈2〉
φ 0 0

π 〈1〉 〈2〉 〈3〉
φ 0 0 0

π 〈1〉 〈2〉 〈3〉 〈4〉
φ 0 0 0 0

π 〈2〉 〈2〉 〈3〉 〈4〉 〈1, 2〉
φ 〈1, 2〉 0 0 0 0

π 〈3〉 〈3〉 〈3〉 〈4〉 0 〈1, 3〉 + 〈1, 2〉
φ 〈1, 3〉 〈1, 2〉 + 〈1, 3〉 0 0 0 0

π 〈4〉 〈4〉 〈4〉 〈4〉 0 0 〈2, 4〉 + 〈1, 2〉 + 〈1, 3〉
φ 〈1, 2〉 + 〈2, 4〉 〈2, 4〉 〈2, 4〉 + 〈1, 2〉 + 〈1, 3〉 0 0 0 0

π 〈4〉 〈4〉 〈4〉 〈4〉 0 0 〈2, 4〉 + 〈1, 2〉 + 〈1, 3〉 〈3, 4〉 + 〈2, 4〉
+ 〈1, 2〉 + 〈1, 3〉

φ 〈1, 2〉 + 〈2, 4〉 〈2, 4〉 〈2, 4〉 + 〈1, 2〉 + 〈1, 3〉 0 0 0 0 0

The intermediary homology results are
H1 = 〈1〉; H2 = 〈1〉,〈2〉; H3 = 〈1〉,〈2〉,〈3〉; H4 = 〈1〉,〈2〉,〈3〉,〈4〉; H5 = 〈2〉,〈3〉,〈4〉; H6 = 〈3〉,〈4〉; H7 = 〈4〉; H8

= 〈4〉, 〈3, 4〉 + 〈2, 4〉 + 〈1, 2〉 + 〈1, 3〉

Table 2. Monitoring of algorithm 1 using the complex shown in Fig. 8
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