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a b s t r a c t

The transport sector is growing fast in terms of energy use and accompanying greenhouse
gas emissions. Integrated assessment models (IAMs) are used widely to analyze energy
system transitions over a decadal time frame to help inform and evaluating international
climate policy. As part of this, IAMs also explore pathways of decarbonizing the transport
sector. This study quantifies the contribution of changes in activity growth, modal struc-
ture, energy intensity and fuel mix to the projected passenger transport carbon emission
pathways. The Laspeyres index decomposition method is used to compare results across
models and scenarios, and against historical transport trends. Broadly-speaking the models
show similar trends, projecting continuous transport activity growth, reduced energy
intensity and in some cases modal shift to carbon-intensive modes - similar to those
observed historically in a business-as-usual scenario. In policy-induced mitigation scenar-
ios further enhancements of energy efficiency and fuel switching is seen, showing a clear
break with historical trends. Reduced activity growth and modal shift (towards less
carbon-intensive modes) only have a limited contribution to emission reduction.
Measures that could induce such changes could possibly complement the aggressive, tech-
nology switch required in the current scenarios to reach internationally agreed climate
targets.
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1. Introduction

The increased use of motor vehicles and airplanes has led to a higher mobility, flexibility and accessibility of the current
population. At the same time, this has also resulted in social and environmental impacts at both the international/national
and local scales (GEA, 2012). At the local scale, transport activities cause urban air pollution, noise, congestion, water and soil
degradation, asthma, obesity, road deaths and social and urban fragmentation (GEA, 2012). At the international/national
scale, mobility contributes to greenhouse gas emissions, trans-boundary air pollution, and the depletion of oil resources. Glo-
bal greenhouse gas emissions from transport doubled over the 1970–2010 period to 7.0 GtCO2-eq, increasing at a faster rate
than any other end-use sector (IPCC, 2014a). Strategies to decrease transport energy use, or even demand growth, can clearly
lead to many co-benefits (Woodcock et al., 2009).

Integrated assessment models (IAMs) are commonly used to explore energy system transitions over the long term to
meet global climate targets. Their strength lies in analyzing trade-offs and synergies across economic sectors, and providing
insights in the costs and benefits of different policies (IPCC, 2014b). Due to the importance of the transport sector as a final
energy consumer, most of these models also include a relatively detailed representation of developments in this sector and
its potential to contribute to mitigating GHG emissions. Girod et al. (2013) and Pietzcker et al. (2014) have performed com-
parison studies of transport sector representation in energy system models, including IAMs. Both studies show that, in these
models transport CO2 emission reduction potential depends highly technological change and changing fuel composition,
which would breakthrough in the second half of the century. However, there is a large difference across models regarding
the relative potential of the sector to mitigate.

There are different possible interventions to reduce the impact of transport: (1) lower transport demand, (2) shift towards
low carbon-intensity modes, (3) reduce the energy intensity of technologies and (4) reduce the emissions intensity of fuels
(Creutzig, 2016). Creutzig et al. (2015) argue that limiting demand growth by shifting to low carbon-intensity modes and
reducing the distance travelled has limited application in global IAM scenarios and emissions could be further reduced than
currently suggested. Local studies, on the contrary, often show that behavioral and infrastructure policy interventions
impacting modal shift, distance travelled as well as technological change could be effective measures to decrease emissions
(Creutzig, 2016). Moreover these measures can already impact transport emissions in the short term and can in fact poten-
tially avoid infrastructure path dependency (Creutzig et al., 2015; Banister et al., 2011).

In this study we look at a large set of IAM transport model projections and determine the relative contribution of inter-
vention strategies through decomposition analysis. This allows us to improve the understanding of these scenarios and to
compare the application of the models in a transparent manner, by relating model structure to scenario results. Moreover,
the disaggregation can provide further insight into how specific projected components compare against historical transport
trends and, by extension, can potentially improve translation into and comparison with local measures, such as those high-
lighted by Creutzig et al. (2015). Secondly, input data on technology costs are compared in an attempt to further understand
uncertainties underlying model differences in projections of vehicle and fuel choice.

The article is structured as follows: Section 2 discusses the method applied. The subsequent Section 3 discusses the
results of a GHG mitigation scenario that is evaluated against a common baseline, focusing on specific GHG mitigation inter-
ventions. In Section 4, specific attention is given to technology input data representation in the USA affecting light-duty vehi-
cle (LDV) choice. In Section 5, the results and identified key transport model developments are discussed, and in Section 6 we
come to our conclusions.

2. Method

2.1. Description of the Integrated Assessment models

Eleven IAMs were included in this study, namely AIM/CGE, DNE21+, GCAM, GEM-E3, Imaclim-R, IMAGE, POLES, MES-
SAGE, REMIND, TIAM-UCL and WITCH. A qualitative questionnaire was sent to the modelling teams to take stock of their
transport sector representations. This section discusses the concept and solution method of these models, along with the
transport modes accounted for. In addition, Tables A.1 and A.2 in the supplementary material provide a summary of the
responses. Several papers in this special issue include more detailed presentations of the transport modelling in GEM-E3
(Karkatsoulis et al., 2017), MESSAGE (McCollum et al., 2017), AIM/CGE (Dai, 2017), Imaclim-R (Ó Broin and Guivarch,
2017) and WITCH (Carrara and Longden, 2017).

IAMs differ in the way they represent the transport sector. The ones with greater transport detail (i.e., compared to the
ones described herein) use a hybrid approach to model the transport demand and use of energy in the transport sector. In the
hybrid approach a top-down demand formulation, relating demand to population and economic growth, is combined with
the explicit modelling of modes and technology options per mode. Clearly, the degree of detail determines how well models
are able to represent the key dynamics of the various transport sub-sectors and the different ways to mitigate emissions.

Transport demand in AIM-CGE is derived using a top-down method, where energy demand is input to a production func-
tion driven by gross domestic product (GDP) growth. In WITCH, the service demand of the explicitly modeled LDV mode is
related to GDP and population, while the rest of the transport sector is indirectly comprised in the more general non-electric
sector which is an input to a nested constant elasticity of substitution (CES) production function. Also the REMIND transport
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projections are based on a nested CES production function, but includes a second step in which three different technology
options for the LDV mode and one generic end-use technology representation for the other modes. In POLES, DNE21+ and
TIAM-UCL, GDP per capita drives modal service demand through income elasticities, while being sensitive to fuel prices.
GEM-E3 transport demand depends on bilateral trade flows and on consumer preferences and budgets.

To capture modal shift dynamics and the transition between modes as countries develop (i.e., wealthier individuals use
higher-speed modes Schafer, 1998), a fewmodels relate the demand per mode to mode speed and cost. MESSAGE and IMAGE
both use travel money budget (TMB) and travel time budget (TTB) as top-down elements to constrain per capita person kilo-
meters per mode in combination with the price and speed of the modes to project transport service demand per mode (Girod
et al., 2012). GCAM uses a similar approach, where the speed of the transport mode and vehicle operating cost affect the
service price, which is related to income levels to determine the energy service demand. Imaclim-R travel demand and modal
split are calculated endogenously from household utility maximization under constraint of revenues and time spent, assum-
ing that mode speed is affected by utility of infrastructure. Girod et al. (2013) previously found that income-induced shifts to
faster modes are more pronounced in the models that consider travel time.

Most IAMs are able to meet the overall service demand with different transport modes (see Table 1, e.g. cars, buses, air
planes and trains), with the number of discrete modes in passenger transport ranging from one to seven modes. In several
models, including DNE 21+, AIM-CGE and TIAM-UCL, the share of each mode is set exogenously. IMAGE, MESSAGE, Imaclim-
R, POLES, REMIND, GEM-E3 and GCAM calculate the modal shares endogenously based on cost and, in somemodels, time and
saturation constraints. WITCH features LDVs only.

Within any mode, vehicle technologies compete on the basis of cost, either through a logit distribution (GEM-E3, GCAM,
POLES, IMAGE and Imaclim-R) or least-cost optimization (MESSAGE, REMIND, TIAM-UCL, WITCH and DNE21+). AIM/CGE
does not explicitly model technologies. POLES takes exogenous assumptions on infrastructure development into account
as a constraint to vehicle choice. The parameters used to describe the costs of transport technologies as well as their future
development differ per model. REMIND, GEM-E3 and WITCH, for example, assume that the investment costs for currently
immature technologies (battery-electric vehicles (BEV), plug-in hybrid vehicles(PHEV), fuel cell vehicles (FCV)) decrease
endogenously as a function of deployment, following a global learning rate. In Imaclim-R, technology learning rates are
applied to all technologies. In other models, the costs of some or all technologies decrease exogenously over time.

2.2. Transport model scenarios

Two scenarios have been used to examine the main passenger transport model outputs (freight transport projections are
not compared for the purposes of this paper):

� a baseline scenario (no explicit climate policies beyond those already in place);
� a mitigation scenario (aiming to stabilize atmospheric concentrations of GHGs at 450 ppm CO2-eq in 2100, compatible
with the long-term target of achieving a 2 �C increase in global temperature at the end of the century with respect to
pre-industrial levels);

The baseline is the standard run scenario of the IAMs that represents a business-as-usual state where no explicit climate
policy is assumed but current policy trends (e.g. efficiency) are in some cases extrapolated. Most model teams1 are using or
have harmonized their drivers to the population and income projections of the ‘‘middle of the road” shared socioeconomic path-
way (SSP2) scenario, which assumes that economic and social trends continue in the future following the current patterns
(O’Neill et al., 2014). Projected GDP and population are shown in Fig. 1; in some models these are scenario drivers while in
others they are model outputs. There are some differences in GDP/capita visible already in the base year but in particular in
the long term. Population projections are very similar, with the exception of POLES after 2030.

2.3. Data analysis

The Laspeyres index decomposition method is used to quantify the contribution of the changes in components (corre-
sponding to the above mentioned potential intervention strategies) to the aggregate emissions in the IAM transport model
projections. This method has been used in energy research in recent decades to understand historical trends. There are dif-
ferent decomposition methods and the advantages and disadvantages have been discussed extensively in the literature (Ang,
2004; Ang and Zhang, 2000). Even though there are more sophisticated decomposition methods with factor and time rever-
sal properties, the Laspeyres index is easy to interpret which, in this large multi-model comparison study, is an advantage.
Moreover this method has been used in several studies to analyze historical transport sector developments across global
regions and for a straight forward comparison the same method is applied (Millard-Ball and Schipper, 2011; Schipper
et al., 1992; Scholl et al., 1996). We use the following variant of the IPAT formula (Ang, 2004) to compute the index:

1 Models not harmonized to the SSP drivers are POLES, using UN projections of demographic drivers, and MESSAGE which is based on a Global Energy
Assessment (GEA)-Mix storyline for population and GDP growth. GEM-E3 drivers are not fully harmonized but close to SSP2 projections.
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Transport CO2 emissions ¼
X

i;j
populationðPÞ � activityðAÞ � modal shareðSÞi � energy intensityðIÞi � fuel mixðFÞi;j

ð1Þ

The formula shows a disaggregation of total CO2 emissions from the transport sector into a combination of:

(i) population in capita;
(ii) the average per capita distance travelled in passenger km/capita (activity);
(iii) the share of the different transport modes in fulfilling this travel demand in passenger-km/passenger-km (modal share

of each mode i);
(iv) the energy used per passenger km travelled for each mode in MJ/passenger-km (energy intensity of each mode i);
(v) the CO2 emissions per unit of energy consumed in g/MJ (fuel mix of each fuel j used per mode i).

Combining the last two components, the CO2 emissions per passenger kilometer can be derived, which represents the CO2

intensity per mode. Changes in these components are not necessarily independent from each other; for example, an increase
in fuel prices can lead to a change in modal share as well as a decrease in travel activity. It does however give a measure of
the relative importance of the change in each of the components in the development of CO2 emissions.

Fig. 1. (Left panel) Global population (Right panel) Global GDP (MER) per capita.

Table 1

Model description and passenger mode represented in the IAMs.

AIM/CGEa DNE21+b GCAMc GEM-E3d IMACLIM-Re IMAGEf

Model concept General
equilibrium

Partial
equilibrium

Partial
equilibrium

General equilibrium General
equilibrium

Partial equilibrium

Solution method Mixed
complementarity

Intertemporal
optimization

Recursive
simulation

Recursive dynamic model solved
with mixed non-linear
complementarity

Recursive
dynamics

Recursive dynamic

Passenger modes Train, aviation,
bus, LDV

LDV, bus LDV, bus,
2W&3W,
aviation, train

LDV, aviation, train, bus, ship Aviation, bus & rail,
cycling & walking,
LDV

LDV, bus, train,
aviation, cycling
and walking

POLESg MESSAGEh,* REMINDi TIAM-UCLj WITCHk

Model concept Partial
equilibrium

Partial equilibrium
model soft-linked to
general equilibrium
mode

Hybrid model that couples an
economic growth model with a
detailed energy system model

Partial
equilibrium

Hybrid model that couples an
economic growth model with a
detailed energy system model

Solution method Recursive
simulation

Linear optimization Inter-temporal optimization Linear
optimization

Non-linear inter-temporal
optimization and game theoretic
setup

Passenger modes LDV, bus
aviation,
train

LDV, bus, 2W, aviation,
train

LDV, rail, aviation and bus LDV, bus,
2W&3W,
train,
aviation

LDV

aFujimori et al. (2014), bSano et al. (2015), cKyle and Kim (2011), dKarkatsoulis et al. (2014), eWaisman et al. (2013), fGirod et al. (2012), eGirod et al. (2013),
hRiahi et al. (2012), iLuderer et al. (2012), jAnandarajah et al. (2011), kBosetti and Longden (2013) and Longden (2014), (EU-FP7-ADVANCE, 2015).

* The MESSAGE transport module used in this study is a simpler version than used in other papers of the special issue (e.g. McCollum et al., 2017).
Specifically, this version is MESSAGE-Transport V.5; yet, for the purposes of this paper, the model did not make any explicit assumptions about
heterogeneous behavioral features among consumers.
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The Laspeyres index indicates the contribution of the annual change in a single component to the projected CO2 emis-
sions, holding the others at their base year levels (in this analysis 2010, 2030 or 2050). For example activity growth affecting
CO2 emissions is calculated as:

COA
2t ¼

At

At0
ð2Þ

where At is the total passenger kilometers in year t and A0 is the total activity in the base year. The Laspeyres index repre-
sents the annual average change d

A in the period between the years t and t0:

d
A
a;b ¼ exp

log COA
2t � log COA

2t0

t � t0

$ %

� 1 ð3Þ

The index calculation shown in Eq. (3) has been used 1992 by Scholl et al. (1996) to compare developments in energy use
and CO2 emissions in – amongst others – the USA, Japan, France, former West Germany, Italy, the UK, Denmark, Norway and
Sweden over the 1973–1992 period. The study found that activity growth is the main contributor to the increase in CO2

emissions in these regions. In the countries that are part of the Organization for Economic Co-operation and Development
(OECD), passenger kilometers per capita grew by 37% on average in the 1973–1992 period. In most countries the modal
structure shifted from bus and rail to automobiles and airplanes. The increase in car ownership, driven by growth in income,
expanding suburbs, and greater female participation in the workforce, led to an increase in activity. Higher income along
with a decrease in the cost of flying led to a larger share of air travel.

The change in CO2 emissions as a result of the modal shifts was however relatively small compared to the contribution
made by activity growth. Scholl et al. found that shifting modes in some countries led to unexpected effects and that the
impact on total CO2 emissions can be time dependent (Scholl et al., 1996). In Japan, for example, the CO2 intensity of air tra-
vel dropped from the most intensive mode to just below the value of cars in 1992. Shifting to air transport therefore would
result in a decrease in total CO2 emissions, while in earlier years it had the opposite effect (Scholl et al., 1996).

A more recent study running up to 2008 showed that the combination of slower activity growth and decline in energy
intensity has led to stable or even declining transport GHG emissions in some OECD countries in recent years (Millard-
Ball and Schipper, 2011). These examples illustrate the relevancy and type of analysis that can be performed through the
decomposition method, that can improve understanding of developments contributing to GHG emissions.

3. Global trends in IAM transport projections

3.1. Transport carbon emission pathways

Fig. 2 shows the direct and indirect passenger transport emissions2 projected by the eleven IAMs in the baseline and GHG
mitigation scenarios at the global level. All models, show an increase in direct emissions between 2010 and 2050 in the baseline,
although the size of this increase clearly differs. In 2100, the projected emissions range (between 4 and 12 Gt/year) is further
amplified. The models follow different baseline emission pathways, either continuous increase until 2100, saturation, or even
peak-and-decline. In the mitigation scenario, all models show a significant decrease in transport emissions compared to the
baseline; this is necessary to achieve the stringent, long-term climate target. However, whereas direct emissions are less than
one Gt in some models, in others they are comparable to base year values.

The lower panel of Fig. 2 shows the indirect emissions from electricity and hydrogen use in the transport sector, calcu-
lated by using the average emission intensities of the models of electricity and hydrogen production3 to enable straight-
forward comparison across the models. Zero carbon emissions are assumed for biofuels, thus the indirect emission figure indi-
cated the degree of electrification. Transport electrification takes place in all models, especially between 2050 and 2100.
Whether electrification of transport will actually lead to lower emissions will depend on the fuel production process.

3.2. Laspeyres index scenario decomposition

To untangle the underlying dynamics that lead to the models projected pathways, the Laspeyres indices are calculated for
several components (Table 2): activity (pkm), structure, energy intensity (MJ/pkm) and fuel mix (g/MJ). The analysis focuses on
direct emissions. The Laspeyres index is calculated for three time periods, namely 2010–2030, 2030–2050 and 2050–2100.
As REMIND and WITCH only model LDV explicitly as a passenger mode, structural change – which refers to mode shifting –
does not play a role in these models projections. The results of eleven IAMs are compared to Millard-Ball and Schipper (2011)

2 The passenger projections of REMIND and WITCH only account for LDV transportation. GEM-E3, POLES and TIAM-UCL emissions include total aviation, and
not specific aviation for passenger transport purposes. DNE21+ and Imaclim-R do not account for rail transport explicitly (see Table 1). DNE21+ and GEM-E3
projections run to 2050 and Imaclim-R to 2070.

3 In the mitigation scenario the average electricity emission factor across models is negative (this is not the case for all models) at the end of the century due
to biofuel use combined with carbon capture and storage use for electricity production.
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for a selection of OECD countries in the 1973–2007 period, which is summary of data collected by Scholl et al. (1996) and
Schipper (1994) over a long time frame.

Activity growth makes a large contribution to the total CO2 emissions pathways; in some models, it increases by a factor
five between 2010 and 2100. In the baseline scenario, all models except REMIND and WITCH show a deceleration in activity
growth in the second half of the century. The average annual activity change between 2010 and 2100 varies across models
and ranges from �0.1% to 1.1%. Between 1973 and 2007, activity growth ranged from 1.0% to 3.1% per year in the six OECD
countries studied. Activity growth reduced over time ranging from �0.8% to 1.8% between 2000 and 2007 (Millard-Ball and
Schipper, 2011). This small set of countries shows a large variation in activity across the regions studied. Although the mod-
els’ activity growth projections are well within that range, the variation in global activity increase across models over the
century has a significant impact on total CO2 emissions. Moreover, activity level differences between models within a single
scenario are more pronounced than for a single model between the two scenarios. In other words: activity reduction in the
mitigation scenario compared to the baseline scenario as a measure to decrease emissions has a limited effect according to
the models.

Energy intensity increased over time in some of the OECD regions evaluated by Millard-Ball and Schipper (2011) but
decreased in others, ranging from �0.6% to 0.3% between 1973 and 2007, and from �1.2% to 0.8% in more recent years
(2000–2007). All models project that the global average energy intensity of motorized passenger transportation will
decrease in the baseline, even though historically this has not always been the trend. Several models project that the energy
intensity will drop more strongly in the first half of the century than in the second half in the baseline. REMIND, AIM/CGE and
TIAM-UCL show the opposite effect over time and Imaclim-R and GEM-E3 show a constant decrease. In all models energy
intensity reduces further in the mitigation scenario; it still remains within the range of reduction rates measured across
OECD regions historically, although at the high end.

Fuel mix has not been reported by Millard-Ball and Schipper (2011) as historically shifting to alternative fuels has had
limited application. 94% of transport final energy is currently fueled by oil (IPCC, 2014a). Even in the baseline all models
move away from this trend with changing fuel mix impacting the projected transport CO2 emissions. This impact is more
pronounced in IMAGE, POLES, WITCH and TIAM-UCL towards the end of the century. This effect is even larger in the miti-
gation scenario where the majority of the models show a high reduction in direct CO2 emissions as a result of changing fuel
mix, especially in the second half of the century. This could be related to electrification or increased shares of less CO2 inten-
sive fuels such as biofuels or natural gas.

Modal shift contribution might be underestimated as a result of using the Laspeyres method where all other factors
remain at their base year level. The reason for this is that aviation, rail and LDV have similar base year energy intensity
and CO2 intensity levels. Table 2 indeed shows that modal shift plays a limited role in emission changes. Consistent with
historical trends, modal shift leads to increasing emissions in the baseline projections with the exception of AIM/CGE. In
the mitigation scenario this trend is not reversed and is hardly applied as a mitigation measure in the policy scenario.

Looking across the different models, we see that TIAM-UCL, AIM/CGE and MESSAGE – with high activity growth assump-
tion – project high emissions. GCAM includes a structural shift towards carbon intensive modes, which explains why even

Fig. 2. Passenger transport direct (top) and indirect (bottom) CO2 emissions projected by IAMs in baseline (transparent color) and mitigation (solid color)
scenarios. Average CO2 intensity factors for hydrogen and electricity production across models are used for the indirect emissions calculation. REMIND and
WITCH results only include LDV emissions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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with relatively low activity growth the projected emissions are at the higher end of the model range. Similarly, activity and
structural change lead to increasing emissions in IMAGE and POLES, but a strong decrease in CO2 intensity – as a result of
energy intensity and fuel mix change – resulting in lower total CO2 emissions: the decline in CO2 intensity of transport
strongly offsets the increase in transport service demand. The models are comparable in their behavior in the sense that they
show activity growth and reduced CO2 per passenger kilometer, which further declines as measures to meet the climate tar-
get are set. Even though the direction of change is the same, the differences in extent – which is especially pronounced in fuel
mix change, but it also true for energy intensity or activity change – leads to large differences in projected CO2 pathways over
the century. Fig. 3 further illustrates this, depicting the increase in CO2 emission development resulting from change in a
component following Eq. (2). IMAGE and MESSAGE for example project that CO2 intensity developments will reduce emis-
sions by a factor as high as 21–22, if all other components remain at their base year value, and REMIND (only accounting for
LDV) even goes as far as a factor -74, reaching full decarbonization of transport fuels.

3.3. Individual components: activity growth, structure, energy intensity and fuel mix

The projection of structural change due to modal shift can be seen in Fig. 4, which shows the modal shares in 2010, 2050
and 2100. The figure shows some common elements:

� LDVs dominates passenger travel, both currently and far into the future in most models.
� Most models show an increasing share of aviation at similar rates. At the level of individual models, MESSAGE, IMAGE,
GCAM and Imaclim-R consider speed to be a determinant of modal choice, leading to a shift towards aviation. TIAM-
UCL and POLES also show increased aviation shares. Train and bus shares remain similar to the base year in most models,

Table 2

Laspeyres index decomposition of activity, structure, energy intensity and fuel mix contributing to direct CO2 emissions in IAM passenger transport model
projections. The index value indicates the annual rate of change in emissions with respect to the base year if only that component changes while the other
components remain constant. WITCH and REMIND show results at the LDV level. Annual change rates higher than 1% are highlighted in bold.

Activity Structure Energy intensity Fuel mix

BAU 450 BAU 450 BAU 450 BAU 450

AIM/CGE 2010–2030 1.1% 1.0% �0.2% �0.2% �0.2% �0.5% 0.0% �0.2%
2030–2050 0.6% 0.6% 0.0% �0.1% �0.4% �1.2% 0.0% �0.2%
2050–2100 0.9% 0.8% 0.0% 0.0% �0.4% �0.6% 0.0% �0.2%

DNE21+ 2010–2030 0.5% 0.5% 0.1% 0.1% �0.3% �0.3% 0.0% �0.2%
2030–2050 0.2% 0.2% 0.0% 0.0% �0.1% �1.2% �0.1% �1.2%

GCAM 2010–2030 0.5% 0.5% 0.2% 0.1% �0.5% �0.5% �0.1% �0.1%
2030–2050 0.3% 0.3% 0.2% 0.2% �0.3% �0.3% �0.2% �0.4%
2050–2100 0.4% 0.2% 0.4% 0.3% �0.1% �0.2% �0.1% �0.6%

GEM-E3 2010–2030 0.8% 0.7% 0.0% 0.0% �0.5% �0.7% 0.0% �0.1%
2030–2050 0.9% 0.7% 0.1% 0.1% �0.5% �1.0% 0.0% �1.5%

IMACLIM 2010–2030 0.9% 0.2% 0.0% 0.1% �0.3% �0.3% �0.1% �0.1%
2030–2050 0.6% �0.1% 0.0% 0.0% �0.3% �1.0% �0.2% �1.3%

IMAGE 2010–2030 0.8% 0.7% 0.1% 0.0% �0.5% �0.9% 0.0% �0.1%
2030–2050 0.5% 0.4% 0.2% 0.1% �0.1% �0.5% �0.1% �0.3%
2050–2100 0.5% 0.5% 0.0% 0.0% �0.4% �0.7% �0.6% �1.6%

POLES ADVANCE 2010–2030 0.8% 0.7% 0.0% 0.0% �0.6% �0.7% �0.4% �0.4%
2030–2050 0.6% 0.6% 0.0% 0.0% �0.5% �0.7% �0.7% �0.9%
2050–2100 0.5% 0.5% 0.1% 0.1% �0.2% �0.3% �0.6% �0.7%

MESSAGE 2010–2030 0.8% 0.8% 0.0% 0.0% �0.8% �0.8% 0.0% 0.0%
2030–2050 0.7% 0.6% 0.1% 0.1% �0.1% �0.2% �0.1% �0.3%
2050–2100 0.6% 0.5% 0.1% 0.0% �0.2% �0.4% �0.2% �2.3%

REMIND 2010–2030 0.7% 0.6% �0.2% �0.2% �0.1% �0.1%
2030–2050 0.4% 0.3% �0.3% �0.2% �0.2% �0.6%
2050–2100 0.6% 0.8% �0.6% �1.0% �0.8% �3.1%

TIAM-UCL 2010–2030 1.1% 1.1% 0.1% 0.1% �0.5% �0.6% 0.0% 0.1%
2030–2050 0.8% 0.8% 0.1% 0.0% �0.6% �1.1% �0.1% �0.4%
2050–2100 0.9% 0.9% 0.0% 0.0% �0.7% �0.4% �0.3% �0.9%

WITCH 2010–2030 0.7% 0.7% �0.6% �0.6% 0.0% 0.0%
2030–2050 0.5% 0.5% �0.5% �0.6% �0.1% �0.5%
2050–2100 0.7% 0.7% �0.3% �0.6% �0.4% �0.8%

OECDa 1973–2007 1.0–3.1% 0.0–0.8% �0.6 to 0.3%,

2000–2007 �0.8 to 1.8%. �0.3 to 0.2% �1.2 to 0.8%

a The historical OECD Laspeyres decomposition index values are based on the analysis performed by Millard-Ball and Schipper (2011).
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although MESSAGE and GCAM show a significant decrease in bus usage and IMAGE a significant decrease in train usage.
POLES and Imaclim-R, which consider infrastructure constraints, show a reduction in LDV share over time.

� There are quite clear base year differences across the models, which contribute to inter-model differences in the
future.

� In most models, policy induced emission mitigation does not lead to a significant change in the modal split of transport
modes compared to baseline, reflecting its limited role in decreasing emissions in the models. AIM/CGE, DNE21+ and
TIAM-UCL modal shares are exogenously set and therefore not responsive to a climate target. Imaclim-R projects more
cycling and walking and MESSAGE, GCAM and IMAGE project reduced air travel compared to the baseline scenario.

The impact of component development on total CO2 projections is further specified in Fig. 5, which shows the global CO2

emissions per capita (indicated by the isolines), due to activity growth plotted against CO2 intensity, again for the baseline
and mitigation scenarios.4 The activity growth projected by the models is offset by the CO2 intensity reduction in the baseline
and most models remain at 0.6 kg CO2/cap annually at a global level over the course of time. GCAM, MESSAGE and AIM/CGE are
the exception with higher CO2 per capita values in the second half of the century. The models move away from 0.6 CO2 kg/cap in
the mitigation scenario, mainly due to CO2 intensity reduction, with some models reaching values lower than 0.2 CO2 kg/cap.

Fig. 6 shows the carbon intensity impact of fuel mix and energy efficiency on CO2 per passenger kilometer. For both sce-
narios, this is compared to the fuel mix of hydrogen/electricity, biofuels and fossil-based fuels. In the baseline scenario, in
most models the reduction in CO2 intensity is the result of energy efficiency increases, although IMAGE, REMIND, WITCH,
TIAM-UCL and POLES also show fuel intensity reduction between 2050 and 2100, due to switching to a mix of hydrogen,
electricity and biofuel use. This is in agreement with the Laspeyres index results in Table 2. Most models project that average
global energy efficiency will decrease to 0.5–1 MJ/pkm in 2100. This is a significant decrease (46–72%) compared to 2010
values, but in line with current estimations for drivetrain fuel consumption reduction potential. Already in 2030 gasoline
ICE fuel consumption could reduce with 30–50%, while switching to alternative driving mechanisms could reduce fuel con-
sumption even further (IPCC, 2014a,b).

The higher CO2 intensity reduction in the mitigation scenario (see also Table 2) is highly dependent on fuel switching in
all models, but also on further energy efficiency improvements. IMAGE, MESSAGE (from 2090), REMIND (from 2080), and
Imaclim-R (from 2060) project that more than 80% of global passenger transport fuel use will be non-fossil in a scenario sta-
bilizing at 450 ppm CO2eq. These models justifiably project relatively low emissions in the mitigation scenario. Both electric
and hydrogen fueled vehicles, as well as biofuel use, are attractive alternative options in this scenario.5 REMIND, Imaclim-R,
IMAGE and WITCH show the trend of switching to biofuels in the first half of the century and then switching to hydrogen/elec-
tric, as found by Pietzcker et al. (2014), but other models do not follow this pathway. AIM-CGE and GCAM are more than 40%
fueled by fossil fuels, which also explains their higher transport CO2 emissions (Fig. 2). DNE21+ is the only model that does not
shift towards electricity/hydrogen.

4. Comparing model inputs to outputs for the USA: a focus on light-duty vehicles

So far, fuel switching – either to electricity/hydrogen or biofuels –, has proven to be an essential measure in IAMs to mit-
igate emissions from the transport sector. Models that project that the transport sector will remain relatively dependent on
fossil fuels are at the high end of transport sector CO2 emissions projections in the mitigation scenario. Similarly, models that
show fuel switching in the baseline scenario are at the low end of the baseline emission range.

In an attempt to improve our understanding of differences in fuel mix projections, in this section we look specifically at
LDV choice dynamics in the models. To standardize and simplify the comparison, we focus on the results for the USA region
in each model. As mentioned in Section 2.1, vehicle choice in the models depends on cost of travel, which includes capital
costs of the technology, efficiency, fuel prices and in some cases non-operating costs. Capital costs are related to deployment
in REMIND, GEM-E3 and Imaclim-R and to R&D investments in WITCH, while in other models they are fixed in time. The
distribution between vehicles is determined by either a logit or cost-optimizing algorithm.

Fig. 7 shows the differences in capital costs of alternative vehicles compared to conventional (ICE) vehicles. AIM/CGE does
not consider vehicle cost. BEV prices are currently substantially higher than conventional vehicle prices, although they have
decreased rapidly in recent years (Nykvist and Nilsson, 2015). All models show a steep decline in BEV costs in the coming
decades. POLES, MESSAGE TIAM-UCL, REMIND and WITCH reach a fairly constant value in the second half of the century
for both BEV and for FCV, where FCV remaining significantly more expensive than BEV., DNE 21+, GCAM, GEM-E3, IMAGE
and Imaclim-R on the other hand show a continuous decrease in alternative vehicle costs, some ultimately reaching
comparable levels to conventional vehicle costs, which would lead to fuel prices combined with vehicle efficiency being
more dominant in determining vehicle cost.

Comparing the techno-economic assumptions underlying the vehicle choice outcome represented by the fuel split shown
in Fig. 7, we see that different vehicle capital cost development assumptions do not necessarily explain different fuel distri-
bution outcomes. For instance, GCAM with low electric vehicle cost projections also shows low-to-medium electric vehicle

4 Only direct transport emissions are accounted for, and biofuels are treated as zero-carbon fuels.
5 WITCH does not take into account hydrogen.
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deployment compared with the other models. Uncertainty in the cost development of BEVs and FCVs can be seen in the
variety of the model cost projections, but does not in itself explain differences in model outcomes. Consideration of
non-economic factors such as behavioral considerations limiting alternative vehicle deployment in the models, optimizing
vehicle choice, as well as interaction with other sectors that for example affect fuel prices, can also potentially play an impor-
tant factor.

5. Discussion

In this paper, IAM passenger transport CO2 emission scenarios from eleven global models have been compared by decom-
posing them into transport activity, modal structure, energy intensity and fuel mix development. The decomposition method

Fig. 3. Passenger transport direct CO2 emission increase relative to 2010 due to activity, structure or CO2 intensity development, in accordance with Eqs. (1)
and (2) for baseline (top) and mitigation (bottom) scenarios in AIM/CGE (A), DNE21+ (D), GCAM (G), GEM-E3 (Ge), Imaclim-R (Ic), IMAGE (Ig), POLES (P),
MESSAGE (M), REMIND (R), TIAM-UCL (T) and WITCH (W). WITCH and REMIND show results at the LDV level.

Fig. 4. Passenger modal shares (structure component) in 2010, 2050 and 2100 for baseline (top) and mitigation scenario (bottom). The Bus component for
Imaclim-R also includes rail travel while the LDV component includes 2W & 3W.
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untangles the complex model dynamics into reduced form representation of the models, enabling us to compare the models
to each other, as well as comparing them to historic trends. Some discussion on the applied method is provided.

5.1. Suitability of the decomposition method

Model comparison studies can show key model uncertainties by comparing the output of different models to their under-
lying model assumptions (Kriegler et al., 2015). A decomposition method can be applied to identify structural changes con-
tributing to energy consumption trends. This can also be used to validate the model baseline results by historic comparison,
as shown by Marcucci and Fragkos (2015) at the regional level. Although more sophisticated methods exists, the Laspeyres

Fig. 5. Global passenger transport activity per capita (x-axis) compared to CO2 intensity (y-axis) development over time. The CO2 emissions per capita are
indicated by the plotted isolines. The left panel shows baseline and right mitigation scenario. DNE21+ and GEM-E3 model projections run to 2050, Imaclim-
R to 2070 and the rest until 2100.

Fig. 6. Global passenger transport energy intensity (x-axis) compared to fuel mix (y-axis) development in top figures. The isolines indicate emissions per
passenger kilometer. The bottom panel shows passenger transport fuel shares over time, for baseline (left) and mitigation scenario (right). DNE21+ and
GEM-E3 model projections run to 2050, Imaclim-R to 2070 and the rest until 2100. The tenary figures at the bottom show fuel mix of LDV for REMIND and
WITCH.
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decomposition analysis is an appropriate method to distinguish model dynamics underlying the projected futures. The
advantages and disadvantages of the Laspeyres method index method have been discussed in literature (Ang, 2004) and
include the fact that the method has no time and factor reversal properties, and the residual term can become large.
However, the method is relatively easy to implement and interpret, which is an advantage in the large multi model study.
Moreover the use of this method allows easy comparison with several studies on historical transport sector developments
across global regions over a longer time (Millard-Ball and Schipper, 2011; Schipper et al., 1992; Scholl et al., 1996).

It should be noted that also other indicators can be calculated to compare models, both across a larger set of models or
with historic data, such as the intrinsic income and price elasticities (Schäfer et al., 2016), also discussed as part of this spe-
cial issue (Edelenbosch et al., 2017). Where price and income elasticities verify demand response to economic indicators,
which are often the models key drivers, the decomposition method here focuses on the development of physical indicators
such as service demand and technology change.

5.2. Discussion of the key outcomes

Interestingly, the model results presented here show a relatively small range in annual travel activity growth. Empirical
activity growth data for example passenger-km/capita, spans a much wider range than that observed across the model sce-
narios. Still, the rates should be compared to long-term averages and relatively small differences in annual rates of change
can lead to large spreads in passenger kilometer demand projections over the century. As a result, activity increases by a
factor of five in some models, and in others by a factor of two. This has a large effect on the projected transport emissions
pathways, and is thus a key uncertainty.

One key observation is that activity growth and modal shift hardly contribute to mitigation in the IAM transport scenar-
ios. Earlier research has compared low carbon transport scenarios of IAMs to those of transport sector specific models and
place-based research, focusing on local transport, and indicate that different scientific communities have a different
perspective and find different solutions to mitigate transport emissions. Where models (IAM and transport sector models)
put higher emphasize on efficiency and fuel switch potential, place-based research often show that behavioral and infras-
tructure policy interventions, especially in urban areas, impacting modal shift, distance travelled and technological change,
can cut transport energy use and CO2 emissions significantly (Creutzig, 2016). These policy measures, that currently find lim-
ited application in IAM scenarios, could complement the drastic technology changes that are needed to reduce emissions
(IEA, 2012). Another example on modal split, is Fulton and Eads (2014) who concluded that a high shift scenario with far
greater urban passenger travel by low-carbon public transport and non-motorized modes could lead to a 1.7 Gt reduction
in transport emissions globally by 2050 (a 40% reduction in urban transport emissions). The representation of transport
infrastructure development, and in particular its costs, and the costs of transport infrastructure policies are further explained
in detail in this special issue in Ó Broin and Guivarch (2017). Further research to quantify the impact of travel reduction and
modal shift either by dynamic response or scenario design in IAM transport models would be an important next step. This
could improve current IAM transport scenarios and make them less reliant on technology transition, which is uncertain.

The high dependence of transport emission mitigation in the IAM scenarios on technology change (alternative vehicle
adoption as well as improved efficiency) concur with previous IAM transport comparison studies (Girod et al., 2013;
Pietzcker et al., 2014). Diffusion of advanced vehicle technologies, however, will depend on technology development impact-
ing costs and efficiency, as well as behavioral considerations. These processes are highly uncertain and this is reflected in the
models results, which show a large range in annual fuel mix change. A comparison between the projected capital cost

Fig. 7. Difference in USA LDV fuel cell vehicle (FCV) and battery electric vehicle (BEV) investment costs compared to conventional vehicles (ICE) in the
mitigation scenario. POLES and MESSAGE FCV investment cost remain to be more than 20.000 2005 USD more expensive than conventional vehicles, i.e.
outside the displayed range.
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assumptions of LDV alternative propulsion mechanisms and the vehicle choice outcome represented by the fuel split, shows
that different capital cost assumptions do not necessarily explain different fuel distribution outcomes. Behavior or non-
monetary considerations are often accounted for indirectly in the models by for example using a logit distribution, inertia
assumptions or implicit discount rates. When taking in to account behavioral consideration a transition to advanced vehicles
to mitigate GHG emissions can be more difficult (see the McCollum et al. (2017) paper in this special issue). A better under-
standing of technology diffusion dynamics is important and, moreover, could provide the opportunity to explicitly analyze
policies related to the transition to new technologies by removing these barriers to market adoption (e.g., cities installing EV
chargers in urban areas).

6. Conclusion

Based on the results and the discussion, the study leads to the following conclusions.
The IAMmodels show similar trends in the baseline scenarios for the different factors contributing to emission changes in

the transport sector: (1) continuing activity growth, (2) reduced energy intensity, (3) a limited impact of structural change to
CO2 intensive modes and (4) a fuel switch towards alternative fuels. For most factors, changes in these factors are within the
historical range. However, fuel switch forms an exception. As, the transport sector has historically been dominated by oil,
fuel switching did not play a role. In the future, models expect fuel mix moves away from oil in response to increasing
oil prices in several models, thus pushing the impact of carbon intensity on future emissions far beyond historical rates.

In mitigation scenarios, reductions are mostly achieved through fuel switching and further enhancements in energy effi-
ciency. In some models, activity reduction and some modal shifting also contribute to emission reduction (e.g. Imaclim-R),
but energy intensity improvement and fuel switching are nevertheless much more important. The enhancement of technol-
ogy efficiency as an intervention strategy for emission reduction pushes the annual efficiency change rate to the maximum of
what has historically been measured in OECD regions between 1973 and 2007 by Millard-Ball and Schipper (2011). Fuel
switching towards electricity, hydrogen and biofuels goes significantly beyond historical rates of change and the scenarios
would imply a clear break with historical trends.

Model comparison studies allow a better understanding of future transport system behavior. At the same time, further
model development is needed. The models show different pathways of technology transition, with different fuel types being
deployed and different rates of deployment. Technology transition in the models is found to depend on travel cost, which is
uncertain, reflected also in the range of vehicle capital cost projections in the models. Other important aspects such as fuel
price and non-economic factors, (e.g. anxiety for new technologies) that are represented in various ways in the models but
are not harmonized or explored in this study may also be important in projecting future shares of alternative-fueled vehicles.
To improve transport modelling, further enhancement is required in the modelling of technology transition and behavioral
considerations. Moreover an analysis of scenarios addressing the mitigation options that result from modal shift and from
policies that impact behavior and infrastructure, especially in urban areas, could complement current results.
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