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Abstract. We describe algorithms for two-stage stochastic linear programming with recourse
and their implementation on a grid computing platform. In particular, we examine serial
and asynchronous versions of the L-shaped method and a trust-region method. The parallel
platform of choice is the dynamic, heterogeneous, opportunistic platform provided by the
Condor system. The algorithms are of master-worker type (with the workers being used to
solve second-stage problems), and the MW runtime support library (which supports master-
worker computations) is key to the implementation. Computational results are presented on
large sample average approximations of problems from the literature.

1. Introduction

Consider the two-stage stochastic linear programming problem with fixed re-
course, defined as follows:

min cTx+
∑N
i=1 piq

T
i yi, subject to (1a)

Ax = b, x ≥ 0, (1b)
Wyi = hi − Tix, y(ωi) ≥ 0, i = 1, 2, . . . , N. (1c)

The N scenarios are represented by ω1, ω2, . . . , ωN , with probabilities pi and
data objects (qi, Ti, hi) for each i = 1, 2, . . . , N . The unknowns are first-stage
variables x ∈ IRn1 and second-stage variables yi ∈ IRn2 , i = 1, 2, . . . , N . This
formulation is sometimes known as the “deterministic equivalent” because it lists
the unknowns for all scenarios explicitly and poses the problem as a (structured)
linear program.

An alternative formulation is obtained by defining the ith second-stage prob-
lem as a linear program (LP) parametrized by the first-stage variables x, that
is,

Qi(x) def= min
yi

qTi yi subject to Wyi = hi − Tix, yi ≥ 0, (2)
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so that Qi(·) is a piecewise linear convex function. The objective in (1a) is then

Q(x) def= cTx+
N∑
i=1

piQi(x), (3)

and we can restate (1) as

min
x
Q(x), subject to Ax = b, x ≥ 0. (4)

We can derive subgradient information for Qi(x) by considering dual solu-
tions of (2). If πi is the Lagrange multiplier vector for the equality constraint in
(2), it is easy to show that

−TTi πi ∈ ∂Qi(x), (5)

where ∂Qi denotes the subgradient of Qi. By Rockafellar [19, Theorem 23.8],
using polyhedrality of each Qi, we have from (3) that

∂Q(x) = c+
N∑
i=1

pi∂Qi(x), (6)

for each x that lies in the domain of every Qi, i = 1, 2, . . . , N .
Let S denote the solution set for (4). Since (4) is a convex program, S is

closed and convex. If S is nonempty, the projection operator P (·) onto S is well
defined.

Subgradient information can be used by algorithms in different ways. Cutting-
plane methods use this information to construct convex estimates of Q(x), and
obtain each iterate by minimizing this estimate, as in the L-shaped methods
described in Section 2. This approach can be stabilized by the use of a quadratic
regularization term (Ruszczyński [20,21], Kiwiel [15]) or by the explicit use of a
trust region, as in the `∞ trust-region approach described in Section 3. Alter-
natively, when an upper bound on the optimal value Q∗ is available, one can
derive each new iterate from an approximate analytic center of an approximate
epigraph of Q. The latter approach has been explored by Bahn et al. [1] and
applied to a large stochastic programming problem by Frangière, Gondzio, and
Vial [9].

Parallel implementation of these approaches is obvious in principle. Because
evaluation of Qi(x) and elements of its subdifferential can be carried out inde-
pendently for each i = 1, 2, . . . , N , we can partition the scenarios i = 1, 2, . . . , N
into clusters of scenarios and define a computational task to be the solution of
all the second-stage LPs (2) in a number of clusters. Each such task could be
assigned to an available worker processor. Bunching techniques (see Birge and
Louveaux [5, Section 5.4]) can be used to exploit the similarity between dif-
ferent scenarios within a chunk. To avoid inefficiency, each task should contain
enough scenarios that its computational requirements significantly exceeds the
time required to send the data to the worker processor and to return the results.
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In this paper, we describe implementations of decomposition algorithms for
stochastic programming on a dynamic, heterogeneous computational grid made
up of workstations, PCs, and supercomputer nodes. Specifically, we use the en-
vironment provided by the Condor system [16] running the MW runtime library
(Goux et al. [13,12]), a software layer that significantly simplifies the process of
implementing parallel algorithms.

For the dimensions of problems and the size of the computational grids con-
sidered in this paper, evaluation of the functions Qi(x) and their subgradients
at a single x sometimes is insufficient to make effective use of the available pro-
cessors. Moreover, “synchronous” algorithms—those that depend for efficiency
on all tasks completing in a timely fashion—run the risk of poor performance
in a parallel environment in which failure or suspension of worker processors
while performing computation is not infrequent. We are led therefore to “asyn-
chronous” approaches that consider different points x simultaneously. Asyn-
chronous variants of the L-shaped and `∞-trust-region methods are described in
Sections 2.2 and 4, respectively.

Other parallel algorithms for stochastic programming have been described
by Birge et al. [3,4], Birge and Qi [6], Ruszczyński [21], and Frangière, Gondzio,
and Vial [9]. In [3], the focus is on multistage problems in which the scenario tree
is decomposed into subtrees, which are processed independently and in parallel
on worker processors. Dual solutions from each subtree are used to construct
a model of the first-stage objective (using an L-shaped approach like that de-
scribed in Section 2), which is periodically solved by a master process to obtain
a new first-stage iterate. Birge and Qi [6] describe an interior-point method for
two-stage problems, in which the linear algebra operations are implemented in
parallel by exploiting the structure of the two-stage problem. However, this ap-
proach involves significant data movement and does not scale particularly well.
In [9], the second-stage problems (2) are solved concurrently and inexactly by
using an interior-point code. The master process maintains an upper bound on
the optimal objective, and this information is used along with the approximate
subgradients is used to construct an approximate truncated epigraph of the func-
tion. The analytic center of this epigraph is computed periodically to obtain a
new iterate. The numerical results in [9] report solution of a two-stage stochas-
tic linear program with 2.6 million variables and 1.2 million constraints in three
hours on a cluster of 10 Linux PCs.

The approach that is perhaps closest to the ones we describe in this paper
is that of Ruszczyński [21]. When applied to two-stage problems (1), this al-
gorithm consists of processes that solve each second-stage problem (2) at the
latest available value of x to generate cuts; and a master process that solves
a cutting-plane problem with the latest available cuts and a quadratic regular-
ization term to generate new iterates x. The master process and second-stage
processes can execute in parallel and share information asynchronously. This ap-
proach is essentially an asynchronous parallel version of the serial bundle-trust-
region approaches described by Ruszczyński [20], Kiwiel [15], and Hiriart-Urruty
and Lemaréchal [14, Chapter XV]. Algorithm ATR described in Section 4 like-
wise is an asynchronous parallel version of the bundle-trust-region method TR
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of Section 3, although the asynchronicity in the algorithm ATR described in
Section 4 is more structured that that considered in [21]. In addition, `∞ trust
regions take the place of quadratic regularization terms in both Algorithms TR
and ATR. We discuss the relationships between all these methods further in
later sections.

The remainder of this paper is structured as follows. Section 2 describes an
L-shaped method and an asynchronous variant. Algorithm TR, a bundle-trust-
region method with `∞ trust regions is described and analyzed in Section 3, while
its asynchronous cousin Algorithm ATR is described and analyzed in Section 4.
Section 5 discusses computational grids and implementations of the algorithms
on these platforms. Finally, computational results are given in Section 6.

2. L-shaped methods

We describe briefly a well known variant of the L-shaped method for solving (4),
together with an asynchronous variant.

2.1. The Multicut L-shaped method

The L-shaped method of Van Slyke and Wets [25] for solving (4) proceeds by
finding subgradients of partial sums of the terms that make up Q (3), together
with linear inequalities that define the domain ofQ. We sketch the approach here,
and refer to Birge and Louveaux [5, Chapter 5] for a more complete description.

Suppose that the second-stage scenarios 1, 2, . . . , N are partitioned into C
clusters denoted by N1,N2, . . . ,NC . Let Q[j] represent the partial sum from (3)
corresponding to the cluster Nj ; that is,

Q[j](x) =
∑
i∈Nj

piQi(x). (7)

The algorithm maintains a model function mk
[j] which is a piecewise linear lower

bound on Q[j] for each j. We define this function at iteration k by

mk
[j](x) = inf{θj | θje ≥ F k[j]x+ fk[j]}, (8)

where e = (1, 1, . . . , 1)T and F k[j] is a matrix whose rows are subgradients of Q[j]

at previous iterates of the algorithm. The constraints in (8) are called optimality
cuts. A subgradient gj of Q[j] is obtained from the dual solutions πi of (2) for
each i ∈ Nj as follows:

gj = −
∑
i∈Nj

piT
T
i πi; (9)

see (5) and (6). An optimality cut is not added to the model mk
[j] if the model

function takes on the same value as Q[j] at iteration k. Cuts may also be deleted
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in the manner described below. The algorithm also maintains a collection of
feasibility cuts of the form

Dkx ≥ dk, (10)

which have the effect of excluding values of x for which some of the second-stage
linear programs (2) are infeasible. By Farkas’s theorem (see Mangasarian [17,
p. 31]), if the constraints in (2) are infeasible, there exists πi with the following
properties:

WTπi ≤ 0, [hi − Tix]T πi > 0.

(In fact, such a πi can be obtained from the dual simplex method for the feasi-
bility problem for (2).) To exclude this x from further consideration, we simply
add the inequality [hi − Tix]Tπi ≤ 0 to the constraint set (10).

The kth iterate xk of the multicut L-shaped method is obtained by solving
the following approximation to (4):

min
x

mk(x), subject to Dkx ≥ dk, Ax = b, x ≥ 0, (11)

where

mk(x) def= cTx+
C∑
j=1

mk
[j](x). (12)

In practice, we substitute from (8) to obtain the following linear program:

min
x,θ1,...,θC

cTx+
C∑
j=1

θj , subject to (13a)

θje ≥ F k[j]x+ fk[j], j = 1, 2, . . . , C, (13b)

Dkx ≥ dk, (13c)
Ax = b, x ≥ 0. (13d)

We make the following assumption for the remainder of the paper.

Assumption 1.

(i) The problem has complete recourse; that is, the feasible set of (2) is nonempty
for all i = 1, 2, . . . , N and all x, so that the domain of Q(x) in (3) is IRn.

(ii) The solution set S is nonempty.

Under this assumption, feasibility cuts (10), (13c) are not present. Our algo-
rithms and their analysis can be generalized to handle situations in which As-
sumption 1 does not hold, but for the sake of simplifying our analysis, we avoid
discussing this more general case here.

Under Assumption 1, we can specify the L-shaped algorithm formally as
follows:
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Algorithm LS
choose tolerance εtol; choose starting point x0;
define initial model m0 to be a piecewise linear underestimate of Q(x)

such that m0(x0) = Q(x0) and m0 is bounded below;
Qmin ← Q(x0);
for k = 0, 1, 2, . . .

obtain xk+1 by solving (11);
if Qmin −mk(xk+1) ≤ εtol(1 + |Qmin|)

STOP;
evaluate function and subgradient information at xk+1;
Qmin ← min(Qmin,Q(xk+1));
obtain mk+1 by adding optimality cuts to mk;

end(for).

2.2. Asynchronous parallel variant of the L-shaped method

The L-shaped approach lends itself naturally to implementation in a master-
worker framework. The problem (13) is solved by the master process, while
solution of each cluster Nj of second-stage problems, and generation of the as-
sociated cuts, can be carried out by the worker processes running in parallel.
This approach can be adapted for an asynchronous, unreliable environment in
which the results from some second-stage clusters are not returned in a timely
fashion. Rather than having all the worker processors sit idle while waiting for
the tardy results, we can proceed without them, re-solving the master by using
the additional cuts that were generated by the other second-stage clusters.

We denote the model function simply by m for the asynchronous algorithm,
rather than appending a subscript. Whenever the time comes to generate a new
iterate, the current model is used. In practice, we would expect the algorithm
to give different results each time it is executed, because of the unpredictable
speed and order in which the functions are evaluated and subgradients generated.
Because of Assumption 1, we can write the subproblem

min
x

m(x), subject to Ax = b, x ≥ 0. (14)

Algorithm ALS, the asynchronous variant of the L-shaped method that we
describe here, is made up of four key operations, three of which execute on the
master processor and one of which runs on the workers. These operations are as
follows:

– partial evaluate. Worker routine for evaluating Q[j](x) defined by (7) for
a given x and one or more of the clusters j = 1, 2, . . . , C, in the process
generating a subgradient gj of each Q[j](x). This task runs on a worker
processor and returns its results to the master by activating the routine
act on completed task on the master processor.

– evaluate. Master routine that places tasks of the type partial evaluate
for a given x into the task pool for distribution to the worker processors as
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they become available. The completion of all these tasks leads to evaluation
of Q(x).

– initialize. Master routine that performs initial bookkeeping, culminating
in a call to evaluate for the initial point x0.

– act on completed task. Master routine, activated whenever the results be-
come available from a partial evaluate task. It updates the model and
increments a counter to keep track of the number of tasks that have been
evaluated at each candidate point. When appropriate, it solves the master
problem with the latest model to obtain a new candidate iterate and then
calls evaluate.

In our implementation of both this algorithm and its more sophisticated
cousin Algorithm ATR of Section 4, a single task consists of the evaluation
of one or more clusters Nj . We may bundle, say, 2 or 4 clusters into a single
computational task, to make the task large enough to justify the master’s ef-
fort in packing its data and unpacking its results, and to maintain the ratio of
compute time to communication cost at a high level. We use T to denote the
number of computational tasks, and Tr, r = 1, 2, . . . , T to denote a partitioning
of {1, 2, . . . , C}, so that task r consists of evaluation of the clusters j ∈ Tr.

The implementation depends on a “synchronicity” parameter σ which is the
proportion of tasks that must be evaluated at a point to trigger the generation of
a new candidate iterate. Typical values of σ are in the range 0.25 to 0.9. A logical
variable specevalk keeps track of whether xk has yet triggered a new candidate.
Initially, specevalk is set to false, then set to true when the proportion of
evaluated clusters passes the threshold σ.

We now specify all the methods making up Algorithm ALS.

ALS: partial evaluate(xq, q, r)
Given xq, index q, and task number r, evaluate Q[j](xq) from (7) for all j ∈ Tr

together with partial subgradients gj from (9);
Activate act on completed task(xq, q, r) on the master processor.

ALS: evaluate(xq, q)
for r = 1, 2, . . . , T (possibly concurrently)

partial evaluate(xq, q, r);
end (for)

ALS: initialize
determine number of clusters C and number of tasks T ,

and the partitions N1,N2, . . . ,NC and T1, T2 . . . , TT ;
choose tolerance εtol;
choose starting point x0;
choose threshold σ ∈ (0, 1];
Qmin ←∞;
k ← 0, speceval0 ← false, t0 ← 0;
evaluate(x0, 0).
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ALS: act on completed task(xq, q, r)
tq ← tq + 1;
for each j ∈ Tr

add Q[j](xq) and cut gj to the model m;
if tq = T

Qmin ← min(Qmin,Q(xq));
else if tq ≥ σT and not specevalq

specevalq ←true;
k ← k + 1;
solve current model problem (14) to obtain xk+1;
if Qmin −m(xk+1) ≤ εtol(1 + |Qmin|)

STOP;
evaluate(xk, k);

end (if)

We present results for Algorithm ALS in Section 6. While the algorithm is
able to use a large number of worker processors on our opportunistic platform,
it suffers from the usual drawbacks of the L-shaped method, namely, that cuts,
once generated, must be retained for the remainder of the computation to ensure
convergence and that large steps are typically taken on early iterations before a
sufficiently good model approximation to Q(x) is created, making it impossible
to exploit prior knowledge about the location of the solution.

3. A Bundle-trust-region method

Trust-region approaches can be implemented by making only minor modifica-
tions to implementations of the L-shaped method, and they possesses several
practical advantages along with stronger convergence properties. The trust-
region methods we describe here are related to the regularized decomposition
method of Ruszczyński [20] and the bundle-trust-region approaches of Kiwiel [15]
and Hiriart-Urruty and Lemaréchal [14, Chapter XV]. The main differences are
that we use box-shaped trust regions yielding linear programming subproblems
(rather than quadratic programs) and that our methods manipulate the size of
the trust region directly rather than indirectly via a regularization parameter.
We discuss these differences further in Section 3.3.

When requesting a subgradient of Q at some point x, our algorithms do not
require particular (e.g., extreme) elements of the subdifferential to be supplied.
Nor do they require the subdifferential ∂Q(x) to be representable as a convex
combination of a finite number of vectors. In this respect, our algorithms contrast
with that of Ruszczyński [20], for instance, which exploits the piecewise-linear
nature of the objectives Qi in (2). Because of our weaker conditions on the
subgradient information, we cannot prove a finite termination result of the type
presented in [20, Section 3]. However, these conditions potentially allow our
algorithms to be extended to a more general class of convex nondifferentiable
functions.
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3.1. A Method based on `∞ trust regions

A key difference between the trust-region approach of this section and the L-
shaped method of the preceding section is that we impose an `∞ norm bound
on the size of the step. It is implemented by simply adding bound constraints to
the linear programming subproblem (13) as follows:

−∆e ≤ x− xk ≤ ∆e, (15)

where e = (1, 1, . . . , 1)T , ∆ is the trust-region radius, and xk is the current
iterate. During the kth iteration, it may be necessary to solve several problems
with trust regions of the form (15), with different model functions m and possibly
different values of ∆, before a satisfactory new iterate xk+1 is identified. We refer
to xk and xk+1 as major iterates and the points xk,`, ` = 0, 1, 2, . . . obtained
by minimizing the current model function subject to the constraints and trust-
region bounds of the form (15) as minor iterates. Another key difference between
the trust-region approach and the L-shaped approach is that a minor iterate xk,`

is accepted as the new major iterate xk+1 only if it yields a substantial reduction
in the objective function Q over the previous iterate xk, in a sense to be defined
below. A further important difference is that one can delete optimality cuts from
the model functions, between minor and major iterations, without compromising
the convergence properties of the algorithm.

To specify the method, we need to augment the notation established in the
previous section. We define mk,`(x) to be the model function after ` minor
iterations have been performed at iteration k, and ∆k,` > 0 to be the trust-
region radius at the same stage. Under Assumption 1, there are no feasibility
cuts, so that the problem to be solved to obtain the minor iteration xk,` is as
follows:

min
x

mk,`(x) subject to Ax = b, x ≥ 0, ‖x− xk‖∞ ≤ ∆k,` (16)

(cf. (11)). By expanding this problem in a similar fashion to (13), we obtain

min
x,θ1,...,θC

cTx+
C∑
j=1

θj , subject to (17a)

θje ≥ F k,`[j] x+ fk,`[j] , j = 1, 2, . . . , C, (17b)

Ax = b, x ≥ 0, (17c)
−∆k,`e ≤ x− xk ≤ ∆k,`e. (17d)

We assume the initial model mk,0 at major iteration k to satisfy the following
two properties:

mk,0(xk) = Q(xk), (18a)
mk,0 is a convex, piecewise linear underestimate of Q. (18b)

Denoting the solution of the subproblem (17) by xk,`, we accept this point
as the new iterate xk+1 if the decrease in the actual objective Q (see (4)) is at
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least some fraction of the decrease predicted by the model function mk,`. That
is, for some constant ξ ∈ (0, 1/2), the acceptance test is

Q(xk,`) ≤ Q(xk)− ξ
(
Q(xk)−mk,`(xk,`)

)
. (19)

(A typical value for ξ is 10−4.)
If the test (19) fails to hold, we obtain a new model function mk,`+1 by

adding and possibly deleting cuts from mk,`(x). This process aims to refine the
model function, so that it eventually generates a new major iteration, while
economizing on storage by allowing deletion of subgradients that no longer seem
helpful. Addition and deletion of cuts are implemented by adding and deleting
rows from F k,`[j] and fk,`[j] , to obtain F k,`+1

[j] and fk,`+1
[j] , for j = 1, 2, . . . , C.

Given some parameter η ∈ (ξ, 1), we obtain mk,`+1 from mk,` by means of
the following procedure:

Procedure Model-Update (k, `)
for each optimality cut

possible delete ← true;
if the cut was generated at xk

possible delete ← false;
else if the cut is active at the solution of (17) with positive Lagrange multiplier

possible delete ← false;
else if the cut was generated at an earlier minor iteration

¯̀= 0, 1, . . . , `− 1 such that

Q(xk)−mk,`(xk,`) > η
[
Q(xk)−mk,¯̀(x

k,¯̀)
]

(20)

possible delete ← false;
end (if)
if possible delete

possibly delete the cut;
end (for each)
add optimality cuts obtained from each of the component functions

Q[j] at xk,`.

In our implementation, we delete the cut if possible delete is true at the
final conditional statement and, in addition, the cut has not been active during
the last 100 solutions of (17). More details are given in Section 6.2.

Because we retain all cuts generated at xk during the course of major iteration
k, the following extension of (18a) holds:

mk,`(xk) = Q(xk), ` = 0, 1, 2, . . . . (21)

Since we add only subgradient information, the following generalization of (18b)
also holds uniformly:

mk,` is a convex, piecewise linear underestimate of Q, for ` = 0, 1, 2, . . . . (22)



Stochastic Programming on a Computational Grid 11

We may also decrease the trust-region radius ∆k,` between minor iterations
(that is, choose ∆k,`+1 < ∆k,`) when the test (19) fails to hold. We do so if the
match between model and objective appears to be particularly poor, adapting
the procedure of Kiwiel [15, p. 109] for increasing the coefficient of the quadratic
penalty term in his regularized bundle method. If Q(xk,`) exceeds Q(xk) by more
than an estimate of the quantity

max
‖x−xk‖∞≤1

Q(xk)−Q(x), (23)

we conclude that the “upside” variation of the function Q deviates too much
from its “downside” variation, and we reduce the trust-region radius ∆k,`+1 so
as to bring these quantities more nearly into line. Our estimate of (23) is simply

1
min(1,∆k,`)

[
Q(xk)−mk,`(xk,`)

]
,

that is, an extrapolation of the model reduction on the current trust region to
a trust region of radius 1. Our complete strategy for reducing ∆ is therefore as
follows. (The counter is initialized to zero at the start of each major iteration.)

Procedure Reduce-∆
evaluate

ρ = min(1,∆k,`)
Q(xk,`)−Q(xk)
Q(xk)−mk,`(xk,`)

; (24)

if ρ > 0
counter ← counter+1;

if ρ > 3 or (counter ≥ 3 and ρ ∈ (1, 3])
set

∆k,`+1 =
1

min(ρ, 4)
∆k,`;

reset counter ← 0;

If the test (19) is passed, so that we have xk+1 = xk,`, we have a great deal
of flexibility in defining the new model function mk+1,0. We require only that
the properties (18) are satisfied, with k + 1 replacing k. Hence, we are free to
delete much of the optimality cut information accumulated at iteration k (and
previous iterates). In practice, of course, it is wise to delete only those cuts that
have been inactive for a substantial number of iterations; otherwise we run the
risk that many new function and subgradient evaluations will be required to
restore useful model information that was deleted prematurely.

If the step to the new major iteration xk+1 shows a particularly close match
between the true function Q and the model function mk,` at the last minor iter-
ation of iteration k, we consider increasing the trust-region radius. Specifically,
if

Q(xk,`) ≤ Q(xk)− 0.5
(
Q(xk)−mk,`(xk,`)

)
, ‖xk − xk,`‖∞ = ∆k,`, (25)
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then we set
∆k+1,0 = min(∆hi, 2∆k,`), (26)

where ∆hi is a prespecified upper bound on the radius.
Before specifying the algorithm formally, we define the convergence test.

Given a parameter εtol > 0, we terminate if

Q(xk)−mk,`(xk,`) ≤ εtol(1 + |Q(xk)|). (27)

Algorithm TR
choose ξ ∈ (0, 1/2), cut deletion parameter η ∈ (ξ, 1),

maximum trust region ∆hi, tolerance εtol;
choose starting point x0;
define initial model m0,0 with the properties (18) (for k = 0);
choose ∆0,0 ∈ [1,∆hi];
for k = 0, 1, 2, . . .

finishedMinorIteration ← false;
`← 0; counter← 0;
repeat

solve (16) to obtain xk,`;
if (27) is satisfied

STOP with approximate solution xk;
evaluate function and subgradient at xk,`;
if (19) is satisfied

set xk+1 = xk,`;
obtain mk+1,0 by possibly deleting cuts from mk,`, but

retaining the properties (18) (with k + 1 replacing k);
choose ∆k+1,0 ∈ [∆k,`,∆hi] according to (25), (26);
finishedMinorIteration ← true;

else
obtain mk,`+1 from mk,` via Procedure Model-Update (k, `);
obtain ∆k,`+1 via Procedure Reduce-∆;

`← `+ 1;
until finishedMinorIteration

end (for)

3.2. Analysis of the trust-region method

We now describe the convergence properties of Algorithm TR. We show that for
εtol = 0, the algorithm either terminates at a solution or generates a sequence
of major iterates xk that approaches the solution set S (Theorem 2).

Given some starting point x0 satisfying the constraints Ax0 = b, x0 ≥ 0,
and setting Q0 = Q(x0), we define the following quantities that are useful in
describing and analyzing the algorithm:

L(Q0) = {x |Ax = b, x ≥ 0,Q(x) ≤ Q0}, (28)
L(Q0;∆) = {x |Ax = b, x ≥ 0, ‖x− y‖∞ ≤ ∆, for some y ∈ L(Q0)}, (29)

β = sup{‖g‖1 | g ∈ ∂Q(x), for some x ∈ L(Q0;∆hi)}. (30)
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Using Assumption 1, we can easily show that β <∞. Note that

Q(x)−Q∗ ≤ gT (x− P (x)), for all x ∈ L(Q0;∆hi), all g ∈ ∂Q(x),

so that
Q(x)−Q∗ ≤ ‖g‖1 ‖x− P (x)‖∞ ≤ β‖x− P (x)‖∞. (31)

We start by showing that the optimal objective value for (16) cannot decrease
from one minor iteration to the next.

Lemma 1. Suppose that xk,` does not satisfy the acceptance test (19). Then we
have

mk,`(xk,`) ≤ mk,`+1(xk,`+1).

Proof. In obtaining mk,`+1 from mk,` in Model-Update, we do not allow deletion
of cuts that were active at the solution xk,` of (17). Using F̄ k,`[j] and f̄k,`[j] to denote

the active rows in F k,`[j] and fk,`[j] , we have that xk,` is also the solution of the
following linear program (in which the inactive cuts are not present):

min
x,θ1,...,θC

cTx+
C∑
j=1

θj , subject to (32a)

θje ≥ F̄ k,`[j] x+ f̄k,`[j] , j = 1, 2, . . . , C, (32b)

Ax = b, x ≥ 0, (32c)
−∆k,`e ≤ x− xk ≤ ∆k,`e. (32d)

The subproblem to be solved for xk,`+1 differs from (32) in two ways. First,
additional rows may be added to F̄ k,`[j] and f̄k,`[j] , consisting of function values
and subgradients obtained at xk,` and also inactive cuts carried over from the
previous (17). Second, the trust-region radius ∆k,`+1 may be smaller than ∆k,`.
Hence, the feasible region of the problem to be solved for xk,`+1 is a subset of
the feasible region for (32), so the optimal objective value cannot be smaller.

Next we have a result about the amount of reduction in the model function
mk,`.

Lemma 2. For all k = 0, 1, 2, . . . and ` = 0, 1, 2, . . ., we have that

mk,`(xk)−mk,`(xk,`) = Q(xk)−mk,`(xk,`)

≥ min
(

∆k,`

‖xk − P (xk)‖∞
, 1
)

[Q(xk)−Q∗]. (33)

Proof. The first equality follows immediately from (21). To prove (33), consider
the following subproblem in the scalar τ :

min
τ∈[0,1]

mk,`

(
xk + τ [P (xk)− xk]

)
subject to

∥∥τ [P (xk)− xk]
∥∥
∞ ≤ ∆k,`. (34)
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Denoting the solution of this problem by τk,`, we have by comparison with (16)
that

mk,`(xk,`) ≤ mk,`

(
xk + τk,`[P (xk)− xk]

)
. (35)

If τ = 1 is feasible in (34), we have from (35) and (22) that

mk,`(xk,`) ≤ mk,`

(
xk + τk,`[P (xk)− xk]

)
≤ mk,`

(
xk + [P (xk)− xk]

)
= mk,`(P (xk)) ≤ Q(P (xk)) = Q∗.

Hence, we have from (21) that

mk,`(xk)−mk,`(xk,`) ≥ Q(xk)−Q∗,

so that (33) holds in this case.
When τ = 1 is infeasible for (34), consider setting τ = ∆k,`/‖xk − P (xk)‖∞

(which is certainly feasible for (34)). We have from (35), the definition of τk,`,
(22), and convexity of Q that

mk,`(xk,`) ≤ mk,`

(
xk +∆k,`

P (xk)− xk

‖P (xk)− xk‖∞

)
≤ Q

(
xk +∆k,`

P (xk)− xk

‖P (xk)− xk‖∞

)
≤ Q(xk) +

∆k,`

‖P (xk)− xk‖∞
(Q∗ −Q(xk)).

Therefore, using (21), we have

mk,`(xk)−mk,`(xk,`) ≥
∆k,`

‖P (xk)− xk‖∞
[Q(xk)−Q∗],

verifying (33) in this case as well.

Our next result finds a lower bound on the trust-region radii ∆k,`. For pur-
poses of this result we define a quantity Ek to measure the closest approach to
the solution set for all iterates up to and including xk, that is,

Ek
def= min

k̄=0,1,...,k
‖xk̄ − P (xk̄)‖∞. (36)

Note that Ek decreases monotonically with k. We also define Fk as follows

Fk
def= min

k̄=0,1,...,k, xk̄ /∈S

Q(xk̄)−Q∗

‖xk̄ − P (xk̄)‖∞
, (37)

with the convention that Fk = 0 if xk̄ ∈ S for any k̄ ≤ k. By monotonicity of
{Q(xk)}, we have Fk > 0 whenever xk /∈ S. Note also from (31) and the fact
that xk ∈ L(Q0;∆hi) that

Fk ≤ β, k = 0, 1, 2, . . . (38)
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Lemma 3. For all trust regions ∆k,` used in the course of Algorithm TR, we
have

∆k,` ≥ (1/4) min(Ek, Fk/β), (39)

for β defined in (30).

Proof. Suppose for contradiction that there are indices k and ` such that ∆k,` <
(1/4) min (Ek, Fk/β). Since the trust region can be reduced by at most a factor
of 4 by Procedure Reduce-∆, there must be an earlier trust region radius ∆k̄,¯̀

(with k̄ ≤ k) such that
∆k̄,¯̀< min (Ek, Fk/β) , (40)

and ρ > 1 in (24), that is,

Q(xk̄,¯̀)−Q(xk̄) >
1

min(1,∆k̄,¯̀)

(
Q(xk̄)−mk̄,¯̀(x

k̄,¯̀)
)

=
1

∆k̄,¯̀

(
Q(xk̄)−mk̄,¯̀(x

k̄,¯̀)
)
, (41)

where we used (38) in (40) to deduce that ∆k̄,¯̀< 1. By applying Lemma 2, and
using (40) again, we have

Q(xk̄)−mk̄,¯̀(x
k̄,¯̀) ≥ min

(
∆k̄,¯̀

‖xk̄ − P (xk̄)‖∞
, 1
)

[Q(xk̄)−Q∗]

=
∆k̄,¯̀

‖xk̄ − P (xk̄)‖∞
[Q(xk̄)−Q∗] (42)

where the last equality follows from ‖xk̄ − P (xk̄)‖∞ ≥ Ek̄ ≥ Ek > ∆k̄,¯̀. By
combining (42) with (41), we have that

Q(xk̄,¯̀)−Q(xk̄) ≥ Q(xk̄)−Q∗

‖xk̄ − P (xk̄)‖∞
≥ Fk̄ ≥ Fk. (43)

By using standard properties of subgradients, we have

Q(xk̄,¯̀)−Q(xk̄) ≤ gT¯̀ (xk̄,¯̀− xk̄)

≤ ‖g¯̀‖1‖xk̄ − xk̄,
¯̀‖∞ ≤ ‖g¯̀‖1∆k̄,¯̀, for all g¯̀ ∈ ∂Q(xk̄,¯̀). (44)

By combining this expression with (43), and using (40) again, we obtain that

‖g¯̀‖1 ≥
1

∆k̄,¯̀
[Q(xk̄,¯̀)−Q(xk̄)] ≥ 1

∆k̄,¯̀
Fk̄ > β.

However, since xk̄,¯̀ ∈ L(Q0;∆hi), we have from (30) that ‖g¯̀‖1 ≤ β, giving a
contradiction.

Finite termination of the inner iterations is proved in the following two re-
sults. Recall that the parameters ξ and η are defined in (19) and (20), respec-
tively.
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Lemma 4. Let εtol = 0 in Algorithm TR, and let ξ and η be the constants from
(19) and (20), respectively. Let `1 be any index such that xk,`1 fails to satisfy the
test (19). Then either the sequence of inner iterations eventually yields a point
xk,`2 satisfying the acceptance test (19), or there is an index `2 > `1 such that

Q(xk)−mk,`2(xk,`2) ≤ η
[
Q(xk)−mk,`1(xk,`1)

]
. (45)

Proof. Suppose for contradiction that the none of the minor iterations following
`1 satisfies either (19) or the criterion (45); that is,

Q(xk)−mk,q(xk,q) > η
[
Q(xk)−mk,`1(xk,`1)

]
, for all q > `1. (46)

It follows from this bound, together with Lemma 1 and Procedure Model-
Update, that none of the cuts generated at minor iterations q ≥ `1 is deleted.

We assume in the remainder of the proof that q and ` are generic minor
iteration indices that satisfy

q > ` ≥ `1.

Because the function and subgradients from minor iterations xk,`, ` = `1, `1+
1, . . . are retained throughout the major iteration k, we have

mk,q(xk,`) = Q(xk,`). (47)

By definition of the subgradient, we have

mk,q(x)−mk,q(xk,`) ≥ gT (x− xk,`), for all g ∈ ∂mk,q(xk,`). (48)

Therefore, from (22) and (47), it follows that

Q(x)−Q(xk,`) ≥ gT (x− xk,`), for all g ∈ ∂mk,q(xk,`),

so that
∂mk,q(xk,`) ⊂ ∂Q(xk,`). (49)

Since Q(xk) < Q(x0) = Q0, we have from (28) that xk ∈ L(Q0). Therefore,
from the definition (29) and the fact that ‖xk,` − xk‖∞ ≤ ∆k,` ≤ ∆hi, we have
that xk,` ∈ L(Q0;∆hi). It follows from (30) and (49) that

‖g‖1 ≤ β, for all g ∈ ∂mk,q(xk,`). (50)

Since xk,` is rejected by the test (19), we have from (47) and Lemma 1 that
the following inequalities hold:

mk,q(xk,`) = Q(xk,`) ≥ Q(xk)− ξ
[
Q(xk)−mk,`(xk,`)

]
≥ Q(xk)− ξ

[
Q(xk)−mk,`1(xk,`1)

]
.

By rearranging this expression, we obtain

Q(xk)−mk,q(xk,`) ≤ ξ
[
Q(xk)−mk,`1(xk,`1)

]
. (51)
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Recalling that η ∈ (ξ, 1), we consider the following neighborhood of xk,`:

‖x− xk,`‖∞ ≤
η − ξ
β

[
Q(xk)−mk,`1(xk,`1)

] def= ζ > 0. (52)

Using this bound together with (48) and (50), we obtain

mk,q(xk,`)−mk,q(x) ≤ gT (xk,` − x)
≤ β‖xk,` − x‖∞ ≤ (η − ξ)

[
Q(xk)−mk,`1(xk,`1)

]
.

By combining this bound with (51), we find that the following bound is satisfied
for all x in the neighborhood (52):

Q(xk)−mk,q(x) =
[
Q(xk)−mk,q(xk,`)

]
+
[
mk,q(xk,`)−mk,q(x)

]
≤ η

[
Q(xk)−mk,`1(xk,`1)

]
.

It follows from this bound, in conjunction with (46), that xk,q (the solution of the
trust-region problem with model function mk,q) cannot lie in the neighborhood
(52). Therefore, we have

‖xk,q − xk,`‖∞ > ζ. (53)

But since ‖xk,`−xk‖∞ ≤ ∆k,` ≤ ∆hi for all ` ≥ `1, it is impossible for an infinite
sequence {xk,`}`≥`1 to satisfy (53). We conclude that (45) must hold for some
`2 ≥ `1, as claimed.

We now show that the minor iteration sequence terminates at a point xk,`

satisfying the acceptance test, provided that xk is not a solution.

Theorem 1. Suppose that εtol = 0.

(i) If xk /∈ S, there is an ` ≥ 0 such that xk,` satisfies (19).
(ii) If xk ∈ S, then either Algorithm TR terminates (and verifies that xk ∈ S),

or Q(xk)−mk,`(xk,`) ↓ 0.

Proof. Suppose for the moment that the inner iteration sequence is infinite, that
is, the test (19) always fails. By applying Lemma 4 recursively, we can identify
a sequence of indices 0 < `1 < `2 < . . . such that

Q(xk)−mk,`j (x
k,`j ) ≤ η

[
Q(xk)−mk,`j−1(xk,`j−1)

]
≤ η2

[
Q(xk)−mk,`j−2(xk,`j−2)

]
...
≤ ηj

[
Q(xk)−mk,0(xk,0)

]
. (54)

When xk /∈ S, we have from Lemma 3 that

∆k,` ≥ (1/4) min(Ek, Fk/β) def= ∆̄lo > 0, for all ` = 0, 1, 2, . . .,

so the right-hand side of (33) is uniformly positive (independently of `). However,
(54) indicates that we can makeQ(xk)−mk,`j (x

k,`j ) arbitrarily small by choosing
j sufficiently large, contradicting (33).
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For the case of xk ∈ S, there are two possibilities. If the inner iteration
sequence terminates finitely at some xk,`, we must have Q(xk)−mk,`(xk,`) = 0.
Hence, from (22), we have

Q(x) ≥ mk,`(x) ≥ Q(xk) = Q∗, for all feasible x with ‖x− xk‖∞ ≤ ∆k,`.

Therefore, termination under these circumstances yields a guarantee that xk ∈ S.
When the algorithm does not terminate, it follows from (54) that Q(xk) −
mk,`(xk,`)→ 0. By applying Lemma 1, we verify that the convergence is mono-
tonic.

We now prove convergence of Algorithm TR to S.

Theorem 2. Suppose that εtol = 0. The sequence of major iterations {xk} is
either finite, terminating at some xk ∈ S, or is infinite, with the property that
‖xk − P (xk)‖∞ → 0.

Proof. If the claim does not hold, there are two possibilities. The first is that
the sequence of major iterations terminates finitely at some xk /∈ S. However,
Theorem 1 ensures that the minor iteration sequence will terminate at some
new major iteration xk+1 under these circumstances, so we can rule out this
possibility. The second possibility is that the sequence {xk} is infinite but that
there is some ε > 0 and an infinite subsequence of indices {kj}j=1,2,... such that

‖xkj − P (xkj )‖∞ ≥ ε, j = 0, 1, 2, . . . .

Since the sequence {Q(xkj )}j=1,2,... is infinite, decreasing, and bounded below,
it converges to some value Q̄ > Q∗. Moreover, since the entire sequence {Q(xk)}
is monotone decreasing, it follows that

Q(xk)−Q∗ > Q̄ − Q∗ > 0, k = 0, 1, 2, . . . .

Hence, by boundedness of the subgradients (see (30)), and using the definitions
(36) and (37), we can identify a constant ε̄ > 0 such that Ek ≥ ε̄ and Fk ≥ ε̄ for
all k. Therefore, by Lemma 2, we have

Q(xk)−mk,`(xk,`) ≥ min(∆k,`/ε̄, 1)[Q̄ − Q∗], k = 0, 1, 2, . . . . (55)

For each major iteration index k, let `(k) be the minor iteration index that
passes the acceptance test (19). By combining (19) with (55), we have that

Q(xk)−Q(xk+1) ≥ ξmin(∆k,`(k)/ε̄, 1)[Q̄ − Q∗].

Since Q(xk) − Q(xk+1) → 0, we deduce that limk→∞∆k,`(k) = 0. However,
since Ek and Fk are bounded away from 0, we have from Lemma 3 that ∆k,`

is bounded away from 0, giving a contradiction. We conclude that the second
possibility (an infinite sequence {xk} not converging to S) cannot occur either,
so the proof is complete.
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It is easy to show that the algorithm terminates finitely when εtol > 0. The
argument in the proof of Theorem 1 shows that either the test (27) is satisfied
at some minor iteration, or the algorithm identifies a new major iteration. Since
the amount of reduction at each major iteration is at least ξεtol (from (19)), and
since we assume that a solution set exists, the number of major iterations must
be finite.

3.3. Discussion

If a 2-norm trust region is used in place of the ∞-norm trust region of (16), it
is well known that the solution of the subproblem

min
x

mk,`(x) subject to Ax = b, x ≥ 0, ‖x− xk‖2 ≤ ∆k

is identical to the solution of

min
x

mk,`(x) + λ‖x− xk‖2 subject to Ax = b, x ≥ 0, (56)

for some λ ≥ 0. We can transform (56) to a quadratic program in the same
fashion as the transformation of (16) to (17). The “regularized” or “proximal”
bundle approaches described in Kiwiel [15], Hiriart-Urruty and Lemaréchal [14,
Chapter XV], and Ruszczyński [20,21] work with the formulation (56). They
manipulate the parameter λ directly rather than adjusting the trust-region ra-
dius ∆, more in the spirit of the Levenberg-Marquardt method for least-squares
problems than of a true trust-region method.

We chose to devise and analyze an algorithm based on the ∞-norm trust
region for two reasons. First, the linear-programming trust-region subproblems
(17) can be solved by high-quality linear programming software, making the
algorithm much easier to implement than the specialized quadratic programming
solver required for (56). Although it is well known that the 2-norm trust region
often yields a better search direction than the ∞-norm trust region when the
objective is smooth, it is not clear if the same property holds for the the function
Q, which is piecewise linear with a great many pieces. Our second reason was
that the convergence analysis of the ∞-norm algorithm differs markedly from
that of the regularized methods presented in [15,14,20,21], making this project
interesting from the theoretical point of view as well as computationally.

Finally, we note that aggregation of cuts, which is a feature of the regularized
methods mentioned above and which is useful in limiting storage requirements,
can also be performed to some extent in Algorithm TR. In Procedure Model-
Update, we still need to retain the cuts generated at xk, and at the earlier
minor iterations ` satisfying (20). However, the cuts active at the solution of
the subproblem (17) can be aggregated into C cuts, one for each index j =
1, 2, . . . , C. To describe the aggregation, we use the alternative form (32) of the
subproblem (17), from which the inactive cuts have been removed. Denoting
the Lagrange multiplier vectors for the constraints (32b) by λj , j = 1, 2, . . . , C,
we have from the optimality conditions for (32b) that λj ≥ 0 and eTλj = 1,
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j = 1, 2, . . . , C. Moreover, if we replace the constraints (32b) by the C aggregated
constraints

θj ≥ λTj F̄
k,`
[j] x+ λTj f̄

k,`
[j] , j = 1, 2, . . . , C, (57)

then the solution of (32) and its optimal objective value are unchanged. Hence,
in Procedure Model-Update, we can delete the “else if” clause concerning the
constraints active (17), and insert the addition of the cuts (57) to the end of the
procedure.

4. An Asynchronous bundle-trust-region method

In this section we present an asynchronous, parallel version of the trust-region
algorithm of the preceding section and analyze its convergence properties.

4.1. Algorithm ATR

We now define a variant of the method of Section 3 that allows the partial sums
Q[j], j = 1, 2, . . . , C (7) and their associated cuts to be evaluated simultaneously
for different values of x. We generate candidate iterates by solving trust-region
subproblems centered on an “incumbent” iterate, which (after a startup phase)
is the point xI that, roughly speaking, is the best among those visited by the
algorithm whose function value Q(x) is fully known.

By performing evaluations of Q at different points concurrently, we relax the
strict synchronicity requirements of Algorithm TR, which requires Q(xk) to be
evaluated fully before the next candidate xk+1 is generated. The resulting ap-
proach, which we call Algorithm ATR (for “asynchronous TR”), is more suitable
for implementation on computational grids of the type we consider here. Besides
the obvious increase in parallelism that goes with evaluating several points at
once, there is no longer a risk of the entire computation being held up by the slow
evaluation of one of the partial sums Q[j] on a recalcitrant worker. Algorithm
ATR has similar theoretical properties to Algorithm TR, since the mechanisms
for accepting a point as the new incumbent, adjusting the size of the trust region,
and adding and deleting cuts are all similar to the corresponding mechanisms in
Algorithm TR.

Algorithm ATR maintains a “basket” B of at most K points for which the
value of Q and associated subgradient information is partially known. When the
evaluation of Q(xq) is completed for a particular point xq in the basket, it is
installed as the new incumbent if (i) its objective value is smaller than that of
the current incumbent xI ; and (ii) it passes a trust-region acceptance test like
(19), with the incumbent at the time xq was generated playing the role of the
previous major iteration in Algorithm TR. Whether xq becomes the incumbent
or not, it is removed from the basket.

When a vacancy arises in the basket, we may generate a new point by solv-
ing a trust-region subproblem similar to (16), centering the trust region at the
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current incumbent xI . During the startup phase, while the basket is being popu-
lated, we wait until the evaluation of some other point in the basket has reached
a certain level of completion (that is, until a proportion σ ∈ (0, 1] of the par-
tial sums (7) and their subgradients have been evaluated) before generating a
new point. We use a logical variable specevalq to indicate when the evaluation
of xq passes the specified threshold and to ensure that xq does not trigger the
evaluation of more than one new iterate. (Both σ and specevalq play a similar
role in Algorithm ALS.) After the startup phase is complete (that is, after the
basket has been filled), vacancies arise only after evaluation of an iterate xq is
completed.

We use m(·) (without subscripts) to denote the model function for Q(·).
When generating a new iterate, we use whatever cuts are stored at the time to
define m. When solved around the incumbent xI with trust-region radius ∆, the
subproblem is as follows:

trsub(xI ,∆): min
x

m(x) subject to Ax = b, x ≥ 0, ‖x− xI‖∞ ≤ ∆. (58)

We refer to xI as the parent incumbent of the solution of (58).
In the following description, we use k to index the successive points xk that

are explored by the algorithm, I to denote the index of the incumbent, and
B to denote the basket. As in the description of ALS, we use T1, T2, . . . , TT to
denote a partition of {1, 2, . . . , C} such that the rth computational task consists
of the clusters j ∈ Tr (that is, evaluation of the partial sums Q[j], j ∈ Tr and
their subgradients). We use tk to count the number of tasks for the evaluation
of Q(xk) that have been completed so far.

Given a starting guess x0, we initialize the algorithm by setting the dummy
point x−1 to x0, setting the incumbent index I to −1, and setting the initial
incumbent value QI = Q−1 to ∞. The iterate at which the first evaluation is
completed becomes the first “serious” incumbent.

We now outline some other notation used in specifying Algorithm ATR:

QI : The objective value of the incumbent xI , except in the case of I = −1, in
which case Q−1 =∞.

Iq: The index of the parent incumbent of xq, that is, the incumbent index I
at the time that xq was generated from (58). Hence, QIq = Q(xIq ) (except
when Iq = −1; see previous item).

∆q: The value of the trust-region radius ∆ used when solving for xq.
∆curr: Current value of the trust-region radius. When it comes time to solve (58)

to obtain a new iterate xq, we set ∆q ← ∆curr.
mq: The optimal value of the objective functionm in the subproblem trsub(xIq ,∆q)

(58).

Our strategy for maintaining the model closely follows that of Algorithm TR.
Whenever the incumbent changes, we have a fairly free hand in deleting the cuts
that define m, just as we do after accepting a new major iterate in Algorithm TR.
If the incumbent does not change for a long sequence of iterations (corresponding
to a long sequence of minor iterations in Algorithm TR), we can still delete
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“stale” cuts that represent information in m that has likely been superseded (as
quantified by a parameter η ∈ [0, 1)). The following version of Procedure Model-
Update, which applies to Algorithm ATR, takes as an argument the index k of
the latest iterate generated by the algorithm. It is called after the evaluation of
Q at an earlier iterate xq has just been completed, but xq does not meet the
conditions needed to become the new incumbent.

Procedure Model-Update (k)
for each optimality cut defining m

possible delete ← true;
if the cut was generated at the parent incumbent Ik of k

possible delete ← false;
else if the cut was active at the solution xk of trsub(xIk ,∆k)

possible delete ← false;
else if the cut was generated at an earlier iteration ¯̀

such that I¯̀ = Ik 6= −1 and

QIk −mk > η[QIk −m¯̀] (59)

possible delete ← false;
end (if)
if possible delete

possibly delete the cut;
end (for each)

Our strategy for adjusting the trust region ∆curr also follows that of Algo-
rithm TR. The differences arise from the fact that between the time an iterate
xq is generated and its function value Q(xq) becomes known, other adjustments
of ∆current may have occurred, as the evaluation of intervening iterates is com-
pleted. The version of Procedure Reduce-∆ for Algorithm ATR is as follows.

Procedure Reduce-∆(q)
if Iq = −1

return;
evaluate

ρ = min(1,∆q)
Q(xq)−QIq
QIq −mq

; (60)

if ρ > 0
counter ← counter+1;

if ρ > 3 or (counter ≥ 3 and ρ ∈ (1, 3])
set ∆+

q ← ∆q/min(ρ, 4);
set ∆curr ← min(∆curr,∆

+
q );

reset counter ← 0;
return.

The protocol for increasing the trust region after a successful step is based
on (25), (26). If on completion of evaluation of Q(xq), the iterate xq becomes
the new incumbent, then we test the following condition:

Q(xq) ≤ QIq − 0.5(QIq −mq) and ‖xq − xIq‖∞ = ∆q. (61)
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If this condition is satisfied, we set

∆curr ← max(∆curr,min(∆hi, 2∆q)). (62)

The convergence test is also similar to the test (27) used for Algorithm TR.
We terminate if, on generation of a new iterate xk, we find that

QI −mk ≤ εtol(1 + |QI |). (63)

We now specify the four key routines of the Algorithm ATR, which serve
a similar function to the four main routines of Algorithm ALS. The routine
partial evaluate defines a single task that executes on worker processors, while
the other three routines execute on the master processor.

ATR: partial evaluate(xq, q, r)
Given xq, index q, and task index r, evaluate Q[j](xq) from (7) for each j ∈ Tr,

together with partial subgradients gj from (9);
Activate act on completed task(xq, q, r) on the master processor.

ATR: evaluate(xq, q)
for r = 1, 2, . . . , T (possibly concurrently)

partial evaluate(xq, q, r);
end (for)

ATR: initialization(x0)
determine number of clusters C and number of tasks T ,

and the partitions N1,N2, . . . ,NC and T1, T2 . . . , TT ;
choose ξ ∈ (0, 1/2), trust region upper bound ∆hi > 0;
choose synchronicity parameter σ ∈ (0, 1];
choose maximum basket size K > 0;
choose ∆curr ∈ (0,∆hi], counter ← 0; B ← ∅;
I ← −1; x−1 ← x0; Q−1 ←∞; I0 ← −1;
k ← 0; speceval0 ← false; t0 ← 0;
evaluate(x0, 0).

ATR: act on completed task(xq, q, r)
tq ← tq + 1;
for each j ∈ Tr

add Q[j](xq) and cut gj to the model m;
basketFill ← false; basketUpdate ← false;
if tq = T (* evaluation of Q(xq) is complete *)

if Q(xq) < QI and (Iq = −1 or Q(xq) ≤ QIq − ξ(QIq −mq))
(* make xq the new incumbent *)
I ← q; QI ← Q(xI);
possibly increase ∆curr according to (61) and (62);
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modify the model function by possibly deleting cuts not
generated at xq;

else
call Model-Update(k);
call Reduce-∆(q) to update ∆curr;

end (if)
B ← B\{q};
basketUpdate ← true;

else if tq ≥ σT and |B| < K and not specevalq
(* basket-filling phase: enough partial sums have been evaluated at xq

to trigger calculation of a new candidate iterate *)
specevalq ←true; basketFill ← true;

end (if)
if basketFill or basketUpdate

k ← k + 1; set ∆k ← ∆curr; set Ik ← I;
solve trsub(xI ,∆k) to obtain xk;
mk ← m(xk);
if (63) holds

STOP;
B ← B ∪ {k};
specevalk ←false; tk ← 0;
evaluate(xk, k);

end (if)

It is not generally true that the first K iterates x0, x1, . . . , xK−1 generated by
the algorithm are all basket-filling iterates. Often, an evaluation of some iterate is
completed before the basket has filled completely, so a “basket-update” iterate is
used to generate a replacement for this point. Since each basket-update iterate
does not change the size of the basket, however, the number of basket-filling
iterates that are generated in the course of the algorithm is exactly K.

4.2. Analysis of algorithm ATR

We now analyze Algorithm ATR, showing that its convergence properties are
similar to those of Algorithm TR. Throughout, we make the following assump-
tion:

Every task is completed after a finite time. (64)

The analysis follows closely that of Algorithm TR presented in Section 3.2.
We state the analogues of all the lemmas and theorems from the earlier section,
incorporating the changes and redefinitions needed to handle Algorithm ATR.
Most of the details of the proofs are omitted, however, since they are similar to
those of the earlier results.

We start by defining the level set within which the points and incumbents
generated by ATR lie.
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Lemma 5. All incumbents xI generated by ATR lie in L(Qmax), whereas all
points xk considered by the algorithm lie in L(Qmax;∆hi), where L(·) and L(·; ·)
are defined by (28) and (29), respectively, and Qmax is defined by

Qmax
def= sup{Q(x) |Ax = b, x ≥ 0, ‖x− x0‖∞ ≤ ∆hi}.

Proof. Consider first what happens in ATR before the first function evaluation
is complete. Up to this point, all the iterates xk in the basket are generated
in the basket-filling part and therefore satisfy ‖xk − x0‖∞ ≤ ∆k ≤ ∆hi, with
QIk = Q−1 =∞.

When the first evaluation is completed (by xk, say), it trivially passes the
test to be accepted as the new incumbent. Hence, the first noninfinite incumbent
value becomes QI = Q(xk), and by definition we have QI ≤ Qmax. Since all later
incumbents must have objective values smaller than this first QI , they all must
lie in the level set L(Qmax), proving our first statement.

All points xk generated within act on completed task lie within a distance
∆k ≤ ∆hi either of x0 or of one of the later incumbents xI . Since all the incum-
bents, including x0, lie in L(Qmax), we conclude that the second claim in the
theorem is also true.

Extending (30), we redefine the bound β̄ on the subgradients over the set
L(Qmax;∆hi) as follows:

β = sup{‖g‖1 | g ∈ ∂Q(x), for some x ∈ L(Qmax;∆hi)}. (65)

The next result is analogous to Lemma 1. It shows that for any sequence of
iterates xk for which the parent incumbent xIk is the same, the optimal objective
value in trsub(xIk ,∆k) is monotonically increasing.

Lemma 6. Consider any contiguous subsequence of iterates xk, k = k1, k1 +
1, . . . , k2 for which the parent incumbent is identical; that is, Ik1 = Ik1+1 =
· · · = Ik2 . Then we have

mk1 ≤ mk1+1 ≤ · · · ≤ mk2 .

Proof. We select any k = k1, k1 +1, . . . , k2−1 and prove that mk ≤ mk+1. Since
xk and xk+1 have the same parent incumbent (xI , say), no new incumbent has
been accepted between the generation of these two iterates, so the wholesale cut
deletion that may occur with the adoption of a new incumbent cannot have oc-
curred. There may, however, have been a call to Model-Update(k). The first “else
if” clause in Model-Update would have ensured that cuts active at the solution
of trsub(xI ,∆k) were still present in the model when we solved trsub(xI ,∆k+1)
to obtain xk+1. Moreover, since no new incumbent was accepted, ∆curr cannot
have been increased, and we have ∆k+1 ≤ ∆k. We now use the same argument
as in the proof of Lemma 1 to deduce that mk ≤ mk+1.

The following result is analogous to Lemma 2. We omit the proof, which
modulo the change in notation is identical to the earlier result.
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Lemma 7. For all k = 0, 1, 2, . . . such that Ik 6= −1, we have that

QIk −mk ≥ min
(
∆k, ‖xIk − P (xIk)‖∞

) QIk −Q∗

‖xIk − P (xIk)‖∞
. (66)

The following analogue of Lemma 3 requires a slight redefinition of the quan-
tity Ek from (36). We now define it to be the closest approach by an incumbent
to the solution set, up to and including iteration k; that is,

Ek
def= min

k̄=0,1,...,k;Ik̄ 6=−1
‖xIk̄ − P (xIk̄)‖∞. (67)

We redefine Fk similarly as follows:

Fk
def= min

k̄=0,1,...,k, xIk̄ /∈S, Ik̄ 6=−1

Q(xIk̄)−Q∗

‖xIk̄ − P (xIk̄)‖∞
, (68)

We omit the proof of the following result, which, allowing for the change of
notation, is almost identical to that of Lemma 3.

Lemma 8. There is a constant ∆lo > 0 such that for all trust regions ∆k used
in the course of Algorithm ATR, we have

∆k ≥ (1/4) min(Ek, Fk/β),

where β, Ek, and Fk are as defined in (65), (67), and (68), respectively.

There is also an analogue of Lemma 4 that shows that if the incumbent re-
mains the same for a number of consecutive iterations, the gap between incum-
bent objective value and model function decreases significantly as the iterations
proceed.

Lemma 9. Let εtol = 0 in Algorithm ATR, and let η̄ be any constant satisfying
0 < η̄ < 1, η̄ > ξ, η̄ ≥ η. Choosing any index k1 with Ik1 6= −1, we have either
that the incumbent Ik1 = I is eventually replaced by a new incumbent or that
there is an iteration k2 > k1 such that

QI −mk2 ≤ η̄
[
QI −mk1

]
. (69)

The proof of this result follows closely that of its antecedent Lemma 4. The key
is in the construction of the Model-Update procedure. As long as

QI −mk > η[QI −mk1 ], for k ≥ k1, where I = Ik1 = Ik, (70)

none of the cuts generated during the evaluation of Q(xq) for any q = k1, k1 +
1, . . . , k can be deleted. The proof technique of Lemma 4 can then be used to
show that the successive iterates xk1 , xk1+1, . . . cannot be too closely spaced if
the condition (70) is to hold and if all of them fail to satisfy the test to become
a new incumbent. Since they all belong to a box of finite size centered on xI ,
there can be only finitely many of these iterates. Hence, either a new incumbent
is adopted at some iteration k ≥ k1 or condition (69) is eventually satisfied.

We now show that a nonoptimal point cannot remain as the incumbent in-
definitely. The following result is analogous to Theorem 1, and its proof relies
on the earlier results in exactly the same way.
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Theorem 3. Suppose that εtol = 0.

(i) If xI /∈ S, then this incumbent is replaced by a new incumbent after a finite
time.

(ii) If xI ∈ S, then either Algorithm ATR terminates (and verifies that xI ∈ S),
or QI −mk ↓ 0 as k →∞.

We conclude with the result that shows convergence of the sequence of in-
cumbents to S. Once again, the logic of proof follows that of the synchronous
analogue Theorem 2.

Theorem 4. Suppose that εtol = 0. The sequence of incumbents {xIk}k=0,1,2,...

is either finite, terminating at some xI ∈ S or is infinite with the property that
‖xIk − P (xIk)‖∞ → 0.

5. Implementation on computational grids

We now describe some salient properties of the computational environment in
which we implemented the algorithms, namely, a computational grid running
the Condor system and the MW runtime support library.

5.1. Properties of grids

The term “grid computing” (synonymously “metacomputing”) is generally used
to describe parallel computations on a geographically distributed, heterogeneous
computing platform. Within this framework there are several variants of the con-
cept. The one of interest here is a parallel platform made up of shared worksta-
tions, nodes of PC clusters, and supercomputers. Although such platforms are
potentially powerful and inexpensive, they are difficult to harness for productive
use, for the following reasons:

– Poor communications properties. Latencies between the processors may be
high, variable, and unpredictable.

– Unreliability. Resources may disappear without notice. A workstation per-
forming part of our computation may be reclaimed by its owner and our job
terminated.

– Dynamic availability. The pool of available processors grows and shrinks
during the computation, according to the claims of other users and scheduling
considerations at some of the nodes.

– Heterogeneity. Resources may vary in their operational characteristics (mem-
ory, swap space, processor speed, operating system).

In all these respects, our target platform differs from conventional multiprocessor
platforms (such as IBM SP or SGI Origin machines) and from Linux clusters.
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5.2. Condor

Our particular interest is in grid computing platforms based on the Condor sys-
tem [16], which manages distributively owned collections (“pools”) of processors
of different types, including workstations, nodes from PC clusters, and nodes
from conventional multiprocessor platforms. When a user submits a job, the
Condor system discovers a suitable processor for the job in the pool, transfers
the executable and starts the job on that processor. It traps system calls (such
as input/output operations), referring them back to the submitting workstation,
and checkpoints the state of the job periodically. It also migrates the job to a
different processor in the pool if the current host becomes unavailable for any
reason (for example, if the workstation is reclaimed by its owner). Condor man-
aged processes can communicate through a Condor-enabled version of PVM [11]
or by using Condor’s I/O trapping to write into and read from a series of shared
files.

5.3. Implementation in MW

MW (see Goux, Linderoth, and Yoder [13] and Goux et al. [12]) is a runtime
support library that facilitates implementation of parallel master-worker appli-
cations on computational grids. To implement MW on a particular computa-
tional grid, a grid programmer must reimplement a small number of functions
to perform basic operations for communications between processors and man-
agement of computational resources. These functions are encapsulated in the
MWRMComm class. Of more relevance to this paper is the other side of MW,
the application programming interface. This interface takes the form of a set
of three C++ abstract classes that must be reimplemented by the application
programmer in a way that describes the particular application. These classes,
named MWDriver, MWTask, and MWWorker, contain a total of ten methods
which we describe briefly here, indicating how they are implemented for the
particular case of the ATR and ALS algorithms.

MWDriver. This class is made up of methods that execute on the submitting
workstation, which acts as the master processor. It contains the following four
C++ pure virtual functions. (Naturally, other methods can be defined as needed
to implement parts of the algorithm.)

– get userinfo: Processes command-line arguments and does basic setup. In
our applications this function reads a command file to set various parame-
ters, including convergence tolerances, number of scenarios, number of partial
sums to be evaluated in each task, maximum number of worker processors to
be requested, initial trust region radius, and so on. It calls the routines that
read and store the problem data files and the initial point, if one is supplied.
It also performs the operations specified in the initialization routine of
Algorithms ALS and ATR, except for the final evaluate operation, which is
handled by the next function.
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– setup initial tasks: Defines the initial pool of tasks. For ALS and ATR,
this function corresponds to a call to evaluate at x0.

– pack worker init data: Packs the initial data to be sent to each worker
processor when it joins the pool. In our case, this data consists of the infor-
mation from the input files for the stochastic programming problem. When
the worker subsequently receives a task requiring it to solve a number of
second-stage scenarios, it uses these files to generate the particular data for
its assigned set of scenarios. By loading each new worker with the problem
data, we avoid having to subsequently pass a complete set of data for every
scenario in every task.

– act on completed task: This routine is called after the termination of each
task, to process the results of the task and to take any necessary actions.
Algorithms ALS and ATR contain further details.

The MWDriver base class performs many other operations associated with
handling worker processes that join and leave the computation, assigning tasks
to appropriate workers, rescheduling tasks when their host workers disappear
without warning, and keeping track of performance data for the run. All this
complexity is hidden from the application programmer.

MWTask. The MWTask is the abstraction of a single task. It holds both the
data describing that task and the results obtained by executing the task. The
user must implement four functions for packing and unpacking this data into
simple data structures that can be communicated between master and workers
using the primitives appropriate to the particular computational grid platform.
In most of the results reported in Section 6, the message-passing facilities of
Condor-PVM were used to perform the communication. By simply changing
compiler directives, the same code can also be implemented on an alternative
communication protocol that uses shared files to pass messages between master
and workers. The large run reported in the next section used this version of the
code.

In our applications, each task evaluates the partial sum Q[j](x) and a subgra-
dient for a given number of clusters. The task is described by a range of scenario
indices for each cluster in the task and by a value of the first-stage variables x.
The results consist of the function and subgradient for each of the clusters in
the task.

MWWorker. The MWWorker class is the core of the executable that runs on
each worker. The user must implement two pure virtual functions:

– unpack init data: Unpacks the initial information passed to the worker by
the MWDriver function pack worker init data().

– execute task: Executes a single task.

After initializing itself, using the information passed to it by the master, the
worker process sits in a loop, waiting for tasks to be sent to it. When it detects a
new task, it calls execute task. On completion of the task, it passes the results
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back to the worker by using the appropriate function from the MWTask class,
and returns to its wait loop. In our applications, execute task() formulates the
second-stage linear programs in its clusters, uses linear programming software
to solve them, and then calculates the subgradient for each cluster.

6. Computational results

We now report on computational experiments obtained with implementations
of the ALS, TR, and ATR algorithms using MW on the Condor system. After
describing some further details of the implementations and the experiments, we
discuss our choices for the various algorithmic parameters in the different runs.
We then tabulate and discuss the results. Finally, we compare with results ob-
tained with a state-of-the-art code implementing the regularized decomposition
algorithm.

6.1. Implementations and experiments

As noted earlier, we used the Condor-PVM implementation of MW for most of
the the runs reported here. Most of the computational time is taken up with solv-
ing linear programs, both by the master process (in solving the master problem to
determine the next iterate) and in the tasks (which solve clusters of second-stage
linear programs). We used the CPLEX simplex solver on the master processor [8]
and the SOPLEX public-domain simplex code of Wunderling [26] on the work-
ers. SOPLEX is somewhat slower in general, but since most of the machines in
the Condor pool do not have CPLEX licenses, there was little alternative but to
use a public-domain code.

We ran most of our experiments on the Condor pool at the University of
Wisconsin, sometimes using Condor’s flocking mechanism to augment this pool
with processors from other sites, as noted below. The architectures included
PCs running Linux, and PCs and Sun workstations running different versions of
Solaris. The number of workers available for our use varied dramatically between
and during each set of trials, because of the variation of our priority during each
run, the number and priorities of other users of the Condor pool at the time,
and the varying number of machines available to the pool. The latter number
tends to be larger during the night, when owners of the individual workstations
are less likely to be using them. The master process was run on a Linux PC.

We used input files in SMPS format (see Birge et al. [2] and Gassmann and
Schweitzer [10]), and Monte Carlo sampling to obtain approximate problems
with a specified number N of second-stage scenarios. In each experiment, we
supplied a starting point to the code, obtained from the solution of a different
sampled instance of the same problem. In mosts cases, the function value of the
starting point was quite close to the optimal objective value.

We report on experience with two test problems. The first is the SSN problem,
arising from a network design application of Sen, Doverspike, and Cosares [23].
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SSN is based on a graph with 89 arcs, each representing a telecommunications
link between two cities. The first-stage variables represent the extra capacity
to be added to each arc to meet uncertain demands, which consist of requests
for service between pairs of nodes in the graph. There is a bound on the total
capacity to be added. For each set of demands, a route through the network of
sufficient capacity to meet the demands must be found, otherwise a penalty term
is added to the objective. The second-stage problems are network flow problems
for calculating the routing for a given set of demands. Each such problem is
nontrivial; there are 706 variables, 175 constraints, and 2284 nonzeros in the
constraint matrix. The uncertainty lies in the fact that the demand for service
on each of the 86 node pairs is not known exactly. Rather, there are three to
seven possible scenarios for each demand, all independent of each other, giving
a total of about 1070 possible scenarios.

The second test problem is a cargo flight scheduling application described by
Mulvey and Ruszczyński [18], known as the “storm” problem. In this application,
the first-stage problem contains 121 variables, while the second-stage problem
contains 1259 variables. The total number of scenarios is about 1081.

6.2. Critical parameters

As part of the initialization procedure (implemented by the get userinfo func-
tion in the MWDriver class), the code reads an input file in which various param-
eters are specified. Several parameters, such as those associated with modifying
the size of the trust region, have fixed values that we have discussed already in
the text. Others are assigned the same values for all algorithms and all experi-
ments, namely,

εtol = 10−5, ∆hi = 103, ∆0,0 = ∆0 = 1, ξ = 10−4.

We also set η = 0 in the Model-Update functions in both TR and ATR. In TR,
this choice has the effect of not allowing deletion of cuts generated during any
major iterations, until a new major iterate is accepted. In ATR, the effect is to
not allow deletion of cuts that are generated at points whose parent incumbent
is still the incumbent. Even among cuts for which possible delete is still true
at the final conditional statement of the Model-Update procedures, we do not
actually delete the cuts until they have been inactive at the solution of the trust-
region subproblem for a specified number of consecutive iterations. Specifically,
we delete the cut only if more than 100 master problems have been solved since
the point at which it was generated. Our cut management strategy tends to
lead to subproblems (16) and (58) with fairly large numbers of cuts but, in our
experience, the storage required for these cuts and the time required to solve the
subproblems remain reasonable.

The synchronicity parameter σ, which arises in Algorithms ALS and ATR
and which specifies the proportion of clusters from a particular point that must
be evaluated in order to trigger evaluation of a new candidate solution, is varied
between .5 and 1.0 in our experiments. The size K of the basket B is varied
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between 1 and 14. For each problem, the number of clusters C and the num-
ber of computational tasks T is varied as shown in the tables. Note that the
number of second-stage LPs per cluster is therefore N/C while the number per
computational task is N/T .

The MW library allows us to specify an upper bound on the number of
workers we request from the Condor pool, so that we can avoid claiming more
workers than we can utilize effectively. We calculate a rough estimate of this
number based on the number of tasks T per evaluation of Q(x) and the basket
size K. For instance, the synchronous TR and LS algorithms can never use more
than T worker processors, since they evaluate Q at just one x at a time. In the
case of TR and ATR, we request mid(25, 200, b(K + 1)T/2c) workers. For ALS,
we request mid(25, 200, 2T ) workers.

We have a single code that implements all four algorithms LS, ALS, TR, and
ATR, using logical branches within the code to distinguish between the L-shaped
and trust-region variants. There is no distinction in the code between the two
synchronous variants and their asynchronous counterparts. Instead, by setting
σ = 1.0, we force synchronicity by ensuring that the algorithm considers only
one value of x at a time.

Whenever a worker processor joins the computation, MW sends it a bench-
mark task that typifies the type of task it will receive during the run. In our case,
we define the benchmark task to be the solution of N/T identical second-stage
LPs. The time required for the processor to solve this task is logged, and we set
the ordering policy so as to ensure that when more than one worker is available
to process a particular task, the task is sent to the worker that logged the fastest
time on the benchmark task.

6.3. Results: Varying parameter choices

In this section we describe a series of experiments on the same problem, using
different parameter settings, and run under different conditions on the Condor
pool. A word of caution is in order. In a dynamic computing environment such
as a computational grid, the variance in the computing pool makes it difficult
to draw firm conclusions about the relative effectiveness of parameter settings.
Indeed, it is not the goal of this work to determine one best set of parameters
for all cases. Instead, the goal is to design an algorithm is flexible enough to run
efficiently in the dynamic computing environment of the computational grid.
For these trials, we use a sampled approximation to the problem SSN [23], with
N = 10, 000 scenarios. The deterministic equivalent has approximately 1.75×106

constraints and 7.06 × 106 variables. In all the runs, we used as starting point
the computed solution for a sampled approximation with N = 20, 000 scenarios.

In the tables below we list the following information.

– points evaluated. The number of distinct values of the first-stage variables
x generated by solving the master subproblem—the problem (14) for Algo-
rithm ALS, (16) for Algorithm TR, and (58) for Algorithm ATR.

– |B|. Maximum size of the basket, also denoted above by K.
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– number of tasks. Denoted above by T , the number of computational tasks
into which the evaluation of each Q(x) is divided.

– number of clusters. Denoted above by C, identical to the number of partial
subgradients produced at each evaluation point.

– max processors. The number of workers requested.
– average processors. The average of the number of active (nonsuspended)

worker processors available for use by our problem during the run. Because
of the dynamic nature of the Condor system, the actual number of available
processors fluctuates continually during the run.

– parallel efficiency. The proportion of time for which worker processors were
kept busy solving second-stage problems while they were owned by this run.

– maximum number of cuts in the model. The maximum number of
(partial) subgradients that are used to define the model function during the
course of the algorithm.

– masterproblem solve time. The total time spent solving the master sub-
problem to generate new candidate iterates during the course of the algo-
rithm.

– wall clock. The total time (in minutes) between submission of the job and
termination.

Synchronicity and ALS. The first experiment was designed to gauge the effect
of varying the synchronicity parameter σ in the ALS algorithm. Table 1 shows
the results of a series of trials of Algorithm ALS with three different values of
σ (.5, .7, and .85) and four different choices for the number of tasks T (25, 50,
100, and 200). The number of clusters C was fixed at 200, so that up to 200
cuts were generated at each iteration. For σ = .5, the number of values of x
for which second-stage evaluations are occurring at any point in time ranged
from 2 to 10, but was rarely more than 5 except in the version with T = 200.
For σ = .85, there were usually just 2 (and never more than 3) points being
evaluated simultaneously.

We conclude from this table that the performance of ALS is not particularly
sensitive to the choice of σ, although there seems to be a slight preference for
the smaller values σ = .5 and σ = .7. (The relatively long runtime for the case
of T = 100, σ = .7 was due to a smaller number of workers being available from
the Condor pool during that run.) Also, for the number of processors available,
there is not a strong dependence of wallclock time on T . If more processors were
available, we would expect to see an advantage for larger T , since the larger
number of tasks would be able to keep the processors more fully occupied.

A note on typical task sizes: For T = 200, most tasks required between 0.5
and 3 seconds to execute on a worker machine, while for T = 25, between 3.3
and 32 seconds were required per task. We used only Linux machines for these
runs, which were performed in September 2002, when the Wisconsin Condor pool
contained many fast machines of this kind. Few pre-emptions were experienced,
but the pool was quite diverse in speed; the ratio of benchmark performance
between the fastest and slowest worker used in any given run ranged up to 10.
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ALS 98 .5 25 200 200 38 .35 19505 8.8 26.2
ALS 93 .7 25 200 200 33 .34 18545 7.9 24.1
ALS 99 .85 25 200 200 34 .25 19776 8.7 33.2
ALS 98 .5 50 200 200 33 .37 19501 8.6 23.6
ALS 97 .7 50 200 200 31 .36 19339 8.6 28.4
ALS 98 .85 50 200 200 32 .33 19573 8.7 29.7
ALS 97 .5 100 200 200 26 .45 19297 8.6 24.8
ALS 106 .7 100 200 200 16 .52 20420 9.6 35.6
ALS 99 .85 100 200 200 29 .41 19771 8.7 22.8
ALS 97 .5 200 200 200 28 .44 19292 8.5 26.2
ALS 99 .7 200 200 200 36 .39 19736 8.9 24.8
ALS 99 .85 200 200 200 40 .32 19767 9.0 27.0

Table 1. SSN, with N = 10, 000 scenarios, Algorithm ALS.

One advantage of the ALS algorithm that we noted was that the asymptotic
convergence was quite fast. Having taken many iterations to build up a model
and return to a neighborhood of the solution after having strayed far from it in
early iterations, the last three to four iterations home in rapidly to a solution of
high accuracy.

TR and ATR Performance: Slower Condor Pool. The second experiment mea-
sured the effect of the basket size |B| and the number of clusters C and tasks T
on computational performance of ATR, in a lower-quality Condor pool. Recall
that an increase in basket size reduces the synchronization requirements of the
algorithm, and may therefore be effective when some workers in the pool are
notably slower than others, or when workers are liable to be suspended during
a run. The number of clusters C is likely to affect the number of iterations re-
quired; a higher C yields richer subgradient information and therefore a reduced
iteration count, while possibly increasing the amount of time required to solve
each master problem. The number of workers that can be used effectively can
be increased by increasing the number of tasks T . However, a too-high value of
T can result in tasks that are too small, and require too much work from the
master in acting on the results that return from the tasks.

In Tables 2 and 3, we report on two sets of trials on the same problem as
discussed in Table 1. In these trials we varied the following parameters:

– basket size: K = 1 (synchronous TR) as well as K = 3, 6, 9, 14;
– number of tasks: T = 10, 25, 50, as in Table 1;
– number of clusters: C = 50, 100.

The parameter σ was fixed at .7 in all these runs, as we noted little sensitivity
to the value of this parameter within a fairly broad range.
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TR 48 - 10 100 20 19 .21 4284 3 131
TR 72 - 10 50 20 19 .26 3520 3 150
TR 39 - 25 100 25 22 .49 3126 2 59
TR 75 - 25 50 25 23 .48 3519 3 114
TR 43 - 50 100 50 42 .52 3860 3 35
TR 61 - 50 50 50 44 .53 3011 3 40

ATR 109 3 10 100 20 18 .74 7680 9 107
ATR 121 3 10 50 20 19 .66 4825 6 111
ATR 105 3 25 100 50 37 .73 7367 8 49
ATR 113 3 25 50 50 41 .60 4997 6 48
ATR 103 3 50 100 100 66 .55 7032 9 29
ATR 129 3 50 50 100 66 .59 5183 7 32
ATR 167 6 10 100 35 24 .93 7848 13 99
ATR 209 6 10 50 35 22 .89 5730 15 92
ATR 186 6 25 100 87 49 .77 8220 14 53
ATR 172 6 25 50 87 49 .80 5945 7 49
ATR 159 6 50 100 175 31 .89 7092 11 65
ATR 213 6 50 50 175 40 .88 6299 12 70
ATR 260 9 10 100 50 12 .95 14431 35 267
ATR 286 9 10 50 50 23 .90 6528 19 160
ATR 293 9 25 100 125 17 .93 9911 30 232
ATR 377 9 25 50 125 15 .96 7080 24 321
ATR 218 9 50 100 200 28 .82 10075 25 101
ATR 356 9 50 50 200 23 .93 6132 23 194
ATR 378 14 10 100 75 18 .88 15213 77 302
ATR 683 14 10 50 75 14 .98 8850 48 648
ATR 441 14 25 100 187 22 .89 14597 61 312
ATR 480 14 25 50 187 20 .94 8379 36 347
ATR 446 14 50 100 200 20 .83 13956 64 331
ATR 498 14 50 50 200 22 .94 7892 35 329

Table 2. SSN, with N = 10, 000 scenarios, first trial on slower Condor pool, Algorithms TR
and ATR.

The results reported in Table 2 and Table 3 were obtained in March-April
2001 on the Wisconsin Condor pool. We used a combination of PCs, some of
which were running Linux and some Solaris. At the time, the pool contained a
many relatively slow machines, and many were user-owned machines that were
liable to be reclaimed by their users at random times, pre-empting our jobs. (In
contrast, the runs reported in Tables 1, 4, 5, and 6 were obtained in September
2002, when we drew only on Linux PCs, most of which were members of Linux
clusters rather than individual user workstations, and were therefore less liable
to preemption.)

Since the Condor pool that we tapped in Table 2 and Table 3 was identi-
cal, it is possible to do a meaningful comparison between corresponding lines
of the two tables. Conditions on the Condor pool varied between and during
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TR 47 - 10 100 20 17 .24 3849 4 192
TR 67 - 10 50 20 13 .34 3355 3 256
TR 47 - 25 100 25 18 .49 3876 4 97
TR 57 - 25 50 25 18 .40 2835 3 119
TR 42 - 50 100 50 30 .22 3732 3 122
TR 65 - 50 50 50 31 .25 3128 4 151

ATR 92 3 10 100 20 11 .89 7828 9 125
ATR 98 3 10 50 20 11 .84 4893 5 173
ATR 86 3 25 100 50 34 .38 6145 5 70
ATR 95 3 25 50 50 32 .41 4469 4 77
ATR 80 3 50 100 100 52 .23 5411 5 80
ATR 131 3 50 50 100 59 .47 4717 6 55
ATR 137 6 10 100 35 30 .57 8338 12 84
ATR 200 6 10 50 35 26 .60 5211 9 130
ATR 119 6 25 100 87 52 .55 7181 7 44
ATR 199 6 25 50 87 58 .48 5298 9 81
ATR 178 6 50 100 175 50 .47 9776 15 77
ATR 240 6 50 50 175 61 .64 5910 11 74
ATR 181 9 10 100 50 37 .56 8737 15 96
ATR 289 9 10 50 50 19 .93 7491 25 238
ATR 212 9 25 100 125 90 .66 11017 21 45
ATR 272 9 25 50 125 65 .45 6365 15 105
ATR 281 9 50 100 200 51 .72 11216 34 88
ATR 299 9 50 50 200 26 .83 7438 27 225
ATR 304 14 10 100 75 38 .89 13608 43 129
ATR 432 14 10 50 75 42 .95 7844 28 132
ATR 356 14 25 100 187 71 .78 13332 48 111
ATR 444 14 25 50 187 45 .89 7435 36 163
ATR 388 14 50 100 200 42 .79 12302 52 192
ATR 626 14 50 50 200 48 .81 7273 46 254

Table 3. SSN, with N = 10, 000 scenarios, second trial on slower Condor pool, Algorithms
TR and ATR.

each trial, leading to large variability of runtime from one trial to the next.
Even for synchronous TR, the slightly different numerical values for function
and subgradient value returned by different workers in different runs results in
variations in the iteration sequence and therefore differences in the number of
iterations. For the asynchronous Algorithm ATR, the nondeterminism is even
more marked. During the basket-filling phase of the algorithm, computation of
a new x is triggered when a certain proportion of tasks from a current value of x
has been returned. On different runs, the tasks are returned in different orders,
so the information used by the trust-region subproblem (58) in generating the
new point varies from run to run, and the resulting iteration sequences generally
show substantial differences.
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The synchronous TR algorithm is clearly better than the ATR variants with
K > 1 in terms of total computation, which is roughly proportional to the
number of iterations. In fact, the total amount of work increases steadily with
basket size. Because of the decreased synchronicity requirements and the greater
parallelism obtained for K > 1, the wall clock times for basket sizes K = 3
and K = 6 are competitive with the results obtained for the synchronous TR
algorithm. However, for the large basket sizes, the loss of control induced by
the increase in asynchronicity leads to a significant increase in the number of
iterates, giving longer wall clock times even when more processors are available.

The deleterious effects of synchronicity in Algorithm TR can be seen in its
poor performance on several instances, particularly during the second trial. Let
us compare, for instance, the entries in the two tables for the variant of TR with
T = 50 and C = 100. In the first trial, this run used 42 worker processors on
average and took 35 minutes, while in the second trial it used 30 workers on
average and required 122 minutes. The difference in runtime is too large to be
accounted for by the number of workers. Because this is a synchronous algorithm,
the time required for each iteration is determined by the time required for the
slowest worker to return the results of its task. In the first trial, almost all tasks
required between 6 and 35 seconds, except for a few iterations that contained
tasks that took up to 62 seconds. In the second trial, the slowest worker at each
iteration almost always required more than 60 seconds to complete its task.

Based on these observations, we make the following recommendation for users
of ATR. If the computing platform consists of mostly heterogenous machines that
are unlikely to fail, then a small basket size (or even the synchronous variant
TR) is a good choice. If the computing platform is more variable and unreliable,
we would recommend a slightly larger basket size (say, K = 3). We return to
this point in discussing Table 4 below.

We note too that the larger number of clusters C = 100 gives slightly better
wall clock times in general than the smaller choice C = 50, and significantly
fewer iterations. The larger choices of number of tasks T = 25 and T = 50 also
appear to be better in general than the smallest choice T = 10.

TR and ATR Performance: Faster Condor Pool. We now report on results
obtained with TR and ATR in September 2002 on a higher-quality Condor pool
than that used to obtain Tables 2 and 3. We set the parameters K, C, and T
to values suggested by our experience reported in those tables, choosing larger
values of T and C than were used earlier, and focusing on the smaller values
of K. As mentioned above, the Condor pool for this run consisted of generally
faster and more reliable machines than were available in our earlier tests. Our
results are shown in Table 4.

Note by comparing Table 4 to Tables 2 and 3 that the number of iterations
is definitely smaller for larger values of C. The maximum number of cuts in the
model increases with C, but even for K = 6, the total time required to solve
the master problems is not too great a fraction of the total wall clock time. The
most striking improvements in Table 4 as compared with the earlier Tables 2
and 3 is in the total wall clock times, which have decreased dramatically and
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TR 69 - 50 50 50 24 .54 3450 0.5 18.4
TR 45 - 50 100 50 16 .68 4072 0.5 14.3
TR 34 - 50 200 50 12 .65 6456 0.6 12.4
TR 49 - 100 100 100 13 .68 3731 0.5 16.5
TR 33 - 100 200 100 14 .57 5825 0.6 12.5
TR 33 - 200 200 200 16 .44 5096 0.5 13.5

ATR 154 3 50 50 100 28 .90 4688 1.4 19.5
ATR 115 3 50 100 100 23 .86 6787 1.3 16.5
ATR 105 3 50 200 100 20 .87 8946 1.7 14.8
ATR 90 3 100 100 200 20 .78 5818 1.0 17.6
ATR 93 3 100 200 200 21 .86 11043 1.9 15.5
ATR 84 3 200 200 200 30 .47 11135 1.9 18.6
ATR 218 6 50 50 150 36 .73 6111 3.0 26.5
ATR 199 6 50 100 150 31 .67 7999 3.6 24.6
ATR 152 6 50 200 150 31 .57 14645 5.9 25.8
ATR 186 6 100 100 200 41 .55 9551 3.8 26.0
ATR 129 6 100 200 200 29 .55 13284 3.8 24.8
ATR 144 6 200 200 200 45 .28 14602 5.0 33.2

Table 4. SSN trial on faster Condor pool, N = 10, 000 scenarios, Algorithms TR and ATR.

become much more consistent as the quality of the Condor pool has improved.
By comparing Table 4 with the results for ALS in Table 1, which were obtained at
the same time in the same Condor environment, we see that that regularization
strategy of Algorithm ATR leads to definite improvements in wall clock time
and number of iterations, at least for Algorithm TR and for ATR with K = 3.

We note too that while the wall clock times for ATR with K = 3 are similar
to those of the TR, the advantages of asynchronicity largely disappear when the
prospect of pre-emption of the workers vanishes.

6.4. Larger instances

In this section, we report results on several larger instances of SSN (with N =
100, 000 scenarios) and on some very large instances of the storm problem, de-
scribed above [18]. Our interest in this section in the sheer size of the problems
that can be solved using the algorithms developed for the computational grid,
rather than with the relative performance of the algorithms with different param-
eter settings. Indeed, the computational grid is better suited to solving extremely
large problem instances, rather than improving solution times on instances of a
more moderate, fixed size.

Table 5 shows results for a sampled instance of SSN with N = 100, 000
scenarios, which is a linear program with approximately 1.75 × 107 constraints
and 7.06×107 variables. We ran this experiment in September 2002, in the same
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TR 77 - 200 200 200 107 .39 15601 4.4 66.4
ATR 247 3 200 200 200 144 .72 27338 18.7 77.3

Table 5. SSN, with N = 100, 000 scenarios.
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TR 10 - 250 250 200 66 .63 2935 0.1 24.2
ATR 18 3 250 250 200 50 .85 4931 0.1 42.5

Table 6. storm, with N = 250, 000 scenarios.

Condor environment as used to obtain Table 4. We compared TR with 200 tasks
and clusters, to ATR with the same values of T and C, and a basket size of 3. In
both cases, the problem was solved in not much more than one hour. Although
ATR required a much larger of iterations, its better parallel efficiency on the
large number of workers available resulted in only a 16% degradation in wall
clock time.

For the storm problem, we consider first a sampled approximation of this
problem with 250,000 scenarios, which resulted in a linear program with 1.32×
108 constraints and 3.15 × 108 unknowns. Results are shown in Table 6. The
algorithm was started at a solution of a sampled instance with fewer scenarios
and was quite close to optimal. In fact, the initial point is accepted after 10
iterations of TR and 18 iterations of ATR as the approximation solution, to
within the required relative tolerance of 10−5. TR required just 24 minutes of
wall clock time, while the ATR run was somewhat slower, due to the smaller
number of worker processors available and the time and its larger number of
iterations.

Finally, we report on a very large sampled instance of storm with N = 107

scenarios, an instance whose deterministic equivalent is a linear program with
1.26×1010 variables. This run was performed in February 2001 on a combined set
of Condor pools from various locations at the University of Wisconsin with ma-
chines from Georgia Tech, the University of New Mexico/Albuquerque High Per-
formance Computing Center, the Italian National Institute of Physics (INFN),
the NCSA at the University of Illinois, and the Industrial Engineering and Op-
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Number Type Location
184 Intel/Linux Argonne
254 Intel/Linux New Mexico
36 Intel/Linux NCSA
265 Intel/Linux Wisconsin
88 Intel/Solaris Wisconsin
239 Sun/Solaris Wisconsin
124 Intel/Linux Georgia Tech
90 Intel/Solaris Georgia Tech
13 Sun/Solaris Georgia Tech
9 Intel/Linux Columbia U.
10 Sun/Solaris Columbia U.
33 Intel/Linux Italy (INFN)

1345 TOTAL

Table 7. Machines available for storm, with N = 107 scenarios.
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ATR 38 4 1024 1024 800 433 .668 39647 1.9 31.9

Table 8. storm, with N = 107 scenarios.

erations Research Department at Columbia. Table 7 shows the number and type
of processors available at each of these locations. In contrast to the other exper-
iments reported in this paper, we used the “MW-files” implementation of MW,
the variant that uses shared files to perform communication between master and
workers rather than Condor-PVM.

We used the tighter convergence tolerance εtol = 10−6 for this run. The algo-
rithm took successful steps at iterations 28, 34, 37, and 38, the last of these being
the final iteration. The first evaluated point had a function value of 15526740,
compared with a value of 15498842 at the final iteration.

Performance is profiled in Table 8. The job ran for a total of almost 32
hours. The number of workers being used during the course of the run is shown
in Figure 1. The job was stopped after approximately 8 hours and was restarted
manually from a checkpoint about 2 hours later. It then ran for approximately
24 hours to completion. The number of workers dropped off significantly on two
occasions. The drops were due to the master processor “blocking” to solve a
difficult master problem and to checkpoint the state of the computation. During
this time the worker processors were idle, and MW decided to release a number
of the processors to other jobs.

As noted in Table 8, an average of 433 workers were present at any given point
in the run. The computation used a maximum of 556 workers, and there was a
ratio of 12 in the speed of the slowest and fastest machines, as determined by the
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Fig. 1. Number of workers used for stormG2, with N = 107 scenarios.

benchmarks. A total of 40837 tasks were generated during the run, representing
3.99×108 second-stage linear programs. (At this rate, an average of 3472 second-
stage linear programs were being solved per second during the run.) The average
time to solve a task was 774 seconds. The total cumulative CPU time of the
worker pool was 9014 hours, or just over one year of computation.

6.5. Comparisons with regularized decomposition code

To verify that the algorithms and software described above do not contain gross
inefficiencies, we solved some of the same test problems using the regularized
decomposition (RD) code of Ruszczyński and Świetanowski [22], which is based
on the algorithm described in [20]. This is a single-processor code that uses a
quadratic penalty term in the master problem in place of the `∞ trust region of
(16). It contains its own implementation of the LP simplex method for solving
the second-stage problems, together with an efficient quadratic programming
solver for the master problem that exploits its structure.

We modified the code in two ways. First, we removed the 5000-scenario limit,
so that we could solve problems with a number of scenarios limited only by the
capabilities of the computer. Second, we gave the user the option of choosing
a starting point, instead of accepting the initial point chosen by RD. We could
therefore use the starting points for RD of similar quality to the ones used in
the tests of our algorithms.



42 Jeff Linderoth, Stephen Wright

N starting point iterations final objective time (min)
100 cold start 34 8.1288875333 1.4
500 warm start (N = 100) 58 9.29075190 7.4

10000 warm start (N = 500) 100 9.98600225 238.3

Table 9. RD code performance on problem SSN.

N starting point iterations final objective time (min)
1,000 cold start 38 15508008.1 13.1

10,000 warm start (N = 1, 000) 41 15499432.7 255.6
100,000 warm start (N = 10, 000) 3∗ - 877.0∗

Table 10. RD code performance on problem storm. ∗Terminated prior to convergence.

We ran RD on a 1.2 GHz Linux PC with 1GB of memory—the same machine
as used for the master processor in the experiments reported in Tables 1, 4,
5, and 6. Results for the SSN problem are shown in Table 9. We tried three
randomly generated sampled approximations to SSN with 100, 500, and 10, 000
scenarios, respectively. The latter two instances were warm-started from the
computed solution of its predecessor in the table. We note that the number of
iterations appears to grow slowly with N , and consequently the overall runtime is
slightly superlinear in N . Without studying details of the respective strategies in
RD and Algorithm TR for adjusting the regularization, generating and deleting
the cuts, etc., it is difficult to draw a detailed comparison between these two
approaches. By observing the iteration count for the N = 10, 000 case, reported
for Algorithm TR in the second column of the first 6 lines of Table 4, we see that
TR’s use of an `∞ trust region does not appear to degrade its effectiveness over
the regularization term used by RD. The much faster wall clock times reported
for Algorithm TR are of course chiefly attributable to parallel execution of the
second-stage evaluations.

Results for RD on the storm problem are reported in Table 10. As pointed
out in the discussion of Table 6, solutions obtained for relatively small N are
near-optimal for larger N , making storm fundamentally different from SSN in
this respect. For this problem, RD appears to require much longer runtimes
than TR and ATR. It was not possible to solve instances of storm with RD for
the value N = 250, 000 used in Table 6 in a reasonable time. An attempted
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run of RD with N = 100, 000 (see the last line of Table 10) was terminated
after performing just three iterations in 14 hours. It is likely that RD’s longer
runtimes are due mainly to its internal simplex method implementation not
being as efficient as the SOPLEX code used to solve the second-stage problems
in our implementations of ALS, TR, and ATR. The respective iteration counts
in Tables 6 and 10 again suggest that the regularization strategy used in our
codes is as effective as that of RD.

7. Conclusions

We have described L-shaped and trust-region algorithms for solving the two-
stage stochastic linear programming problem with recourse, and derived asyn-
chronous variants suitable for parallel implementation on distributed heteroge-
neous computational grids. We prove convergence results for the trust-region
algorithms. Implementations based on the MW library and the Condor system
are described, and we report on computational studies using different algorithmic
parameters under different pool conditions. Finally, we report on the solution
of some large sampled instances of problems from the literature, including an
instance of the stormG2 problem whose deterministic equivalent has more than
1010 unknowns.

Because of the dynamic nature of the computational pool, it is impossible
to arrive at a “best” configuration or set of algorithmic parameters for all in-
stances. In research carried out subsequent to this paper, Buaklee et al. [7] used
a performance model to devise an optimal adaptive scheduling policy for the
ATR code in a heterogeneous pool.

We have demonstrated that it is possible to solve very large instances of two-
stage stochastic linear programming with recourse on potentially inexpensive
parallel computational platforms. The tool we have developed will therefore be
useful in obtaining high-quality solutions to difficult problems, by sampling a
large number of scenarios from the available pool and/or by incorporating our
solver in a sample-average approximation approach such as that of Shapiro and
Homem-de-Mello [24].
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